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CHAPTER 7: SEQUENTIAL AND ORTHOGONAL SPECTRA

JOHN ROGNES

Stable homotopy theory was developed by Spanier and J.H.C. Whitehead [SW53],
[SW55], and expressed in terms of spectra, in the sense of algebraic topology, by
Lima [Lim59] and G. Whitehead [Whi60], [Whi62]. The Spanier—Whitehead ho-
motopy category SW was extended by Boardman (1965, cf. Vogt [Vog70]) to con-
tain representing objects for all cohomology theories, c¢f. Brown [Bro62]. A popu-
lar exposition of Boardman’s homotopy category B was given by Adams [Ada74,
Part I1I]. The resulting homotopy category is triangulated by Puppe cofiber se-
quences, cf. Verdier’s 1967 thesis [Ver96], and has a symmetric monoidal smash
product. This allows the study of ring spectra up to homotopy, and module spec-
tra up to homotopy over these, but is not sufficient to give a triangulated structure
on these module categories. More structured versions of ring and module spectra
were studied by May and collaborators [May77], [May80] under the names of .%,-
prefunctors and .Z,-prespectra, but these were then only viewed as a source of
examples, rather than as a fully fledged model for the stable homotopy category.
Instead, coherent structures were expressed in terms of operad actions, e.g. in the
context of Lewis—May spectra [LMSMS86].

This changed with the insight by Jeff Smith (1994, see Hovey—Shipley—Smith
[HSS00]) that by adding symmetric group actions to the Lima—Whitehead (sequen-
tial) spectra, one obtains a stable and symmetric monoidal model category Sp*
of symmetric spectra, whose homotopy category Ho(Sp™) is equivalent to Board-
man’s. It was soon realized that one could equally well use orthogonal groups
in place of symmetric groups, and that this would recover May’s .Z,-prespectra.
Another approach refining Lewis—May spectra was developed at the same time by
Elmendorf-Kriz—-Mandell-May [EKMM97]. The different theories were compared
by Mandell-May—Schwede—Shipley [MMSS01]. In the orthogonal case, the stable
equivalences are the same as the m,-isomorphisms, whereas this relationship is more
subtle for symmetric spectra. Hence we shall focus on the category Sp® of orthog-
onal spectra as our stable and closed symmetric monoidal model for the stable
homotopy category.

1. SEQUENTIAL AND ORTHOGONAL SPECTRA

We work in the category 7 of based (compactly generated weak Hausdorff)
spaces and basepoint-preserving maps.
Definition 1.1. A sequential spectrum X is a sequence of spaces X,, for n > 0
and structure maps o: ¥X,, = X, AS* = X,,11. A map f: X — Y of sequential
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spectra is a sequence of maps f,,: X, — Y, such that f,, 10 = o(f, A S!) for all
n > 0. Let Sp" be the topological category of sequential spectra.

Let O(n) denote the n-th orthogonal group, acting on R™ by isometries, which
extend to the one-point compactification S™ = R™ U {oco}. We view O(n) x O(m)
as a subgroup of O(n + m), compatibly with the isometry R & R™ = R"*t™ and
homeomorphism S™ A S™ 2 §"+t™ (A coordinate-free approach, using isometries
between Euclidean inner product spaces, is often more convenient for equivariant
applications.)

Definition 1.2. An orthogonal spectrum X is a sequence of O(n)-spaces X,, for
n > 0 and structure maps o: ¥X,, = X, AS! — X 41, such that the m-fold iterate

o XX, =X, NS — Xoim

is O(n) x O(m)-equivariant, for all n,m > 0. A map f: X — Y of orthogonal
spectra is a sequence of O(n)-equivariant maps f,: X,, — Y, such that f, 10 =
a(faASY) for all n > 0. Let Sp® be the topological category of orthogonal spectra.

We shall see that sequential spectra are the same as right S-modules in a symmet-
ric monoidal category (TV,U, ®,7) of sequential spaces, while orthogonal spectra
are the same as right S-modules in a symmetric monoidal category (7%, U, ®,7)
of orthogonal spaces. In the sequential case S is a non-commutative monoid,
while in the orthogonal case it is commutative. This is why we cannot expect
XANY =X ®gY to be an S-module in the sequential setting, while it will be an
S-module in the orthogonal context.

((ETC: Counsider writing X in place of ® for the convolution products in the
categories T, 7O SpN and SpP®, so that X AN Y = X KgY.))

Definition 1.3. The homotopy groups m.(X) of a sequential spectrum X is the
graded abelian group with

7k (X) = colim 71, (X)

in degree k € Z. Here myn(Xpn) — Trtnt1(Xnt1) maps the homotopy class of
g: S — X, to the class of o(g A S'). The homomorphism f,: 7 (X) — m4(Y)
maps the homotopy class of g to the class of f,,g. This defines a functor

e Spit — grAb.
There is a forgetful functor
U: Sp° — SpN
and the homotopy groups 7.(X) of an orthogonal spectrum are defined to be the
homotopy groups of the underlying sequential spectrum.

Definition 1.4. A map f: X — Y of sequential or orthogonal spectra is a m,-
isomorphism if the induced homomorphism 7. (f): 7.(X) — m.(Y) is an isomor-
phism.

Let Wy C SpM be the subcategory of m,-isomorphisms. The stable homotopy
category Ho(Sp") of sequential spectra is the localization of Spt away from the
m.-isomorphisms, i.e., the target of the initial functor

Spt — SpN[ng] = Ho(SpN)

from Sp" that maps each 7,-isomorphism to an isomorphism.
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Likewise, let Wy C Sp® be the subcategory of m,-isomorphisms. The stable
homotopy category Ho(Sp®) of orthogonal spectra is the localization of Sp® away
from the m,-isomorphisms, i.e., the target of the initial functor

Sp® — Sp° Wy '] = Ho(8p°)
from Sp@ that maps each ,-isomorphism to an isomorphism.

It is not obvious that such initial functors exist, but if they do then they are
uniquely determined up to unique isomorphism, by the usual argument involving a
universal property. Quillen’s theory of model categories [Qui67], [Hov99] provides a
way of exhibiting such initial functors, both for sequential and orthogonal spectra.

Moreover, the forgetful functor U is part of a Quillen equivalence, so that the (total
right derived) induced functor

RU: Ho(Sp®) = Ho(Sp")

is an equivalence of categories. By the stable homotopy category we shall mean
either one of these two equivalent categories.

2. SEQUENTIAL AND ORTHOGONAL SPACES

Definition 2.1. A symmetric monoidal category is a category C with a unit object
U and a pairing

®R:CxC—C

X, Y— XY,
together with natural unitality, associativity and commutativity isomorphisms
UQY=2Y=2YQU
XeY)eZ2Xe((Y®Z2)
7 XRY XY X,

satisfying some coherence axioms, including v? = id. We call v the symmetry
isomorphism. The category is closed if there is a functor

Hom: C? xC — C
X,Y — Hom(X,Y)
and a natural bijection
C(X®Y,Z)=2C(X,Hom(Y, Z)),
i.e., if the functor (—) ® Y admits a right adjoint Hom(Y, —), for each Y in C. The
adjunction counit ¢: Hom(Y,Z)® Y — Z is called evaluation.

See e.g. [Mac71, Ch. VII] for the coherence diagrams.

Definition 2.2. A monoid in C is an object R with unit and product maps n: U —
R and ¢: R® R — R such that unitality and associativity diagrams commute. It

is commutative if

R®R il R®R

N
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commutes. A right R-module in C is then an object M with an action map p: M ®
R — M such that unitality and associativity diagrams commute.

