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CHAPTER 13: TELESCOPIC LOCALIZATION

JOHN ROGNES

1. The thick subcategory theorem

Implicitly, suppose that all spectra are p-local, for a fixed prime p.
The stable homotopy category Ho(Sp) is a triangulated category, with Puppe

cofiber sequences as its distinguished triangles. The analogues of Serre classes and
hereditary torsion theories for triangulated categories are called thick and localizing
subcategories, respectively. The full subcategory Ho(Spω) of finite spectra is also
triangulated, but does not admit infinite coproducts.

Definition 1.1 ([HS99, Def. 1.3]). A thick subcategory T of a triangulated cat-
egory C is a full subcategory that closed under cofiber sequences and retracts,
meaning that

• if X → Y → Z → ΣX is a distinguished triangle and two of X, Y and Z
are in T , then so is the third, and

• if X is a retract of Y and Y is in T , then X is in T .

A property of objects of C is said to be generic if the class of objects with
that property is closed under cofiber sequences and retracts, i.e., spans a thick
subcategory.

A localizing subcategory T of a triangulated category C (with all coproducts) is
a thick subcategory that is closed under coproducts, meaning that

• if {Xα}α∈J is a set of objects in T , then
∐
α∈J Xα is an object in T .

The n-th term LnX = LE(n)X in the chromatic tower

X −→ . . . −→ LnX −→ Ln−1X −→ . . . −→ L0X

of localization functors is the left adjoint in an adjunction

Ln : Ho(Sp) � Ho(LnSp) : U .

It annihilates the localizing subcategory

Ho(Sp≥n+1) := {Z | LnZ ' ∗} = {Z | E(n)∗(Z) = 0} ⊂ Ho(Sp)
of (p-local) E(n)-acyclic spectra. When restricted to (p-local) finite spectra F , it
annihilates the thick subcategory

Ho(Spω≥n+1) := {F | LnF ' ∗} = {F | E(n)∗(F ) = 0} ⊂ Ho(Spω)

of finite E(n)-acyclic spectra. These full subcategories are the preimages under
MU∗(−) : Ho(Sp)→ LB− coMod of the hereditary torsion theory Tn.
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Ho(Spω≥n+1) // //
** **

Ho(Spω) **
**

��
Ho(Sp≥n+1) // //

��

Ho(Sp) Ln //

MU∗(−)

��

Ho(LnSp)

E(n)∗(−)

��
LB− coModfp

**
Tn // LB− coMod

g∗n // E(n)∗E(n)− coMod

Definition 1.2. A finite (p-local) spectrum F has type ≥ n if E(n− 1)∗(F ) = 0,
i.e., if F ∈ Ho(Spω≥n). It has type = n if E(n− 1)∗(F ) = 0 and E(n)∗(F ) 6= 0.

Example 1.3. A Smith–Toda complex V (n− 1) has type = n, when it exists.

Stephen Mitchell proved that there are finite spectra of each (chromatic) type.
Let A(n) ⊂ A denote the finite subalgebra generated by Sq1, . . . , Sq2n

for p = 2,

or by β, P 1, . . . , P p
n−1

for p odd. It contains the exterior algebra Λ(Q0, . . . , Qn) on
the first Milnor primitives.

Theorem 1.4 (Mitchell [Mit85, Thm. B]). For each prime p and integer n ≥ 0
there exists a finite spectrum F (n) such that

• H∗(F (n);Fp) is a (finitely generated) free module over A(n− 1),
• K(m)∗(F (n)) = 0 for 0 ≤ m < n, and
• K(n)∗(F (n)) 6= 0,

so that F (n) has type = n.

The proof uses the Steinberg idempotent from representation theory to split F (n)
off as a summand of the suspension spectrum of a homogeneous space SO(2n)/(Z/2)n

for p = 2 or U(pn)/(Z/p)n for p odd.

Lemma 1.5. Let F be a finite p-local spectrum. If F is not contractible, then F
has type = n for some finite 0 ≤ n <∞. Otherwise, F has type ≥ n for all n.

Proof. The homology H∗(F ;Fp) = 0 is concentrated in a finite range 0 ≤ ∗ ≤ d.
Choose n so large that |vn| = 2pn − 2 ≥ d. Then the Atiyah–Hirzebruch spectral
sequence

E2
s,t = Hs(F ;K(n)t) =⇒s K(n)s+t(F )

collapses at the E2-term for bidegree reasons. Hence K(n)∗(F ) = 0 if and only if
H∗(F ;Fp) = 0. For finite p-local F this happens if and only if F is contractible.
Hence, for non-contractible F there exist n such that K(n)∗(F ) 6= 0. The minimal
such n is then the exact type of F , which is finite. �

Let Ho(Spω≥0) be the category of all p-local finite spectra, and let Ho(Spω≥∞) be
the category of all contractible finite spectra, so that there are proper inclusions

Ho(Spω(p)) = Ho(Spω≥0) ) · · · ) Ho(Spω≥n) ) Ho(Spω≥n+1) ) · · · ) Ho(Spω≥∞) .

The Hopkins–Smith thick subcategory theorem asserts that these account for all
the thick subcategories of the category of finite spectra.

Theorem 1.6 (Hopkins–Smith [HS98, Thm. 7]). If T ⊂ Ho(Spω) is a thick sub-
category of the triangulated category of p-local finite spectra, then T = Ho(Spω≥n)
for some 0 ≤ n ≤ ∞.
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This is proved as a consequence of the Devinatz–Hopkins–Smith nilpotence the-
orem (Chapter 11, Theorem 4.3 or 4.4). See also [Rav92a, Ch. 5]. As a hint of
how thick subcategories/generic properties are related to nilpotence, note that if
f : ΣdX → X is a self-map and X lies in a thick subcategory T , then Cf also lies
in T . Conversely, if Cf lies in T , then the braid diagram

Σ2dX

f2

$$

Σdf

##

X
%%

##

Cf

ΣdX

f

;;

##

C(f2)

<<

ΣdCf

;;

shows that C(f2) lies in T . By induction, C(f2i

) lies in T for all i ≥ 0. If we now

assume that f is nilpotent, so that f2i ' ∗ for some i, then C(f2i

) ' X ∨Σ2id+1X
contains X as a retract, which implies that X also lies in T .

