The Steenrod Algebra and Its Dual Author(s): John Milnor Source: Annals of Mathematics, Second Series, Vol. 67, No. 1 (Jan., 1958), pp. 150-171 Published by: Mathematics Department, Princeton University Stable URL: https://www.jstor.org/stable/1969932 Accessed: 11-12-2018 11:40 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms



Mathematics Department, Princeton University is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics

# THE STEENROD ALGEBRA AND ITS DUAL<sup>1</sup>

#### BY JOHN MILNOR

(Received May 15, 1957)

### 1. Summary

Let  $\mathscr{S}^*$  denote the Steenrod algebra corrresponding to an odd prime p. (See §2 for definitions.) Our basic results (§3) is that  $\mathscr{S}^*$  is a Hopf algebra. That is in addition to the product operation

$$\mathscr{S}^* \otimes \mathscr{S}^* \xrightarrow{\phi^*} \mathscr{S}^*$$

there is a homomorphism

$$\mathscr{S}^* \xrightarrow{\psi^*} \mathscr{S}^* \otimes \mathscr{S}^*$$

satisfying certain conditions. This homomorphism  $\psi^*$  relates the cup product structure in any cohomology ring  $H^*(K, Z_p)$  with the action of  $\mathscr{S}^*$ on  $H^*(K, Z_p)$ . For example if  $\mathscr{P}^n \in \mathscr{S}^{2n(p-1)}$  denotes a Steenrod reduced  $p^{\text{th}}$  power then

$$\psi^*(\mathscr{P}^n)=\mathscr{P}^n\otimes 1+\mathscr{P}^{n-1}\otimes \mathscr{P}^1+\dots+1\otimes \mathscr{P}^n$$
 .

The Hopf algebra

$$\mathscr{S}^* \xrightarrow{\psi^*} \mathscr{S}^* \otimes \mathscr{S}^* \xrightarrow{\phi^*} \mathscr{S}^*$$

has a dual Hopf algebra

$$S_* \stackrel{\psi_*}{\longleftarrow} S_* \otimes S_* \stackrel{\phi_*}{\longleftarrow} S_* .$$

The main tool in the study of this dual algebra is a homomorphism

$$\lambda^* \colon H^*(K, Z_p) \to H^*(K, Z_p) \otimes \mathscr{S}_*$$

which takes the place of the action of  $\mathscr{S}^*$  on  $H^*(K, Z_p)$ . (See §4.) The dual Hopf algebra turns out to have a comparatively simple structure. In fact as an algebra (ignoring the "diagonal homomorphism"  $\phi_*$ ) it has the form

$$E( au_{_0}$$
 ,  $1)\otimes E( au_{_1}, 2p-1)\otimes \cdots \otimes P( extsf{\xi}_{_1}, 2p-2)\otimes P( extsf{\xi}_{_2}, 2p^2-2)\otimes \cdots$  ,

where  $E(\tau_i, 2p^i - 1)$  denotes the Grassmann algebra generated by a certain element  $\tau_i \in \mathcal{S}_{2p^{i-1}}$ , and  $P(\xi_i, 2p^i - 2)$  denotes the polynomial algebra generated by  $\xi_i \in \mathcal{S}_{2p^{i-2}}$ .

<sup>1</sup> The author holds an Alfred P. Sloan fellowship.

150

In §6 the above information about  $\mathscr{S}_*$  is used to give a new description of the Steenrod algebra  $\mathscr{S}^*$ . An additive basis is given consisting of elements

$$Q_0^{\epsilon_0}Q_1^{\epsilon_1}\cdots \mathscr{P}^{r_1r_2}\cdots$$

with  $\varepsilon_i = 0, 1$ ;  $r_i \ge 0$ . Here the elements  $Q_i$  can be defined inductively by

$$Q_{\scriptscriptstyle 0} = \delta$$
 ,  $Q_{\scriptscriptstyle i+1} = \mathscr{P}^{\, p^i} Q_i - Q_i \mathscr{P}^{\, p^i}$  ;

while each  $\mathscr{P}^{r_1 \cdots r_k}$  is a certain polynomial in the Steenrod operations,<sup>2</sup> of dimension

$$r_1(2p-2) + r_2(2p^2-2) + \cdots + r_k(2p^k-2)$$
 .

The product operation and the diagonal homomorphism in  $\mathscr{S}^*$  are explicitly computed with respect to this basis.

The Steenrod algebra has a canonical anti-automorphism which was first studied by R. Thom. This anti-automorphism is computed in §7. Section 8 is devoted to miscellaneous remarks. The equation  $\theta \mathscr{D}^1 = 0$  is studied; and a proof is given that  $\mathscr{S}^*$  is nil-potent.

A brief appendix is devoted to the case p = 2. Since the sign conventions used in this paper are not the usual ones (see §2), a second appendix is concerned with the changes necessary in order to use standard sign conventions.

# 2. Prerequisites: sign conventions, Hopf algebras, the Steenrod algebra

If a and b are any two objects to which dimensions can be assigned, then whenever a and b are interchanged the sign  $(-1)^{\dim a \dim b}$  will be introduced. For example the formula for the relationship between the homology cross product and the cohomology cross product becomes

(1) 
$$\langle \mu \times \nu, \alpha \times \beta \rangle = (-1)^{\dim \nu \dim \alpha} \langle \mu, \alpha \rangle \langle \nu, \beta \rangle.$$

This contradicts the usual usage in which no sign is introduced. In the same spirit we will call a graded algebra *commutative* if

$$ab = (-1)^{\dim a \dim b} ba$$
.

Let  $A = (\dots, A_{-1}, A_0, A_1, \dots)$  be a graded vector space over a field F. The dual A' is defined by  $A'_n = \text{Hom}(A_{-n}, F)$ . The value of a homomorphism a' on  $a \in A$  will be denoted by  $\langle a', a \rangle$ . It is understood that  $\langle a', a \rangle = 0$  unless dim  $a' + \dim a = 0$ . (By an element of A we mean an element of some  $A_n$ .) Similarly we can define the dual A'' of A'. Identify

<sup>&</sup>lt;sup>2</sup> This has no relation to the generalized Steenrod operations  $\mathscr{P}^{I}$  defined by Adem.

each  $a \in A$  with the element  $a'' \in A''$  which satisfies

(2) 
$$\langle a^{\prime\prime},a^{\prime}\rangle = (-1)^{\dim a^{\prime\prime}\dim a^{\prime}}\langle a^{\prime},a\rangle$$

for each  $a' \in A'$ . Thus every graded vector space A is contained in its double dual A''. If A is of finite type (that is if each  $A_n$  is a finite dimensional vector space) then A is equal to A''.

Now if  $f: A \to B$  is a homomorphism of degree zero then  $f': B' \to A'$ and  $f'': A'' \to B''$  are defined in the usual way. If A and B are both of finite type it is clear that f = f''.

The tensor product  $A \otimes B$  is defined by  $(A \otimes B)_n = \sum_{i+j=n} A_i \otimes B_j$ , where " $\sum$ " stands for "direct sum". If A and B are both of finite type and if  $A_i = B_i = 0$  for all sufficiently small *i* (or for all sufficiently large *i*) then the product  $A \otimes B$  is also of finite type. In this case the dual  $(A \otimes B)'$  can be identified with  $A' \otimes B'$  under the rule

$$(3) \qquad \langle a' \otimes b', a \otimes b \rangle = (-1)^{\dim a \dim b'} \langle a', a \rangle \langle b', b \rangle.$$

In practice we will use the notation  $A_*$  for a graded vector space A satisfying the condition  $A_i = 0$  for i < 0. The dual will then be denoted by  $A^*$  where  $A^n = A'_{-n} = \text{Hom}(A_n, F)$ . A similar notation will be used for homomorphisms.

By a graded algebra  $(A_*, \psi_*)$  is meant a graded vector space  $A_*$  together with a homomorphism

$$\psi_*\colon A_*\otimes A_*\to A_* \ .$$

It is usually required that  $\psi_*$  be associative and have a unit element  $1 \in A_0$ . The algebra is *connected* if the vector space  $A_0$  is generated by 1.

By a connected Hopf algebra  $(A_*, \psi_*, \phi_*)$  is meant a connected graded algebra with unit  $(A_*, \psi_*)$ , together with a homomorphism

$$\phi_* \colon A_* \to A_* \otimes A_*$$

satisfying the following two conditions.

2.1.  $\phi_*$  is a homomorphism of algebras with unit. Here we refer to the product operation  $\phi_*$  in  $A_*$  and the product

$$(a_1 \otimes a_2) \cdot (a_3 \otimes a_4) = (-1)^{\dim a_2 \dim a_3} (a_1 \cdot a_3) \otimes (a_2 \cdot a_4)$$

in  $A_* \otimes A_*$ .

2.2. For dim a > 0, the element  $\phi_*(a)$  has the form  $a \otimes 1 + 1 \otimes a + \sum b_i \otimes c_i$  with dim  $b_i$ , dim  $c_i > 0$ .

Appropriate concepts of associativity and commutativity are defined, not only for the product operation  $\psi_*$ , but also for the diagonal homomorphisms  $\phi_*$ . (See Milnor and Moore [3]).