Definition 2.3. Let N be the discrete category with objects the integers n > 0
and only identity morphisms. The usual pairing

NxN-—N
m,n+— m-+mn
is symmetric monoidal, with unit element 0 € N.

Let O be the topological category with objects the integers n > 0 and morphism
spaces

O(n) form=mn,

O(m,n) = {

Composition is given by matrix multiplication. The block sum pairing

Ox0—0

m,m——m-+n

0 otherwise.

A 0
A7Br—)A@B—<0 B>

is symmetric monoidal, with symmetry isomorphism X, : m +n — n + m given

by
(0 I,
Xm,n = I, 0
This is natural, because

0 IL,\(A 0\ (B 0 0o I,

I, O 0 B) \0 A)\I, 0)°
Definition 2.4. Let

TV = Fun(N, 7)
be the topological category of N-spaces, i.e., sequences of based spaces X = (X, )n>0-
A map f: X — Y is a sequence of base-point preserving maps (fn: Xn, — Yy )n>o0.
Let
TN TN — TV
XY +—XQY
be the Day convolution product, given by
(X®Y)n = \/ Xi/\Yj
i+j=n

for each n > 0. It is the left Kan extension of

Nx NV 77 87

along +: Nx N — N. Let U € TV be given by Uy = S° and U,, = * for n > 0.
Then (TN, U, ®,7) is closed symmetric monoidal, with symmetry given by

Vi (X®Y)ni>(y®X)n
TANYy——>yANx
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fori+j=mn=j+1i,2 € X; and y € Y;. Let the sphere N-space S € T be given
by S, = S™ for each n > 0, let n: U — S be given by 9 = id, and let ¢: S®S5 — S
be given by
\/ S'ASsT— s"
i+j=n
TNANYy——> TNy
fori+j=n,x€8, yeS andzAye S ASI =S5" The internal Hom functor
is given by
Hom(Y, Z); H Map(Y,
i+j=n

Lemma 2.5. (S,n,¢) is a non-commutative monoid in T".

Proof. Unitality and associativity is straightforward. The pairings ¢ and ¢y: S ®
S — SmapxAy € SAST C(S®8),, fori+j=n,toxAyand yAxin S" =S,
which are not generally equal, so S is not commutative. O

Lemma 2.6. The category Sp" of sequential spectra is isomorphic to the category
of right S-modules in N-spaces.

Proof. Let X be a sequential spectrum. The underlying N-space has the right
S-module structure

c: X®S—X
given in degree n by the map
i (X@8), =\ Xirs — X,
i+j=n
given by the composite structure maps

d
o X, NS T X = X,

Each right S-module arises this way, by the associativity of the right action. ([l

Definition 2.7. Let
7% = Fun(Q, 7)

be the topological category of O-spaces, i.e., sequences X = (X,,)n>0, where X, is
a based O(n)-space for each n > 0. A map f: X — Y is a sequence of base-point
preserving maps (fn: X, = Y)n>0, where f,,: X,, — Y, is O(n)-equivariant for
each n > 0. Let

TOXx 7% — 70
X, Y— XY

be the Day convolution product, given by
(X@Y)u=\ OMm)s Aowxoy Xi AY;
i+j=n
for each n > 0. It is the (continuous) left Kan extension of

XxXY

OxO"S TxT - T



6 JOHN ROGNES

along +: O x 0 — Q. Let U € T9 be given by Uy = S° and U,, = * for n > 0, with
the only possible O(n)-actions. Then (72, U, ®,7) is closed symmetric monoidal,
with symmetry given by

i (X @Y )n = (Y © X)n
ANz ANy— Axji Ny Az
for Ae On), z € X;,ye€ Y;and i+ j =n = j+ i Let the sphere O-space
S € TP be given by S, = S = R" U {oc} with the O(n)-action extending the

action by isometries on R™ for each n > 0. Let n: U — S be given by 7y = id, and
let ¢: S®S — S be given by the O(n)-equivariant map

:\/ Oy Nogxop) SPA ST — 8™
i+j=n
ANz ANy— A(z Ny)

fori+j=mn, A€O(Mn),xre S, yeS andxAy e S AS/ = S". The internal
Hom functor is given by

Hom(Y, Z); H Map(Y, O(j) ,
i+j=n
with the O(i)-action from O(i) — O(i) x O(j) C O(n).
Lemma 2.8. (5,7, ¢) is a commutative monoid in T©.

Proof. Unitality and associativity is straightforward. The pairings ¢ and ¢y: S ®
S — S map

ANz Ay €0(n)+ Aogyxoi) S*AST C(S®S)n,
for i+ j =n, to A(x Ay) and Ax;,:(y Ax) in S™ = S,, which are exactly equal.

Hence S is commutative. O

Lemma 2.9. The category Sp@ of orthogonal spectra is isomorphic to the category
of right S-modules in O-spaces.

Proof. Let X be an orthogonal spectrum. The underlying OQ-space has the right
S-module structure

0 XS —X
given in degree n by the O(n)-equivariant map
(X®S)n=\ 0y rowxoy Xi NS — X,
itj=n
with components
O(n)+ Nowxoi) Xi AST — X,
that are left adjoint to the O(i) x O(j)-equivariant composite structure maps

j o'/\ld

0'] X/\S L)XH_J:X,Z

Each right S-module arises this way, by the associativity of the right action. [
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3. MODEL CATEGORY STRUCTURES

Let C be a category with all colimits and limits, and let W be a subcategory of
weak equivalences. A model structure [Qui67], [Hov99] on C is given by two addi-
tional subcategories, of cofibrations and fibrations, satisfying a list of axioms. These
ensure that the localization Ho(C) = C[W™1!] can be constructed with morphism
sets

[X,Y] = {morphisms X¢ — Y/ in C}/~
where X¢ — X and Y — Y7 are so-called cofibrant and fibrant replacements, and
~ denotes homotopy classes of maps.
Lemma 3.1. The categories TV, T°, Sp" and Sp® have all (small) colimits and
limits.
Proof. Any diagram «a — X («) of N-spaces, resp. O-spaces, has colimit and limit
(colim X (av)),, = colim (X («),,)
(lim X (@), = lim (X («))
« «
formed “pointwise” in spaces, resp. O(n)-spaces. If this is a diagram of right S-
modules, then the colimit and limit have right S-module structures given by

(colim X (o)) ® S = (colim X (o) ® S) colimg @ colim X ()
and _
(lim X () ® § % (lim X () ® §) "7 colim X ()
for a canonical exchange map k. [l

Lemma 3.2. The topological categories C = TN, TP, Spt and Sp® are tensored
and cotensored over T . There are natural homeomorphisms
Map(T,C(X,Y)) 2 C(TAX,Y)2C(X ANT,Y) = C(X,Map(T,Y)).

