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 ANNALS OF M ATLIEMATICS

 Vol. 67, No. 1, January, 1958
 Printed in Japan

 THE STEENROD ALGEBRA AND ITS DUAL1

 BY JOHN MILNOR

 (Received May 15, 1957)

 1. Summary

 Let 57 * denote the Steenrod algebra corrresponding to an odd prime
 p. (See ? 2 for definitions.) Our basic results (? 3) is that 5i* is a Hopf
 algebra. That is in addition to the product operation

 c * ? An* n *

 there is a homomorphism

 A 9*

 satisfying certain conditions. This homomorphism sb* relates the cup prod-
 uct structure in any cohomology ring H*(K, Zp) with the action of A*

 on H*(K, Zr). For example if n e 922n(p-1) denotes a Steenrod reduced
 pth power then

 {g(n) = n + -9 nl - I I + ***+ n i

 The Hopf algebra

 92* 09*?9* 9*

 has a dual Hopf algebra

 The main tool in the study of this dual algebra is a homomorphism

 A*: H*(K, Zp) -+H*(K, Zp) (g 9*

 which takes the place of the action of 91* on H*(K, Z.). (See ?4.) The
 dual Hopf algebra turns out to have a comparatively simple structure. In
 fact as an algebra (ignoring the "diagonal homomorphism" p*) it has the
 form

 E(ro, 1) (g) E(rj, 2p -1) (g ... (g P($,, 2p -2) OM P2, 2 p2 -2) @* *

 where E(z-, 2pi - 1) denotes the Grassmann algebra generated by a cer-

 tain element ri e R l, and P($j, 2pi - 2) denotes the polynomial algebra
 generated by $j e -~pt-2.

 The author holds an Alfred P. Sloan fellowship.

 150
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 THE STEENROD ALGEBRA AND ITS DUAL 151

 In ? 6 the above information about a is used to give a new description
 of the Steenrod algebra 9 *. An additive basis is given consisting of ele-
 ments

 QO OQle .el rir2

 with E, = 0, 1; ri _ 0. Here the elements Qi can be defined inductively
 by

 Q O Qi+1 P Q - QJ) p
 while each rl ... r7 is a certain polynomial in the Steenrod operations,2
 of dimension

 rl(2p - 2) + r.2(2p2 -2) + * + r,(2p -2)

 The product operation and the diagonal homomorphism in j/* are ex-
 plicitly computed with respect to this basis.

 The Steenrod algebra has a canonical anti-automorphism which was

 first studied by R. Thom. This anti-automorphism is computed in ?7.
 Section 8 is devoted to miscellaneous remarks. The equation 0 01 - 0 is

 studied; and a proof is given that Q<* is nil-potent.
 A brief appendix is devoted to the case p = 2. Since the sign conven-

 tions used in this paper are not the usual ones (see ? 2), a second appendix
 is concerned with the changes necessary in order to use standard sign
 conventions.

 2. Prerequisites: sign conventions, Hopf algebras,
 the Steenrod algebra

 If a and b are any two objects to which dimensions can be assigned,

 then whenever a and b are interchanged the sign (_ )dima dimb will be
 introduced. For example the formula for the relationship between the

 homology cross product and the cohomology cross product becomes

 ( 1) <u x1 X) as xt d > = (- 1)dimadmc < o,! at > < A~ >

 This contradicts the usual usage in which no sign is introduced. In the

 same spirit we will call a graded algebra commutative if

 ab = (- 1)dimadim baba

 Let A =(- A-1, Ao, Al, ... ) be a graded vector space over a field F.
 The dual A' is defined by A' = Hom (A-n, F). The value of a homomor-
 phism a' on a e A will be denoted by <a', a>. It is understood that

 < a', a > = 0 unless dim a' + dim a = 0. (By an element of A we mean an
 element of some An.) Similarly we can define the dual A" of A'. Identify

 2 This has no relation to the generalized Steenrod operations ,/9I defined by Adem.
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 152 JOHN MILNOR

 each a e A with the element a" e A" which satisfies

 ( 2) < a,1, at > =( - V~im all dim a' < a', a >
 for each a' e A'. Thus every graded vector space A is contained in its

 double dual A". If A is of finite type (that is if each An is a finite dimen-
 sional vector space) then A is equal to A".

 Now if f: A -? B is a homomorphism of degree zero then f': B' -+ A'
 and f": A" -- B" are defined in the usual way. If A and B are both of
 finite type it is clear that f = f".

 The tensor product A 0 B is defined by (A 0 B). = Ei+ j=nA Bj,
 where " E " stands for " direct sum ". If A and B are both of finite type
 and if Ai = Bi = 0 for all sufficiently small i (or for all sufficiently large
 i) then the product A 0 B is also of finite type. In this case the dual

 (A 0 B)' can be identified with A' 0 B' under the rule

 (3) <a'&bf, a (, b> = ( )dimadim bK <a',a ><b', b>.

 In practice we will use the notation A, for a graded vector space A
 satisfying the condition Ai = 0 for i < 0. The dual will then be denoted
 by A* where A = A' n= Hom (An, F). A similar notation will be used
 for homomorphisms.

 By a graded algebra (A*, V') is meant a graded vector space A* to-
 gether with a homomorphism

 sP*: A* 0 A* A* .*

 It is usually required that Sb, be associative and have a unit element
 1 e A.. The algebra is connected if the vector space A. is generated by 1.

 By a connected Hopf algebra (A*, o*, q)*) is meant a connected graded
 algebra with unit (A*, ys*), together with a homomorphism

 qb*: A* -*A* 0A*

 satisfying the following two conditions.