Remark 1.7. An algebraic analogue of the thick subcategory theorem, classifying
the Serre subcategories of LB− coModfp, is stated as [Rav92a, Thm. 3.4.2]. Work-

ing p-locally, these are the full subcategories LB− coModfp
≥n of vn−1-power torsion

comodules, for 0 ≤ n ≤ ∞. The proof is corrected in [JLR96, Thm. 1.6], and
is an application of the Landweber filtration theorem (Chapter 11, Theorems 7.1
and 7.2.).

Remark 1.8. The Hopkins–Ravenel smash product theorem (Chapter 11, Theo-
rem 5.14) is proved [Rav92a, §8] using the thick subcategory theorem. One needs
to prove that the E(n)-local sphere LnS is E(n)-nilpotent, i.e., lies in the thick ideal
of Ho(Sp) generated by E(n). The full category of finite spectra F for which LnF
is E(n)-nilpotent is a thick subcategory, so to prove that it contains S it suffices
to show that it contains some rationally nontrivial spectrum F with this property.
This is then carried out.

The coherent sheaves MU∗(F )∼ associated to finite spectra F have “closed”
support that is invariant under specialization (to greater heights), in the following
sense.

Theorem 1.9 (Ravenel [Rav84, Thm. 2.11]). Let F be a finite spectrum. Then

dimK(n)∗ K(n)∗(F ) ≤ dimK(n+1)∗ K(n+ 1)∗(F )

for all n ≥ 0. In particular, K(n)∗(F ) 6= 0 implies K(n + 1)∗(F ) 6= 0, while
K(n + 1)∗(F ) = 0 implies K(n)∗(F ) = 0. Hence K(n)∗(F ) = 0 if and only if
E(n)∗(F ) = 0.

Proof. Consider the MU -module spectrum E = E(n + 1)/In = E/(p, . . . , vn−1),
with coefficient ring E∗ = Fp[vn, v±1

n+1]. (For n = 0, this is to be read as E∗ =

E(1)∗ = Z(p)[v
±1
1 ].) Since E∗ is a graded PID (= principal ideal domain) and F is

finite, E∗(F ) is a finite direct sum of cyclic E∗-modules, i.e., of a free summands
E∗ and b torsion summands E∗/v

k
n for k ≥ 1, up to suspensions.
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The number a of free summands is the same as the dimension of v−1
n E∗(F ) over

v−1
n E∗ = Fp[v±1

n , v±1
n+1], which by Johnson–Wilson [JW75, Thm. 3.1], is the same

as dimK(n)∗ K(n)∗(F ). ((ETC: This uses that B(n)∗(F ) is a free B(n)∗-module,
which follows since there are no invariant ideals in B(n)∗ other than (0) and (1).))

The cofiber sequence Σ|vn|E
vn−→ E −→ K(n+ 1) induces a universal coefficient

short exact sequence

0→ K(n+ 1)∗ ⊗E∗ E∗(F )→ K(n+ 1)∗(F )→ TorE∗1 (K(n+ 1)∗, E∗−1(F ))→ 0 .

Each free summand E∗ contributes a copy of K(n+1)∗ to the left hand term. Each
vn-power torsion summand E∗/v

k
n contributes one copy of K(n + 1)∗ at the left

hand side and one copy at the right hand side. Hence dimK(n+1)∗ K(n+ 1)∗(F ) =
a + 2b ≥ a = dimK(n)∗ K(n)∗(F ). ((ETC: If F were not finite, then E∗(F ) could

contain uniquely vn-divisible summands such as v−1
n E∗, which would contribute to

K(n)∗(F ) but not to K(n+ 1)∗(F ).))
The final claim follows from 〈E(n〉 = 〈K(0)〉 ∨ · · · ∨ 〈K(n)〉. �

Corollary 1.10. A finite p-local spectrum has type ≥ n if and only if K(n −
1)∗(F ) = 0. It has type = n if and only if K(n− 1)∗(F ) = 0 and K(n)∗(F ) 6= 0.

This does not explicitly refer to Johnson–Wilson E(n)-theory, and is the more
usual way of defining (chromatic) type ≥ n, but relies on Theorem 1.9 to make
good sense.

Example 1.11. A finite p-local spectrum F has type 0 if and only if H∗(F ;Q) ∼=
π∗(F ) ⊗ Q is nonzero. It has type ≥ 1 if and only if H∗(F ;Q) ∼= π∗(F ) ⊗ Q = 0.
In that case it has type = 1 if and only if K(1)∗(F ) 6= 0, which is equivalent to
KU∗(F ) 6= 0. It has type ≥ 2 if and only if K(0)∗(F ) = 0 and K(1)∗(F ) = 0, which
is equivalent to KU∗(F ) = 0. The Moore spectrum F = V (0) = S/p = S ∪p e1 has
type 1, while (for p odd) the cofiber V (1) = S/(p, v1) = S∪pe1∪α1

e2p−1∪pe2p of the
Adams self-map v1 : Σ2p−2S/p→ S/p has type ≥ 2, since KU∗(S/p) = KU∗/p 6= 0
while KU∗(S/(p, v1)) = 0.

Example 1.12. In Chapter 11, Remark 2.5 we saw that dimK(n)∗ K(n)∗(BCp) is
finite, and grows with n, even if BCp is not a finite spectrum. In the K(n)-local

category the spectra L̂nΣ∞BG+ are in fact dualizable, for all finite groups G, hence
are somewhat close to being finite in that category [Rav82], [HS99, Cor. 8.7].

In contrast to Ravenel’s result for finite spectra F , Jeremy Hahn proved that
H∞ ring spectra R (and even less ring structure is needed) have “open” support
that is invariant under generalization (to lower heights).

Theorem 1.13 (Hahn (arXiv:1612.04386)). Let R be an H∞ ring spectrum. If
K(n)∗(R) = 0 for some n ≥ 0, then K(n + 1)∗(R) = 0. Hence K(n + 1)∗(R) 6= 0
implies K(n)∗(R) 6= 0.