To every connected Hopf algebra  $(A_*, \phi_*, \phi_*)$  of finite type there is as-

sociated the dual Hopf algebra  $(A^*, \phi^*, \psi^*)$ , where the homomorphisms

 $A^* \xrightarrow{\psi^*} A^* \otimes A^* \xrightarrow{\phi_*} A^*$ 

are the duals in the sense explained above. For the proof that the dual is again a Hopf algebra see [3].

(As an example, for any connected Lie group G the maps  $G \xrightarrow{d} G \times G$  $\xrightarrow{p} G$  give rise to a Hopf algebra  $(H_*(G), p_*, d_*)$ . The dual algebra  $(H^*(G), \smile, p^*)$  is essentially the example which was originally studied by Hopf.)

For any complex K the Steenrod operation  $\mathscr{P}^i$  is a homomorphism

 $\mathscr{P}^{i} \colon H^{j}(K, \mathbb{Z}_{p}) \to H^{j+2i(p-1)}(K, \mathbb{Z}_{p}) \; .$ 

The basic properties of these operations are the following. (See Steenrod [4].)

2.3. Naturality. If f maps K into L then  $f^* \mathscr{P}^i = \mathscr{P}^i f^*$ .

2.4. For  $\alpha \in H^{j}(K, Z_{p})$ , if i > j/2 then  $\mathscr{S}^{i}\alpha = 0$ . If i = j/2 then  $\mathscr{S}^{i}\alpha = \alpha^{p}$ . If i = 0 then  $\mathscr{S}^{i}\alpha = \alpha$ .

2.5.  $\mathscr{P}^n(\alpha \smile \beta) = \sum_{i+j=n} \mathscr{P}^i \alpha \smile \mathscr{P}^j \beta.$ 

We will also make use of the coboundary operation  $\delta: H^{j}(K, Z_{p}) \rightarrow H^{j+1}(K, Z_{p})$  associated with the coefficient sequence

 $0 \to Z_p \to Z_{p^2} \to Z_p \to 0$ .

The most important properties here are

2.6.  $\delta \delta = 0$  and

2.7.  $\delta(\alpha \smile \beta) = (\delta \alpha) \smile \beta + (-1)^{\dim \alpha} \alpha \smile \delta \beta$ , as well as the naturality condition.

Following Adem [1] the Steenrod algebra  $\mathscr{S}^*$  is defined as follows. The free associative graded algebra  $\mathscr{F}^*$  generated by the symbols  $\delta$ ,  $\mathscr{P}^0$ ,  $\mathscr{P}^1$ ,  $\cdots$  acts on any cohomology ring  $H^*(K, Z_p)$  by the rule  $(\theta_1\theta_2\cdots\theta_k)\cdot\alpha = (\theta_1(\theta_2\cdots(\theta_k\alpha)\cdots))$ . (It is understood that  $\delta$  has dimension 1 in  $\mathscr{F}^*$  and that  $\mathscr{P}^i$  has dimension 2i(p-1).) Let  $\mathscr{F}^*$  denote the ideal consisting of all  $f \in \mathscr{F}^*$  such that  $f\alpha = 0$  for all complexes Kand all cohomology classes  $\alpha \in H^*(K, Z_p)$ . Then  $\mathscr{F}^*$  is defined as the quotient algebra  $\mathscr{F}^*/\mathscr{F}^*$ . It is clear that  $\mathscr{F}^*$  is a connected graded associative algebra of finite type over  $Z_p$ . However  $\mathscr{F}^*$  is not commutative.

(For an alternative definition of the Steenrod algebra see Cartan [2]. The most important difference is that Cartan adds a sign to the operation  $\delta$ .)

The above definition is non-constructive. However it has been shown

by Adem and Cartan that  $\mathscr{S}^*$  is generated additively by the "basic monomials"

$$\delta^{\mathfrak{e}_0} \mathscr{T}^{s_1} \delta^{\mathfrak{e}_1} \cdots \mathscr{T}^{s_k} \delta^{\mathfrak{e}_k}$$

where each  $\varepsilon_i$  is zero or 1 and

 $s_1 \ge ps_2 + \varepsilon_1, s_2 \ge ps_3 + \varepsilon_2, \cdots, s_{k-1} \ge ps_k + \varepsilon_{k-1}, s_k \ge 1$ .

Furthermore Cartan has shown that these elements form an additive basis for  $\mathcal{S}^*$ .

## 3. The homomorphism $\psi^*$

**LEMMA 1.** For each element  $\theta$  of  $\mathscr{S}^*$  there is a unique element  $\psi^*(\theta) = \sum_{i} \theta'_i \otimes \theta''_i$  of  $\mathscr{S}^* \otimes \mathscr{S}^*$  such that the identity

$$heta(\alpha \smile eta) = \sum {(-1)^{\dim heta_i^{\prime \prime} \dim lpha} \, heta_i^{\prime}(lpha) \smile heta_i^{\prime \prime}(eta)}$$

is satisfied for all complexes K and all elements  $\alpha, \beta \in H^*(K)$ . Furthermore

$$\mathscr{S}^* \xrightarrow{\psi^*} \mathscr{S}^* \otimes \mathscr{S}^*$$

is a ring homomorphism.

(By an "element" of a graded module we mean a homogeneous element. The coefficient group  $Z_n$  is to be understood.)

It will be convenient to let  $\mathscr{S}^*\otimes \mathscr{S}^*$  act on  $H^*(X)\otimes H^*(X)$  by the rule

$$( heta'\otimes heta'')(lpha\otimes eta)=(-1)^{\dim heta''\dim lpha}\, heta'(lpha)\otimes heta''(eta)\;.$$

Let  $c: H^*(X) \otimes H^*(X) \to H^*(X)$  denote the cup product. The required identity can now be written as

$$heta c(lpha \otimes eta) = c \psi^*( heta)(lpha \otimes eta)$$
 .

PROOF OF EXISTENCE. Let  $\mathscr{R}$  denote the subset of  $\mathscr{S}^*$  consisting of all  $\theta$  such that for some  $\rho \in \mathscr{S}^* \otimes \mathscr{S}^*$  the required identity

$$\theta c(\alpha \otimes \beta) = c \rho(\alpha \otimes \beta)$$

is satisfied. We must show that  $\mathscr{R} = \mathscr{S}^*$ .

The identities

$$\delta(\alpha\smile\beta)=\delta \alpha\smile\beta+(-1)^{\dim lpha}\, \alpha\smile\deltaeta$$

and

$$\mathscr{T}^{n}(\alpha \smile \beta) = \sum_{i+j=n} \mathscr{T}^{i} \alpha \smile \mathscr{T}^{j} \beta$$

clearly show that the operations  $\delta$  and  $\mathscr{P}^n$  belong to  $\mathscr{R}$ . If  $\theta_1, \theta_2$  belong to  $\mathscr{R}$  then the identity

154

$$heta_1 heta_2 c(lpha\otimeseta)= heta_1 c 
ho_2(lpha\otimeseta)=c 
ho_1 
ho_2(lpha\otimeseta)$$

show that  $\theta_1\theta_2$  belongs to  $\mathscr{R}$ . Similarly  $\mathscr{R}$  is closed under addition. Thus  $\mathscr{R}$  is a subalgebra of  $\mathscr{S}^*$  which contains the generators  $\delta$ ,  $\mathscr{S}^n$  of  $\mathscr{S}^*$ . This proves that  $\mathscr{R} = \mathscr{S}^*$ .

PROOF OF UNIQUENESS. From the definition of the Steenrod algebra we see that given an integer n we can choose a complex Y and an element  $\gamma \in H^*(Y)$  so that the correspondence

$$\theta \rightarrow \theta \gamma$$

defines an isomorphism of  $\mathscr{S}^i$  into  $H^{k+i}(Y)$  for  $i \leq n$ . (For example take  $Y = K(Z_p, k)$  with k > n.) It follows that the correspondence

$$heta^{\prime\prime}\otimes heta^{\prime\prime} \stackrel{\jmath}{\longrightarrow} (-1)^{\dim heta^{\prime\prime}\dim \gamma} \, heta^{\prime}(\gamma) imes heta^{\prime\prime}(\gamma)$$

defines an isomorphism j of  $(\mathscr{S}^* \otimes \mathscr{S}^*)^i$  into  $H^{2k+i}(Y \times Y)$  for  $i \leq n$ .

Now suppose that  $\rho_1$ ,  $\rho_2 \in \mathscr{S}^* \otimes \mathscr{S}^*$  both satisfy the identity  $\theta c(\alpha \otimes \beta) = c\rho_i(\alpha \otimes \beta)$  for the same element  $\theta$  of  $\mathscr{S}^n$ . Taking  $X = Y \times Y$ ,  $\alpha = \gamma \times 1$ ,  $\beta = 1 \times \gamma$ , we have  $c\rho_i(\alpha \otimes \beta) = j(\rho_i)$ . But the equality  $j(\rho_1) = j(\rho_2)$  with dim  $\rho_1 = \dim \rho_2 = n$  implies that  $\rho_1 = \rho_2$ . This completes the uniqueness proof. Since the assertion that  $\psi^*$  is a ring homomorphism follows easily from the proof used in the existence argument, this completes the proof.