 2.1. 0* is a homomorphism of algebras with unit. Here we refer to the

 product operation sP* in A* and the product

 (a, 0 a.)-(a3 ( a) =( l)dima2dim a3 (a, a3) 0 (a,, a)

 in A* (g A.
 2.2. For dim a > 0, the element +*(a) has the form a 1 + 1 (a a +

 E bi 0 ci with dim bi, dim ci > 0.
 Appropriate concepts of associativity and commutativity are defined,

 not only for the product operation sV* , but also for the diagonal homomor-
 phisms q,*. (See Milnor and Moore [3]).

 To every connected Hopf algebra (A*, y P*) of finite type there is as-

This content downloaded from 129.240.223.22 on Tue, 11 Dec 2018 11:40:27 UTC
All use subject to https://about.jstor.org/terms



 THE STEENROD ALGEBRA AND ITS DUAL 153

 sociated the dual Hopf algebra (A*, g*, Ab*), where the homomorphisms

 A* A*

 are the duals in the sense explained above. For the proof that the dual is
 again a Hopf algebra see [3].

 d
 (As an example, for any connected Lie group G the maps G G x G

 P G give rise to a Hopf algebra (H*(G), p*, d*). The dual algebra
 (H*(G), I, p*) is essentially the example which was originally studied
 by Hopf.)

 For any complex K the Steenrod operation SA is a homomorphism

 '~i: HJ(K~ Zv) *HJ+2i (.V-1)(K Zv) .

 The basic properties of these operations are the following. (See Steenrod

 [4].)
 2.3. Naturality. If f maps K into L then f *5j/ i = ao if
 2.4. For af e Hj(K, Zr), if i > j/2 then jict = 0. If i = j/2 then 5 ica

 - cf. If i = 0 then ca = - .
 2.5. 9 n(Ca ' A) = i+ j=n ?c ia .'\ 9 JA
 We will also make use of the coboundary operation a: HJ(K, Zp)

 H'l+(K, Z.) associated with the coefficient sequence

 0 -Z -* Z2 -* Zp- 0 .

 The most important properties here are
 2.6. 3a = O and

 2.7. a(ac P) = ( d&) d + (- l)dimla 3d , as well as the naturality
 condition.

 Following Adem [1] the Steenrod algebra 7' is defined as follows.
 The free associative graded algebra f* generated by the symbols a,
 )!>) evade, .-- acts on any cohomology ring H*(K, Z.) by the rule
 (6162 ... Ok)- = (61(62 ... (Oka) ... )). (It is understood that a has dimen-
 sion 1 in _j7* and that ~i7 has dimension 2i(p - 1).) Let jr* denote
 the ideal consisting of all f e * such that fca = 0 for all complexes K
 and all cohomology classes af e H*(K, Z.). Then 9* is defined as the
 quotient algebra * It is clear that * is a connected graded as-
 sociative algebra of finite type over Z.. However &>* is not commutative.

 (For an alternative definition of the Steenrod algebra see Cartan [2].
 The most important difference is that Cartan adds a sign to the operation

 aT)
 The above definition is non-constructive. However it has been shown
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 154 JOHN MILNOR

 by Adem and Cartan that &* is generated additively by the "basic
 monomials "

 205) S1l81 . .. . / Ska'k

 where each 8j is zero or 1 and

 S1 > PS2 + '1, s2 >_ PS3 + 82,, Sk-1 > P~k + 8Ek-1, Sk >_l

 Furthermore Cartan has shown that these elements form an additive
 basis for 9*

 3. The homomorphism b

 LEMMA 1. For each element 6 of 5 * there is a unique element P*(O)=
 0A, ?3 6' of A* ? J7* such that the identity

 ti~ot ^ = E (-)dim0,' dime (a a_ )

 is satisfied for all complexes K and all elements a, P e II*(K). Further-
 more

 j% >9* ? si*

 is a ring homomorphism.

 (By an " element" of a graded module we mean a homogeneous element.

 The coefficient group Z, is to be understood.)
 It will be convenient to let _97 ' * act on H*(X) ? H*(X) by the

 rule

 (6' ? 6")(a ? P) = (- _)dim0" dim co 06(a) ? 6"(9)

 Let c: H*(X) ? H*(X) - H*(X) denote the cup product. The required
 identity can now be written as

 Oc(a ? js) = cWb*(6)( ? )
 PROOF OF EXISTENCE. Let P denote the subset of C consisting of

 all 6 such that for some p e 92* ? -92* the required identity

 6c(a ? ,2) = cp(a 9)

 is satisfied. We must show that _ = -
 The identities

 -(a -a X A + (_ 1)di,', a a:
 and

 () ( #A) = E i aj=n t -

 clearly show that the operations a and Sca belong to .X. If (I, 6t2 belong
 to 5 then the identity

This content downloaded from 129.240.223.22 on Tue, 11 Dec 2018 11:40:27 UTC
All use subject to https://about.jstor.org/terms



 THE STEENROD ALGEBRA AND ITS DUAL 155

 6162c( ? ja) 6c = Op2(ic ? ) = Cpop2(oa ? j)

 show that 6162 belongs to i9. Similarly ?s is closed under addition. Thus

 X is a subalgebra of S* which contains the generators 8(, ?n of $*
 This proves that ?s =

 PROOF OF UNIQUENESS. From the definition of the Steenrod algebra we

 see that given an integer n we can choose a complex Y and an element

 r e H*(Y) so that the correspondence

 6 -f ar

 defines an isomorphism of Vi into Hk+!(Y) for i < n. (For example take

 Y = K(Z,, k) with k > n.) It follows that the correspondence

 of hi, of (_ V~imo dimy Of (I-) x 0 r

 defines an isomorphism j of ( _5 ? J7*) into H2k+i(Y x Y) for i _ n.
 Now suppose that Pi, P2 e 57* ? * both satisfy the identity Oc(a ? @

 - cp~i(a ? A) for the same element 0 of Jn. Taking X = Y x Y, a=
 r x 1, jI= 1 x r, we have cpi(a ? j) = j(pi). But the equality j(p1) = j(p,)
 with dim Pi = dim p2 = n implies that Pi = P2* This completes the unique-
 ness proof. Since the assertion that s/* is a ring homomorphism follows

 easily from the proof used in the existence argument, this completes the
 proof.