The orthogonality result K(n)∗(K(m)) = 0 for n 6= m (Chapter 12, Proposi-
tion 6.10) shows that for general p-local spectra X the support

{n ≥ 0 | K(n)∗(X) 6= 0}

can be arbitrary, often being invariant neither under specialization nor under gen-
eralization.
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2. The periodicity theorem

Definition 2.1. Let F be a finite p-local spectrum and n ≥ 0. A map v : ΣdF → F
is said to be a vn self-map if

K(m)∗(v) : K(m)∗(Σ
dF ) −→ K(m)∗(F )

is multiplication by a power of vn for m = n, and zero otherwise.

Multiplication by p defines a v0 self-map p : F → F for any F in Ho(Spω(p)). The

Adams self-maps v1 : Σ2p−2S/p→ S/p (for p odd) and v4
1 : Σ8S/2→ S/2 (for p = 2)

are v1 self-maps. Sometimes one refines the terminology, and calls v a vkn self-map
if K(n)∗(v) is multiplication by vkn, and says vn-power self-map if the exponent k
is not specified. If a vn-power self-map exists, one may always find one where the
exponent k = pN is a power of p.

Hopkins–Smith [HS98, §3] show that the property of admitting a vn self-map, for
a fixed n ≥ 0, is generic. In other words, the collection of such F generates a thick
subcategory of Ho(Spω(p)). By the thick subcategory theorem it must therefore be

Ho(Spω≥m) for some 0 ≤ m ≤ ∞. In fact, m = n.

Theorem 2.2 (Hopkins–Smith [HS98, Thm. 9]). Let p be a prime and n ≥ 0
an integer. A finite p-local spectrum admits a vn self-map if and only if it has
(chromatic) type ≥ n.

Outline of proof. One implication is easy: Let v : ΣdF → F be a vn self-map, with
homotopy cofiber Cv. The case m = n of the long exact sequence

(2.1) · · · → K(m)∗(Σ
dF )

K(m)∗(v)−→ K(m)∗(F ) −→ K(m)∗(Cv)→ . . .

shows that K(n)∗(Cv) = 0, since K(n)∗(v) is an isomorphism. If F had type
m < n then the sequence would also show that K(m)∗(Cv) ∼= K(m)∗(F ) ⊕
K(m)∗(Σ

d+1F ) 6= 0, since K(m)∗(v) = 0 and K(m)∗(F ) 6= 0. This contradicts
Theorem 1.9 for the finite spectrum Cv.

It follows that the thick subcategory of spectra admitting vn self-maps is con-
tained in Ho(Spω≥n). To prove equality, it suffices to exhibit a single finite spectrum

of type n admitting a vn self-map. This is done in [HS98, §4] and [Rav92a, App. C].
Jeff Smith used idempotents in the group rings of symmetric groups to construct
a spectrum with particular cohomology as a module over the Steenrod algebra
((ETC: and more)), and the Adams spectral sequence is then used to construct the
vn self-map.

Once this one type n spectrum with a vn self-map has been constructed, it follows
from the thick subcategory theorem that every spectrum if type ≥ n admits such
maps. This is a powerful existence result. �

Note that E(m)∗(F ) = 0 if and only if v−1
m MU∗(F ) = 0, since E(m)∗ and

v−1
m MU∗ are both Landweber exact of height m, so a finite spectrum F has type
≥ n if and only if the LB-comodule MU∗(F ) satisfies v−1

n−1MU∗(F ) = 0.
The periodicity theorem has the following algebraic precursor.

Proposition 2.3 ([Rav92a, Cor. 3.3.9]). Let M be a finitely presented LB-comodule.
Then vkn : Σk|vn|M →M is an LB-comodule homomorphism for some k > 0 if and
only if v−1

n−1M = 0.
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Proof. The proof uses the Landweber filtration theorem (Chapter 11, Theorems 7.1
and 7.3), giving a filtration

0 = M(0) ⊂ · · · ⊂M(s− 1) ⊂M(s) ⊂ · · · ⊂M(`) = M

by finitely presented LB-comodules, where M(s)/M(s− 1) = ΣdsL/Ins
.

If vkn : Σk|vn|M →M commutes with the LB-coaction, then so does its restriction
to M(s) for each s, hence also its corestriction to M(s)/M(s−1). But multiplication
by vkn acts as an LB-comodule homomorphism on L/Im only for m ≥ n, by the cal-
culation P (L/Im) = Fp[vm] of LB-comodule primitives (Chapter 11, Theorem 7.2).

Hence ns ≥ n for each 1 ≤ s ≤ `, which implies v−1
n−1L/Ins

= 0, v−1
n−1M(s) = 0 and

v−1
n−1M = 0.

Conversely, if v−1
n−1M = 0 then ns ≥ n for each 1 ≤ s ≤ `. It follows that M is

annihilated by I`n. By the invariance of vn under strict isomorphisms (Chapter 10,
Lemma 4.10)

ηL(vn) ≡ ηR(vn) mod LB · In ,
which implies that

ηL(vp
`−1

n ) ≡ ηR(vp
`−1

n ) mod LB · I`n .

It follows that vkn = vp
`−1

n is LB-comodule primitive in LB/I`n, and acts on M as
an LB-comodule homomorphism. �

Lemma 2.4. If F has type = n and v : ΣdF → F is a vn self-map then Cf has
type = n+ 1.