Proof. Given an N-space, resp. O-space, X and a space T' € T define TA X, X AT
and Map(T, X) so that

(TAX)y=TAX,

(X AT)p =X, AT

Map(T, X),, = Map(T, X,,)

in spaces, resp. O(n)-spaces. If X is a right S-module, then these have right S-

module structures given by

TANo

(TAX)@SZTA(X®S)—TAX

oANT

(XAT)@S=2(XS)ANT — XAT

Map(T, X) ® S % Map(T, X @ ) 257 Map(T, X)
for a canonical exchange map k. O
Definition 3.3. For X in C =TV, 79, SpN or Sp@, let CX = X AI, X = X AS?

and QX = Map(S?, X) be the cone, suspension and loop space or spectrum. There
are natural homeomorphisms

QC(X,Y)=C(S'AX,Y)2C(SX,Y) 2 C(X,QY).
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For f: X — Y a map of diagram spaces or spectra, let the mapping cone of f be
the pushout
Cf=Yux(CX.
We call the diagram
x Ly Liof Bovx
the Puppe cofiber sequence generated by f.
Lemma 3.4. For each m > 0 there are free functors
F: T — T
Fp: T —T°
Spor T — Sp
¥ T — Sp°
that are left adjoint to the forgetful functors from TV, TC, SpN and Sp® mapping
X to the (non-equivariant) space X, .
Proof. Let
Fo(T),, = {T for m : n,
*  otherwise

in the sequential case, and let

Fm(T)n = {

in the orthogonal case. In either case, let X507 = F,,,(T') ® S with the evident right
S-module structure, so that

R T)n = {

O(n)y AT for m =mn,
* otherwise

TASY™™ forn>m

* forn <m

in the sequential case, and
0] Nonem) (TAS?P™™) f{ >

(5T, = { (1)+ Aogn-m ( ) forn>m

* forn <m
in the orthogonal case. O

Definition 3.5. Let X°° = 3§° denote the suspension spectrum functor, from 7
to SpN or Sp®. Then
(X°T), =T ANS"=3"T,
with the standard O(n)-action on S™ in the orthogonal case. The structure maps
o: 5(E°T), — (2°T) 11
are the identity maps.
Definition 3.6. For m > 0 let S™ = X°8™ and S™™ = E;’?LSO as sequential or

orthogonal spectra. For m = 0 these definitions agree, and S° = £¥>°5% = § is the
sphere spectrum.

Lemma 3.7. The canonical maps ©.S™ — S™F1 are isomorphisms for m > 0, and
Ty -isomorphisms for m < 0.
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Proof. This is easy in the sequential case, and amounts to a key calculation in the
orthogonal case. As a representative case, consider \: XS~! = £¢°81 — S given
at level n by the O(n)-map

)\ni O(n)+ /\O(nfl) Sl A Sn_l — 5"

left adjoint to the O(n — 1)-equivariant identity S* A S"~1 = S™. The source is
the Thom complex of an R™-bundle over O(n)/O(n —1) = S"~! and the map is a
(2n — 1)-connected retraction. Hence

7Tk (A) = colim 74, (M)
is an isomorphism for each k € Z. g

Remark 3.8. For symmetric spectra, A should be a (stable, weak) equivalence, but
is not a m,-isomorphism. Hence more maps than the 7,-isomorphisms need to be
inverted to pass from Sp* to Ho(Sp*) ~ B.

Definition 3.9. Given a map ¢: S™ ! — X, we say that Cp = X UCS™ ! is
obtained from X by attaching an m-cell along ¢. A spectrum that can be obtained
from * by attaching (transfinitely) many cells is called a cell spectrum. ((ETC:
Also allow 295771 as source of ¢7))

Definition 3.10. A sequential or orthogonal spectrum X is called an Q-spectrum
if the adjoint structure map

0: X, — QXn+1
is a weak homotopy equivalence, for each n > 0.

If X is an Q-spectrum, then each space X, is an infinite loop space, in the sense
that there is an infinite sequence of weak equivalences

X2 QXpi1 2 20Xy ..

Theorem 3.11 ([BF78, Thm. 2.3], [MMSS01, Thm. 9.2]). There is a model struc-
ture on the category of sequential, Tesp. orthogonal, spectra, with weak equivalences
given by the . -isomorphisms, such that cell spectra are cofibrant and Q)-spectra are
fibrant.
Hence the homotopy category Ho(Sp™) = SpN[Wy '], resp. Ho(Sp?) = Sp° Wy,
exists, and
(X, Y] ={X° = YT}~

where X¢ — X is a my-equivalence from a cell spectrum, Y — Y is a 7, -equivalence
to an Q-spectrum, and ~ denotes homotopy classes of spectrum maps X¢ — Y7,

Proposition 3.12. There is a natural isomorphism
m(Y) 2 [S*, Y]
for each sequential, resp. orthogonal, spectrum Y .

Proof. Note that

gk _ nesk  for k >0,
1 2%,8° fork <0
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is a cell spectrum, hence its own cofibrant replacement. Let Y — Y/ be a fibrant

replacement, i.e., a m.-isomorphism to an -spectrum. It suffices to prove that
mp(YT) =2 [SK, V7] Here

Y/ fork>0

[Sk,Yf}:{S’f%yf}/:g x( Of) or k>0,

mo(Y?,) for k <0,

which indeed is isomorphic to 74 (Y 7). (]

Theorem 3.13 ([MMSS01, Thm. 10.4]). The model categories of sequential and
orthogonal spectra are Quillen equivalent, so that

RU: Ho(S8p®) = Ho(Sp")
is an equivalence of categories.

This uses that the underlying sequential spectra US™ of orthogonal sphere spec-
tra are m,-isomorphic to the corresponding sequential sphere spectra. Hereafter we
write Ho(Sp) for either one of these equivalent categories.

4. STABILITY AND TRIANGULATED STRUCTURE

The model structures on SpY and Sp® are stable, which implies that the homo-
topy category Ho(Sp) is triangulated.

Theorem 4.1. The suspension and loop functors induce inverse equivalences

%: Ho(Sp) = Ho(Sp): Q

In particular, the adjunction unit n: X — QXX and counit e: XQY — Y are both
Ty-1somorphisms.

For one proof, using that the cyclic permutation of S' A S' A S' is homotopic to
the identity, see [Rognes, MAT9580/2021, Spectral Sequences, §9.3].

Lemma 4.2. Loop composition gives each morphism set
[X,Y] = [22X,2%Y] = [X, Q?%%Y)
the structure of an abelian group, and composition of morphisms is bilinear.

We say that Ho(Sp) is an Ab-category. An additive category is an Ab-category
with all finite sums (= coproducts). It follows that it has all finite products, and
that the canonical map from any finite sum to the corresponding finite product is
an isomorphism. We now give May’s version [May01] of Verdier’s axioms.

Definition 4.3. A triangulated category is an additive category C with an additive
equivalence %: C — C and a collection A of diagrams
(4.1) x Ly Lz 1 ex,
called distinguished triangles. We assume that:
(1) (a) For each object X in C the triangle
X4 X —0—5x

is distinguished. (b) For each morphism f: X — Y in C there exists a
distinguished triangle (4.1). (¢) Any diagram isomorphic to a distinguished
triangle is also a distinguished triangle.
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(2) For each distinguished triangle (4.1) its rotation
y Lz sx sy

is a distinguished triangle.
(3) Consider the following braid diagram.

’ 11

h g J

X A W YU
g n i 7 K /
f o S
Y I8 YY
i h'!
s =f
U X

~_ 7

f//
Assume that h = gf and j” = (2 f")g”, and that

x Ly Lulyx

y Lz 2w iy
x Mz My vy

are distinguished. Then there exist maps j and j’ such that the diagram
commutes and

vLv 2w sy
is distinguished.

The braid axiom is usually known as the octahedral axiom, since the four dis-
tinguished triangles and the four commuting triangles can be viewed as the eight
faces of an octahedron. The two commuting squares then appear in the interior of
the octahedron.

The following fill-in lemma was taken as an axiom by Puppe and (unnecessarily
so) by Verdier.

Lemma 4.4. If the rows are distinguished and the left hand square commutes in
the following diagram

x Tty 4.7 M. yx

zl ij k lZi
’ ’ \ /

X Loy Loy sy

then there exists a map k making the remaining two squares commute.

