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CHAPTER 8: SPECTRAL SEQUENCES
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Given a map f : X → Y of spectra, we can use the long exact sequence of
homotopy groups

· · · → π∗+1(Cf)
∂−→ π∗(X)

f∗−→ π∗(Y ) −→ π∗(Cf)
∂−→ π∗−1(X)→ . . .

to attempt to calculate π∗(Y ) from π∗(X) and π∗(Cf). By exactness at π∗(Y ),
these two graded abelian groups give an upper bound for π∗(X). By also tak-
ing into account exactness at π∗(X) and at π∗(Cf) we can replace π∗(X) by
cok(∂ : π∗+1(Cf) → π∗(X)), and replace π∗(Cf) by ker(∂ : π∗(Cf) → π∗−1(X)),
and still have an exact sequence

0→ cok(∂) −→ π∗(Y ) −→ ker(∂)→ 0 .

This then gives a precise upper bound for π∗(Y ), determining this graded abelian
group up to extension. We now aim to extend this discussion from the case of
f : X → Y to longer sequences of maps, possibly continuing without bound to the
left, to the right, or in both directions.

1. Sequences of spectra and exact couples

Let

· · · → Ys+2
α−→ Ys+1

α−→ Ys
α−→ Ys−1 → . . .

be a sequence of spectra. We call s ∈ Z the filtration index.
Let the mapping telescope, or sequential homotopy colimit Y−∞ = hocolims Ys

be the homotopy coequalizer of the two maps∨
s Ys

id //

α∨
//
∨
s Ys

where

Ys
α //

ins

��

Ys−1

ins−1

��∨
s Ys

α∨ // ∨
s Ys

commutes for each s. We get a homotopy cofiber sequence∨
s

Ys
id−α∨−→

∨
s

Ys
ι−→ Y−∞ ,
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2 JOHN ROGNES

where ⊕
s

π∗(Ys)
id−α∨∗−→

⊕
s

π∗(Ys)

is injective with cokernel colims π∗(Ys). Hence the long exact sequence in homotopy
breaks up into short exact sequences, and

ι : colim
s

π∗(Ys) ∼= π∗(Y−∞) .

Let the mapping microscope, or sequential homotopy limit Y∞ = holims Ys be
the homotopy equalizer of the two maps

∏
s Ys

id //

αΠ

//
∏
s Ys

where ∏
s Ys

αΠ
//

prs+1

��

∏
s Ys

prs

��
Ys+1

α // Ys

commutes for each s. We get a homotopy (co-)fiber sequence

Y∞
π−→

∏
s

Ys
id−αΠ

−→
∏
s

Ys

where ∏
s

π∗(Ys)
id−αΠ

∗−→
∏
s

π∗(Ys)

has kernel lims π∗(Ys) and cokernel Rlims π∗(Ys). Here Rlims = lim1
s is the (first)

right derived functor of the sequential limit. The long exact sequence in homotopy
yields short exact sequences

0→ Rlim
s

π∗+1(Ys)
∂−→ π∗(Y∞)

π−→ lim
s
π∗(Ys)→ 0 .

For r ≥ 1 define Ys,r be the homotopy cofiber sequence

Ys+r
αr

−→ Ys −→ Ys,r −→ ΣYs+r .

In particular, for r = 1 we have the homotopy cofiber sequence

Ys+1
α−→ Ys

β−→ Ys,1
γ−→ ΣYs+1

which we can draw as a distinguished triangle

Ys+1
α // Ys

β

��
Ys,1

γ

bb

for each s. The dashed arrow means a morphism to the suspension of the indicated
target. We get one long exact sequence in homotopy for each s, which fit together



SPECTRAL SEQUENCES 3

as in the following diagram

. . . // π∗(Ys+2)
α∗ // π∗(Ys+1)

α∗ //

β∗

��

π∗(Ys)
α∗ //

β∗

��

π∗(Ys−1) //

β∗

��

. . .

π∗(Ys+1,1)

γ∗

ff

π∗(Ys,1)

γ∗

ff

π∗(Ys−1,1)

γ∗

ff

This is called an (unrolled) exact couple [Mas52], [Boa99]. We aim to determine
π∗(Y−∞) from information about the π∗(Ys,1) for all s, concentrating on cases when
π∗(Y∞) = 0.

Example 1.1. Let X be a CW complex, with skeleton filtration

· · · ⊂ X(s−1) ⊂ X(s) ⊂ . . . ,

and E any spectrum. The sequence of spectra

. . . // F (X/X(s), E)
α // F (X/X(s−1), E) //

β

��

. . .

F (X(s)/X(s−1), E)

γ

hh

with

Ys =

{
F (X/X(s−1), E) for s ≥ 0,

F (X+, E) for s ≤ 0

has homotopy colimit Y−∞ ' F (X+, E) and homotopy limit Y∞ ' F (X/X,E) ' ∗.
We have

Ys,1 ' F (X(s)/X(s−1), E) '
∏

ΩsE

for each s ≥ 0, where the product ranges over the set of s-cells in X. Hence the
starting data in this case are the graded abelian groups

π∗(Ys,1) ∼= E−∗(X(s), X(s−1)) ∼= CsCW (X;Es+∗)

given by the cellular cochains of X with coefficients in E∗. The aim is to calculate
π∗F (X+, E) = E−∗(X).

Example 1.2. Let X be any space, and let

· · · → τ≥s+1E → τ≥sE → . . .

be the Whitehead tower of E, with hocolims τ≥sE ' E and holims τ≥sE ' ∗. We
have Puppe cofiber sequences

τ≥s+1E −→ τ≥sE −→ ΣsHπs(E) −→ Στ≥s+1E .

The sequence of spectra

. . . // F (X+, τ≥s+1E)
α // F (X+, τ≥sE) //

β

��

. . .