 As a biproduct of the proof we have the following explicit formulas:

 0*()= a? 1 + 1 ? a
 S}*(&Dn) = AXD n ? 1 + 9 nl-1 (? d 1 + ***+ 1? nd

 THEOREM 1. The homomorphisms

 C * * -* A ~* * A > 9* 9 > *

 give 9* the structure of a Hopf algebra. Furthermore the product A* is
 associative and the "diagonal homomorphism" /* is both associative and

 commutative.

 PROOF. It is known that (SW*, A*) is a connected algebra with unit; and
 that V,* is a ring homomorphism. Hence to show that &<`* is a Hopf al-
 gebra it is only necessary to verify Condition 2.2. But this condition is
 clearly satisfied for the generators 3, and J n of 9Q*, which implies that
 it is satisfied for all positive dimensional elements of A

 It is also known that the product A* is associative. The assertions that
 b* is associative and commutative are expressed by the identities

 (1) (* X 1)0*0 = (1 X ? *)0*O ,
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 156 JOHN MILNOR

 (2) Tk*Od = s*

 for all 0, where T(6' ? 0") is defined as (- 1)dimO dimO' 9" ?'. Both
 identities are clearly satisfied if 0 is one of the generators 3 or n of

 t *. But since each of the homomorphisms in question is a ring homo-

 morphism, this completes the proof.

 As an immediate consequence we have:

 COROLLARY 1. There is a dual Hopf algebra

 with associative, commutative product operation.

 4. The homomorphism A*

 Let H*, H* denote the homology and cohomology, with coefficients ZP,
 of a finite complex. The action of &* on H* gives rise to an action of

 on H* which is defined by the rule:

 <P0, a> = <Ay, oa>

 for all 1u e H*, 0 e * a e H*. This action can be considered as a homo-
 morphism

 H*: H*? *H*.

 The dual homomorphism

 A*: H* -H* ?*
 will be the subject of this section.

 Alternatively, the restricted homomorphism Hn+ ? Stat Hn has a
 dual which we will denote by

 A Hn -,Hn+ 3f

 In this terminology we have

 A* = so + 21 + 22 +

 carrying Hn into i Hn+i 4. The condition that H* be the cohomolo-
 gy of a finite complex is essential here, since otherwise A* would be an
 infinite sum.

 The identity

 P(0102) = (i1)O2

 can easily be derived from the identity (010)a = 01(02a) which is used to
 define the product operation in JX*. In other words the diagram
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 THE STEENROD ALGEBRA AND ITS DUAL 157

 1A* (S) 1 _-* H 1A*

 H* (D H** AH
 is commutative. Therefore the dual diagram

 H* @(D H* (g1 *

 H* (2 * H*
 is also commutative. Thus we have proved:

 LEMMA 2. The identity

 (W* ? 1)2*(a) = (1 ? qb*)2*(a)
 holds for every a e H*.

 The cup product in H* and the 0* product in 3* induce a product opera-
 tion in H* ()9*/'.

 LEMMA 3. The homomorphism A*: H* - H* ? S* is a ring homomor-
 phism.

 PROOF. Let K and L be finite complexes, let 0 be an element of 9*,
 and let b*(O) = " Of ? 67. Then for any a e H*(K), ,B e H*(L) we have
 O.(a x j) = (- 1)dim0 'dim c Oa x 7d'. Using the rule

 <fP x V, Mo(a x P)> K <(, x )., a x
 we easily arive at the identity

 (p2 X S).O} = E ( d _)dim dim f 9X

 In other words the diagram

 14(K) 0 H*(L) 0 951* ? 9;* 1 ? 0 H 14(K) 1H*(L) 0 y* = H*(K X L)? 9

 I11?T 01 |A*
 H*(K) ?$ * ? H*(L) H*(K) ? H*(L) = H*(K x L)

 is commutative (where T interchanges two factors as in ? 3). Therefore

 the dual diagram is also commutative. Setting K = L, and letting d: K -*

 K x K be the diagonal homomorphism we obtain a larger commutative
 diagram

 H* ~ s l&H 19 l @+H* (&H*R =H*(K x K) (9,* H* (9 9

 11?T - (1 H* -H * IH*
 H*( 9-( H 9 H =91* H*(K xK) H*
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 158 JOHN MILNOR

 Now starting with a ? if e H* ? H* and proceeding to the right and
 up in this diagram, we obtain d*(a ). Proceeding to the left and up,

 and then to the right, we obtain 2*(aQ) -*(d). Therefore

 2*(aP) = 2*(002*0
 which proves Lemma 3.

 The following lemma shows how the action of SY* on H*(K) can be
 reconstructed from the homomorphism A*.

 LEMMA 4. If A*(a) = a, ? wa then for any 0 e a* we have

 Oa =E-1 dim co~idim woi <O cojaj)>0

 PROOF. By definition

 Oa, 0x> = <Pa, a> < MP 00), a >

 = <( p , ,A*a> = E i <P, ai><O, a)>,

 Since this holds for each pu e H*, the above equality holds.
 REMARK. To complete the picture, the operation rf*: 9* 0 H* H*

 has a dual (*: H* -A* 9? HH. Analogues of Lemmas 2 and 4 are easily
 obtained for 7*. If a product operation K x K -- K is given, so that H.,
 and hence 9* 0 H*, have product operations; then a straightforward
 proof shows that 7* is a ring homomorphism. (As an example let K de-
 note the loop space of an (n + 1)-sphere, or an equivalent CW-complex.
 Then H*(K) is known to be a polynomial ring on one generator p e Hn(K).
 The element

 7* (p) e (,o O Hn) () (( Hn-) (D) *.*.* (D) (X~' ( Ho)

 is evidently equal to 1 0 u. Therefore r*(pk) - 1 0 pk for all k. Passing
 to the dual, this proves that the action of t9* on H*(K) is trivial.)