It is a consequence of the following 3 x 3-lemma, which is proved by comparing
the braid diagrams for the compositions jf and for f’i.
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Lemma 4.5. Assume that jf = f'i and the two top rows and two left columns are
distinguished in the following diagram.

x—l .oy .7 " vx
i J k i
xSy W sy
i’ j’ I’ porid
xr Iy 8 g W s
i 3" k(=) =i
wx Zoxy B0 sy Thosey

Then there is an object Z"' and maps f”, g", ", k, k' and k" such that the diagram
is commutative, except for its bottom right hand square, which commutes up to the
sign —1, and all four rows and columns are distinguished.

In all cases, no uniqueness is assumed for these existence statements. This makes
it difficult to glue together triangulated categories. This issue can be resolved by
working with richer structures, i.e., stable co-categories.

The fill-in lemma implies that distinguished triangles are exact and coexact.

Proposition 4.6. For any distinguished triangle
x-Ly Sy hinx
and object T, in a triangulated category C, the sequences
C(T, X)L (1Y) 25 e(T, 2) 2 (T, 5 X)
and
C(EX,T) 25 ez, 1) %5 ey, 1) L5 e(x, 1)
are exact.

In view of stability and rotation invariance, these extend in both directions to
long exact sequences. Recall the mapping cone Cf =Y UCX.

Theorem 4.7. The stable homotopy category Ho(Sp) is triangulated, with distin-
guished triangles the diagrams that are isomorphic to the Puppe cofiber sequences

x Ly L of 5oex.

Sketch proof. The braid axiom may be unfamiliar. We may assume that U = C'f,
W =Cgand V = C(gf). There is then a commuting diagram

g

Y Z Cy
ok
cf —L=clgf) Cj
R
»X »X cyxX
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of vertical cofiber sequences and horizontal homotopy cofiber sequences, formed in
Sp" or Sp®. The map Cg — Cj is an equivalence, since CXX ~ x. O

Corollary 4.8. For any map f: X — Y of (sequential or orthogonal) spectra there
is a long exact sequence

o (X)L (V) — e (CF) - o (X) =

This could also be proved directly from Theorem 4.1. Following G. White-
head [Whi60], each spectrum defines a (generalized) homology and cohomology
theory on spaces.

Theorem 4.9. (a) Let E be a (sequential or orthogonal) spectrum. The functors
T+ Ex(T) = mi(EAT)
and the suspension isomorphisms
Ey(T) = 7 (EAT) — w1 (E A ST) = Ejyq (ST)

define a reduced homology theory on all based spaces T .
(b) The functors

X — E*(X) = [X,%FE]

and the suspension isomorphisms

EF(X) =[X,2*E] =5 [2X, M E] = EFY(X),
for k € Z, define a cohomology theory on all spectra X, which restricts to a reduced
cohomology theory on all based spaces T via

E*(T) = E*(2°T) = [T, 2*E].

We will extend the homology theory E,(—) to all spectra after defining the smash
product of orthogonal spectra.

Definition 4.10. Let o/} = E*E = E*(E) be the E-based Steenrod algebra.
Proposition 4.11. The composition pairing
F'E® F/(X)=[E,YE|®[X,YF] = [X,2"E] = B"(X)

gives E*(X) a natural left E*E-module structure. The multiplication in E*E cor-
responds to the case X = FE.

In the case & = HIF, we recover the mod p Steenrod algebra, and its natu-
ral left action on H*(X;F,). The structure of o/, = MU*(MU) was deter-
mined by Novikov [Nov67] (announced at the 1966 ICM) and Landweber [Lan67],
cf. [Ada74, Part I]. Its action on MU*(X) naturally is that of a topological ring
acting continuously on a topological module. Following Adams [Ada69, Lec. III]
we shall instead view oMY = MU, (MU) as a generalized coalgebra, called a Hopf
algebroid, with a natural coaction on MU,(X). This avoids the technical issues
about topological actions.
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5. TRUNCATION STRUCTURE

The method of killing homotopy groups shows that for each spectrum X there
exists a Postnikov tower

X = =1 X 210X — ..

where 7;(X) — m;(7<,X) is an isomorphism for each i < ¢, while m;(7<,X) = 0
for all ¢ > t. We say that 7<;X is t-coconnective (omitting ¢ when ¢t = 0), or
t-truncated. It follows that

X ~ ho}sim T<t X
(the mapping microscope). We may write 7, X for 7<;_1 X.
There is a homotopy cofiber sequence
TotX — X — 7 X — Y1 X
for each t € Z. Writing 7>¢41X for 7, X, we obtain a Whitehead tower
= T X S T X = =2 X

where 7;(7>¢X) — m;(X) is an isomorphism for each ¢ > ¢, while m;(7>,X) = 0
for all ¢+ < t. We say that 7>;X is t-connective, omit ¢ when ¢ = 0, and say that
T>0X — X is the connective cover of X. It follows that

hoc?limX ~ X

(the mapping telescope).

Example 5.1. The spectra S, MO, M SO, MU, HA are connective, for any abelian
group A. The connective covers of KO and KU are denoted ko and ku, respectively,
with
T« (ku) = Z[u]
and
7. (ko) = Z[n, A, B]/(2n,m°,nA, A> = 4B) .

The formal properties of Postnikov towers were axiomatized by Beilinson—Bernstein—
Deligne.

Definition 5.2 ([BBD82, §1.3]). A ¢-structure (= truncation structure, I presume)
on a triangulated category C is a pair of full subcategories C>¢ and C<y. With the
notations C>; = X!C> and C<; = X!C<o we assume that:

(1)
- CC>1CCsC ... and +CCcoCCcyC....
(2) For each object Y in C there exists a distinguished triangle
X—Y —7Z—=%XX

with X € 021 and Z € CSO'
(3) IfX e Czl and Z € CSO then C(X, Z) =0.
Definition 5.3. An abelian category is an additive category such that

(1) each morphism has a kernel and a cokernel,
(2) each monomorphism is a kernel, and each epimorphism is a cokernel.
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For each morphism f: A — B in an abelian category, there is an exact sequence

0 — ker(f) —>AL>B—>cok(f)—>O,

and A/ker(f) = coim(f) = im(f). Abelian categories are convenient settings for
homological algebra.

Theorem 5.4. The heart C¥ = T>0CNT<oC of a t-structure is an abelian category.

Proposition 5.5. The categories Ho(Sp)>o of connective spectra and Ho(Sp)<o
of coconnective spectra define a t-structure on the stable homotopy category, with
heart the abelian category of abelian groups.

Sketch proof. If X is 1-connective and Z is 0-coconnective, then [X,Z] = 0 by
induction over a CW structure on X.

The heart Ho(Sp)¥ = Ho(Sp)>o N Ho(Sp) <o consists of the spectra with . (X)
concentrated in degree 0, i.e., the Eilenberg-MacLane spectra H A for all abelian
groups A. O

The derived category D(Z) of chain complexes of abelian groups, up to quasi-
isomorphism, is another triangulated category with t-structure, having the same
heart as Ho(Sp). ((ETC: Realize D(Z) as Ho(Modpz), with base change along
S — HZ defining a functor Ho(Sp) = Ho(Modgs) — Ho(Modgz).))

6. SMASH PRODUCTS AND FUNCTION SPECTRA

We now make use of the fact that S is a commutative monoid in @-spaces to
define a smash product
XANY =X®sY
and a function object
F(Y,Z) = Homs(Y, 2)
for orthogonal spectra, i.e., right S-modules, X, Y and Z.