Proof. We have K(m)∗(F ) = 0 for m < n and K(m)∗(F ) 6= 0 for m ≥ n. Moreover,
K(m)∗(v) is an isomorphism for m = n and zero for m > n. By (2.1) it follows
that K(m)∗(Cv) = 0 for m ≤ n and K(m)∗(Cv) 6= 0 for m > n. �

Example 2.5. The periodicity theorem provides an alternative approach to the
existence Theorem 1.4 (but Smith’s construction is no easier than Mitchell’s). To
start an induction, let F (0) = S. For n ≥ 0, suppose we have constructed a type n

finite spectrum F (n) = S/(pi0 , vi11 , . . . , v
in−1

n−1 ), with is ≥ 1 for 0 ≤ s < n and

MU∗(S/(p
i0 , vi11 , . . . , v

in−1

n−1 )) ∼= L/(pi0 , vi11 , . . . , v
in−1

n−1 )

as an L-module. (It will also be an LB-comodule, so (pi0 , vi11 , . . . , v
in−1

n−1 ) ⊂ L will be
an invariant ideal.) These are sometimes called generalized Moore spectra. By the
periodicity theorem, there exists a vn self-map v : ΣdF (n)→ F (n) inducing multi-
plication by vkn in K(n)-homology. Since p, . . . , vn−1 are nilpotent in MU∗(F (n))
we may arrange that v induces multiplication by vinn in MU -homology, for some
in > 0. Let

F (n+ 1) = S/(pi0 , vi11 , . . . , v
in−1

n−1 , v
in
n ) = Cv

be the homotopy cofiber of this vn self-map.
The degree p map p : S → S is a v0 map for each prime p, so we may take i0 = 1

and F (1) = V (0) = S/p. For odd p the Adams self-map v1 : Σ2p−2S/p → S/p
corresponds to i1 = 1, so we can form the type 2 Smith–Toda complex F (2) =
V (1) = S/(p, v1). For p = 2, the Adams self-map v4

1 : Σ8S/2 → S/2 realizes the
smallest possible value i1 = 4, so we can form F (2) = S/(2, v4

1). ((ETC: Also survey
v1 self-maps of S/pi0 for i0 ≥ 2.))
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For p ≥ 5 the Smith–Toda [Smi71], [Tod71] self-map v2 : Σ2p2−2S/(p, v1) →
S/(p, v1) realizes i2 = 1, with homotopy cofiber F (3) = V (2) = S/(p, v1, v2).
For p = 3, Behrens–Pemmaraju [BP04] proved the existence of a v9

2 self-map
v9

2 : Σ144S/(3, v1)→ S/(3, v1), with homotopy cofiber F (3) = S/(p, v1, v
9
2). Belmont–

Shimomura (arXiv: 2109.01059) recently obtained a v9
2 self-map of S/(3, v8

1), which
is useful for propagating 3-torsion classes that are v8

1-torsion but not (strict) v1-
torsion. For p = 2, Behrens–Hill–Hopkins–Mahowald [BHHM08] established the
existence of a v32

2 self-map v32
2 : Σ192S/(2, v4

1) → S/(2, v4
1) with type 3 homotopy

cofiber F (3) = S/(2, v4
1 , v

32
2 ). Behrens–Mahowald–Quigley (arXiv:2011.08956) also

obtained a v32
2 self-map v32

2 : Σ192S/(8, v8
1) → S/(8, v8

1), with homotopy cofiber
S/(8, v8

1 , v
32
2 ). This is useful for propagating 8-torsion and v8

1-torsion classes. The
proofs for p ∈ {2, 3} use topological modular forms, and suffice to determine the
image of the homomorphism π∗(S)→ π∗(tmf).

For p ≥ 7, Toda [Tod71] constructed the type 4 spectrum F (4) = V (3) =

S/(p, v1, v2, v3) as the homotopy cofiber of a v3 self-map v3 : Σ2p3−2S/(p, v1, v2)→
S/(p, v1, v2). On the other hand, Lee Nave [Nav10] proved that V ((p+ 1)/2) does
not exist, so V (2) = S/(5, v1, v2) at p = 5 does not admit a strict v3 self-map. It is
not known whether V (3) admits a strict v4 self-map for any prime p.

The existence statement of the periodicity theorem is supplemented with the
following weak uniqueness statement.

Proposition 2.6 ([HS98, Cors. 3.7, 3.8]). Let v : ΣdF → F and v′ : Σd
′
F ′ → F ′ be

vn self-maps. There are i, i′ > 0 (with id = i′d′) such that for every map g : F → F ′

the diagram

ΣidF

vi

��

Σidg // Σi
′d′F ′

(v′)i
′

��
F

g // F ′

commutes up to homotopy. In particular, if F = F ′ and g = idF then vi ' (v′)i
′
.

This has the following consequence.

Definition 2.7. Let F (n) be a (finite, p-local) type n spectrum, with vn self-map
v : ΣdF (n)→ F (n). The telescope

T (n) = v−1
n F (n) = hocolim(F

v−→ Σ−dF
v−→ Σ−2dF −→ . . . )

is, up to homotopy equivalence under F (n), independent of the choice of vn self-
map. Each map v is an E(n)-equivalence, so there is a factorization

F (n)
β−→ v−1

n F (n) = T (n)
τ−→ LnF (n)

of the E(n)-localization map η : F (n)→ LnF (n) = L̂nF (n).

For small n we usually take T (0) = p−1S(p) = SQ = HQ for all p, T (1) = v−1
1 S/p

for p odd and T (1) = v−4
1 S/2 for p = 2. The v1-periodic homotopy in π∗(S/p) is

fully understood, by the following theorems of Mark Mahowald and of Haynes
Miller.

Theorem 2.8 (Mahowald [Mah70], [Mah81], [Mah84]).

τ : v−1
1 π∗(S/2)

∼=−→ π∗(L1S/2) ∼= π∗(J/2)
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is an isomorphism. Hence T (1) = v−1
1 F (1) ' L1F (1) ' L̂1F (1) for any type 1

finite 2-local spectrum F (1).

See Chapter 5, Section 8, Figure 2 for a picture of a fundamental domain for
∼= π∗(J/2), which repeats v4

1-periodically. For any homotopy class x ∈ π∗(S/2), the
product v4N

1 x lies in the summand π∗(J/2) for all sufficiently large N .

Sketch proof. The original argument works with F (1) = S/2, but working with
F (1) = Y = S/2∧S/η = Σ−3RP 2 ∧CP 2 is a little less difficult. Here H∗(Y ;F2) ∼=
A(1)//Λ(Q1). The proof amounts to a careful analysis of the ko-based Adams
spectral sequence for F (1), using a splitting of ko∧ ko in terms of integral Brown–
Gitler spectra, and determining differentials in a range by a comparison along a
map Th(ξ ↓ ΩS5)→ ko from a Thom spectrum over ΩS5. �

Theorem 2.9 (Miller [Mil81, Thm. 4.11]).