 5. The structure of the dual algebra M*

 As an example to illustrate this operation A* consider the Lens space
 X - S2N+1/Zp where N is a large integer, and where the cyclic group Z,
 acts freely on the sphere S2N+1. Thus X can be considered as the (2N + 1)-
 skeleton of the Eilenberg-MacLane space K(Z,, 1). The cohomology ring
 H*(X) is known to have the following form. There is a generator a e
 H1(X) and H2(X) is generated by PB =a. For 0 < i < N. the group
 H20(X) is generated by dB and H20+'(X) is generated by ad'.

 The action of the Steenrod algebra on H*(X) is described as follows.
 It will be convenient to introduce the abbreviations

 MO - 1 , M - $,1 2 = 9'P9 **1 . .M = . 5 ,p
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 THE STEENROD ALGEBRA AND ITS DUAL 159

 LEMMA 5. The element M, e C 2"P-2 satisfies M9 - ,2X. However if 0
 is any monomial in the operations 3, 9?1, ? 2,** which is not of the

 form ' P1-* - - _d p29D 1 then d: = 0. Similarly (M,3)a = dP but Oa = 0
 if 0 is any monomial in the operations 3, 91 92, ... which does not have

 the form 0 = ?7p -P ... 913 or 0 1.

 PROOF. It is convenient to introduce the formal operation v = 1 +

 ,91 + t2 + -- . It follows from 2.4 that ,BP = P + dP. Since P is a
 ring homomorphism according to 2.5, it follows that 9A ji (b9 + dP). In
 particular if X - pr this gives In = (p + o9p)i = pT + [BpT+1 I ther

 words

 Adr if j =0
 ,9 i13fT { AP~T1 if j p

 0 otherwise

 Since 3~i = ij3-13j = id-1e3a = 0 it follows that the only nontrivial oper-
 ation 3 or 9J which can act on pr is 2 r. Using induction, this proves

 the first assertion of Lemma 5. To prove the second it is only necessary

 to add that i9Aa = 0 for all j > 0, according to 2.4.

 Now consider the operation A*: H*(X) - H*(X) ? 4.
 LEMMA 6. The element 2Aa has the form a ? 1 + P 0To + dP mrT +

 ... +/P" ? r where eachr, is a well defined element of _Vpkl , and where
 pr is the largest power of p with pr < N. Similarly Add has the form

 d0$0)to+d/0(9 1 + * **+0 $g r Y

 where $% = 1, and where each k is a well defined element of _9fpk 2.
 PROOF. For any element 0 of 9", Lemma 5 implies that Op = 0 unless

 i is the dimension of one of the monomials Mo , M1, * - -: that is unless i
 has the form 2pk - 2. Therefore, according to Lemma 4, we see that Aid
 -0 unless i has the form 2pk - 2. Thus

 A =0(p) + 21p-2(,) + *- + 22P -2(0)

 Since A2Pk-2) belongs to H2pk(X) 0 9,k-2, it must have the form gpk (? $k
 for some uniquely defined element $k. This proves the second assertion
 of Lemma 6. The first assertion is proved by a similar argument.

 REMARK. These elements $k and zrk have been defined only for k < r =
 [logp N]. However the integer N can be chosen arbitrarily large, so we
 have actually defined k and zrk for all k > 0.

 Our main theorem can now be stated as follows.

 THEOREM 2. The algebra 9 is the tensor product of the Grassmann al-

 gebra generated by roz-, Al ... and the polynomial algebra generated by $,
 $2 .
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 160 JOHN MILNOR

 The proof will be based on a computation of the inner products of mo-

 nomials in ri and If with monomials in the operations "I and a. The fol-
 lowing lemma is an immediate consequence of Lemmas 4, 5 and 6.

 LEMMA 7. The inner product

 < Klf, k >

 equals one, but < 6, > = i if 6 is any other monomial. Similarly

 <Mk, -r> 1

 but < 6, -r > = i if 6 is any other monomial.

 Consider the set of all finite sequences I = r1, &,, r2, ***) where
 &j = 0, 1 and ri = 0, 1, 2, - - - . For each such I define

 cw(l) = An} 0e$'rIrzl2r2 . .

 Then we must prove that the collection {co(I)} forms an additive basis
 for 4.

 For each such I define

 6(I) = 813 S2 . . .

 where

 SI I (8- + ri)p,* , , sk = c (8i + ri)p'

 It is not hard to verify that these elements 6(I) are exactly the "basic
 monomials" of Adem or Cartan. Furthermore 6(I) has the same dimen-
 sion as co(I). Order the collection {I} lexicographically from the right.

 (For example (1, 2, 0, *-.) < (0, O 1, *..).)
 LEMMA 8. The inner product < 6(I), w(J) > is equal to zero if I < J and

 ? 1 if I= J.

 Assuming this lemma for the moment, the proof of Theorem 2 can be

 completed as follows. If we restrict attention to sequences I such that

 dim co(I) = dim 6(I) = n,

 then Lemma 8 asserts that the resulting matrix < d(I), w(J) > is a non-
 singular triangular matrix. But according to Adem or Cartan the ele-

 ments O(I) generate 7n . Therefore the elements w(J) must form a basis
 for >X; which proves Theorem 2. (Incidentally this gives a new proof of

 Cartan's assertion that the 6(I) are linearly independent.)
 PROOF OF LEMMA 8. We will prove the assertion < d(I), co(I) > = ? 1

 by induction on the dimension. It is certainly true in dimension zero.