As a biproduct of the proof we have the following explicit formulas:

$$\psi^*(\partial) = \delta \otimes 1 + 1 \otimes \delta$$
$$\psi^*(\mathcal{P}^n) = \mathcal{P}^n \otimes 1 + \mathcal{P}^{n-1} \otimes \mathcal{P}^1 + \dots + 1 \otimes \mathcal{P}^n.$$

THEOREM 1. The homomorphisms

.....

$$\mathscr{G}^* \xrightarrow{\psi^*} \mathscr{G}^* \otimes \mathscr{G}^* \xrightarrow{\phi^*} \mathscr{G}^*$$

give  $\mathscr{S}^*$  the structure of a Hopf algebra. Furthermore the product  $\phi^*$  is associative and the "diagonal homomorphism"  $\psi^*$  is both associative and commutative.

**PROOF.** It is known that  $(\mathcal{S}^*, \phi^*)$  is a connected algebra with unit; and that  $\psi^*$  is a ring homomorphism. Hence to show that  $\mathcal{S}^*$  is a Hopf algebra it is only necessary to verify Condition 2.2. But this condition is clearly satisfied for the generators  $\delta$ , and  $\mathcal{P}^n$  of  $\mathcal{S}^*$ , which implies that it is satisfied for all positive dimensional elements of  $\mathcal{S}^*$ .

It is also known that the product  $\phi^*$  is associative. The assertions that  $\psi^*$  is associative and commutative are expressed by the identities

$$(1) \qquad \qquad (\psi^* \otimes 1)\psi^*\theta = (1 \otimes \psi^*)\psi^*\theta$$

JOHN MILNOR

$$(2)$$
  $T\psi^* heta=\psi^* heta$ 

for all  $\theta$ , where  $T(\theta' \otimes \theta'')$  is defined as  $(-1)^{\dim \theta' \dim \theta''} \theta'' \otimes \theta'$ . Both identities are clearly satisfied if  $\theta$  is one of the generators  $\delta$  or  $\mathscr{P}^n$  of  $\mathscr{S}^*$ . But since each of the homomorphisms in question is a ring homomorphism, this completes the proof.

As an immediate consequence we have: COROLLARY 1. There is a dual Hopf algebra

 $\mathscr{S}_{*} \xrightarrow{\phi_{*}} \mathscr{S}_{*} \otimes \mathscr{S}_{*} \xrightarrow{\psi_{*}} \mathscr{S}_{*}$ 

with associative, commutative product operation.

## 4. The homomorphism $\lambda^*$

Let  $H_*$ ,  $H^*$  denote the homology and cohomology, with coefficients  $Z_p$ , of a finite complex. The action of  $\mathscr{S}^*$  on  $H^*$  gives rise to an action of  $\mathscr{S}^*$  on  $H_*$  which is defined by the rule:

$$\langle \mu\theta, \alpha \rangle = \langle \mu, \theta\alpha \rangle$$

for all  $\mu\in H_*$  ,  $\theta\in \mathscr{S}^*$  ,  $\alpha\in H^*.$  This action can be considered as a homomorphism

 $\lambda_*: H_* \otimes \mathscr{S}^* \to H_*$ .

The dual homomorphism

$$\lambda^* \colon H^* \to H^* \otimes \mathscr{S}_*$$

will be the subject of this section.

Alternatively, the restricted homomorphism  $H_{n+i} \otimes \mathscr{S}^i \to H_n$  has a dual which we will denote by

$$\lambda^i\colon H^n\to H^{n+i}\otimes\mathscr{S}_i.$$

In this terminology we have

$$\lambda^* = \lambda^0 + \lambda^1 + \lambda^2 + \cdots$$

carrying  $H^n$  into  $\sum_i H^{n+i} \otimes \mathscr{S}_i$ . The condition that  $H^*$  be the cohomology of a finite complex is essential here, since otherwise  $\lambda^*$  would be an infinite sum.

The identity

$$\mu(\theta_1\theta_2)=(\mu\theta_1)\theta_2$$

can easily be derived from the identity  $(\theta_1\theta_2)\alpha = \theta_1(\theta_2\alpha)$  which is used to define the product operation in  $\mathscr{S}^*$ . In other words the diagram



is commutative. Therefore the dual diagram

$$H^* \otimes \mathscr{S}_* \otimes \mathscr{S}_* \xleftarrow{1 \otimes \phi_*} H^* \otimes \mathscr{S}_*$$
$$\uparrow^{\lambda^*} \otimes 1 \qquad \uparrow^{\lambda^*}$$
$$H^* \otimes \mathscr{S}_* \xleftarrow{\lambda^*} H^*$$

is also commutative. Thus we have proved:

LEMMA 2. The identity

$$(\lambda^*\otimes 1)\lambda^*(lpha)=(1\otimes \phi_*)\lambda^*(lpha)$$

holds for every  $\alpha \in H^*$ .

The cup product in  $H^*$  and the  $\psi_*$  product in  $\mathscr{S}_*$  induce a product operation in  $H^* \otimes \mathscr{S}_*$ .

LEMMA 3. The homomorphism  $\lambda^* \colon H^* \to H^* \otimes \mathscr{S}_*$  is a ring homomorphism.

PROOF. Let K and L be finite complexes, let  $\theta$  be an element of  $\mathscr{S}^*$ , and let  $\psi^*(\theta) = \sum \theta'_i \otimes \theta''_i$ . Then for any  $\alpha \in H^*(K)$ ,  $\beta \in H^*(L)$  we have  $\theta \cdot (\alpha \times \beta) = \sum (-1)^{\dim \theta'_i / \dim \alpha} \theta'_i \alpha \times \theta'_i \beta$ . Using the rule

$$\langle \mu \times \nu, \theta \cdot (\alpha \times \beta) \rangle = \langle (\mu \times \nu) \cdot \theta, \alpha \times \beta \rangle$$

we easily arive at the identity

$$(\mu imes 
u) \cdot heta = \sum (-1)^{\dim 
u \dim heta'_i} \mu heta'_i imes 
u heta''_i$$

In other words the diagram

 $H_*(K) \otimes \mathscr{S}^* \otimes H_*(L) \otimes \mathscr{S}^* \xrightarrow{\lambda_* \otimes \lambda_*} H_*(K) \otimes H_*(L) = H_*(K \times L)$ is commutative (where T interchanges two factors as in §3). Therefore the dual diagram is also commutative. Setting K = L, and letting  $d: K \to K \times K$  be the diagonal homomorphism we obtain a larger commutative diagram

$$\begin{array}{c} H^* \otimes H^* \otimes \mathscr{S}_* \otimes \mathscr{S}_* \xrightarrow{1 \otimes 1 \otimes \psi^*} H^* \otimes H^* \otimes \mathscr{S}_* = H^*(K \times K) \otimes \mathscr{S}_* \xrightarrow{d^* \otimes 1} H^* \otimes \mathscr{S}_* \\ & \uparrow 1 \otimes T \otimes 1 & \uparrow^{\lambda^*} & \uparrow^{\lambda^*} \\ H^* \otimes \mathscr{S}_* \otimes H^* \otimes \mathscr{S}_* \xrightarrow{\lambda^* \otimes \lambda^*} H^* \otimes H^* &= H^*(K \times K) \xrightarrow{d^*} H^* \end{array}$$

Now starting with  $\alpha \otimes \beta \in H^* \otimes H^*$  and proceeding to the right and up in this diagram, we obtain  $\lambda^*(\alpha \smile \beta)$ . Proceeding to the left and up, and then to the right, we obtain  $\lambda^*(\alpha) \cdot \lambda^*(\beta)$ . Therefore

$$\lambda^*(\alpha\beta) = \lambda^*(\alpha)\lambda^*(\beta)$$

which proves Lemma 3.

The following lemma shows how the action of  $\mathscr{S}^*$  on  $H^*(K)$  can be reconstructed from the homomorphism  $\lambda^*$ .

LEMMA 4. If 
$$\lambda^*(\alpha) = \sum \alpha_i \otimes \omega_i$$
 then for any  $\theta \in \mathscr{S}^*$  we have  
 $\theta \alpha = \sum (-1)^{\dim \alpha_i \dim \omega_i} \langle \theta, \omega_i \rangle \alpha_i$ .

**PROOF.** By definition

$$\langle \mu, \theta \alpha \rangle = \langle \mu \theta, \alpha \rangle = \langle \lambda_*(\mu \otimes \theta), \alpha \rangle$$
  
=  $\langle \mu \otimes \theta, \lambda^* \alpha \rangle = \sum \pm \langle \mu, \alpha_i \rangle \langle \theta, \omega_i \rangle$ .

Since this holds for each  $\mu \in H_*$ , the above equality holds.

REMARK. To complete the picture, the operation  $\eta^*: \mathscr{S}^* \otimes H^* \to H^*$ has a dual  $\eta_*: H_* \to \mathscr{S}_* \otimes H_*$ . Analogues of Lemmas 2 and 4 are easily obtained for  $\eta_*$ . If a product operation  $K \times K \to K$  is given, so that  $H_*$ , and hence  $\mathscr{S}_* \otimes H_*$ , have product operations; then a straightforward proof shows that  $\eta_*$  is a ring homomorphism. (As an example let K denote the loop space of an (n + 1)-sphere, or an equivalent CW-complex. Then  $H_*(K)$  is known to be a polynomial ring on one generator  $\mu \in H_n(K)$ . The element

$$\eta_*(\mu) \in (\mathscr{S}_0 \otimes H_n) \oplus (\mathscr{S}_1 \otimes H_{n-1}) \oplus \cdots \oplus (\mathscr{S}_n \otimes H_0)$$

is evidently equal to  $1 \otimes \mu$ . Therefore  $\eta_*(\mu^k) = 1 \otimes \mu^k$  for all k. Passing to the dual, this proves that the action of  $\mathscr{S}^*$  on  $H^*(K)$  is trivial.)