F (X+,Σ
sHπs(E))

γ

ii

with

Ys = F (X+, τ≥sE)
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for all s ∈ Z has homotopy colimit Y−∞ ' F (X+, E) ((ETC: this uses that each
ΣkX is bounded below)) and homotopy limit Y∞ ' F (X+, ∗) = ∗. Hence the
starting data in this case are the graded abelian groups

π∗(Ys,1) = π∗F (X+,Σ
sHπs(E)) ∼= Hs−∗(X;πs(E))

and the aim is to calculate π∗F (X+, E) = E−∗(X).

Example 1.3. Let Y be any spectrum, let (E, η, φ) be a ring spectrum up to homo-
topy, define I by the homotopy cofiber sequence

I −→ S
η−→ E −→ ΣI ,

and let I∧s = I ∧ · · · ∧ I be the s-fold smash power. Consider the sequence of
spectra

. . . // I∧s+1 ∧ Y α // I∧s ∧ Y //

β

��

. . .

E ∧ I∧s ∧ Y
γ

gg

with

Ys =

{
I∧s ∧ Y for s ≥ 0,

Y for s ≤ 0.

Additional hypotheses are needed to ensure that Y∞ = holims Ys will be trivial,
but clearly Y ' Y−∞ = hocolims Ys. Suppose now that E is flat, so that

· · · → E∗(Ys+1)
α∗−→ E∗(Ys)

β∗−→ E∗(Ys,1)
γ∗−→ E∗−1(Ys+1)→ . . .

is an exact sequence of E∗E-comodules. Here β∗ is split injective as an E∗-module
homomorphism, with left inverse

π∗(φ ∧ id) : E∗(E ∧ Ys) = E∗(Ys,1) −→ E∗(Ys)

induced by the ring spectrum multiplication, so α∗ = 0 and the long exact sequence
breaks up into short exact sequences. Letting s vary, these can be spliced into a
resolution

0→ E∗(Y )
β∗−→ E∗(Y0,1)

β∗γ∗−→ E∗−1(Y1,1)
β∗γ∗−→ E∗−2(Y2,1)→ . . .

of E∗(Y ) in the category of E∗E-comodules. Moreover,

π∗(Ys,1)
∼=−→ HomE∗E(E∗, E∗(Ys,1))

[f ] 7−→ f∗ = E∗(f)

is an isomorphism for each s. Hence the starting data in this case are the graded
abelian groups HomE∗E(E∗, E∗(Ys,1)), where E∗(Ys,1) is part of an E∗E-comodule
resolution of E∗(Y ), and the aim is to calculate π∗(Y ), at least when π∗(Y∞) = 0.

The first two examples both lead to the Atiyah–Hirzebruch spectral sequence
from [AH61], while the third example leads to the E-based Adams spectral se-
quence. In the case H = HFp this is the classical mod p Adams spectral se-
quence [Ada58], while for E = MU it is the Adams–Novikov spectral sequence
from [Nov67].
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2. The spectral sequence associated to an exact couple

Definition 2.1. A spectral sequence is a sequence (Er, dr)r≥1 of bigraded abelian
groups Er = (Es,∗r )s and differentials

dr : Es,∗r −→ Es+r,∗r

increasing the filtration degree s by r (and reducing the homotopical/homological
degree by 1), together with isomorphisms

Es,∗r+1
∼= Hs(E∗,∗r , dr) =

ker(dr : Es,∗r → Es+r,∗r )

im(dr : Es−r,∗r → Es,∗r )
.

(The usual notation is (Er, dr), but we write E here to distinguish spectral se-
quence Er-terms from E-(co-)homology for a spectrum E.)

For each r′ ≥ r ≥ 1 the Er′ -term is a subquotient of the Er-term, so we can view
the E1-term as an initial upper bound for the target of a computation, which is
gradually improved by the Er-terms as r grows.

Consider any exact couple

(2.1) . . . // As+2 α // As+1 α //

β

��

As
α //

β

��

As−1 //

β

��

. . .

Es+1
1

γ

cc

Es1

γ

aa

Es−1
1

γ

aa

where each As and each Es1 is a graded abelian group, α and β have degree 0, γ
has (homotopical/homological) degree −1, and each triangle is exact. We shall
associate a spectral sequence (Er, dr) to this exact couple.

For each s, we find one decreasing and one increasing family of subgroups
within Es1 :

0 = Bs1 ⊂ Bs2 ⊂ · · · ⊂ Bsr ⊂ · · · ⊂ Zsr ⊂ · · · ⊂ Zs2 ⊂ Zs1 = Es1 .
To define these, let r ≥ 1 and consider the following subdiagram.

As+r+1 α // As+r
αr−1

//

β

��

As+1 α // As
αr−1

//

β

��

As−r+1 α // As−r

β

��
Es+r1

γ

dd

Es1

γ

aa

Es−r1

γ

dd

Let

Zsr = γ−1(im(αr−1)) and Bsr = β(ker(αr−1))

be the r-th (co-)cycles and (co-)boundaries in filtration degree s. These are then
nested as claimed. We let

Esr = Zsr/B
s
r

be the filtration degree s part of the Er-term. Let

dr : Esr −→ Es+rr

[x] 7−→ [β(y)]

map the coset of x ∈ Zsr to the coset of β(y) ∈ Zs+rr , where αr−1(y) = γ(x). In
particular, d1 = βγ.

Lemma 2.2. ker(dr) = Zsr+1/B
s
r and im(dr) = Bsr+1/B

s
r , so Hs(E∗r , dr) ∼= Esr+1.
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Hence we have the terms and differentials of a spectral sequence (Er, dr), for
1 ≤ r <∞. We use the following notation for its limiting term as r →∞.

Definition 2.3. Let the graded abelian groups

Zs∞ =
⋂
r

Zsr and Bs∞ =
⋃
r

Bsr

be the infinite (co-)cycles and (co-)boundaries in filtration degree s, so that

0 = Bs1 ⊂ · · · ⊂ Bsr ⊂ · · · ⊂ Bs∞ ⊂ Zs∞ ⊂ · · · ⊂ Zsr ⊂ · · · ⊂ Zs1 = Es1 .