Definition 6.1. Given right S-modules X, Y and Z let X AY = X ®g Y be the
coequalizer
o®id
X®SeY XY —">XsY
id®o’
in 7%, where 0/ = 0y: S®Y — Y defines a left S-action on Y. Let F(Y,Z) =
Homg (Y, Z) be the equalizer

o*

Homg (Y, Z) —— Hom(Y, Z) Hom(Y ® S, Z)

O,\/

in 79, where ¢V has left adjoint
Hom(Y,Z2) @Y © S 28 208 -2 7.
Then X AY has a right S-module structure making the square

XoYyes-2% xoyv

Tr@idl i

(XANY)® S ——=XANY



16 JOHN ROGNES

commute, while F(Y, Z) has a right S-module structure making the rectangle

F(Y,Z)® 5 F(Y, 2)

@idi l

Hom(Y, Z) ® § —“> Hom(Y, Z ® S) —> Hom(Y, Z)

commute. Here x has left adjoint

id ®vy

Hom(Y, Z)® S @Y X Hom(Y,2) Y @ S < Z® S.

Remark 6.2. More explicitly, the smash product X AY is given at level n by the
coequalizer of two maps

Vatbiemn O)+ Aoayxom)20(c) Xa A S° A Y,

|

Vitj=n O()+ Xog@xou) Xi N Y-
A map of orthogonal spectra p: X AY — Z is equivalent to a collection of O(7) x
O(j)-equivariant maps
Hij: Xl A\ Y} — Zi-l-j
for 4,7 > 0, making the bilinearity diagram

XaASTAY, 2L X AV, A S

B Ha,cNid
oNid id Ao

Xa+1 /\)/c Xa/\}/c—i-l Za-l—c/\Sl
Ha+1,cl lﬂa,i/
(IaeaXl,c)‘
Za+1+c T) atc+1

commute, for all a, ¢ > 0. Note the appearance of the action of I, ®x1,. € O(a+1+c)
on Zg114¢, which is not available for sequential spectra. See [Schwede, Symmetric
Spectra, diagram (5.1)].

Theorem 6.3. The category Sp® of orthogonal spectra is closed symmetric monoidal,
with unit object S, monoidal pairing X,Y — X AY, symmetry isomorphism
v XANY2YANX
and internal function object F(Y,Z).
Sketch proof. The diagram

o®id
XSS _X®S—7=X
id®¢
is a split coequalizer, which shows that X AS = X. Left unitality and associativity
admits similar proofs. The symmetry isomorphism is induced by v: X®Y XY RX.
The natural adjunction homeomorphism

TOXAY,Z) 2 TOX,F(Y, Z))
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lifts to a natural isomorphism
FXANY,2)2 F(X,F(Y,Z)).

This smash product of orthogonal spectra extends that of based spaces.

Lemma 6.4. There are natural isomorphisms
LOTAR®T 2 N®°(T AT

in Sp°, for T, T € T.
Proof. S°TAE®T' = TASNT'ANS ZTANT'ANSAS X TANT'AS =X°(TATY). O

We give the category gr.Ab of graded abelian groups the usual symmetric monoidal
structure, with symmetry

v ARB=B®A

taking z®y to (—1)1*ll¥ly®2. A lax monoidal functor ®: C — D between symmetric
monoidal categories comes with a natural transformation -: ®(X)®®(Y) — ®(X ®

Y) and a morphism U — ®(U), and takes monoids to monoids and modules to
modules. It is symmetric if

B(X) @ B(Y) —— B(Y) © B(X)

Q(Xl@@ y) 20 @(YL X)
commutes, in which case it takes commutative monoids to commutative monoids.
((ETC: Properly define lax (symmetric) monoidal and closed functors?))
Theorem 6.5. There is natural pairing
(X))@ (Y) — m (X AY)
a®@pBr—a-p

and a homomorphism Z — m,(S) that make 7. a closed and lax symmetric monoidal
functor from (Sp®, S, A) to (grAb,Z,®).

Proof. See [Rognes, MAT9580,/2017, Stable Homotopy Theory, Thm. 6.8]. Let X
and Y be orthogonal spectra, and let ¢y, m: Xp AYs = (X AY ) g be the O(n) x
O(m)-equivariant components of the identity map of X AY. Given a € m(X) and
B € m(Y), represented by f: S¥*" — X, and g: St — Y;,, respectively, we can
form the composite
Frg: SEFRA S M Ay T (XA Y ) -

Its homotopy class in T yntetm((X AY)pnim) only depends on [f] and [g], so we
can let [f] * [g] = [f * g]- Let

ff=o(fAid): SHH 5 X,

g =o(gnid): 4™ Ly

(fx9) =0o(fxgnid): Ghtnrbamtt (X AY)pgm+1

denote the stabilized maps. The bilinearity diagram shows that

frgd =(fxg) and  (fxg)(dAY) = (Tn® x1.m)(f *9).
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Here v: STASHH™ — S4mAST has degree (—1)*+™, and multiplication by I, ®x1,m
has degree (—1)™, so it follows that

[fxgT=[(f*9)]= (D [f *g].
To compensate for the sign (—1)°
[f1-[g] = (=1)"[f * g]

in Tptoantm((X AY)min). We define o - 8 to be its stable class in mp4¢(X AY),
which only depends on the stable classes « and . (I

that appears when n is incremented, we let

If £ > 0, then the sign (—1)*" is realized by v: S* A S™ =2 8™ A S* 50 [f] - [g] is
the homotopy class of the composite

fog: ShHtrntm _ gk A Gt A gn p gm AR gl gy gl gm
I X A Y S (X AY ) -

This suffices, e.g., to present the right 7, (S)-action on 7, (X).

7. ORTHOGONAL RING AND MODULE SPECTRA

Definition 7.1. An orthogonal ring spectrum, also called an S-algebra, is a monoid
in (Sp®, S, A), i.e., an orthogonal spectrum R with a unit map n: S — R and
product map ¢: R A R — R, satisfying unitality and associativity.

A commutative orthogonal ring spectrum, or commutative S-algebra, is a com-
mutative monoid in Sp@, meaning that ¢ = ¢y: RA R — R.

A right R-module spectrum is a right R-module in Sp?, i.e., an orthogonal
spectrum M with a right action map p: M A R — M satisfying unitality and
associativity. A left R-module spectrum is a left R-module in Sp?, i.e., an orthog-
onal spectrum N with a left action map A\: R A N — N satisfying unitality and
associativity.

With M and N as above, the relative smash product M Ar N is the coequalizer

pAid
MARAN_—_ __MAN-—T">MARrN
id AN

in SpO. If R is commutative, then left and right R-actions are interchangeable, and
M Ag N is again an R-module.
((ETC: Can also discuss Fr(M,N).))

Lemma 7.2. If R is an orthogonal ring spectrum, then m(R) is a graded ring. If
R is commutative, then m.(R) is graded commutative. If M is a right R-module,
then m.(M) is a right m.(R)-module. If N is a left R-module, then m.(N) is a left
7« (R)-module. There is a natural homomorphism

W*(M) ®7T*(R) W*(N) — 7T'*(M AR N) .
((ETC: Also m, Fr(M, N) — Homy_ (g (ms (M), . (N)).))

Proof. The lax monoidal pairing 7.(M) ® m(N) — m(M A N) — 7. (M A N)
equalizes the two homomorphisms from 7,(M) ® m.(R) ® 7«(NN), hence factors
through 7.(M) @, (r) T«(N). O
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FEzample 7.3. The spectra S, MO, M SO, MU, KO, KU and HR for any commu-
tative ring R admit models as commutative orthogonal ring spectra. For example,
the multiplication yu: MO A MO — MO is given by the maps

obtained by Thomification from the Whitney sum map BO(i) x BO(j) — BO(i+j).
Each
MO(n) = EO()+ Ao S™ = B(O(n), S")
(using the bar construction from Chapter 3, Definition 10.8) comes with a left
O(n)-action, given by conjugation on the group O(n) and the standard action on
S™, and p; ; becomes O(i) x O(j)-equivariant. The spectrum MU is most naturally
a unitary spectrum, but is m,-isomorphic to an orthogonal spectrum with n-th space
Q"MU (n), equipped with the multiplication
. . oy Qitit o
QMU (i) A MU(j) — QU (MU AMU(G))  —57 QH MU + 7).
See [Schwede, Symmetric Spectra, Example 1.18].