τ : v−1
1 π∗(S/p)

∼=−→ π∗(L1S/p) ∼= π∗(J/p)

is an isomorphism for odd primes p. Hence T (1) = v−1
1 F (1) ' L1F (1) ' L̂1F (1)

for any type 1 finite p-local spectrum F (1).

Let g ∈ Z×p be a topological generator. The fiber sequence

J/p −→ KU/p
ψg−1−→ KU/p

induces a long exact sequence

. . .
∂−→ π∗(J/p)

π−→ Fp[u±1]
ψg−1−→ Fp[u±1] −→ . . .

in homotopy, where (ψg− 1)(un) = (gn− 1)un. Here gn− 1 ≡ 0 mod p if and only
if n ≡ 0 mod p− 1, so we have a short exact sequence

0→ Σ−1Fp[u±(p−1)]
∂−→ π∗(J/p)

π−→ Fp[u±(p−1)]→ 0

and an algebra isomorphism

π∗(J/p) ∼= Λ(α1)⊗ Fp[v±1
1 ] ,

where α1 = ∂(up−1) and π(v1) = up−1 have degree 2p− 3 and 2p− 2, respectively.
See also Chapter 11, Section 11, Figure 1 for the v1-periodic Adams–Novikov chart
for J/p.

Sketch proof. The proof compares the (strongly convergent) Adams spectral se-
quence

E∗,∗2 (S/p) = Ext∗,∗A∗ (Fp, H∗(S/p;Fp)) =⇒ π∗(S/p)

with a (potentially non-convergent) localized Adams spectral sequence

v−1
1 E

∗,∗
2 (S/p) = v−1

1 Ext∗,∗A∗ (Fp, H∗(S/p;Fp)) =⇒ v−1
1 π∗(S/p) .

A comparison via the Adams–Novikov spectral sequence is used to transfer known
d2-differentials from an algebraic May spectral sequence to the localized Adams
spectral sequence. This shows that E∗,∗∞ (S/p) above a line of slope 1/(p2−p−1), in
the usual Adams (t−s, s)-bigrading, consists only of classes detecting Λ(α1)⊗Fp[v1],
on a line of slope 1/(2p − 2). Since v1-multiplication acts parallel to the Adams
vanishing line for S/p, this suffices to deduce that there are no other v1-periodic
classes than those mentioned. �
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3. Finite localizations

We follow Miller’s article [Mil92], which responds to [Rav93] and [MS95].
Recall from Chapter 12, Section 4 that for any Landweber exact L-module E∗

of height n, such as E(n)∗ or v−1
n L, the full abelian subcategory

TE = {M | E∗ ⊗LM = 0} ⊂ LB− coMod

only depends on n, and is equal to the hereditary torsion theory (= Serre subcate-
gory closed under coproducts) generated by L/In+1 = L/(p, . . . , vn).

Let X and E be spectra. The (co-)fiber sequence

CEX → X → LEX

is characterized by CEX being E-acyclic and [Z,LEX] = 0 for any E-acyclic Z.
Hence the Bousfield E-localization and E-colocalization functors LE and CE are
fully determined by the full triangulated subcategory

Ho(CESp) := {Z | E∗(Z) = 0} ⊂ Ho(Sp)
of E-acyclic spectra. This is a localizing subcategory, i.e., a thick subcategory
closed under coproducts.

For any Landweber exact spectrum E of height n, such as E(n) or v−1
n MU , the

finite p-local E-acyclic spectra

Ho(Spω(p)) ∩Ho(CESp) = Ho(Spω≥n+1)

span the thick subcategory of finite p-local spectra of type ≥ n+1. By the Hopkins–
Smith thick subcategory theorem, it is generated as a thick subcategory by any one
type = n+ 1 spectrum F (n+ 1). For example, if p and n are such that the Smith–
Toda spectrum V (n) exists, then it has type n + 1 and MU∗(V (n)) = L/In+1 is
the LB-comodule generating Tn.

Let us write

Ho(CfESp) = Loc(F (n+ 1)) ⊂ Ho(Sp)
for the localizing subcategory generated by Ho(Spω≥n+1), which is equal to the

localizing subcategory generated by any one F (n+ 1). Clearly

(3.1) Ho(CfESp) ⊂ Ho(CESp) .
Miller shows that for any spectrum X there is a (co-)fiber sequence

CfnX −→ X −→ LfnX

with CfnX in Ho(CfESp) and [Z,LfnX] = 0 for each Z ∈ Ho(CfESp). We call
LfnX and CfnX the finite E-localization and finite E-colocalization of X. The
inclusion (3.1) implies that there is a natural, unique, factorization

X
ηf−→ LfnX

τ−→ LnX

of the E-localization map η : X → LnX.

Definition 3.1. Let A be a set of homotopy types of finite spectra.

• A spectrum N is finitely A-local if [Z,N ]∗ = 0 for each Z ∈ A.
• A spectrum Z is finitely A-acyclic if [Z,N ]∗ = 0 for each finitely A-local

spectrum N .
• A map f : X → Y is a finite A-equivalence if its mapping cone Cf is finitely
A-acyclic.



10 JOHN ROGNES

Clearly f : X → Y is a finite A-equivalence if and only if f∗ : [Y,N ] → [X,N ]
is a bijection for each finitely A-local N . The finitely A-acyclic spectra form a
localizing subcategory of Ho(Sp), containing each element of A. In particular, it is
closed under sequential homotopy colimits (= mapping telescopes).

Theorem 3.2 (Miller [Mil92, Thm. 4]). For any set A of (homotopy types of)

finite spectra and any spectrum X there is a finite A-equivalence X → LfAX to a
finitely A-local spectrum.

Proof. We may assume A is closed under (de-)suspensions. Miller constructs LfAX
as the homotopy colimit of a sequence

X = X0
i0−→ X1 −→ . . . −→ Xm

im−→ Xm+1 −→ . . . −→ LfAX = hocolim
m

Xm .