Let

Es∞ = Zs∞/B
s
∞

be the filtration degree s component of the E∞-term of the spectral sequence.

Let A−∞ = colimsA
s, A∞ = limsA

s and RA∞ = RlimsA
s. We aim to calculate

the graded abelian group G = A−∞, under the assumption that A∞ = 0 and
RA∞ = 0. More realistically, we aim to identify the associated graded for a good
filtration of G with the spectral sequence E∞-term.

Definition 2.4. Let

F sG = im(As −→ A−∞)

for each s ∈ Z, so that

· · · ⊂ F s+1G ⊂ F sG ⊂ · · · ⊂ G

is a decreasing filtration of G = A−∞ = colimsA
s. We say that the filtration is

exhaustive if colims F
sG = G, it is Hausdorff if lims F

sG = 0, and it is complete
if Rlims F

sG = 0. The filtration subquotients (F sG/F s+1G)s form a bigraded
abelian group, called the associated graded of the filtration.

The group G is often called the abutment of the spectral sequence, and we write

Es1 =⇒s G or Es2 =⇒s G

to present information about the E1- or E2-term and the abutment, and to indicate
that s is the filtration index.

Lemma 2.5. There is a natural injective homomorphism

ζs :
F sG

F s+1G
−→ Es∞

[ξ] 7−→ [β(η)]

for each s ∈ Z, where η ∈ As maps to ξ ∈ F sG under As → A∞.

Definition 2.6. If ξ ∈ F sG \ F s+1G then its coset [ξ] ∈ F sG/F s+1G is nonzero,
hence corresponds to a nonzero class x = ζs([ξ]) ∈ Es∞. We say that x detects ξ,
and that ξ is detected by (or represents) x. (This terminology is not standardized.)
Note that any other class ξ′ ∈ ξ + F s+1G in the same coset as ξ will be detected
by the same class x.

Definition 2.7. The spectral sequence (Er, dr) converges strongly to the filtered
group G if

(1) ζ = (ζs)s is an isomorphism of bigraded abelian groups, and
(2) {F sG}s is an exhaustive complete Hausdorff filtration of G.
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Lemma 2.8. If {F sG}s is an exhaustive complete Hausdorff filtration of G then

colim
a

lim
b

F aG

F bG
∼= G ∼= lim

b
colim
a

F aG

F bG
,

so that G can be algebraically recovered from the finite filtration quotients F aG/F bG
for −∞ < a < b <∞.

Hence strong convergence lets us recoverG from E∞, assuming that we can induc-
tively resolve the extension problem of determining F aG/F s+1G from F aG/F sG
and F sG/F s+1G ∼= Es∞, using the short exact sequence

0→ F sG

F s+1G
−→ F aG

F s+1G
−→ F aG

F sG
→ 0 .

A convenient criterion for strong convergence was given by Boardman in a
preprint circulating from ca. 1981 [Boa99].

Definition 2.9. The exact couple (2.1) (and its associated spectral sequence) is
conditionally convergent if A∞ = 0 and RA∞ = 0.

Note that for As = π∗(Ys) we have conditional convergence if and only if
π∗(Y∞) = 0, where Y∞ = holims Ys.

Definition 2.10. Let REs∞ = Rlimr Z
s
r for each s.

If there is a finite r′ such that dr = 0 for all r ≥ r′ then Er′ = E∞ and we say that
the spectral sequence collapses at the Er′ -term. This is certainly sufficient to ensure
that RE∞ = 0. A little more generally, the derived limit vanishes in bidegree (s, t)
if only finitely many of the dr-differentials from Es,tr are nonzero.

See [Boa99, (8.7)] or [HR19] for the definition

W = colim
s

Rlim
r

K∞ imr As

of Boardman’s whole-plane obstruction group W .

Theorem 2.11 ([Boa99, §6, §7, §8]). (a) (Exiting differentials) Suppose that As = 0
for all s > 0, so that the spectral sequence is concentrated in the half-plane s ≤ 0.
Then the spectral sequence is strongly convergent to the colimit G.

(b) (Entering differentials) Suppose that Es1 = 0 for all s < 0, and that the
spectral sequence is conditionally convergent. Then the spectral sequence is strongly
convergent to G if (and only if) RE∞ = 0.

(c) (Whole-plane spectral sequence) Suppose that the spectral sequence is con-
ditionally convergent. Then the spectral sequence is strongly convergent to G if
RE∞ = 0 and W = 0.

3. The additive Atiyah–Hirzebruch spectral sequence

The unrolled exact couple associated to the sequence of spectra from Example 1.1
has the form

E∗(X,X(s+1))
α // E∗(X,X(s))

α //

β

��

E∗(X,X(s−1))
α //

β

��

E∗(X,X(s−2))

β

��
E∗(X(s+1), X(s))

γ

gg

E∗(X(s), X(s−1))

γ

hh

E∗(X(s−1), X(s−2))

γ

hh
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(continuing to the left and the right), so the associated (cohomologically graded)
Atiyah–Hirzebruch spectral sequence has E1-term

Es,∗1 = E∗(X(s), X(s−1)) = CsCW (X;E∗)

given by the cellular cochains with coefficients in the graded abelian group E∗ =
π−∗(E). Moreover, the d1-differential is the composite

d1 = βγ : E∗(X(s), X(s−1)) −→ E∗(X(s+1), X(s)) ,

which is equal to the cellular coboundary

δ : CsCW (X;E∗) −→ Cs+1
CW (X;E∗) .

Hence the E2-term is

Es,∗2 = Hs(E∗,∗1 , d1) = Hs(X;E∗) ,

i.e., the (cellular = singular) cohomology groups of X with coefficients in E∗. Note
that hocolims F (X/X(s−1), E) ' F (X+, E) and holims F (X/X(s−1), E) ' ∗, so
the limiting terms of the exact couple are G = A−∞ = E∗(X), A∞ = 0 and
RA∞ = 0. We therefore have a conditionally convergent spectral sequence (with
entering differentials)

Es,∗2 = Hs(X;E∗) =⇒s E
∗(X) .