((ETC: Discuss (orthogonal) ring spectrum maps S — MU — KU later.))

8. THE SMASH PRODUCT IN THE STABLE HOMOTOPY CATEGORY

The model structure on Sp® is monoidal, satisfying a so-called pushout-product
axiom. This implies that for any cofibrant replacements X¢ — X, Y — Y and
fibrant replacement Z — Z7 the induced maps

XOANY = X AY® = X ANY©
and
F(Ye,Z) = F(ye,z & F(y,z))
are 7,-isomorphisms. Hence the closed symmetric monoidal structure on Sp® de-
scends to Ho(Sp?), giving a (derived) smash product

A: Ho(Sp?) x Ho(Sp?) — Ho(Sp?)
X, Y — X NY©
and (derived) function spectrum
F: Ho(Sp®)?P x Ho(Sp®) — Ho(Sp?)
Y,Z— F(Y°,27)
making Ho(Sp®) closed symmetric monoidal. In particular, there are compatible
isomorphisms
SAY XY =Y AS
(XAY)ANZZXXANYANZ)
v XANYZ2ZYANX
F(XAY,Z)2 F(X,F(Y,Z))
in Ho(Sp®). The symmetric monoidal part of this structure was developed “by
hand” on pages 158-190 of [Ada74].

The closed symmetric monoidal and triangulated structures on Ho(Sp) are com-
patible.
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Lemma 8.1. (a) For each distinguished triangle
x-Ly %z Mex

and spectrum W the triangles

WAX NYway Y waz Y s ax)
X AW Py A 9 g gy CDEND 5oy
Fw, x) "8 paw, vy Y9 paw, 2y EE s paw, x)
SR, w) Y iz, wy PR poy,wy TS poxw

are distinguished.
(b) The composite

LSt =85t ASt 1 St A S = xSt
is multiplication by —1.

Note the minus sign in —F'(h,id). Mapping out of a cofiber sequence de-
fines a fiber sequence, which stably differs by this sign from a cofiber sequence.
May [May01] gives more compatibility conditions satisfied in Ho(Sp). The full com-
patibility story is perhaps best accounted for by presentably symmetric monoidal
stable co-categories.

The symmetric monoidal and truncation structures on Ho(Sp) are also compat-
ible.

Lemma 8.2. (a) S is connective, with Z = my(S).
(b) If X andY are connective, then so is X \Y , with mo(X)®mo(Y) = mo(XAY).

Proof. (a) This is a consequence of the Hurewicz theorem.
(b) There are cofibrant replacements X¢ — X and Y° — Y where X¢ and Y*
are CW spectra with cellular complexes ending with the exact sequences

C1(X%) -2 Co(X) — mo(X) — 0
(V) -5 Co(YE) — mo(Y) — 0.
Then X° AY€ is a CW spectrum with cellular complex ending with an exact se-
quence
CLX) @ Co(Y*) @ Co(X*) @ Cr(Y*) "7 Co(X9) @ Co(Y)
— (X AY) —0.
This implies that 79(X) @ mo(Y) Z mo(X AY). O
((ETC: Can also note that mo(X) = Hy(X) for connective X, and appeal to the

Kiinneth theorem in homology.))
Example 8.3. For abelian groups A and B the 0-truncation
HANHB — 17>0(HANHB) ~ H(A® B)

of the smash product of two Eilenberg—MacLane spectra is the Eilenberg-MacLane
spectrum of the tensor product. In general, this map is not an equivalence. For
instance, 7, (HF, A HF,) = </ is the mod p Steenrod algebra.
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Lemma 8.4. Let R be an orthogonal ring spectrum, M a right R-module and N a
left R-module.
(a) If m (M) = 7w (R){ga}a is free as a right m.(R)-module then

M ~ \/ ylgelp
«
as right R-modules, and m,(M) @ gy m«(N) = 7.(M Agr N).
(b) More generally, there is a natural strongly convergent Tor-spectral sequence
E?, = ToT: (7, (M), 7. (N)) = m.(M Ag N).
Proof. (a) We represent the module generator g, by maps
Go: Sl9ol — M

and extend these using the R-action to obtain maps

gaNid

Yelp o Gloal A RIS M AR L5 M.

Their direct sum g over a induces the assumed isomorphism

Psleelr (R) = x.(\/ Bl R) = 7.(M),

hence is an equivalence. It follows that

gARrid

\/ 29I N = \/ £l IR A N =55 M AR N
« «

also is an equivalence, and here

r.(\/ S N) = @ 9 lm, (R) @, () 7 (N) 2 70 (M) @ 1y 72 (N).

e} [e3

(b) Any free m,(R)-module resolution
o — P — Fy — . (M)—0
can be spectrally realized by the associated graded of a filtered R-module spectrum
x* — My — My — ... — M

with My, ~ M. Apply — Ag N to this filtration, and consider the associated
spectral sequence. See [EKMMO97, §IV.5] for the details. O

Corollary 8.5. Let R be a ring, M a right R-module and N a left R-module, so
that HR is an orthogonal ring spectrum, HM a right HR-module and HN a left
HR-module. Then

7 (HM ANgr HN) = Tor® (M, N) .
((ETC: Can also discuss Fr(M, N) and the Ext spectral sequence.))

Corollary 8.6. Let R be a ring, and M and N right R-modules, so that HR is an
orthogonal ring spectrum, and HM and HN are right H R-modules. Then

1 (Far(HM, HN)) = Ext}(M, N) .
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Remark 8.7. Before the invention of symmetric and orthogonal spectra, the term
“ring spectrum” meant a monoid in the stable homotopy category Ho(Sp) ~ B, i.e.,
a spectrum R with morphisms 7: S — R and ¢: RA R — R such that the unitality
and associativity diagrams commute in Ho(Sp), i.e., up to homotopy. Similarly, a
“module spectrum” meant a module in Ho(Sp), with a morphism p: M A R — M
such that the unitality and associativity diagrams commute up to homotopy. This
makes 7, (R) a graded ring and 7. (M) a right 7.(R)-module, but does not suffice
to define M Ar N. Nonetheless, if 7. (M) is free as a right 7, (R)-module, then M is
equivalent to a wedge sum of suspensions of R, as in the first part of Lemma 8.4(a).

Definition 8.8. We refer to monoids and modules in Ho(Sp) as ring spectra up
to homotopy, and module spectra up to homotopy, respectively.

Ezample 8.9. Let p be a prime, and let the mod p Moore spectrum S/p = Cp be
the mapping cone of the multiplication-by-p map p: S — S. The smash product of
S/p with the homotopy cofiber sequence

S-S5 S/p-LsnS
is a homotopy cofiber sequence

id Aj

S/pAS Y Spn SN S/pAS/p Y R(S/p A S)

which is isomorphic to

Sip 25 S/p 5 S/p A S/p L 2S/p.

If p is odd then [S/p,S/p] = Z/p and the map p: S/p — S/p is null-homotopic.
Hence there exists a retraction S/p A S/p — S/p in the stable homotopy category.
This is left and right unital up to homotopy, and turns out to be associative up to
homotopy if p # 3. Hence S/p is a ring spectrum up to homotopy for p > 5, while
S/3 is a “non-associative” ring spectrum up to homotopy.