## 5. The structure of the dual algebra $\mathscr{S}_*$

As an example to illustrate this operation  $\lambda^*$  consider the Lens space  $X = S^{2N+1}/Z_p$  where N is a large integer, and where the cyclic group  $Z_p$  acts freely on the sphere  $S^{2N+1}$ . Thus X can be considered as the (2N + 1)-skeleton of the Eilenberg-MacLane space  $K(Z_p, 1)$ . The cohomology ring  $H^*(X)$  is known to have the following form. There is a generator  $\alpha \in H^1(X)$  and  $H^2(X)$  is generated by  $\beta = \delta \alpha$ . For  $0 \leq i \leq N$ , the group  $H^{2i}(X)$  is generated by  $\beta^i$  and  $H^{2i+1}(X)$  is generated by  $\alpha\beta^i$ .

The action of the Steenrod algebra on  $H^*(X)$  is described as follows. It will be convenient to introduce the abbreviations

 $M_{\scriptscriptstyle 0}=1$  ,  $M_{\scriptscriptstyle 1}=\mathscr{P}^{{\scriptscriptstyle 1}}$  ,  $M_{\scriptscriptstyle 2}=\mathscr{P}^{{\scriptscriptstyle p}}\mathscr{P}^{{\scriptscriptstyle 1}}$  ,  $\cdots$  ,  $M_k=\mathscr{P}^{{\scriptscriptstyle p}^{k-1}}\cdots \mathscr{P}^{{\scriptscriptstyle p}}\mathscr{P}^{{\scriptscriptstyle 1}}$  ,  $\cdots$  .

LEMMA 5. The element  $M_k \in \mathscr{S}^{2p^{k-2}}$  satisfies  $M_k\beta = \beta^{p^k}$ . However if  $\theta$ is any monomial in the operations  $\delta$ ,  $\mathscr{P}^1$ ,  $\mathscr{P}^2$ ,  $\cdots$  which is not of the form  $\mathscr{P}^{p^{k-1}} \cdots \mathscr{P}^p \mathscr{P}^1$  then  $\theta\beta = 0$ . Similarly  $(M_k\delta)\alpha = \beta^{p^k}$  but  $\theta\alpha = 0$ if  $\theta$  is any monomial in the operations  $\delta$ ,  $\mathscr{P}^1$ ,  $\mathscr{P}^2$ ,  $\cdots$  which does not have the form  $\theta = \mathscr{P}^{p^{k-1}} \cdots \mathscr{P}^1 \delta$  or  $\theta = 1$ .

**PROOF.** It is convenient to introduce the formal operation  $\mathscr{P} = 1 + \mathscr{P}^1 + \mathscr{P}^2 + \cdots$ . It follows from 2.4 that  $\mathscr{P}\beta = \beta + \beta^p$ . Since  $\mathscr{P}$  is a ring homomorphism according to 2.5, it follows that  $\mathscr{P}\beta^i = (\beta + \beta^p)^i$ . In particular if  $i = p^r$  this gives  $\mathscr{P}\beta^{p^r} = (\beta + \beta^p)^{p^r} = \beta^{p^r} + \beta^{p^{r+1}}$ . In other words

$$\mathscr{P}^{j}\beta^{p^{r}}=egin{cases} eta^{p^{r}} & ext{if} \quad j=0\ eta^{p^{r+1}} & ext{if} \quad j=p^{r}\ 0 & ext{otherwise} \end{cases}$$

Since  $\delta\beta^i = i\beta^{i-1}\delta\beta = i\beta^{i-1}\delta\alpha = 0$  it follows that the only nontrivial operation  $\delta$  or  $\mathscr{P}^j$  which can act on  $\beta^{p^r}$  is  $\mathscr{P}^{p^r}$ . Using induction, this proves the first assertion of Lemma 5. To prove the second it is only necessary to add that  $\mathscr{P}^j\alpha = 0$  for all j > 0, according to 2.4.

Now consider the operation  $\lambda^* \colon H^*(X) \to H^*(X) \otimes \mathscr{S}_*$ .

**LEMMA 6.** The element  $\lambda^* \alpha$  has the form  $\alpha \otimes 1 + \beta \otimes \tau_0 + \beta^p \otimes \tau_1 + \cdots + \beta^{p^r} \otimes \tau_r$  where each  $\tau_k$  is a well defined element of  $\mathscr{S}_{2p^{k-1}}$ , and where  $p^r$  is the largest power of p with  $p^r \leq N$ . Similarly  $\lambda^* \beta$  has the form

$$eta \otimes \xi_0 + eta^p \otimes \xi_1 + \cdots + eta^{p^r} \otimes \xi_r$$
 ,

where  $\xi_0 = 1$ , and where each  $\xi_k$  is a well defined element of  $\mathscr{L}_{2p^{k-2}}$ .

PROOF. For any element  $\theta$  of  $\mathscr{S}^i$ , Lemma 5 implies that  $\theta\beta = 0$  unless i is the dimension of one of the monomials  $M_0, M_1, \cdots$ : that is unless i has the form  $2p^k - 2$ . Therefore, according to Lemma 4, we see that  $\lambda^i\beta = 0$  unless i has the form  $2p^k - 2$ . Thus

$$\lambda^*eta=\lambda^{\scriptscriptstyle 0}(eta)+\lambda^{\scriptscriptstyle 2p-2}(eta)+\,\cdots\,+\,\lambda^{\scriptscriptstyle 2p^T-2}(eta)\,\,.$$

Since  $\lambda^{2p^k-2}(\beta)$  belongs to  $H^{2p^k}(X) \otimes \mathscr{S}_{2p^{k-2}}$ , it must have the form  $\beta^{p^k} \otimes \xi_k$  for some uniquely defined element  $\xi_k$ . This proves the second assertion of Lemma 6. The first assertion is proved by a similar argument.

REMARK. These elements  $\xi_k$  and  $\tau_k$  have been defined only for  $k \leq r = [\log_p N]$ . However the integer N can be chosen arbitrarily large, so we have actually defined  $\xi_k$  and  $\tau_k$  for all  $k \geq 0$ .

Our main theorem can now be stated as follows.

THEOREM 2. The algebra  $\mathscr{S}_*$  is the tensor product of the Grassmann algebra generated by  $\tau_0, \tau_1, \cdots$  and the polynomial algebra generated by  $\xi_1, \xi_2, \cdots$ .

The proof will be based on a computation of the inner products of monomials in  $\tau_i$  and  $\xi_j$  with monomials in the operations  $\mathscr{P}^n$  and  $\delta$ . The following lemma is an immediate consequence of Lemmas 4, 5 and 6.

LEMMA 7. The inner product

$$\langle M_{\scriptscriptstyle k}$$
 ,  $\xi_{\scriptscriptstyle k} 
angle$ 

equals one, but  $\langle \theta, \xi_k \rangle = 0$  if  $\theta$  is any other monomial. Similarly

$$\langle M_k \delta, \tau_k 
angle = 1$$

but  $\langle \theta, \tau_k \rangle = 0$  if  $\theta$  is any other monomial.

Consider the set of all finite sequences  $I = (\varepsilon_0, r_1, \varepsilon_1, r_2, \cdots)$  where  $\varepsilon_i = 0, 1$  and  $r_i = 0, 1, 2, \cdots$ . For each such I define

$$\omega(I)=\tau_0^{\epsilon_0}\xi_1^{r_1}\tau_1^{\epsilon_1}\xi_2^{r_2}\cdots.$$

Then we must prove that the collection  $\{\omega(I)\}$  forms an additive basis for  $\mathscr{S}_*$ .

For each such I define

$$heta(I)=\delta^{arepsilon_0}\mathscr{P}^{s_1}\delta^{arepsilon_1}\mathscr{P}^{s_2}\cdots$$

where

$$s_1 = \sum_{i=1}^\infty \left(arepsilon_i + r_i
ight) p^{i-1}, \, \cdots, \, \, s_k = \sum_{i=k}^\infty \left(arepsilon_i + r_i
ight) p^{i-k}$$
 .

It is not hard to verify that these elements  $\theta(I)$  are exactly the "basic monomials" of Adem or Cartan. Furthermore  $\theta(I)$  has the same dimension as  $\omega(I)$ . Order the collection  $\{I\}$  lexicographically from the right. (For example  $(1, 2, 0, \dots) < (0, 0, 1, \dots)$ .)

LEMMA 8. The inner product  $\langle \theta(I), \omega(J) \rangle$  is equal to zero if I < J and  $\pm 1$  if I = J.

Assuming this lemma for the moment, the proof of Theorem 2 can be completed as follows. If we restrict attention to sequences I such that

$$\dim \omega(I) = \dim \theta(I) = n$$
,

then Lemma 8 asserts that the resulting matrix  $\langle \theta(I), \omega(J) \rangle$  is a nonsingular triangular matrix. But according to Adem or Cartan the elements  $\theta(I)$  generate  $\mathcal{S}^n$ . Therefore the elements  $\omega(J)$  must form a basis for  $\mathcal{S}_n$ ; which proves Theorem 2. (Incidentally this gives a new proof of Cartan's assertion that the  $\theta(I)$  are linearly independent.)