By Boardman’s theorem, this spectral sequence is strongly convergent if (and only
if) RE∞ = 0.

We now make the bigrading more explicit. In addition to the (decreasing) filtra-
tion degree s we let t denote the complementary (= internal) degree, so that s+ t
is the total cohomological degree preserved by α and β and incremented by 1 by γ.
The E1-term is then

Es,t1 = Es+t(X(s), X(s−1)) = CsCW (X;Et)

in view of the suspension isomorphism Es+t(Ds, ∂Ds) ∼= Ẽs+t(Ss) ∼= Ẽt(S0) = Et.
The dr-differential dr : Es,∗r → Es+r,∗r is derived from

Es+t+1(X,X(s+r−1))

β

��

αr−1
// Es+t+1(X,X(s))

Es+t+1(X(s+r), X(s+r−1)) Es+t(X(s), X(s−1))

γ

ii

hence has components

dr : Es,tr −→ Es+r,t−r+1
r

of cohomological bidegree (r, 1− r), for all s and t. In particular, d1 : Es,t1 → Es+1,t
1 ,

as indicated for δ above.
The abutment Gn = En(X) in total degree n is exhaustively filtered by

F sGn = im(En(X,X(s−1))→ En(X))



SPECTRAL SEQUENCES 9

with F 0Gn = Gn, and the comparison homomorphism ζs has components derived
from

En(X,X(s−1)) //

β

��

En(X)

En(X(s), X(s−1))

that can be written

F sGn

F s+1Gn
−→ Es,n−s∞ or

F sGs+t

F s+1Gs+t
−→ Es,t∞ .

The latter is more common, and we usually express the bigrading of the spectral
sequence and its abutment as follows:

Es,t2 = Hs(X;Et) =⇒s E
s+t(X) .

Here is part of the E2-term and the d2-differentials, drawn in the left half of the
(−s,−t)-plane:

H4(X;E−2) H3(X;E−2) H2(X;E−2) H1(X;E−2) H0(X;E−2)

H4(X;E−1) H3(X;E−1) H2(X;E−1)

kk

H1(X;E−1)

kk

H0(X;E−1)

kk

H4(X;E0) H3(X;E0) H2(X;E0)

kk

H1(X;E0)

kk

H0(X;E0)

kk

H4(X;E1) H3(X;E1) H2(X;E1)

kk

H1(X;E1)

kk

H0(X;E1)

kk

H4(X;E2) H3(X;E2) H2(X;E2)

kk

H1(X;E2)

kk

H0(X;E2)

kk

Replacing each Es,t2 = Hs(X;Et) with Es,t3 = Hs,t(E∗,∗2 , d2) = ker(d2)s,t/ im(d2)s,t

we obtain the E3-term, here shown with the d3-differentials.

E4,−2
3 E3,−2

3 E2,−2
3 E1,−2

3 E0,−2
3

E4,−1
3 E3,−1

3 E2,−1
3 E1,−1

3 E0,−1
3

E4,0
3 E3,0

3 E2,0
3 E1,0

3

ii

E0,0
3

ii

E4,1
3 E3,1

3 E2,1
3 E1,1

3

ii

E0,1
3

ii

E4,2
3 E3,2

3 E2,2
3 E1,2

3

ii

E0,2
3

ii
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In the end we are left with the E∞-term.

E4,−2
∞ E3,−2

∞ E2,−2
∞ E1,−2

∞ E0,−2
∞

E4,−1
∞ E3,−1

∞ E2,−1
∞ E1,−1

∞ E0,−1
∞

E4,0
∞ E3,0

∞ E2,0
∞ E1,0

∞ E0,0
∞

E4,1
∞ E3,1

∞ E2,1
∞ E1,1

∞ E0,1
∞

E4,2
∞ E3,2

∞ E2,2
∞ E1,2

∞ E0,2
∞

In total degree n, the associated graded groups F sEn(X)/F s+1En(X) of the fil-
tration of En(X)

. . . // // F 4En(X) // //

����

F 3En(X) // //

����

F 2En(X) // //

����

F 1En(X) // //

����

En(X)

����
F 4En(X)

F 5En(X)

F 3En(X)

F 4En(X)

F 2En(X)

F 3En(X)

F 1En(X)

F 2En(X)

En(X)

F 1En(X)

map to the groups Es,n−s∞ in the E∞-term, which lie on the dashed line of slope
−1 in total degree s+ t = n. When the spectral sequence is (strongly) convergent,
these maps are isomorphisms, so that we can think of the group Es,t∞ as the filtration
quotient F sEs+t(X)/F s+1Es+t(X) for each s ≥ 0 and t ∈ Z.

Example 3.1. If π0(E) = A and π∗(E) = 0 for ∗ 6= 0 then the Atiyah–Hirzebruch
spectral sequence

Es,t2 =

{
Hs(X;A) for t = 0,

0 otherwise

is concentrated on the line t = 0. Each differential dr : Es,tr → Es+r,t−r+1
r for r ≥ 2

maps from or to a trivial group (or both), so the spectral sequence collapses at the
E2-term, hence is strongly convergent to Es+t(X). In total degree n the groups
Es,n−s∞ are trivial, except in the one case n − s = 0, so there are no extension

problems and En(X) ∼= En,0∞ = En,02 = Hn(X;A). Hence E represents ordinary
cohomology with coefficients in A and E ' HA.