 Case 1. The last non-zero element of the sequence 1 (&O, r1, . . ., 8k -1
 rk,O , ...) is rk. Set ' = (80, rl, .., k, rk-l,0 .- ) so that co(1)=
 co(I')k . Then
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 THE STEENROD ALGEBRA AND ITS DUAL 161

 < 6(I), (I) > = < d(I), v%(w(I') ? ) >

 = <0*O(I), @(I') ? $t >

 Since 6(1) - asoi ... *- k-1? 8 kwe have

 0~~~~ d()= E iao...a k X g0 a k'

 where the summation extends over all sequences (8K, * *, Sk) and (80', ***,

 Sk) with 6 + j' = and st + s' = si. Substituting this in the previous
 expression we have

 K() w(I)> :E <a6 D? C S (1T) > < 0 * ** 9 k, k>

 But according to Lemma 7 the right hand factor is zero except for the

 special case

 8-S . . . S = _5 65p

 in which case the inner product is one. Inspection shows that the corre-

 sponding expression 'O' *-- - k on the left is equal to 6(1'); and hence

 that <8(I), w(I)> = + <(I'), co(I')>= ? 1.

 Case 2. The last non-zero element of I = (o, * r, r,, Er 8 O. 0, *.. ) is
 8k = 1. Define '= (0,rl, ... rk, . .. ) so that

 Cw(I) = Cl(F)7k .

 Carrying out the same construction as before we find that the only non-

 vanishing right hand term is < As p .- * , -rk> = 1. The correspond-

 ing left hand term is again <6(1'), co(I')>; so that <8 (I), w j(I)> ?
 < 6(1'), CO(')> 1, with completes the induction.

 The proof that < 6(I), co(J) > = 0 for I < J is carried out by a similar
 induction on the dimension.

 Case la. The sequence J ends with the element rk and the sequence I
 ends at the corresponding place. Then the argument used above shows
 that

 <K (I), @(J)>= + < (1'), '0(J')>= 0 .

 Case lb. The sequence J ends with the elements rk, but I ends earlier.

 Then in the expansion used above, every right hand factor

 < 0@ 9 1 .**8k-1k >

 is zero. Therefore < 6(I), co(J) > = 0.
 Similarly Case 2 splits up into two subcases which are proved in an

 analogous way. This completes the proof of Lemma 8 and Theorem 2.

 To complete the description of A'*- as a Hopf algebra it is necessary to
 compute the homomorphism p*. But since O* is a ring homomorphism it
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 162 JOHN MILNOR

 is only necessary to evaluate it on the generators of S*.

 THEOREM 3. The following formulas hold.

 Ei)= if 0 ?k-i 9 e

 0*(7k) = Tif =0 $kp-i ( -r + _rk

 The proof will be based on Lemmas 2 and 3. Raising both sides of the

 equation

 2*(0= Ep ?d (j
 to the power pi we obtain

 2*(9Pi) = E p+i (? ePi

 Now

 (A* ( 1)2*(W ) = (A* ? 1) I a ? e
 = E ;i ?& ?m+SXe~ .

 Comparing this with

 (1 (? b*)2*(p) = E p (? 0b*($k)
 We obtain the required expression for b*(k).

 Similarly the identity

 (2* (8 1)2*Qxt) = (1 0I sb*)2*Qx)

 can be used to obtain the required formula for q*(rk).

 6. A basis for j7*

 Let R = (r1, r2, ** *) range over all sequences of non-negative integers
 which are almost all zero, and define $(R) = $1r1$22r ... . Let E =
 (80, 6, * *.. ) range over all sequences of zeros and ones which are almost all
 zero, and define zr(E) = -ro.r1.* . Then Theorem 2 asserts that the
 elements

 {z(E)$(R) }

 form an additive basis for S Hence there is a dual basis {p(E, R)} for
 j7** That is we define p(E, R) e 59* by

 1 'if E = E', R = OR
 < p(E, R), -r(E')$(R) > = { o

 Using Lemma 8 it is easily seen that p(O, (r, 0, 0, *..)) is equal to the
 Steenrod power _ r. This suggests that we define 2 9 R as the basis
 element p(O, R) dual to $(R). (Abbreviations such as 9"' in place of
 e (0 1, 0 ?.) will be frequently be used.)
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 Let Qk denote the basis element dual to rk. For example Q0 =

 p(1, 0, *- - ), 0) is equal to the operation 8. It will turn out that any basis

 element o(E, R) is equal to the product + QOsoQ1,si - - -
 THEOREM 4a. The elements

 Q oeQlel .. *7 R

 form an additive basis for the Steenrod algebra 9C* which is, up to sign,

 dual to the known basis {-r(E)e(E) } for -5. The elements Qk, e 9
 generate a Grassmann algebra: that is they satisfy

 QJQQk + QkQJ = 0 .

 They permute with the elements R according to the rule

 Q_ QkRv = QC+ R- (p + ?' ) + Q R-(O, 0 **-) +

 (By the difference (r1, r2, ) - (si, * *.*) of two sequences we mean

 the sequence (r1 - s1, r2 - S,* *.* )- It is understood, for example, that
 RX- (P'0 I- --) is zero in case r, < pa.)

 As an example we have the following where [a, b] denote the " com-

 mutator" ab - (- 1)dimadinb ba.
 COROLLARY 2. The elements Q, e 972 -1 can be defined inductively by

 the rule

 Q= = [QU t9, Qk]

 To complete the description of 7-* as an algebra it is necessary to find

 the product . Let X range over all infinite matrices

 * Xo1 X02 . . .

 , 1 0 X 1? . . . . .

 11 . 0 . . . . . .

 of non-negative integers, almost all zero, with leading entry ommitted.

 For each such X define R(X) = (r1, r2, ...), S(X) = (s,, so, - ...), and
 T(X) (t1, t2, *), by

 ri = EJ pjxi (weighted row sum),
 > = Ad xij (column sum),

 tn = Ei+j=n Xi} (diagonal sum).