**PROOF OF LEMMA 8.** We will prove the assertion  $\langle \theta(I), \omega(I) \rangle = \pm 1$  by induction on the dimension. It is certainly true in dimension zero.

Case 1. The last non-zero element of the sequence  $I = (\mathcal{E}_0, r_1, \dots, \mathcal{E}_{k-1}, r_k, 0, \dots)$  is  $r_k$ . Set  $I' = (\mathcal{E}_0, r_1, \dots, \mathcal{E}_{k-1}, r_k - 1, 0, \dots)$  so that  $\omega(I) = \omega(I')\xi_k$ . Then

$$\langle \theta(I), \omega(I) \rangle = \langle \theta(I), \psi_*(\omega(I') \otimes \xi_k) \rangle$$
  
=  $\langle \psi^* \theta(I), \omega(I') \otimes \xi_k \rangle$ .

Since  $\theta(I) = \delta^{\mathfrak{e}_0} \mathscr{P}^{\mathfrak{s}_1} \cdots \delta^{\mathfrak{s}_{k-1}} \mathscr{P}^{\mathfrak{s}_k}$  we have

$$\psi^* \theta(I) = \sum \pm \delta^{\mathfrak{e}'_0} \cdots \mathscr{P}^{s'_k} \otimes \delta^{\mathfrak{e}''_0} \cdots \mathscr{P}^{s'_k}$$

where the summation extends over all sequences  $(\mathcal{E}'_0, \dots, \mathbf{s}'_k)$  and  $(\mathcal{E}''_0, \dots, \mathbf{s}'_k)$  with  $\mathcal{E}'_i + \mathcal{E}''_i = \mathcal{E}_i$  and  $\mathbf{s}'_i + \mathbf{s}''_i = \mathbf{s}_i$ . Substituting this in the previous expression we have

$$\langle \theta(I), \omega(I) \rangle = \sum \pm \langle \delta^{\mathfrak{e}'_0} \cdots \mathscr{P}^{s'_k}, \omega(I') \rangle \langle \delta^{\mathfrak{e}''_0} \cdots \mathscr{P}^{s'_k'}, \xi_k \rangle$$

But according to Lemma 7 the right hand factor is zero except for the special case

$$\delta^{\varepsilon_0'}\cdots \mathscr{P}^{s_k''}=\mathscr{P}^{p^{k-1}}\cdots \mathscr{P}^p\mathscr{P}^1,$$

in which case the inner product is one. Inspection shows that the corresponding expression  $\partial^{s'_0} \cdots \mathscr{P}^{s'_k}$  on the left is equal to  $\theta(I')$ ; and hence that  $\langle \theta(I), \omega(I) \rangle = \pm \langle \theta(I'), \omega(I') \rangle = \pm 1$ .

Case 2. The last non-zero element of  $I = (\varepsilon_0, r_1, \dots, r_k, \varepsilon_k, 0, \dots)$  is  $\varepsilon_k = 1$ . Define  $I' = (\varepsilon_0, r_1, \dots, r_k, 0, \dots)$  so that

$$\omega(I) = \omega(I')\tau_k .$$

Carrying out the same construction as before we find that the only nonvanishing right hand term is  $\langle \mathscr{P}^{p^{k-1}} \cdots \mathscr{P}^1 \delta, \tau_k \rangle = 1$ . The corresponding left hand term is again  $\langle \theta(I), \omega(I') \rangle$ ; so that  $\langle \theta(I), \omega(I) \rangle = \pm \langle \theta(I'), \omega(I') \rangle = \pm 1$ , with completes the induction.

The proof that  $\langle \theta(I), \omega(J) \rangle = 0$  for I < J is carried out by a similar induction on the dimension.

Case 1a. The sequence J ends with the element  $r_k$  and the sequence I ends at the corresponding place. Then the argument used above shows that

$$\langle \theta(I), \omega(J) \rangle = \pm \langle \theta(I'), \omega(J') \rangle = 0$$
.

Case 1b. The sequence J ends with the elements  $r_k$ , but I ends earlier. Then in the expansion used above, every right hand factor

$$\langle \delta^{\varepsilon_0'} \mathscr{P}^{s_1''} \cdots \delta^{\varepsilon_{k-1}'}, \xi_k \rangle$$

is zero. Therefore  $\langle \theta(I), \omega(J) \rangle = 0$ .

Similarly Case 2 splits up into two subcases which are proved in an analogous way. This completes the proof of Lemma 8 and Theorem 2.

To complete the description of  $\mathscr{S}_*$  as a Hopf algebra it is necessary to compute the homomorphism  $\phi_*$ . But since  $\phi_*$  is a ring homomorphism it

is only necessary to evaluate it on the generators of  $S_*$ .

THEOREM 3. The following formulas hold.

$$\phi_*(\xi_k) = \sum_{i=0}^k \xi_{k-i}^{p^i} \otimes \xi_i \ \phi_*( au_k) = \sum_{i=0}^k \xi_{k-i}^{p^i} \otimes au_i + au_k \otimes 1$$

The proof will be based on Lemmas 2 and 3. Raising both sides of the equation

$$\lambda^*(eta) = \sum eta^{p^j} \otimes \xi_j$$

to the power  $p^i$  we obtain

$$\lambda^*(\beta^{p^i}) = \sum \beta^{p^{i+j}} \otimes \xi_j^{p^i}$$

Now

$$(\lambda^* \otimes 1)\lambda^*(eta) = (\lambda^* \otimes 1)\sum_{j \in J} eta^{p^i} \otimes \xi_i$$
  
=  $\sum_{i,j} eta^{p^{i+j}} \otimes \xi_j^{p^i} \otimes \xi_i$ .

Comparing this with

$$(1\otimes \phi_*)\lambda^*(eta)=\sumeta^{p^k}\otimes \phi_*(\xi_k)$$

We obtain the required expression for  $\phi_*(\xi_k)$ .

Similarly the identity

$$(\lambda^* \otimes 1)\lambda^*(\alpha) = (1 \otimes \phi_*)\lambda^*(\alpha)$$

can be used to obtain the required formula for  $\phi_*(\tau_k)$ .

## 6. A basis for $\mathcal{S}^*$

Let  $R = (r_1, r_2, \cdots)$  range over all sequences of non-negative integers which are almost all zero, and define  $\xi(R) = \xi_1^{r_1} \xi_2^{r_2} \cdots$ . Let  $E = (\varepsilon_0, \varepsilon_1, \cdots)$  range over all sequences of zeros and ones which are almost all zero, and define  $\tau(E) = \tau_0^{\varepsilon_0} \tau_1^{\varepsilon_1} \cdots$ . Then Theorem 2 asserts that the elements

$$\{\tau(E)\xi(R)\}$$

form an additive basis for  $\mathscr{S}_*$ . Hence there is a dual basis  $\{\rho(E, R)\}$  for  $\mathscr{S}^*$ . That is we define  $\rho(E, R) \in \mathscr{S}^*$  by

$$\langle \rho(E, R), \tau(E')\xi(R') \rangle = \begin{cases} 1 & \text{if } E = E', R = R' \\ 0 & \text{otherwise.} \end{cases}$$

Using Lemma 8 it is easily seen that  $\rho(\mathbf{0}, (r, 0, 0, \cdots))$  is equal to the Steenrod power  $\mathscr{P}^r$ . This suggests that we define<sup>2</sup>  $\mathscr{P}^R$  as the basis element  $\rho(\mathbf{0}, R)$  dual to  $\xi(R)$ . (Abbreviations such as  $\mathscr{P}^{01}$  in place of  $\mathscr{P}^{(0,1,0,0,\cdots)}$  will be frequently be used.)

162

Let  $Q_k$  denote the basis element dual to  $\tau_k$ . For example  $Q_0 = \rho(1, 0, \dots)$ , **0**) is equal to the operation  $\delta$ . It will turn out that any basis element  $\rho(E, R)$  is equal to the product  $\pm Q_0 {}^{e_0}Q_1 {}^{e_1} \dots {}^{R}$ .

THEOREM 4a. The elements

$$Q_0^{\epsilon_0}Q_1^{\epsilon_1}\cdots \mathscr{P}^R$$

form an additive basis for the Steenrod algebra  $\mathscr{S}^*$  which is, up to sign, dual to the known basis  $\{\tau(E)\xi(E)\}$  for  $\mathscr{S}_*$ . The elements  $Q_k \in \mathscr{S}^{2p^k-1}$ generate a Grassmann algebra: that is they satisfy

$$Q_j Q_k + Q_k Q_j = 0 \; .$$

They permute with the elements  $\mathscr{P}^{R}$  according to the rule

$$\mathscr{P}^{R}Q_{k}-Q_{k}\mathscr{P}^{R}=Q_{k+1}\mathscr{P}^{R-(p^{k},0,\cdots)}+Q_{k+2}\mathscr{P}^{R-(0,p^{k},0,\cdots)}+\cdots$$

(By the difference  $(r_1, r_2, \dots) - (s_1, s_2, \dots)$  of two sequences we mean the sequence  $(r_1 - s_1, r_2 - s_2, \dots)$ . It is understood, for example, that  $\mathscr{T}^{R-(p^k, 0, \dots)}$  is zero in case  $r_1 < p^k$ .)