Example 3.2. Suppose that H∗(X) = H∗(X;Z) is free in each even degree, and
trivial in each odd degree. This is the case, for instance, when X = CPm, CP∞ =
BU(1), (CP∞)n = BU(1)n, BU(n) or BU . Suppose also that E is even, in the
sense that E∗ is trivial in odd degrees. This is the case, for instance, when E = KU
or MU . The Atiyah–Hirzebruch E2-term

Es,t2 = Hs(X;Et) ∼= Hom(Hs(X), Et)

is then concentrated in bidegrees (s, t) with s and t even. In particular, Es,t2 is zero
if s+ t is odd. Since dr : Es,tr → Es+r,t−r+1

r maps total degree s+ t to total degree
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(s+ r) + (t− r+ 1) = s+ t+ 1, its source or target is trivial for each r ≥ 2, so the
spectral sequence collapses at the E2-term. It is therefore strongly convergent, so
En(X) = 0 for n odd, and for n even there is a complete Hausdorff filtration

· · · ⊂ F 4En(X) ⊂ F 2En(X) ⊂ F 0En(X) = En(X)

with filtration quotients

F 2mEn(X)/F 2m+2En(X) ∼= H2m(X;En−2m) .

For example, when X = CP∞ and E = KU we have a complete Hausdorff
filtration

· · · ⊂ F 4KUn(CP∞) ⊂ F 2KUn(CP∞) ⊂ KUn(CP∞)

for each even n, with filtration quotients

F 2mKUn(CP∞)/F 2m+2KUn(CP∞) ∼= H2m(CP∞;KUn) ∼= Z .

Since Z is free, it follows by induction on m that

KUn(CP∞)/F 2m+2KUn(CP∞) ∼=
m⊕
i=0

Z ∼=
m∏
i=0

Z ,

and, by passage to the limit over m,

KUn(CP∞) ∼=
∞∏
i=0

Z .

On the other hand, KUn(CP∞) = 0 for n odd.

4. The additive Whitehead tower spectral sequence

The unrolled exact couple associated to the sequence of spectra from Example 1.2
has the form

. . . // π∗F (X+, τ≥s+1E)
α // π∗F (X+, τ≥sE) //

β

��

. . .

π∗F (X+,Σ
sHEs) ,

γ

hh

where Es = πs(E), so the associated spectral sequence has E1-term

Es,∗1 = H∗(X;Es) .

The limiting terms of the exact couple are G = A−∞ = colims(τ≥sE)∗(X) ∼=
E∗(X), A∞ = 0 and RA∞ = 0. We therefore have a conditionally convergent spec-
tral sequence (with entering differentials). By Boardman’s theorem it is strongly
convergent to E∗(X) if (and only if) RE∞ = 0.

The abutment Gn = En(X) in total degree n is exhaustively filtered by

F sGn = im(π−nF (X+, τ≥sE)→ π−nF (X+, E))

so in order to have n = s+ t, with complementary degree t, we must have

Es,t1 = π−s−tF (X+,Σ
sHEs) = H2s+t(X;Es) .
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The dr-differential is then derived from

π−s−t−1F (X+, τ≥s+rE)
αr−1

//

β

��

π−s−t−1F (X+, τ≥s+1E)

π−s−t−1F (X+,Σ
s+rHEs+r) π−s−tF (X+,Σ

sHEs) ,

γ

OO

hence has components dr : Es,tr → Es+r,t−r+1
r of cohomological bidegree (r, 1 − r).

In other words, we have a cohomologically (bi-)graded spectral sequence

Es,t1 = H2s+t(X;Es) =⇒s E
s+t(X) .

Here is part of the E1-term and the d1-differentials, drawn in the (−s,−t)-plane:

H4(X;E3) H2(X;E2)oo H0(X;E1)oo 0 0

H5(X;E3) H3(X;E2)oo H1(X;E1)oo 0 0

H6(X;E3) H4(X;E2)oo H2(X;E1)oo H0(X;E0)oo 0

H7(X;E3) H5(X;E2)oo H3(X;E1)oo H1(X;E0)oo 0

H8(X;E3) H6(X;E2)oo H4(X;E1)oo H2(X;E0)oo H0(X;E−1)oo

This Whitehead tower spectral sequence is isomorphic to the Atiyah–Hirzebruch
spectral sequence, up to a reindexing of the terms, taking the Es,tr -term and dr-

differential of the former to the E2s+t,−s
r+1 -term and dr+1-differential of the latter.

This was first proved by Maunder [Mau63], who showed that the Whitehead tower
exact couple is isomorphic to the derived Atiyah–Hirzebruch exact couple, in the
sense of [Mas52]. By reference to a later construction due to Deligne (in the context
of filtered chain complexes), it is now common to call the Whitehead tower spectral
sequence the décalage of the Atiyah–Hirzebruch spectral sequence.

5. Pairings of sequences and Cartan–Eilenberg systems

If Y = Y−∞ is a ring spectrum, we may hope to use the homotopy spectral
sequence

Es1 = π∗(Ys,1) =⇒s π∗(Y )

to access the ring structure on π∗(Y ). If Y = F (X+, E) with E a ring spectrum,
this is the same as the cup product structure on π∗(Y ) = E−∗(X), induced by the
diagonal ∆: X → X ×X and the product φ : E ∧E → E. More generally, we may
consider pairings µ : Y ∧ Y ′ → Y ′′ and study µ∗ : π∗(Y )⊗ π∗(Y ′)→ π∗(Y

′′).



SPECTRAL SEQUENCES 13

Definition 5.1. Let

· · · → Ys+2
α−→ Ys+1

α−→ Ys
α−→ Ys−1 → . . .

· · · → Y ′s′+2
α−→ Y ′s′+1

α−→ Y ′s′
α−→ Y ′s′−1 → . . .

· · · → Y ′′s′′+2
α−→ Y ′′s′′+1

α−→ Y ′′s′′
α−→ Y ′′s′′−1 → . . .

be three sequences of orthogonal spectra, briefly denoted Y?, Y
′
? and Y ′′? . A pairing

µ : Y? ∧ Y ′? → Y ′′? of sequences of orthogonal spectra is a collection of maps

µs,s′ : Ys ∧ Y ′s′ −→ Y ′′s+s′

in SpO, such that the squares

Ys+1 ∧ Y ′s′
α∧id //

µs+1,s′

��

Ys ∧ Y ′s′

µs,s′

��

Ys ∧ Y ′s′+1
id∧αoo

µs,s′+1

��
Y ′′s+s′+1

α // Y ′′s+s′ Y ′′s+s′+1
αoo

commute for all s, s′ ∈ Z.