Let X0 = X and suppose that Xm has been defined. Let

Wm =
∨

f : A→Xm

A

be a wedge sum of spectra, where A ranges over all elements in A and f : A→ Xm

ranges over all homotopy classes of maps f : A → Xm. The maps f combine to a
map fm : Wm → Xm, and we let Xm+1 = Cfm be its homotopy cofiber:

Wm
fm−→ Xm

im−→ Xm+1 .

Each Wm is finitely A-acyclic, since [Wm, N ]∗ ∼=
∏
f : A→Xm

[A,N ]∗ vanishes if
N is finitely A-local. The homotopy cofiber of each X0 → Xm is finitely A-acyclic,

by induction on m, so the homotopy cofiber of X → LfAX is finitely A-acyclic, by
passage to the sequential homotopy colimit. Thus this map is a finiteA-equivalence.

If Z ∈ A and g : Z → LfAX is any map, then g factors

g : Z
g̃−→ Xm −→ LfAX

through some Xm, since Z is finite. Here g̃ is one of the components of fm, so img̃

is null-homotopic. Hence g is null-homotopic and [Z,LfAX] = 0, so that LfAX is
finitely A-local. �

In the resulting homotopy cofiber sequence

CfAX −→ X
ηf−→ LfAX

we call LfAX the finite A-localization of X, and CfAX the finite A-colocalization
of X. When A is the set of homotopy types of E-acyclic finite spectra, for a given
spectrum E, we say finitely E-local, finitely E-acyclic and finite E-equivalence for
finitely A-local, finitely A-acyclic and finite A-equivalence, respectively. We set

LfEX = LfAX and CfEX = CfAX.

When E = E(n) we write LfnX = LfE(n)X and CfnX = CfE(n)X for the finite

E(n)-localization and finite E(n)-colocalization of X. Since a finite p-local spec-
trum is E(n)-acyclic if and only if it is K(n)-acyclic, these are the same as the finite
K(n)-localization and finite K(n)-colocalization of X, respectively.

Proposition 3.3 ([Mil92, Prop. 5, Cor. 6]). A spectrum is finitely A-acyclic if
and only if it is the homotopy colimit of a sequence of maps with homotopy cofibers
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that are wedge sums of integer suspensions of elements in A. Hence the finitely A-
acyclic spectra span the localizing subcategory of Ho(Sp) generated by the elements
of A.

This follows from Miller’s proof, since X is finitelyA-acyclic if and only if LfAX '
∗. In particular, the full subcategory of finitely E(n)-acyclic spectra is equal to the
localizing subcategory Ho(CfnSp) generated by the finite p-local spectra of type
≥ n+ 1.

Proposition 3.4 ([Mil92, Prop. 9, Cor. 11]). Finite A-localization is smashing, so
that

LfAX ' X ∧ L
f
AS

for all spectra X. Hence LfA is Bousfield localization with respect to the ring spec-

trum LfAS.

The proof that X ∧ LfAS is finitely A-local uses Spanier–Whitehead duality.

Proposition 3.5 ([Mil92, Prop. 14]). If F is a type ≥ n finite p-local spectrum,
with vn self-map v : ΣdF → F , then the map

F −→ v−1F = T ' LfnF
inverting v is the finite E(n)-localization.

Proof. The mapping cone Cv is finite and E(n)-acyclic, which implies that the
homotopy cofiber of F → v−1F = T is finitely E(n)-acyclic. Hence this map is a
finite E(n)-equivalence.

Let Z be any finite E(n)-acyclic spectrum, and consider any map g : Z → T . It
factors through Σ−mdF → T for some m, since Z is finite. Write g̃ : Z → Σ−mdF
for one such lift. The trivial map 0: ΣdZ → Z is a vn self-map, so (by the weak
uniqueness result Proposition 2.6) the square

F

vm

��
Z

g̃ //

0

��

Σ−mdF

vi

��
Σ−idZ

Σ−idg̃ // Σ−(i+m)dF

��
T

commutes up to homotopy for some i > 0. This proves that g ' 0, so T = v−1F is
finitely E(n)-local. �

We now follow Bousfield and Mahowald–Sadofsky, to show that the finite local-
ization Lfn can be rewritten as the Bousfield localization at T (0) ∨ · · · ∨ T (n).

Lemma 3.6. 〈T (n)〉 ≥ 〈K(n)〉 for each n ≥ 0. Hence

〈T (0) ∨ · · · ∨ T (n)〉 ≥ 〈K(0) ∨ · · · ∨K(n)〉 = 〈E(n)〉
and there are natural transformations

LT (n)X
τ−→ LK(n)X = L̂nX
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and

LT (0)∨···∨T (n)X
τ−→ LE(n)X = LnX .

Proof. We have K(n)∗F (n) 6= 0 since F (n) has type = n. Any choice of vn self-
map induces an isomorphism in K(n)-homology, so K(n)∗F (n) ∼= K(n)∗T (n) is
also nonzero. Hence K(n) ∧ T (n) is a wedge sum of one or more suspensions of
K(n), and contains a suspension of K(n) as a retract. If T (n)∗(Z) = 0, then
K(n) ∧ T (n) ∧ Z ' ∗, and this implies K(n)∗(Z) = 0. �

Definition 3.7. If 〈D〉 ∨ 〈E〉 = 〈S〉 and 〈D〉 ∧ 〈E〉 = 〈∗〉, then we say that 〈D〉 =
〈E〉c is a (Bousfield) complement of 〈E〉.

Not every Bousfield class admits a complement, but for those that do it is unique.

Lemma 3.8. If 〈C〉 and 〈D〉 are complements of 〈E〉, then 〈C〉 = 〈D〉.