As an example we have the following where [a, b] denote the "commutator"  $ab - (-1)^{\dim a \dim b} ba$ .

COROLLARY 2. The elements  $Q_k \in \mathscr{S}^{2p^k-1}$  can be defined inductively by the rule

$$Q_{\scriptscriptstyle 0} = \delta$$
 ,  $Q_{k+1} = [\mathscr{P}^{p^k}, Q_k]$  .

To complete the description of  $\mathscr{S}^*$  as an algebra it is necessary to find the product  $\mathscr{P}^R \mathscr{P}^S$ . Let X range over all infinite matrices

of non-negative integers, almost all zero, with leading entry ommitted. For each such X define  $R(X) = (r_1, r_2, \dots)$ ,  $S(X) = (s_1, s_2, \dots)$ , and  $T(X) = (t_1, t_2, \dots)$ , by

 $egin{aligned} r_i &= \sum_j p^j x_{ij} & ext{(weighted row sum),} \ s_j &= \sum_i x_{ij} & ext{(column sum),} \ t_n &= \sum_{i+j=n} x_{ij} & ext{(diagonal sum).} \end{aligned}$ 

Define the coefficient  $b(X) = \prod t_n! / \prod x_{ij}!$ .

THEOREM 4b. The product  $\mathcal{P}^{R}\mathcal{P}^{s}$  is equal to

$$\sum_{R(X)=R, S(X)=S} b(X) \mathscr{P}^{T(X)}$$

where the sum extends over all matrices X satisfying the conditions R(X) = R, S(X) = S.

As an example consider the case  $R = (r, 0, \dots)$ ,  $S = (s, 0, \dots)$ . Then the equations R(X) = R, S(X) = S become

$$egin{aligned} x_{_{10}}+px_{_{11}}+\cdots &=r \;, & x_{_{ij}}=0 \quad ext{for} \;\; i>1 \;, \ x_{_{01}}+x_{_{11}}+\cdots &=s \;, & x_{_{ij}}=0 \quad ext{for} \;\; j>1, \; ext{respectively}. \end{aligned}$$

Thus, letting  $x = x_{11}$ , the only suitable matrices are those of the form

$$egin{array}{c|c} * & s-x & 0 & \cdot \ r-px & x & 0 & \cdot \ 0 & 0 & 0 & \cdot \ \cdot & \cdot & \cdot & \cdot \end{array}$$

with  $0 \le x \le Min(s, [r/p])$ . The corresponding coefficients b(X) are the binomial coefficients (r - px, s - x). Therefore we have

COROLLARY 3. The product  $\mathcal{P}^r \mathcal{P}^s$  is equal to

$$\sum_{x=0}^{\operatorname{Min}(s, [r/p])} (r - px, s - x) \mathscr{P}^{r-px+s-x, x}$$

(For example  $\mathscr{P}^{p+1}\mathscr{P}^1 = 2\mathscr{P}^{p+2} + \mathscr{P}^{1,1}$ .)

The simplest case of this product operation is the following

COROLLARY 4. If  $r_1 < p, r_2 < p, \cdots$  then  $\mathscr{P}^R \mathscr{P}^S = (r_1, s_1)(r_2, s_2) \cdots \mathscr{P}^{R+S}$ .

As a final illustration we have:

COROLLARY 5. The elements  $\mathscr{P}^{(0 \dots 010 \dots)}$  can be defined inductively by

$$\mathscr{P}^{0,1} = [\mathscr{P}^{p}, \mathscr{P}^{1}], \mathscr{P}^{0,0,1} = [\mathscr{P}^{p^{2}}, \mathscr{P}^{0,1}], \text{ etc}$$

The proofs are left to the reader.

**PROOF OF THEOREM** 4b. Given any Hopf algebra  $A_*$  with basis  $\{a_i\}$  the diagonal homomorphism can be written as

$$\phi_*(a_i) = \sum_{j,k} c_i^{jk} a_j \otimes a_k$$
.

The product operation in the dual algebra is then given by

$$a^{j}a^{k}=\phi^{st}(a^{j}\otimes a^{k})=\sum_{i}(-1)^{\dim a^{j}\dim a^{k}}c^{jk}_{i}a^{i}$$
 ,

where  $\{a^i\}$  is the dual basis. In carrying out this program for the algebra  $\mathscr{S}_*$  we will first use Theorem 3 to compute  $\phi_*(\xi(T))$  for any sequence  $T = (t_1, t_2, \cdots)$ .

Let  $[i_1, i_2, \dots, i_k]$  denote the generalized binomial coefficient

$$(i_1 + i_2 + \cdots + i_k)! / i_1! i_2! \cdots i_k!;$$

so that the following identity holds

$$(y_1 + \cdots + y_k)^n = \sum_{i_1 + \cdots + i_k = n} [i_1, \cdots, i_k] y_1^{i_1} \cdots y_k^{i_k}$$

Applying this to the expression

$$\phi_*(\xi_k) = \xi_k \otimes 1 + \xi_{k-1}^p \otimes \xi_1 + \cdots + \xi_1^{p^{k-1}} \otimes \xi_{k-1} + 1 \otimes \xi_k$$

we obtain

$$egin{aligned} &\phi_{st}(\xi_{k}^{t}{}^{k}) = \sum \left[x_{k0}\,,\,\cdots,\,x_{0k}
ight]\!(\xi_{k}^{x_{k}}{}^{0}\xi_{k-1}^{px_{k-11}}\cdots\,\xi_{1}^{p^{k-1}x_{1}k-1})\otimes(\xi_{1}^{x_{k-11}}\cdots\,\xi_{k}^{x_{0k}}) \ &= \sum \left[x_{k0}\,,\,\cdots,\,x_{0k}
ight]\!\xi(p^{k-1}x_{1\,k-1}\,,\,\cdots,\,x_{k0})\otimes\xi(x_{k-1\,1}\,,\,\cdots,\,x_{0k}) \end{aligned}$$

summed over all integers  $x_{k_3}, \dots, x_{0k}$  satisfying  $x_{i,k-i} \ge 0, x_{k_0} + \dots + x_{0k}$ =  $t_k$ . Now multiply the corresponding expressions for  $k = 1, 2, 3, \dots$ . Since the product  $[x_{10}, x_{01}][x_{20}, x_{11}, x_{02}][x_{30}, \dots, x_{03}] \cdots$  is equal to b(X), we obtain

$$\phi_*(\xi(T)) = \sum_{T(X)=T} b(X)\xi(R(X)) \otimes \xi(S(X))$$

summed over all matrices X satisfying the condition T(X) = X.

In order to pass to the dual  $\phi^*$  we must look for all basis elements  $\tau(E)\xi(T)$  such that  $\phi_*(\tau(E)\xi(T))$  contains a term of the form

(non-zero constant)  $\cdot \xi(R) \otimes \xi(S)$ .

However inspection shows that the only such basis elements are the ones  $\xi(T)$  which we have just studied. Hence we can write down the dual formula

 $\phi^*(\mathscr{P}^{\scriptscriptstyle R}\otimes\mathscr{P}^{\scriptscriptstyle S})=\sum_{\scriptscriptstyle R(X)=R,\ S(X)=S}b(X)\mathscr{P}^{\scriptscriptstyle T(X)}$ .

This completes the proof of Theorem 4b.

**PROOF OF THEOREM 4a.** We will first compute the products of the basis elements  $\rho(E, \mathbf{0})$  dual to  $\tau_0^{e_0} \tau_1^{e_1} \cdots$ . The dual problem is to study the homomorphism  $\phi_* \colon \mathscr{S}_* \to \mathscr{S}_* \otimes \mathscr{S}_*$  ignoring all terms in  $\mathscr{S}_* \otimes \mathscr{S}_*$  which involve any factor  $\xi_k$ . The elements  $1 \otimes \xi_1, 1 \otimes \xi_2, \cdots, \xi_1 \otimes 1, \cdots$  of  $\mathscr{S}_* \otimes \mathscr{S}_*$  generate an ideal  $\mathscr{S}$ . Furthermore according to Theorem 3:

$$egin{aligned} \phi_*( au_k) &\equiv au_k \otimes 1 + 1 \otimes au_k \pmod{\mathscr{I}} \ \phi_*(\xi_k) &\equiv 0 \pmod{\mathscr{I}} \end{aligned}$$

Therefore  $\phi_*(\tau(E)\xi(R) \equiv 0$  if  $R \neq 0$  and  $\phi_*(\tau(E)) \equiv \sum_{E_1+E_2=E} \pm \tau(E_1) \otimes \tau(E_2) \pmod{\mathscr{I}}$ . The dual statement is that

$$ho(E_1,\,{f 0})
ho(E_2,\,{f 0})=\,\pm\,
ho(E_1+E_2,\,{f 0})\;,$$

where it is understood that the right side is zero if the sequences  $E_1$  and  $E_2$  both have a "1" in the same place. Thus the basis elements  $\rho(E, \mathbf{0})$  multiply as a Grassmann algebra.

Similar arguments show that the product  $\rho(E, 0)\rho(0, R)$  is equal to

 $\rho(E, R)$ . From this the first assertion of 4a follows immediately.