 Define the coefficient b(X) = II tj! / fIxij!.

 THEOREM 4b. The product iJR?7S is equal to

 A: RnX = ySX) bX 9 T(X)
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 where the sum extends over all matrices X satisfying the conditions R(X)
 = R, S(X) = S.

 As an example consider the case R = (r, 0, ... ), S = (s, 0, .. *). Then
 the equations R(X) = R, S(X) = S become

 x10 + px + *--- r, xi= O for i > 1,

 x0i + x1 + S.. = s, xf 0 for j > 1, respectively.

 Thus, letting x = x1,, the only suitable matrices are those of the form

 S s-x O

 r-px x O*

 o 0 0-

 with 0 < x < Min (s, [r/p]). The corresponding coefficients b(X) are the
 binomial coefficients (r - px, s - x). Therefore we have

 COROLLARY 3. The product p r 9Ps sis equal to

 EMi i(s, r/Ip])(r - px, s - x)

 (For example Z95~l ? l = 2??PP+2 + v 1I1,)

 The simplest case of this product operation is the following

 COROLLARY 4. If ri < p, r, < p, *-- then ARIS = (r1, s1)(r2, sH) ...
 95R+S

 As a final illustration we have:

 COROLLARY 5. The elements 9 (0 ..010 ) can be defined inductively by

 [0,1 P ta] p0,0,1 = [is p?Z0,1] etc.

 The proofs are left to the reader.

 PROOF OF THEOREM 4b. Given any Hopf algebra A* with basis {ad
 the diagonal homomorphism can be written as

 P*(a0) = ok c 6a, a.

 The product operation in the dual algebra is then given by

 ada - I*(ai 0 ak) = V (_ l)dimran dim ak i

 where {a'} is the dual basis. In carrying out this program for the algebra
 M * we will first use Theorem 3 to compute )*(s(T)) for any sequence
 T= (t1, t2, .) .

 Let [U1 i,2, ik] denote the generalized binomial coefficient

 (so + i2 + t h e + k)! / flo! w! i i hkl!

 so that the following identity holds
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 (Y1 + + y")f = i +ik=n [i1 t .. 9 * ik]Yl k

 Applying this to the expression

 )* (ok) = $k + $Pk-l 0 $1 + ***+ $P -1@ & k-l + $ k
 we obtain

 c+ ((kk) - E [xo, * **, S xok]('ko~kfkPlk-11 ... kf Xlk-1) X (ark-ll ... $ Ok)

 - Ad [Xk9, *..., XOk] (pk X1k-l, *k * , XkO) & $(Xk 1 1, *9 , xo. )

 summed over all integers xk, **, x~k satisfying Xi k > 0, Xk3 + -.. + Xok
 - tk. Now multiply the corresponding expressions for k = 1, 2, 3, 9-
 Since the product [x10, X01] [x20, x11, x02] [x30, * .. , x03] ... is equal to b(X),
 we obtain

 q)*(s(T))_ = T(X)=T b(X)s(R(X)) & $(S(X)) ,

 summed over all matrices X satisfying the condition T(X) = X.

 In order to pass to the dual qp* we must look for all basis elements
 r(E)$(T) such that k*(zr(E)$(T)) contains a term of the form

 (non-zero constant).- (R) ? a(S) .

 However inspection shows that the only such basis elements are the ones

 i(T) which we have just studied. Hence we can write down the dual for-
 mula

 cp*(9 R ?9) = 1R(X)-R S(X)=S b(X)_9T(X)

 This completes the proof of Theorem 4b.

 PROOF OF THEOREM 4a. We will first compute the products of the basis

 elements p(E, 0) dual to r-o -rill -.- . The dual problem is to study the
 homomorphism 0*: * A* S ? ignoring all terms in A~* ? which
 involve any factor $k. The elements 1 ? $1 1 ? S, ... sl, * .. of
 &* ? Jg generate an ideal X Furthermore according to Theorem 3:

 k*(rk)rk 1+ 1 ? rk (mod J)

 0 (mod Y) .

 Therefore 0*(r(E)$(R) 0 if R # 0 and P*(r(E)) = ?,1+E2R + z(E1) J
 r(E.9) (mod 93). The dual statement is that

 p(El, O)p(E2, 0) = + p(El + E2, 0),

 where it is understood that the right side is zero if the sequences E1 and
 E, both have a " 1 " in the same place. Thus the basis elements p(E, 0)
 multiply as a Grassmann algebra.

 Similar arguments show that the product p(E, 0) p(0, R) is equal to
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 p(E, R). From this the first assertion of 4a follows immediately.
 Computation of ' RQk: We must look for basis elements r(E)$(R') such

 that k*(z-(E)$(R')) contains a term

 (non-zero constant).- (R) ? z-

 Inspection shows that the only such basis elements are red(R), rT+l,(R -
 (pk. 0, ... )), rk+2$(R - (0, pk. 0, ... )), ... etc. Furthermore the corre-
 sponding constants are all + 1. This proves that

 9AQk - Q= + Qk+llI)R-(up, .*-) + .

 and completes the proof of Theorem 4.
 To complete the description of A* as a Hopf algebra we must compute

 the homomorphism sb*.
 LEMMA 9. The following formulas hold

 0*(Qk) = Qk 1 + 1 Qk

 t (gR) = ,R1+R2=R yR1 ? SOR2

 (For example s(91Q11) = _9O11 0 1 + 1 0 011 + &J 01 o pul + ' vJ001
 ,z9j01.)

 REMARK. An operation 9 e A* is called a derivation if it satisfies

 sa- _E j) = (dao) x, P + (_ 1)dimodima at as-.

 This is clearly equivalent to the assertion that 9 is primitive. It can be
 shown that the only derivations in !S7* are the elements Q , Q1, **., SD',
 99 91, !?7001 * ... and their multiples.