If p = 2 then [S/2,5/2] = Z/4 and the map 2: S/2 — S/2 is essential. Hence
there is no (left or right) unital pairing S/2 A S/2 — S/2, and S/2 is not a ring

~

spectrum. One way to see this, due to Barratt, is to use that H*(S/2;F,) =
Fo{1,Sq'} and

H*(S/2 A S/2;Fy) = Faof1, Sq'} @ Fo{1, Sq'}

with S¢?(1® 1) = Sq¢' ® Sq' # 0 by the Cartan formula. This would have to be
zero if S/2 were a retract up to homotopy of S/2 A S/2.

The following recent result was contrary to every expectation.

Theorem 8.10 (Burklund (arXiv:2203.14787)). The Moore spectra S/8 and S/p?,
for any odd prime p, can be realized as (strictly unital and associative) orthogonal
ring spectra.
9. SPECTRAL HOMOLOGY AND COHOMOLOGY
We now extend G. Whitehead’s Theorem 4.9.
Theorem 9.1. Let E be a spectrum. The functors
X — Ek(X) = Wk(E/\X)
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and the suspension isomorphisms
Ey(X) = mp(EAX) = 1 (EASX) = Epyr (5X)
define a homology theory on all spectra X.

Theorem 9.2. Let E be a ring spectrum in the homotopy category. There are
natural pairings

Ei(X)NE;(Y) — Eip j(X NY)
and

EY(X)ANE(Y) — E" (X AY)
making E.(—) a multiplicative homology theory and E*(—) a multiplicative coho-
mology theory. In particular, E.(Y) is naturally a left E4x(S) = 7. (E)-module and
E*(Y) is naturally a left E*(S) = m_.(E)-module.

Sketch proof. The composition

T(EAX)@m(EAY) =5 Ty j(EAXAEAY) — 1y (EAEAXAY)

L i (EAX AY)

defines the homology pairing. The composition
(X, Y'E|@[V,%E] 25 [XAY,S'EAYE| > [X AY, S (EAE)]
2 X AY, DR

defines the cohomology pairing. The left module actions correspond to the case
X=5. ]

Next we follows Adams [Ada69, Lec. III] and interpret E.(X) as an E,FE-
comodule, subject to a flatness condition on E.

Definition 9.3. Let (F,n,¢) be a ring spectrum in the homotopy category. We
briefly write
E, =7.(F) and E.E=E.E)=7m.(EAE).

Then FE, is a graded ring, and E,FE is an E,-F,-bimodule, with left F,-action
induced by
PdAid
ENENE — ENANE
and right F,-action induced by

ENEANEYY EANE.

Moreover, E,FE is a graded ring, with multiplication induced by

ENENEAE Y EAEAEANE™ EAE.

The left E,-action on E, E is then given by A(a®b) = ni.(a)-b, where n;,: E, — E.E
is the left unit homomorphism induced by

ExEAS N ENE,

and the right F,-action on E, E is given by p(b&c) = b-ng(c), where ng: E, — E.F
is the right unit homomorphism induced by

E~SAE™SSEANE.



24 JOHN ROGNES
The ring spectrum multiplication ¢: EAE — E induces an augmentatione: F,FE —
FE,, with eony =id = e o npg.

In the case E = HF, we have E, =F, and E,E = 4/, the mod p dual Steenrod
algebra. The left and right units are both the degree zero inclusion F, — .
In general, the left and right units ng,nr: E. — E.E will be different homomor-
phisms. If E is homotopy commutative, i.e., a commutative ring spectrum in the
homotopy category, then F, and E,F are graded commutative, and the conjugation
(= antipode/involution) isomorphism

v: B.E = E.E

induced by the symmetry v: E A E = E A E satisfies 2 = id and x o, = ng.
Hence the left F,-module E,E is isomorphic via x to the right F,-module E,E.

Definition 9.4. Let F be a commutative ring spectrum in the homotopy category.
We say that E is flat if E.F is flat as a left (or, equivalently, right) E.-module.

The map
id AgAid
ENENENX — ENEANX
induces a pairing
E.EQFE.(X) —m(ENEANX)

which equalizes the two usual homomorphisms from E,EQFE.®FE, (X) and therefore
factors uniquely through E.E ®p, E.(X).

Lemma 9.5. If E is flat, then
E.E®p, E.(X) — m.(EANEANX)
is an isomorphism, for each spectrum X.

Proof. Since E.FE is flat as a right FE,-module, this is a morphism of homology
theories that is an isomorphism for X = S. It follows that it is an isomorphism for
all X. (If E.F is free as a right E,-module, then one can also prove this using a
splitting of E A E as a wedge sum of suspensions of F.) O

Definition 9.6. If F is flat, let
v: B, (X)) — E.E®g, E.(X)
be the composite homomorphism

T (EAX) = m(EASAX) (D

T (EANEANX) 2 EEQ®p, E.J(X).
In the case X = F, we write
V: E,EF — E,FQ®p, E.E

for this homomorphism. Note that in the target the tensor product is formed with
respect to the right F.-action on the left hand copy of E,FE and with respect to
the left E.-action on the right hand copy of E,FE.
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Lemma 9.7. If E is flat, then the left E.-module E.(X) is naturally a left E.E-
comodule, in the sense that the diagrams
E.(X)—=E.E®g, E.(X)

is@id

R

and
E.(X) v E.E®p. E.(X)
l lmu
E.E®p. BJ(X) "> B.E®p, E.E®p, E.(X)
commaudte.

Let E.E—coMod = coModg, g denote the category of E.FE-comodules. The
FE. E-coaction v defines a lift

E.E— coMod
Ho(Sp) B0 E.—Mod

of the E-homology functor X +— F,(X), also keeping track of the E,FE-coaction,

or cooperations.

Ezxample 9.8. When E = HF, so that £, = F), and E,E = 4/, the left 2Z,-coaction
v: H(X;F,) — o @ H.(X;F,)

is now naturally defined for arbitrary spectra X, and agrees with that obtained

earlier, under suitable finiteness hypotheses, by dualization from the left .&7-module
action A on H*(X;TF,).

10. HOPF ALGEBROIDS
Definition 10.1. Let &/ = E,FE = E,(E) be the E-based dual Steenrod algebra.

So far we have only discussed comodules over coalgebras (and bialgebras), but
in general E,E is not a coalgebra in the classical sense. We shall now pin down its
precise bialgebraic structure. This will involve structure on the pair (Ey, E.E).

Theorem 10.2 ([Ada69, Lec. IT1]). If E is flat, then (E., E+E) is a Hopf algebroid.

This means that F, and E,FE are graded commutative rings, there are ring
homomorphisms

ny: Ex — BB

nr: B« — EE

e: B,.E — F,

Vv: B,F — E,FE®g, E.FE
x: B.E — E.FE,
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these satisfy the relations
eng = id = enr
Ynp = (id®nc)ne and  Ynr = (nr @ id)nr
(e®id)y =id = (id ®e€)y
(Y ®id)y = (id@y)y
x*=id  and  xnL =R,
and there are dashed arrows making the diagram

E,.EQE.E

E.EQEE E.EQE, BB E.E® EE

commute. See [Rav86, Def. A1.1.1]. The terminology “Hopf algebroid” is due to
Haynes Miller, and can be motivated by Grothendieck’s functor of points perspec-
tive, as we now discuss. The appendix [Rav86, Al] is a standard reference for Hopf
algebroids and their homological algebra.