Computation of  $\mathscr{P}^{R}Q_{k}$ : We must look for basis elements  $\tau(E)\xi(R')$  such that  $\phi_{*}(\tau(E)\xi(R'))$  contains a term

(non-zero constant)  $\cdot \xi(R) \otimes \tau_k$  .

Inspection shows that the only such basis elements are  $\tau_k \xi(R)$ ,  $\tau_{k+1} \xi(R - (p^k, 0, \cdots))$ ,  $\tau_{k+2} \xi(R - (0, p^k, 0, \cdots))$ ,  $\cdots$  etc. Furthermore the corresponding constants are all + 1. This proves that

 $\mathscr{P}^{R}Q_{k} = Q_{k}\mathscr{P}^{R} + Q_{k+1}\mathscr{P}^{R-(p^{k}, 0, \cdots)} + \cdots,$ 

and completes the proof of Theorem 4.

To complete the description of  $\mathscr{S}^*$  as a Hopf algebra we must compute the homomorphism  $\psi^*$ .

LEMMA 9. The following formulas hold

$$egin{aligned} \psi^*(Q_k) &= Q_k \otimes 1 + 1 \otimes Q_k \ \psi^*(\mathscr{P}^{\scriptscriptstyle R}) &= \sum_{R_1 + R_2 = R} \mathscr{P}^{\scriptscriptstyle R_1} \otimes \mathscr{P}^{\scriptscriptstyle R_2} \ . \end{aligned}$$

(For example  $\psi^*(\mathscr{P}^{011}) = \mathscr{P}^{011} \otimes 1 + 1 \otimes \mathscr{P}^{011} + \mathscr{P}^{01} \otimes \mathscr{P}^{001} + \mathscr{P}^{001} \otimes \mathscr{P}^{01}$ .)

**REMARK.** An operation  $\theta \in \mathscr{S}^*$  is called a *derivation* if it satisfies

$$\theta(\alpha \smile \beta) = (\theta \alpha) \smile \beta + (-1)^{\dim \theta \dim \alpha} \alpha \smile \theta \beta$$

This is clearly equivalent to the assertion that  $\theta$  is primitive. It can be shown that the only derivations in  $\mathscr{S}^*$  are the elements  $Q_0, Q_1, \dots, \mathscr{P}^1$ ,  $\mathscr{P}^{0,1}, \mathscr{P}^{0,0,1}, \dots$  and their multiples.

# 7. The canonical anti-automorphism

As an illustration consider the Hopf algebra  $H_*(G)$  associated with a Lie group G. The map  $g \to g^{-1}$  of G into itself induces a homomorphism  $c: H_*(G) \to H_*(G)$  which satisfies the following two identities:

(1) c(1) = 1

(2) if  $\psi_*(a) = \sum a'_i \otimes a''_i$ , where dim a > 0, then  $\sum a'_i c(a''_i) = 0$ .

More generally, for any connected Hopf algebra  $A_*$ , there exists a unique homomorphism  $c: A_* \to A_*$  satisfying (1) and (2). We will call c(a) the conjugate of a. Conjugation is an anti-automorphism in the sense that

$$c(a_1a_2) = (-1)^{\dim a_1 \dim a_2} c(a_2) c(a_1)$$
.

The conjugation operations in a Hopf algebra and its dual are dual homomorphisms. For details we refer the reader to [3].

For the Steenrod algebra  $\mathscr{S}^*$  this operation was first used by Thom. (See [5] p. 60). More precisely the operation used by Thom is  $\theta \to (-1)^{\dim \theta} c(\theta)$ . If  $\theta$  is a primitive element of  $\mathscr{S}^*$  then the defining relation becomes  $\theta \cdot 1 + 1 \cdot c(\theta) = 0$  so that  $c(\theta) = -\theta$ . This shows that  $c(Q_k) = -Q_k$ ,  $c(\mathscr{S}^1) = -\mathscr{S}^1$ . The elements  $c(\mathscr{S}^n)$ , n > 0, could be computed from Thom's identity

$$\sum_{i} \mathscr{P}^{n-i} c(\mathscr{P}^{i}) = 0$$
;

however it is easier to first compute the operation in the dual algebra and then carry it back.

By an ordered partition  $\alpha$  of the integer n with length  $l(\alpha)$  will be meant an ordered sequence

$$(\alpha(1), \alpha(2), \cdots, \alpha(l(\alpha)))$$

of positive integers whose sum is n. The set of all ordered partitions of n will be denoted by Part (n). (For example Part (3) has four elements: (3), (2,1) (1,2), and (1,1,1). In general Part (n) has  $2^{n-1}$  elements.) Given an ordered partition  $\alpha \in Part(n)$ , let  $\sigma(i)$  denote the partial sum  $\sum_{j=1}^{i-1} \alpha(j)$ .

LEMMA 10. In the dual algebra  $\mathscr{S}_*$  the conjugate  $c(\xi_n)$  is equal to

$$\sum_{\alpha \in \operatorname{Part}(n)} (-1)^{l(\alpha)} \prod_{i=1}^{l(\alpha)} \xi_{\alpha(i)}^{p^{\sigma(i)}}$$

(For example  $c(\xi_3) = -\xi_3 + \xi_1 \xi_2^p + \xi_2 \xi_1^{p^2} - \xi_1 \xi_1^p \xi_1^{p^2}$ .)

**PROOF.** Since  $\phi_*(\xi_n) = \sum_{i=0}^n \xi_{n-i}^{p^i} \otimes \xi_i$ , the defining identity becomes

$$\sum_{i=0}^{n} \xi_{n-i}^{p^{i}} c(\xi_{i}) = 0$$
 .

This can be written as

$$c(\xi_n) = -\xi_n - c(\xi_1)\xi_{n-1}^p - \cdots - c(\xi_{n-1})\xi_1^{p^{n-1}}$$

The required formula now follows by induction.

Since the operation  $\omega \to c(\omega)$  is an anti-automorphism, we can use Lemma 10 to determine the conjugate of an arbitrary basis element  $\xi(R)$ . Passing to the dual algebra  $\mathscr{S}^*$  we obtain the following formula. (The details of the computation are somewhat involved, and will not be given.)

Given a sequence  $R = (r_1, \dots, r_k, 0, \dots)$  consider the equations

(\*) 
$$r_1 = \sum_{n=1}^{\infty} \sum_{\alpha \in \operatorname{Part}(n)} \sum_{j=1}^{l(\alpha)} \delta_{i\alpha(j)} p^{\sigma(j)} y_{\alpha}$$
,

for  $i = 1, 2, 3, \dots$ ; where the symbol  $\delta_{i\alpha(j)}$  denotes a Kronecker delta; and where the unknowns  $y_{\alpha}$  are to be non-negative integers. For each solution Y to this set of equations define  $S(Y) = (s_1, s_2, \dots)$  by

$$s_n = \sum_{\alpha \in \operatorname{Part}(n)} y_{\alpha}$$
 .

(Thus  $s_1 = y_1$ ,  $s_2 = y_2 + y_{1,1}$ , etc.) Define the coefficient b(Y) by

JOHN MILNOR

$$egin{aligned} b(Y) &= [y_2\,,\,y_{11}][y_3\,,\,y_{21}\,,\,y_{12}\,,\,y_{111}] \cdots \ &= \prod_n s_n!\,/\prod_lpha \,y_lpha! \;. \end{aligned}$$

THEOREM 5. The conjugate  $c(\mathcal{P}^{R})$  is equal to

$$(-1)^{r_1+\cdots+r_k}\sum b(Y)\mathscr{P}^{S(Y)}$$

where the summation extends over all solutions Y to the equations (\*). To interpret these equations (\*) note that the coefficient

$$\sum_{j=1}^{l(a)} \delta_{ia(j)} p^{\sigma(j)}$$

of  $y_{\alpha}$  in the  $i^{\text{th}}$  equation is positive if the sequence

$$\alpha = (\alpha(1), \cdots, \alpha(l(\alpha)))$$

contains the integer *i*, and zero otherwise. In case the left hand side  $r_i$  is zero, then for every sequence  $\alpha$  containing the integer *i* it follows that  $y_{\alpha} = 0$ . In particular this is true for all i > k.

As an example, suppose that k = 1 so that  $R = (r, 0, 0, \cdots)$ . Then the integers  $y_{\alpha}$  must be zero whenever  $\alpha$  contains an integer larger than one. Thus the only partitions  $\alpha$  which are left are: (1), (1,1), (1,1,1),  $\cdots$ . Therefore we have  $s_1 = y_1$ ,  $s_2 = y_{11}$ ,  $s_3 = y_{111}$ , etc. The equations (\*) now reduce to the single equation

$$r = s_1 + (1 + p)s_2 + (1 + p + p^2)s_3 + \cdots$$

But this is just the dimensional restriction that dim  $\mathscr{P}^s = (2p-2)s_1 + (2p^2-2)s_2 + \cdots$  be equal to dim  $\mathscr{P}^r = (2p-2)r$ . Thus we obtain:

COROLLARY 6. The conjugate  $c(\mathscr{P}^r)$  is equal to  $(-1)^r \sum \mathscr{P}^s$  where the sum extends over all  $\mathscr{P}^s$  having the correct dimension. (For example  $c(\mathscr{P}^{2p+3}) = -\mathscr{P}^{2p+3} - \mathscr{P}^{p+2,1} - \mathscr{P}^{1,2}$ .)