Given a pairing µ : Y? ∧ Y ′? → Y ′′? as above, the following 3-dimensional diagram
commutes in SpO.
(5.1)

Ys+1 ∧ Y ′s′
α∧id //

µs+1,s′

��

Ys ∧ Y ′s′

µs,s′

��

Ys+1 ∧ Y ′s′+1

id∧α
77

α∧id //

µs+1,s′+1

��

Ys ∧ Y ′s′+1

id∧α
88

µs,s′+1

��
Y ′′s+s′+2

α // Y ′′s+s′+1
α // Y ′′s+s′

Recall the notation Ys,1 = Ys ∪α CYs+1. A homotopy class x ∈ πn(Ys,1) can be
represented by a map of pairs

f : (Dn, Sn−1) −→ (Ys, Ys+1)

where Dn = CSn−1. Given maps f and f ′ representing x ∈ πn(Ys,1) and x′ ∈
πn′(Y

′
s′,1) we obtain a map

f ∧ f ′ : (Dn ∧Dn′ , Sn−1 ∧Dn′ ∪Dn ∧ Sn
′−1)

−→ (Ys ∧ Y ′s′ , Ys+1 ∧ Y ′s′ ∪ Ys ∧ Y ′s′+1) ,

where the source is isomorphic to (Dn+n′ , Sn+n′−1). Composing with µ we obtain
a map

µ(f ∧ f ′) : (Dn+n′ , Sn+n′−1) −→ (Y ′′s+s′ , Y
′′
s+s′+1)

representing a class µ∗(x⊗ x′) in πn+n′(Y
′′
s+s′,1). This defines a pairing

µ∗ : π∗(Ys,1)⊗ π∗(Y ′s′,1) −→ π∗(Y
′′
s+s′,1) .
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Definition 5.2. Let (Er, dr), (′Er, ′dr) and (′′Er, ′′dr) be three spectral sequences.
A pairing µ : (Er, ′Er)→ ′′Er of spectral sequences is a collection of chain maps

µr : Er ⊗ ′Er −→ ′′Er ,
where the source has the boundary operator dr ⊗ 1 + 1⊗ ′dr and the target has the
boundary operator ′′dr, such that the diagram

Er+1 ⊗ ′Er+1

µr+1 //

∼=
��

′′Er+1

∼=

��

H∗(Er, dr)⊗H∗(′Er, ′dr)

⊗
��

H∗(Er ⊗ ′Er, dr ⊗ 1 + 1⊗ ′dr)
H∗(µr)// H∗(′′Er, ′′dr)

commutes.

The condition that µr is a chain map is a form of the Leibniz rule:

′′dr(µr(x⊗ x′)) = µr(dr(x)⊗ x′ + (−1)|x|x⊗ ′dr(x′)) .
Note that a pairing of spectral sequences is determined by its initial component µ1,
but not every bilinear pairing of E1-terms will induce chain complex pairings of
(Er, dr)-terms for all r ≥ 1.

Definition 5.3. Let (F sG)s, (F s
′
G′)s′ and (F s

′′
G′′)s′′ , be filtered graded abelian

groups. A pairing µ : G⊗G′ → G′′ is filtration-preserving if

µ(F sG⊗ F s
′
G′) ⊂ F s+s

′
G′′

for all s, s′ ∈ Z. It then induces pairings

µ̄ :
F sG

F s+1G
⊗ F s

′
G′

F s′+1G′
−→ F s+s

′
G′′

F s+s′+1G′′
.

A pairing µ : (Er, ′Er)→ ′′Er of spectral sequences, with abutments G, G′ and G′′,
is compatible with the filtration-preserving pairing µ if the diagram

F sG

F s+1G
⊗ F s

′
G′

F s′+1G′
µ̄ //

ζ⊗ζ
��

F s+s
′
G′′

F s+s′+1G′′

ζ

��
E∞ ⊗ ′E∞

µ∞ // ′′E∞
commutes.

Since ζ is injective, the pairing µ∞ determines µ̄, which in turn determines
µ : G⊗G′ → G′′ modulo the given filtrations.

Theorem 5.4. Let µ : Y?∧Y ′? → Y ′′? be a pairing of sequences of orthogonal spectra,
and let

(Er, dr) = (Er(Y ), dr) , (′Er, ′dr) = (Er(Y ′), dr) and (′′Er, ′′dr) = (Er(Y ′′), dr)
be the spectral sequences associated to Y?, Y ′? and Y ′′? , respectively. Then there is a
(unique) pairing of spectral sequences µ : (Er, ′Er) → ′′Er with µ1 = µ∗. It is com-
patible with the filtration-preserving pairing µ : π∗(Y−∞)⊗ π∗(Y ′−∞)→ π∗(Y

′′
−∞).
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Sketch proof. See e.g. [Hedenlund–Rognes, arXiv:2008.09095, Thm. 4.27]. The
proof uses Cartan–Eilenberg systems [CE56, §XV.7] in an essential way, which
are intermediate between sequences of spectra and exact couples. There is a useful
notion of pairings of Cartan–Eilenberg systems, which induce pairings of spectral
sequences. (The definition in [Mas54] of pairings of exact couples is too close to
tautological to be useful.) �

Some authors only assume that the two squares in Definition 5.1 commute up to
homotopy, i.e., they work in the 1-category Ho(Sp), in which case the 3-dimensional
diagram (5.1) also commutes in Ho(Sp). However, this will not be sufficient to
obtain a pairing of spectral sequences, since (at least) a 2-categorical compatibility
between given choices of commuting homotopies for the front faces