 7. The canonical anti-automorphism

 As an illustration consider the Hopf algebra H*(G) associated with a
 Lie group G. The map g -- g- of G into itself induces a homomorphism
 c: H*(G) H*(G) which satisfies the following two identities:

 (1) c(l) =1
 (2) if 0b*(a) a a& 0 a", where dim a > 0, then ? ac(al') = 0.

 More generally, for any connected Hopf algebra A*,, there exists a unique
 homomorphism c: A* - A* satisfying (1) and (2). We will call c(a) the
 conjugate of a. Conjugation is an anti-automorphism in the sense that

 c(a,aCt) =( )dim a dima2 c(a,)(a,)

 The conjugation operations in a Hopf algebra and its dual are dual homo-
 morphisms. For details we refer the reader to [3].

 For the Steenrod algebra 9?* this operation was first used by Thom.
 (See [5] p. 60). More precisely the operation used by Thom is 9
 ( _ Jmdii { Cblah

This content downloaded from 129.240.223.22 on Tue, 11 Dec 2018 11:40:27 UTC
All use subject to https://about.jstor.org/terms



 THE STEENROD ALGEBRA AND ITS DUAL 167

 If 0 is a primitive element of R9* then the defining relation becomes

 0-1 + 1-c(8) = O so that c(8) = - 6. This shows that c(Qk) =-QkQ, c(g1)
 =- Jl. The elements C(d ), n > 0, could be computed from Thom's
 identity

 i, a'- tC(9 ) =;0

 however it is easier to first compute the operation in the dual algebra and
 then carry it back.

 By an ordered partition a of the integer n with length l(a) will be
 meant an ordered sequence

 (a(l), a(2), *, a(l(a)))

 of positive integers whose sum is n. The set of all ordered partitions of
 n will be denoted by Part (n). (For example Part (3) has four elements:
 (3), (2,1) (1,2), and (1,1,1). In general Part (n) has 2n-1 elements.) Given
 an ordered partition a e Part (n), let o-(i) denote the partial sum fa a(j).

 LEMMA 10. In the dual algebra 9, the conjugate c(en) is equal to

 1_ ira5 n1(a) (pTMf cEmePart~n (-)Wi ;i

 (For example c(t3) e-l + ES + $2i -e1$1P$*
 PROOF. Since ,(Xn) == En=o 0pn-i ( $, the defining identity becomes

 ,= nLjc($J) = 0

 This can be written as

 C(n) = -n - C(t1)PnP - * -(n-1)

 The required formula now follows by induction.
 Since the operation w -- c(@) is an anti-automorphism, we can use Lem-

 ma 10 to determine the conjugate of an arbitrary basis element d(R).
 Passing to the dual algebra 9* we obtain the following formula. (The
 details of the computation are somewhat involved, and will not be given.)

 Given a sequence R = (r1, ..., rk . 0 ...) consider the equations

 ( * ) r1 = Eno= EwEPart (n) El a) P uy0 ,

 for i = 1, 2, 3, ... ; where the symbol 3i, (J) denotes a Kronecker delta; and
 where the unknowns y, are to be non-negative integers. For each solu-
 tion Y to this set of equations define S(Y) = (s1, s8, ... ) by

 Sn = E aEPart W Ya e

 (Thus s, = yi, s = y2 + y1,1, etc.) Define the coefficient b(Y) by
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 b(Y) = [y2, Y11][Y3, Y21, Y12, Y111i ii]

 = Jn Sn! la, Ya s .

 THEOREM 5. The conjugate c(?A9R) is equal to

 ( _ ] )rl+***+rk E b(YOf) 99 s(y)

 where the summation extends over all solutions Y to the equations (*).

 To interpret these equations (*) note that the coefficient

 1(^) a. (j) p010)

 of yp, in the ith equation is positive if the sequence

 a = (Ml(), *.., a(l(a)))

 contains the integer i, and zero otherwise. In case the left hand side r,
 is zero, then for every sequence a containing the integer i it follows that

 ya = 0. In particular this is true for all i > k.
 As an example, suppose that k = 1 so that R = (r, 0, 0, ***). Then the

 integers ye, must be zero whenever a contains an integer larger than one.
 Thus the only partitions a which are left are: (1), (1,1), (1,1,1),

 Therefore we have si = y1, s = y11, S3 = y111, etc. The equations (*) now
 reduce to the single equation

 r = si + (1 + p)S2 + (1 + p + p2)s3 + *..

 But this is just the dimensional restriction that dim JS = (2p - 2)s, +
 (2p2 - 2)s8 + *-- be equal to dim '9ar = (2p - 2)r. Thus we obtain:

 COROLLARY 6. The conjugate c( sfi r) is equal to (- 1)r E S where the
 sum extends over all JS having the correct dimension. (For example

 2P+3 p+3 p+2,1 - + 9 1,2)

 8. Miscellaneous remarks

 The following question, which is of interest in the study of second

 order cohomology operations, was suggested to the author by A. Dold:

 What is the set of all solutions 6 e jte* to the equation 6SY1 = 0 ? In view
 of the results of ? 7 we can equally well study the equation ja) 16 = 0.