Proof. If C∗(X) = 0 then 〈X〉 = 〈C ∧ X〉 ∨ 〈E ∧ X〉 = 〈E ∧ X〉 so 〈D〉 ∧ 〈X〉 =
〈D〉 ∧ 〈E ∧X〉 = 〈D ∧E ∧X〉 = 〈∗〉 and D∗(X) = 0. Hence 〈C〉 ≥ 〈D〉. The same
argument applies with C and D switched. �

Lemma 3.9 (Ravenel [Rav84, Lem. 1.34]). For any self-map f : ΣdX → X with
homotopy cofiber Cf = X/f and telescope f−1X, we have

〈X〉 = 〈f−1X〉 ∨ 〈X/f〉 .
Hence

〈S〉 = 〈T (0) ∨ · · · ∨ T (n)〉 ∨ 〈F (n+ 1)〉 .

Proof. If X∗Z = 0 then (X/f)∗Z = 0 by the long exact sequence, and f−1X∗Z = 0
by algebraic localization.

Conversely, if (X/f)∗Z = 0 then f∗ : X∗Z → X∗+dZ is an isomorphism by the
long exact sequence, so X∗Z ∼= f−1X∗Z since inverting an isomorphism has no
effect. If f−1X∗Z = 0 it then follows that X∗Z = 0. �

Lemma 3.10. T (m) ∧ F (n+ 1) ' ∗ for each m ≤ n. Hence

〈T (0) ∨ · · · ∨ T (n)〉 ∧ 〈F (n+ 1)〉 = 〈∗〉 ,
so that 〈F (n+ 1)〉c = 〈T (0) ∨ · · · ∨ T (n)〉 is a Bousfield complement.

Proof. Let v : ΣdF (m) → F (m) be a vm self-map. The smash product F (m) ∧
F (n + 1) has type = n + 1, so both vm ∧ id and the zero map are vm self-maps.
Hence vm ∧ id is nilpotent, by Proposition 2.6, and its telescope T (m) ∧ F (n + 1)
must be contractible. �

Let X be any spectrum, and consider the case A = {F (n + 1)} of Miller’s
homotopy cofiber sequence

CfAX −→ X −→ LfAX .

By the construction

X = X0 → · · · → Xm → Xm+1 → · · · → X∞ = LfAX

with Wm → Xm → Xm+1, where Wm is a wedge sum of suspensions of F (n + 1),

the finite A-colocalization CfAX is a sequential homotopy colimit along maps with
homotopy cofibers given by wedge sums of suspensions of F (n + 1). Hence it is
[F (n+ 1), ]∗-colocal in the sense of [Bou79a, p. 369], and is a sequential homotopy
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colimit of finite T (0)∨· · ·∨T (n)-acyclic spectra. In particular, CfAX is T (0)∨· · ·∨
T (n)-acyclic.

Moreover, [F (n+1), LfAX]∗ = 0, so the finite A-localization LfAX is [F (n+1), ]∗-

trivial, and is equal to the [F (n + 1), ]∗-trivialization XF (n+1) of X in the sense
of [Bou79a, p. 371].

Proposition 3.11 (Bousfield [Bou79a, Prop. 2.9]). If F is a finite spectrum, then

〈F 〉 has the complement 〈F 〉c = 〈SF 〉, where SF = Lf{F}S is the [F, ]∗-trivialization

of S.

Proposition 3.12 (Bousfield [Bou79b, Prop. 3.5]). If F is a finite spectrum, then
a spectrum X is (SF )∗-local if and only if [F,X]∗ = 0.

Proposition 3.13 (Mahowald–Sadofsky [MS95, Prop. 3.3]). (a) A spectrum is
T (0) ∨ · · · ∨ T (n)-local if and only if it is finitely {F (n+ 1)}-local.

(b) Finite E(n)-localization, finite {F (n+ 1)}-localization and Bousfield T (0) ∨
· · · ∨ T (n)-localization all agree:

LfnX ' L{F (n+1)}X ' LT (0)∨···∨T (n)X .

(c) Every T (0) ∨ · · · ∨ T (n)-acyclic is a sequential homotopy colimit of finite
T (0) ∨ · · · ∨ T (n)-acyclics.

Proof. (a) By Lemmas 3.8, 3.10 and Proposition 3.11 we know that

〈T (0) ∨ · · · ∨ T (n)〉 = 〈F (n+ 1)〉c = 〈SF (n+1)〉 ,

so by Proposition 3.12 any spectrum X is T (0) ∨ · · · ∨ T (n)-local if and only if
[F (n+ 1), X]∗ = 0, i.e., if and only if it is finitely A-local for A = {F (n+ 1)}.

(b) The finite E(n)-acyclics are generated as a thick subcategory by F (n + 1),
so they generate the same localizing subcategory of Ho(Sp), which implies that

LfnX = LfE(n)X agrees with Lf{F (n+1)}X. The equivalence with LT (0)∨···∨T (n)X

follows from (a).

(c) Suppose that Z is T (0)∨ · · · ∨ T (n)-acyclic. Since CfAZ is T (0)∨ · · · ∨ T (n)-

acyclic, it follows that LfAZ is T (0) ∨ · · · ∨ T (n)-acyclic. By (a), LfAZ is also

T (0) ∨ · · · ∨ T (n)-local, so it must be contractible. Hence Z ' CfAZ is a sequential
homotopy colimit of finite T (0) ∨ · · · ∨ T (n)-acyclic spectra. �

((ETC: Is LfnF ' LT (n)F for F finite of type n?))
By analogy with the chromatic tower from Chapter 12, (1.1), (1.2) and (1.3),

there is a telescopic tower

Ho(Sp) −→ . . . −→ Ho(LfnSp) −→ Ho(Lfn−1Sp) −→ . . . −→ Ho(Lf0Sp)

of localization functors between the full subcategories

Ho(Sp) ⊃ · · · ⊃ Ho(LfnSp) ⊃ Ho(Lfn−1Sp) ⊃ · · · ⊃ Ho(Lf0Sp)

that defines the telescopic filtration of (p-local) stable homotopy theory. Applied
to a spectrum X, this gives the telescopic tower

X −→ . . . −→ LfnX −→ Lfn−1X −→ . . . −→ Lf0X

in Ho(Sp).
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It appears to be an open problem whether telescopic convergence holds, i.e.,
whether

X −→ holim
n

LfnX

is an equivalence for finite p-local X. As was noted in [MS95, p. 114] it is a split
injection, since the composite with

τ : holim
n

LfnX −→ holim
n

LnX

is an equivalence by the chromatic convergence theorem (Chapter 12, Theorem 7.3).