Definition 10.3. Let k& be a (graded) commutative ring. A k-Hopf algebra is a
k-bialgebra (H,e€,1) with a k-linear homomorphism x: H — H, called the conju-
gation (or antipode) such that

HonH<"—H-Y>~He,H
x®id k id ®x
ln
[ [
H,H——H~<~—H®, H

cominutes.

A bialgebra admits at most one conjugation X, so being a Hopf algebra is a
property of bialgebras. If H is commutative, then x is a k-algebra isomorphism
with 2 = id.

Proposition 10.4. Let CAlgy be the category of commutative k-algebras.
(a) A commutative k-algebra A corepresents a functor
Spec(A): CAlgr — Set
R+— CAlgr(A, R)

to the category of sets.
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(b) If (B, €,) is a commutative k-bialgebra, then Spec(B) lifts to a functor
Spec(B): CAlgy — Mon

to the category of monoids, with unit e € Spec(B) corresponding to € and multipli-
cation Spec(B) x Spec(B) — Spec(B) corresponding to .
(¢) For a commutative k-bialgebra (H, €,1) the functor Spec(H) lifts to a functor

Spec(H): CAlgr, — Gp

to the category of groups if and only if H is a Hopf k-algebra. In this case the
conjugation x corepresents the group inverse Spec(H) — Spec(H).

Proof. (a) Clear. (b) We have a natural bijection
CAlgk(B Rk B, R) = CAlgk(B, R) X CAlgk(B, R)

so the k-algebra B ®j B corepresents Spec(B) x Spec(B), while k itself corepresents
*. Hence ¢): B — B ®y B and e: B — k induce a natural pairing on Spec(B)(R)
and a preferred element. The counitality and coassociativity axioms for a bialgebra
show that these define a natural monoid structure on Spec(B)(R), so that Spec(B)
lifts through the forgetful functor Mon — Set.

(¢) The identities ¢(y ® id)yy = ne = ¢(id ®x)¥ show that for each k-algebra
homomorphism g: H — R in the monoid Spec(H )(R) the composite gx represents
a group inverse. (Il

Remark 10.5. We can view Spec(A) as a representable contravariant functor from
CAlg.” to Set, i.e., as an affine presheaf on CAlg,”. It satisfies faithfully flat descent
(meaning that there are equalizer diagrams

Spec(A)(R) —> Spec(A)(T) —= Spec(A)(T & T)

for R — T faithfully flat), hence is a flat, étale, Nisnevich and Zariski sheaf defined
over Spec(k). We may refer to it as an affine (étale) sheaf. In the situation of the
proposition, Spec(B) is then an affine monoid sheaf and Spec(H) is an affine group
sheaf.

Recall that a (small) groupoid is a (small) category in which each morphism
is invertible, i.e., an isomorphism. Given any morphism f: X — Y we refer to
X = s(f) and Y = ¢(f) as the source and target of f.

Proposition 10.6. Let E be a flat homotopy commutative ring spectrum. The
(graded) commutative rings Ex and E.E corepresent functors

O = Spec(E,): CRing — Set
R+—— CRing(E,, R)
M = Spec(E,E): CRing — Set
R+— CRing(E.E,R)
that constitute the object and morphism components of a functor

G: CRing — Gpd
R+— G(R)
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to the category of (small) groupoids. In other words, G(R) is a groupoid with
objG(R) = O(R) = CRing(E., R)
mor G(R) = M(R) = CRing(E.E, R)

for all (graded) commutative rings R. The left unit n.: E. — E,E corepresents
the target t: M(R) — O(R), the right unit ng: Ex — E.E corepresents the source
s: M(R) = O(R), the augmentation €: E.E — E. corepresents the identity mor-
phism id: O(R) — M(R), the coproduct : E.E — E.E®g, E.E corepresents the
composition law

o: M(R) XO(R) M(R) — M(R),

and the conjugation x: E,E — E.E corepresents the passage to inverse M(R) —
M(R). The relations and commuting diagram from Theorem 10.2 express the az-
ioms for composition and existence of inverses in a groupoid.

Remark 10.7. The point of Miller’s terminology is thus that the Hopf algebroid
(E., ELFE) corepresents the affine groupoid presheaf

O(R) = CRing(E,, R)
R+ G(R) = { M(R) = CRing(E.E,R)

plus structure maps,

and this is in fact an affine groupoid sheaf, i.e., a contravariant functor CRing°? —
Gpd satisfying suitable descent properties. Since a groupoid is more than a set, these
descent properties are better described by applying the nerve functor to simplicial
sets, and ask that the simplicial presheaf R — NG(R) satisfies descent. (This means
that the coaugmentation from NG(R) to the homotopy limit (= totalization) of the
(pre-)cosimplicial diagram

NG(T) —___NG(T@rT)—= NGT @rT®rT) ___ ...

is a homotopy equivalence, for all covers R — T in the relevant topology.)
Ezample 10.8. When E = HF,, so that £, =, and E,E = 4/, the conjugation
X: Ay — A,
is characterized by the relation ¢(id ®x)® = ne, meaning that
S X)) =0
itj=k
for kK > 1 when p =2, and
et Y &) =0
i+j=k
for £k > 0 and
yo¢ "X(&) =0

it+j=k
for £ > 1 when p odd. This uses Milnor’s Theorems 8.7 and 8.8 from Chapter 2.
These formulas recursively determine x on the algebra generators, and x2 = id.
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Remark 10.9. The groupoid G(R) has a single object O(R) = CRing(F,, R) for
each graded commutative F,-algebra R (and is otherwise empty), and a group
M(R) = CRing(,, R) of automorphisms of this object. When p = 2, so that
o, = Fo[¢; | i > 1], a homomorphism 6: & — R corresponds to a sequence of
elements b; = 6((;) in R, for ¢ > 1. These sequences in turn correspond to formal
power series

f(z) = Z bia? € x+ 22 R[[z]]
>0
with by = 1. The composition law in M(R) takes (6', 0") corresponding to ((b})s, (0});)
and (f’, f”) to the homomorphism

0: ot s ot 0t "2 Ro R R
corresponding to the sequence
b= D (B)”Y]
i+j=k
for k£ > 1 and the formal power series
k j it+s
f(x) = Zbkacz = Z (bl)? b;’x2 ,
k>0 4,j>0
which is also equal to the formal composition
P @) = £ bia®) = Y0 ()
i>0 >0 >0
Hence G(R) = B(M(R)) is the one-object groupoid associated to
M(R) = {f(z) = > b} C o +2*R][z]]
i>0
with the group structure (f', f) = f” o f’ given by composition of certain formal

power series. These power series f(z) = 2+ .+, b;z?" are precisely those satisfying
the functional equation

)+ fly) = flxz+y).
In other words, these f(x) are the strict automorphisms f: F,, — F, of the additive
formal group law F,(z,y) = x + y over Fo. The groupoid sheaf for E = HF5 is
thus isomorphic

QHF2 = BAuts(Fa/Fg)
to the classifying sheaf for the strict automorphism group sheaf of F,, over Fy. The
corresponding result for E' = MU is central to chromatic homotopy theory.

((ETC: Harder to say this for odd p?))
((ETC: Can add grading, or interpret that in terms of G,,-bundles.))

11. SPANIER—WHITEHEAD DUALITY

((ETC: For finite cell spectra Y let DY = F(Y,S). Then k: DY ANZ — F(Y, Z)
is an equivalence, so [X AY, Z] = [X,DY A Z] and Y ~ DDY . In particular, there
are natural isomorphisms E~*(Y) & E(DY) and Ey(Y) = E-*(DY). Lift to
account for E-based Steenrod operations?))
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