Ys+1 ∧ Y ′s′+1

α∧id ''
µs+1,s′+1

��

α∧α // Ys ∧ Y ′s′

µs,s′

��

Ys ∧ Y ′s′+1

id∧α

99

µs,s′+1

��
Y ′′s+s′+2

α // Y ′′s+s′+1
α // Y ′′s+s′

and the back faces

Ys+1 ∧ Y ′s′+1

id∧α ''
µs+1,s′+1

��

α∧α // Ys ∧ Y ′s′

µs,s′

��

Ys+1 ∧ Y ′s′
α∧id

88

µs+1,s′

��
Y ′′s+s′+2

α // Y ′′s+s′+1
α // Y ′′s+s′ ,

is required to prove the Leibniz rule, i.e., that µr takes dr ⊗ 1 + 1 ⊗ ′dr to ′′dr.
One should therefore assume that the 3-dimensional diagram (5.1) commutes in
a k-category of spectra, for 2 ≤ k ≤ ∞. (Any discussion internal to the stable
homotopy category will contain a gap.) Our assumption that it commutes strictly
in the topological category of orthogonal spectra is certainly sufficient.

We often apply the theorem in the case where the three sequences are the same,
so that we have an internal pairing. If this is unital and associative, then we say
that we have an algebra spectral sequence.

Corollary 5.5. Let Y? be a multiplicative sequence of orthogonal spectra, i.e., a
sequence with a pairing µ : Y? ∧ Y? → Y?, and let

Es1 = π∗(Ys,1) =⇒s π∗(Y−∞)

be the associated spectral sequence. Then there is a (unique) pairing of spectral
sequences µ : (Er, Er) → Er with µ1 = µ∗. It is compatible with the filtration-
preserving pairing µ : π∗(Y−∞)⊗ π∗(Y−∞)→ π∗(Y−∞).
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6. The multiplicative Atiyah–Hirzebruch spectral sequence

Let X be a CW complex and E a spectrum with a pairing φ : E∧E → E, e.g., a
ring spectrum up to homotopy or an orthogonal ring spectrum. The diagonal map

∆: X −→ X ×X

rarely preserves the skeleton filtration, but by cellular approximation it is homotopic
to a cellular map

D : X −→ X ×X .

In particular,

D(X(s+s′−1)) ⊂ (X ×X)(s+s′−1) ⊂ (X(s−1) ×X) ∪ (X ×X(s′−1)) .

so that D induces a map

D̄ :
X

X(s+s′−1)
−→ X

X(s−1)
∧ X

X(s′−1)
.

Let Ys = F (X/X(s−1), E) as before. The composite maps

µ : F (X/X(s−1), E) ∧ F (X/X(s′−1), E)

∧−→ F (X/X(s−1) ∧X/X(s′−1), E ∧ E)
F (D̄,µ)−→ F (X/X(s+s′−1), E)

then define a pairing of sequences of orthogonal spectra.
Hence the Atiyah–Hirzebruch spectral sequence

Es,t1 = CsCW (X;Et) =⇒s E
s+t(X)

admits a pairing µ : (Er, Er)→ Er that is given at the E1-term by

CsCW (X;Et)⊗ Cs
′

CW (X;Et
′
)
D∗−→ Cs+s

′

CW (X;Et ⊗ Et
′
)
φ∗−→ Cs+s

′

CW (X;Et+t
′
)

and at the E2-term by the E-cohomology cup product

Es,t2 ⊗ E
s′,t′

2 = Hs(X;Et)⊗Hs′(X;Et
′
)
∪−→ Hs+s′(X;Et+t

′
) = Es+s

′,t+t′

2 ,

converging to the cup product

En(X)⊗ En
′
(X)

∪−→ En+n′(X) .

Note that the E1-term and the pairing µ1 depend on the CW structure on X and
the cellular approximation D to ∆, while for r ≥ 2 the Er-term and the pairing
µr are homotopy invariants. If E is a ring spectrum up to homotopy, then the
Atiyah–Hirzebruch spectral sequence

Es,t2 = Hs(X;Et) =⇒s E
s+t(X)

is an algebra spectral sequence. If E is homotopy commutative, then the Er-terms
for r ≥ 2 are graded commutative, and we have an E∗-algebra spectral sequence.

Example 6.1. Consider the case X = CP∞ with E a homotopy commutative ring
spectrum. Let H∗(CP∞) = Z[y] with |y| = 2. The Atiyah–Hirzebruch spectral
sequence

E∗,∗2 = H∗(CP∞;E∗) =⇒ E∗(CP∞)

then has E2-term

E∗,∗2 = Z[y]⊗ E∗ = E∗[y]
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with y ∈ E2,0
2 and E0,t

2 = Et for all t. We now suppose that E is even, so that
E2 = E∞, the spectral sequence is strongly convergent, and

F sEn(CP∞)

F s+1En(CP∞)
∼= Es,n−s∞

for all s and n. Choose a class η ∈ F 2E2(CP∞) \ F 3E2(CP∞) whose coset [η]
corresponds to y under the isomorphism above. Then ηm ∈ F 2mE2m(CP∞), so
there is an E∗-algebra homomorphism

E∗[η]/(ηm) = Z[η]/(ηm)⊗ E∗ −→ E∗(CP∞)/F 2mE∗(CP∞)

for each m ≥ 0. In fact each of these is an isomorphism, which we can prove by
induction on m using the diagram

0

��

0

��

Z{ηm} ⊗ E∗
∼= //

��

F 2mE∗(CP∞)

F 2m+2E∗(CP∞)

��

E2m,∗
∞

∼=oo

Z[η]/(ηm+1)⊗ E∗ //

��

E∗(CP∞)

F 2m+2E∗(CP∞)

��

Z[η]/(ηm)⊗ E∗ //

��

E∗(CP∞)

F 2mE∗(CP∞)

��
0 0

Passing to limits over m, we obtain an E∗-algebra isomorphism

E∗(CP∞) ∼= E∗[[η]] ,

where

E∗[[η]] = lim
m
E∗[η]/(ηm)

denotes the E∗-algebra of formal power series in η. In cohomological degree n it
has elements of the form

∞∑
m=0

emη
m

with em ∈ En−2m. If the spectrum E is bounded above, i.e., t-truncated for some
finite t, then em = 0 for 2m− n > t, in which case each such formal sum is finite.