 The formula

 '~la 1,r-l r =r(1 + rj)?A)l+rir2.

 implies that this equation 916 = 0 has as solution the vector space

 spanned by the elements

 a) r1r2 Q0'oQ1%l . . .

 with r, _-1 (mod p). The first such element is SD p -, and every element
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 of the ideal ~93 P-Ijj7* will also be a solution. Now the identity

 ?) p1* a9) S1S2.= (p- 1, S1)?3 sl+p -1,S2. *

 0 if s, E 0 (mod p)

 _1 S1+p-1, S2 if s, 0 (mod p)

 shows that every element r)r2r. Q0S0 ... with r, = -- 1 (mod p) actually
 belongs to the ideal. Applying the conjugation operation, this proves the
 following:

 PROPOSITION 1. The equation 6591 - 0 has as solutions the elements of
 the ideal * J7 -i An additive basis is given by the elements

 Q oSQl ... C(*S*/)9 rlr2 .) with r -- 1 (mod p)

 Next we will study certain subalgebras of the Steenrod algebra. Adem
 shown that J/* is generated by the elements Q0, P91, ?>P, *-. Let
 9*(n) denote the subalgebra generated by Q0, 5)1, ** , /P-

 PROPOSITION 2. The algebra 5*(n) is finite dimensional, having as basis
 the collection of all elements

 QOo ... Qn en rl ,n

 which satisfy

 r, < pn, r2 < Pn-1 . rn < P

 Thus a/* is a union of finite dimensional subalgebras S a(n). This
 clearly implies the following.

 COROLLARY 7. Every positive dimensional element of 5s * is nil-potent.
 It would be interesting to discover a complete set of relations between

 the given generators of 9) *(n). For n 0 there is the single relation

 [Q0, Q0] = 0, where [a, b] stands for ab - 1)dim-adimbba. For n 1 there
 are three new relations

 [Q0, [y91, Qo]] 0 Q]] = 0 and (a) 1) = 0 .

 For n = 2 there are the relations

 [i1, [tP, 7 1]]= 0, [J/)7, [ - '? P9 1]] 0

 and (,LI I') ) L I[1P Iy ll}P-l

 as well as several new relations involving Qo. (The relations ()p)2p = 0
 and [ 9 )ip = 0 can be derived from the relations above.) The author
 has been unable to go further with this.

 PROOF OF PROPOSITION 2. Let 7v (n) denote the subspace of 9'*
 spanned by the elements QSo ... * *Qnen~r,. rn which satisfy the specified
 restrictions. We will first show that 1V(n) is a subalgebra. Consider the
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 product

 ?r. rnS sn = jR(X)=(rs, (X)-(s1, b(X)iiP T(X)

 where both factors belong to ??(n). Suppose that some term b(X)?9 tlt2

 on the right does not belong to J%(n). Then t, must be > pn+l-l for some
 1. If x1o, xl,1 ..., xo, were all < pn+,-z then the factor

 to !

 x10 ! .. **x01 !

 would be congruent to zero modulo p. Therefore x}, > pn+1-l for some
 i + j = 1. If i > 0 this implies that

 ri = Aj pjxij > pjpn+l-z = pn+l-i

 which contradicts the hypothesis that ?9d ri . e .7(n). Similarly if i

 0, j = 1, then

 Si = En Xij > pkl+l- = pk+1-j

 which is also a contradiction.

 Since it is easily verified that JV(n)Qk C V(n) for k < n, this proves
 that 37(n) is a subalgebra of A*. Since _V(n) contains the generators
 of 97*(n), this implies that 33(n) D 9*(n).

 To complete the proof we must show that every element of s7(n) be-
 longs to 9?*(n). Adem's assertion that ?0-* is the union of the 9;'*(n)
 implies that every element of ?0k with k < dim (9X ) automatically be-
 longs to ?9*(n). In particular we have:

 Case 1. Every element ?0 ..Pi in ?7(n) belongs to 9*(n).
 Ordering the indices (r1, . . ., rn) lexicographically from the right, the

 product formulas can be written as

 X 7l i..rn ? S1... = (r1, Si) * -.(rn, sn )&9 rl+S1 rn+Sn + (higher terms)

 Given 0 t1"fl e 37(n) assume by induction that

 (1) every ?0 l1 rn e, 3(n) of smaller dimension belongs to S0*(n), and
 (2) every "higher" q rl rn e (n) in the same dimension belongs to

 597*(n). We will prove that ?0 11"' e .9*(n).

 Case 2. (t1 ... tn) = (0 ... 0ti0 ... 0) where tj is not a power of p.
 Choose ri, si > 0 with r, + s, = ti, (ri, si) t 0. Then ?0.. ri0.. Si
 (ri, sj)?9?0t- + (higher terms).

 Case 3. Both tj and t, are positive, i < j. Then

 9t ... _)-ti+1'tn = ?0t1... tn + (higher terms) .

 In either case the inductive hypothesis shows that 0 " tn belongs to
 97*(n). Since Q0, . * *, Qn belong to 9*(n) by Corollary 3, this completes
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 the proof of Proposition 2.

 Appendix 1. The case p= 2

 All the results in this paper apply to the case p = 2 after some minor

 changes. The cohomology ring of the projective space &' N is a truncated

 polynomial ring with one generator ca of dimension 1. It turns out that

 2*(a) e H*(PN, Z2) ? A& has the form

 at Co 4 + a2 (8) C1 +***+ g 3

 where o = 1 and where each Ci is a well defined element of 9.2 -1. The
 algebra 54 is a polynomial algebra generated by the elements C C2 *

 Corresponding to the basis {C171C2T2 ... } for 94 there is a dual basis
 {SqR} for * These elements Sqrlr2 multiply according to the same for-

 mula as the d9) X. The other results of this paper generalize in an obvious
 way.

 Appendix 2. Sign conventions

 The standard convention seems to be that no signs are inserted in for-

 mulas 1, 2, 3 of ? 2. If this usage is followed then the definition of A*
 becomes more difficult. However Lemmas 2 and 3 still hold as stated, and
 Lemma 4 holds in the following modified form.

 LEMMA 4'. If 2*(Qa) = ai (? w then for any 0 e C*:

 ( )'d(d-1)+ddima; <0 >

 where d = dim d.

 It is now necessary to define ri e i -41 by the equation

 A*(a) = a (& 1- P(9 r0 -z - (0- i- - - -
 Otherwise there are no changes in the results stated.

 PRINCETON UNIVERSITY
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