4. The telescope conjecture

Based on the results of Mahowald and Miller (Theorems 2.8 and 2.9), a hope to
calculate the vn-periodic homotopy groups v−1

n π∗F (n) = π∗L
f
nF (n) for n ≥ 2, and

the ability to calculate the chromatically localized homotopy groups π∗LnF (n) in
some nontrivial cases (starting with n = 2 and p ≥ 5, see Chapter 12, Proposi-
tion 11.9), Ravenel made the following conjecture around 1977:

Conjecture 4.1 ([Rav84, Conj. 10.5]). 〈T (n)〉 = 〈K(n)〉.

We already know that 〈T (n)〉 ≥ 〈K(n)〉 for all n. If 〈T (m)〉 = 〈K(m)〉 for all
0 ≤ m ≤ n then

〈T (0) ∨ · · · ∨ T (n)〉 = 〈K(0) ∨ · · · ∨K(n)〉 = 〈E(n)〉

so that the natural map

LfnX ' LT (0)∨···∨T (n)X
τ−→ LK(0)∨···∨K(n)X ' LnX

is an equivalence. This is the usual formulation of the height n Telescope Conjecture
for X. It is equivalent to the assertion that a spectrum X is finitely E(n)-local if
and only if it is E(n)-local. It is also equivalent to the assertion that in Ho(Sp)
the subcategory Ho(Sp≥n+1) of E(n)-acyclic spectra is generated, as a localizing
subcategory, by the (thick) subcategory Ho(Spω≥n+1) of finite E(n)-acyclic spectra.

Since both Lfn and Ln are smashing localizations, they commute with homotopy
colimits, so if the height n telescope conjecture holds for all finite (p-local) spectra F
then it holds for all (p-local) spectra X. In particular, if a counterexample exists,
then there also exists a finite (p-local) counterexample.

If the height n telescope conjecture holds for a finite spectrum F , then it also
holds for all spectra in the thick subcategory generated by F . It is trivially true
for finite F of type ≥ n + 1, The main case to consider is thus that when F has
type = n.

In the case T (2) = v−1
2 S/(p, v1) for p ≥ 5, Ravenel [Rav92b], [Rav93], [Rav95]

made calculations with a localized Adams spectral sequence (similar to Miller’s
proof strategy for n = 1), that strongly suggest that π∗T (2) = v−1

2 π∗(S/(p, v1))
is different from π∗L2S/(p, v1). The latter is a subquotient of an exterior algebra
over K(2)∗ on n2 = 4 generators, while the former appears to be a subquotient of
an exterior algebra on only

(
n+1

2

)
= 3 generators, tensored with

(
n
2

)
= 1 factor(s)

of the form K(2)∗[Q/Z(2)] = K(2)∗[Z/2∞]. The expectation is therefore that the
telescope conjecture is false for n = 2 and p ≥ 5, and most likely for all n ≥ 2 and
all p.
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Calculations for n = 2 and p = 2, with a similar conclusion, were made by
Mahowald–Ravenel–Shick [MRS01], but these efforts did also not reach a definite
conclusion.

More recently, Beaudry–Behrens–Bhattacharya–Culver–Xu [BBB+21] made cal-
culations with the tmf-based Adams spectral sequence at n = 2 and p = 2 (similar
to Mahowald’s proof strategy for n = 1). For a specific type 2 spectrum Z with
H∗(Z;F2) ∼= A(2)//Λ(Q2) they obtain specific conjectures about the v2-localized
Adams spectral sequence with abutment v−1

2 π∗(Z), which would contradict the
telescope conjecture.

In contrast to these partial calculations for finite spectra, complete computations
of vn-periodic homotopy have been for some infinite spectra, including algebraic K-
theory and topological cyclic homology spectra. Bökstedt–Madsen [BM94], [BM95]
calculated

T (1)∗K(Zp) = v−1
1 V (0)∗K(Zp)

at primes p ≥ 3 to be a (finitely generated and free) K(1)∗-module of rank p+3. The
result agrees with L1V (0)∧K(Zp) ' V (0)∧Ket(Qp), confirming the Lichtenbaum–
Quillen conjecture for Qp at these primes. Ausoni–Rognes [AR02] calculated

T (2)∗K(BP 〈1〉) = v−1
2 V (1)∗K(BP 〈1〉)

at primes p ≥ 5 to be a (finitely generated and free) K(2)∗-module of rank 4p+ 4,
and Angelini-Knoll–Ausoni–Culver–Höning–Rognes (arXiv:2204.05890) calculated

T (3)∗K(BP 〈2〉) = v−1
3 V (2)∗K(BP 〈2〉)

at primes p ≥ 7 to be a (finitely generated and free) K(3)∗-module of rank 12p +
4. In the latter two cases the chromatic localizations L2V (1) ∧ K(BP 〈1〉) and
L3V (2)∧K(BP 〈2〉) are not currently known, so at the time of writing (May 2023)
the telescope conjecture remains open.
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Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer.
Math. Soc., Providence, R.I., 1982, pp. 289–292. MR676336

[Rav84] , Localization with respect to certain periodic homology theories, Amer. J.
Math. 106 (1984), no. 2, 351–414, DOI 10.2307/2374308. MR737778

[Rav92a] , Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics
Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by
Jeff Smith. MR1192553

[Rav92b] , Progress report on the telescope conjecture, Adams Memorial Sympo-
sium on Algebraic Topology, 2 (Manchester, 1990), London Math. Soc. Lecture
Note Ser., vol. 176, Cambridge Univ. Press, Cambridge, 1992, pp. 1–21, DOI
10.1017/CBO9780511526312.007. MR1232195

[Rav93] , Life after the telescope conjecture, Algebraic K-theory and algebraic topology

(Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 407,
Kluwer Acad. Publ., Dordrecht, 1993, pp. 205–222. MR1367299

[Rav95] , Some variations on the telescope conjecture, The Čech centennial (Boston,
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