Hereafter we shall generally simply write y in place of η for a choice of class in
F 2E2(CP∞) = Ẽ2(CP∞) that is detected by y ∈ E2,0

∞ = H2(CP∞;E0).

Similar arguments show:
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Proposition 6.2. If E is a commutative ring spectrum up to homotopy, with E∗

concentrated in even degrees, then there are E∗-algebra isomorphisms

E∗(CPm) ∼= E∗[y]/(ym+1)

E∗(CP∞) ∼= E∗[[y]]

E∗((CP∞)n) ∼= E∗[[y1, . . . , yn]]

E∗(BU(n)) ∼= E∗[[c1, . . . , cn]]

E∗(BU) ∼= E∗[[ck | k ≥ 1]] .

Remark 6.3. These calculations show that the E∗-algebra structure of E∗(CP∞) (or
any of the other algebras listed) does not carry any more information about E than
the coefficients ring E∗. However, we shall see that the E∗-algebra homomorphism

E∗[[y]] ∼= E∗(CP∞)
m∗−→ E∗(CP∞ × CP∞) ∼= E∗[[y1, y2]]

y 7−→ FE(y1, y2)

(induced by the map m : CP∞ × CP∞ → CP∞ classifying the tensor product of
complex line bundles) often carries significantly more information about E. Here

FE(y1, y2) = y1 + y2 +
∑
i,j≥1

ai,jy
i
1y
j
2

is a formal group law.

((ETC: Also homological Atiyah–Hirzebruch spectral sequence

E2
s,t = Hs(X;Et) =⇒s Es+t(X) ,

and evaluation pairing.))

7. The multiplicative Whitehead tower spectral sequence

The Whitehead tower approach to the Atiyah–Hirzebruch spectral sequence also
gives a multiplicative spectral sequence, but this requires 2-categorical flexibility.

Let X be a CW complex and E a ring spectrum, with product φ : E ∧ E → E.
For each pair (s, s′) consider the diagram

τ≥sE ∧ τ≥s′E //

φs,s′

��

E ∧ E

φ

��
Σ−1τ<s+s′E // τ≥s+s′E //

Cs,s′

4<

E // τ<s+s′E .

Here τ≥sE ∧ τ≥s′E is (s+ s′)-connective and τ<s+s′E is (s+ s′ − 1)-coconnective,
so the mapping space Map(τ≥sE∧τ≥s′E, τ<s+s′E) is contractible. Hence the space
of pairs (φs,s′ , Cs,s′), where φs,s′ is a map and Cs,s′ is a commuting homotopy,
is (nonempty and) contractible. For simplicity, let us assume that each map in
the Whitehead tower is a fibration, so that we may take Cs,s′ to be the constant
homotopy, i.e., so that φs,s′ makes the square commute “on the nose”.

It follows that the two composite maps around the square

τ≥s+1E ∧ τ≥s′E //

φs+1,s′

��

τ≥sE ∧ τ≥s′E

φs,s′

��
τ≥s+1+s′E //

Hs,s′

2:

τ≥s+s′E
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both make the square

τ≥s+1E ∧ τ≥s′E //

��

E ∧ E

φ

��
Σ−1τ<s+s′E // τ≥s+s′E // E // τ<s+s′E

commute, which implies that these two maps are homotopic, since also the mapping
space Map(τ≥s+1E ∧ τ≥s′E, τ<s+s′E) is contractible. Let Hs,s′ be such a “horizon-
tal” homotopy, which we may assume projects to the constant homotopy of maps
τ≥s+1E ∧ τ≥s′E → E. A similar argument applies for the two composite maps
around the square

τ≥sE ∧ τ≥s′+1E //

φs,s′+1

��

τ≥sE ∧ τ≥s′E

φs,s′

��
τ≥s+s′+1E //

Vs,s′

2:

τ≥s+s′E .

Let Vs,s′ be a “vertical” homotopy connecting them, projecting to the constant
homotopy of maps τ≥sE∧τ≥s′+1E → E. We now need a 2-homotopy connecting the
front composite homotopy Hs,s′+1 ∗Vs,s′ to the back composite homotopy Vs+1,s′ ∗
Hs,s′ , both of which connect

τ≥s+1E ∧ τ≥s′+1E
φs+1,s′+1−→ τ≥s+s′+2E −→ τ≥s+s′E

to

τ≥s+1E ∧ τ≥s′+1E −→ τ≥sE ∧ τ≥s′E
φs,s′−→ τ≥s+sE ,

and which project to the constant homotopy of maps τ≥s+1E ∧ τ≥s′+1E → E.
The existence of this 2-homotopy now follows from the fact that Map(τ≥s+1E ∧
τ≥s′+1E, τ<s+s′E) is contractible.

The diagonal ∆: X → X×X makes F (X+,−) a lax monoidal functor. Applying
it to all of these spectra, maps, homotopies and 2-homotopies, we obtain a map

µs,s′ : Ys ∧ Ys′ = F (X+, τ≥sE) ∧ F (X+, τ≥s′E)

F (∆,φs,s′ )−→ F (X+, τ≥s+s′E) = Ys+s′

for each s, s′ ∈ Z, making each square in (5.1) commute up to homotopy, so that
the combined homotopies are connected by a 2-homotopy.

Hence the Whitehead tower spectral sequence

Es,t1 = H2s+t(X;Es) =⇒s E
s+t(X)

is an algebra spectral sequence, with product on the E1-term given by the cup
product with coefficients in E∗, converging to the E-cohomology cup product.
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