## 8. Miscellaneous remarks

The following question, which is of interest in the study of second order cohomology operations, was suggested to the author by A. Dold: What is the set of all solutions  $\theta \in \mathscr{S}^*$  to the equation  $\theta \mathscr{P}^1 = 0$ ? In view of the results of §7 we can equally well study the equation  $\mathscr{P}^1\theta = 0$ . The formula

$$\mathcal{P}^{_{1}}\mathcal{P}^{_{r_{1}r_{2}}\cdots} = (1 + r_{_{1}})\mathcal{P}^{_{1+r_{1}},r_{2}\cdots}$$

implies that this equation  $\mathscr{P}^{1}\theta = 0$  has as solution the vector space spanned by the elements

$$\mathscr{P}^{r_1r_2\cdots}Q_0^{\varepsilon_0}Q_1^{\varepsilon_1}\cdots$$

with  $r_1 \equiv -1 \pmod{p}$ . The first such element is  $\mathscr{P}^{p-1}$ , and every element

of the ideal  $\mathscr{P}^{p-1}\mathscr{S}^*$  will also be a solution. Now the identity

$$\mathcal{P}^{p-1} \cdot \mathcal{P}^{s_1 s_2 \cdots} = (p-1, s_1) \mathcal{P}^{s_1 + p-1, s_2, \cdots}$$
$$= \begin{cases} 0 & \text{if } s_1 \not\equiv 0 \pmod{p} \\ - \mathcal{P}^{s_1 + p-1, s_2, \cdots} & \text{if } s_1 \equiv 0 \pmod{p} \end{cases}$$

shows that every element  $\mathscr{P}^{r_1r_2\cdots}Q_0^{s_0}\cdots$  with  $r_1\equiv -1 \pmod{p}$  actually belongs to the ideal. Applying the conjugation operation, this proves the following:

**PROPOSITION 1.** The equation  $\theta \mathscr{P}^1 = 0$  has as solutions the elements of the ideal  $\mathscr{P}^* \mathscr{P}^{\nu-1}$ . An additive basis is given by the elements

$$Q_0 \circ_0 Q_1 \circ_1 \cdots c(\mathscr{P}^{r_1 r_2 \cdots})$$
 with  $r_1 \equiv -1 \pmod{p}$ .

Next we will study certain subalgebras of the Steenrod algebra. Adem shown that  $\mathscr{S}^*$  is generated by the elements  $Q_0$ ,  $\mathscr{P}^1$ ,  $\mathscr{P}^p$ ,  $\cdots$ . Let  $\mathscr{S}^*(n)$  denote the subalgebra generated by  $Q_0$ ,  $\mathscr{P}^1$ ,  $\cdots$ ,  $\mathscr{P}^{p^{n-1}}$ .

**PROPOSITION 2.** The algebra  $\mathcal{S}^*(n)$  is finite dimensional, having as basis the collection of all elements

$$Q_0^{\mathfrak{e}_0} \cdots Q_n^{\mathfrak{e}_n} \mathcal{G}^{r_1, \cdots, r_n}$$

which satisfy

$$r_{\scriptscriptstyle 1} \,{<}\, p^{n}$$
,  $r_{\scriptscriptstyle 2} \,{<}\, p^{n-1}$ ,  $\cdots$ ,  $r_n \,{<}\, p$  .

Thus  $\mathscr{S}^*$  is a union of finite dimensional subalgebras  $\mathscr{S}^*(n)$ . This clearly implies the following.

COROLLARY 7. Every positive dimensional element of  $\mathcal{S}^*$  is nil-potent.

It would be interesting to discover a complete set of relations between the given generators of  $\mathscr{S}^*(n)$ . For n = 0 there is the single relation  $[Q_0, Q_0] = 0$ , where [a, b] stands for  $ab - (-1)^{\dim a \dim b} ba$ . For n = 1 there are three new relations

$$[Q_0, [\mathscr{P}^1, Q_0]] = 0$$
,  $[\mathscr{P}^1, [\mathscr{P}^1, Q_0]] = 0$  and  $(\mathscr{P}^1)^p = 0$ .

For n = 2 there are the relations

$$[\mathscr{P}^{1}, [\mathscr{P}^{p}, \mathscr{P}^{1}]] = 0, \quad [\mathscr{P}^{p}, [\mathscr{P}^{p}, \mathscr{P}^{1}]] = 0,$$
  
and  $(\mathscr{P}^{p})^{p} = \mathscr{P}^{1}[\mathscr{P}^{p}, \mathscr{P}^{1}]^{p-1},$ 

as well as several new relations involving  $Q_0$ . (The relations  $(\mathscr{P}^p)^{2p} = 0$  and  $[\mathscr{P}^p, \mathscr{P}^1]^p = 0$  can be derived from the relations above.) The author has been unable to go further with this.

**PROOF OF PROPOSITION 2.** Let  $\mathscr{N}(n)$  denote the subspace of  $\mathscr{S}^*$  spanned by the elements  $Q_0^{\mathfrak{e}_0} \cdots Q_n^{\mathfrak{e}_n} \mathscr{S}^{r_1 \cdots r_n}$  which satisfy the specified restrictions. We will first show that  $\mathscr{N}(n)$  is a subalgebra. Consider the

product

$$\mathcal{P}^{r_1\cdots r_n}\mathcal{P}^{s_1\cdots s_n} = \sum_{R(X)=(r_1\cdots), S(X)=(s_1,\cdots)} b(X) \mathcal{P}^{T(X)}$$

where both factors belong to  $\mathscr{A}(n)$ . Suppose that some term  $b(X)\mathscr{P}^{t_1t_2\cdots}$ on the right does not belong to  $\mathscr{A}(n)$ . Then  $t_i$  must be  $\geq p^{n+1-i}$  for some l. If  $x_{i0}, x_{i-1, 1, \dots}, x_{0i}$  were all  $< p^{n+1-i}$ , then the factor

$$\frac{t_{\iota}!}{x_{\iota 0}!\cdots x_{0\iota}!}$$

would be congruent to zero modulo p. Therefore  $x_{ij} \ge p^{n+1-i}$  for some i+j=l. If i>0 this implies that

$$r_i = \sum_j p^j x_{ij} \ge p^j p^{n+1-l} = p^{n+1-l}$$

which contradicts the hypothesis that  $\mathscr{P}^{r_1\cdots r_n} \in \mathscr{A}(n)$ . Similarly if i = 0, j = l, then

$$s_j = \sum_i x_{ij} \ge p^{k+1-i} = p^{k+1-j}$$

which is also a contradiction.

Since it is easily verified that  $\mathscr{A}(n)Q_k \subset \mathscr{A}(n)$  for  $k \leq n$ , this proves that  $\mathscr{A}(n)$  is a subalgebra of  $\mathscr{S}^*$ . Since  $\mathscr{A}(n)$  contains the generators of  $\mathscr{S}^*(n)$ , this implies that  $\mathscr{A}(n) \supset \mathscr{S}^*(n)$ .

To complete the proof we must show that every element of  $\mathscr{S}(n)$  belongs to  $\mathscr{S}^*(n)$ . Adem's assertion that  $\mathscr{S}^*$  is the union of the  $\mathscr{S}^*(n)$ implies that every element of  $\mathscr{S}^k$  with  $k < \dim(\mathscr{S}^{p^n})$  automatically belongs to  $\mathscr{S}^*(n)$ . In particular we have:

Case 1. Every element  $\mathscr{P}^{0\cdots 0p^{i}}$  in  $\mathscr{A}(n)$  belongs to  $\mathscr{S}^{*}(n)$ .

Ordering the indices  $(r_1, \dots, r_n)$  lexicographically from the right, the product formulas can be written as

$$\mathscr{P}^{r_1\cdots r_n}\mathscr{P}^{s_1\cdots s_n} = (r_1, s_1)\cdots (r_n, s_n)\mathscr{P}^{r_1+s_1,\cdots,r_n+s_n} + (\text{higher terms}).$$

Given  $\mathscr{P}^{t_1\cdots t_n} \in \mathscr{N}(n)$  assume by induction that

(1) every  $\mathscr{P}^{r_1\cdots r_n} \in \mathscr{A}(n)$  of smaller dimension belongs to  $\mathscr{S}^*(n)$ , and (2) every "higher"  $\mathscr{P}^{r_1\cdots r_n} \in \mathscr{A}(n)$  in the same dimension belongs to  $\mathscr{S}^*(n)$ . We will prove that  $\mathscr{P}^{t_1\cdots t_n} \in \mathscr{S}^*(n)$ .

Case 2.  $(t_1 \cdots t_n) = (0 \cdots 0t_i 0 \cdots 0)$  where  $t_i$  is not a power of p. Choose  $r_i, s_i > 0$  with  $r_i + s_i = t_i$ ,  $(r_i, s_i) \neq 0$ . Then  $\mathscr{P}^{0 \cdots r_i} \mathscr{P}^{0 \cdots s_i} = (r_i, s_i) \mathscr{P}^{0 \cdots t_i} + (\text{higher terms}).$ 

Case 3. Both  $t_i$  and  $t_j$  are positive, i < j. Then

 $\mathscr{P}^{t_1\cdots t_i}\mathscr{P}^{0\cdots 0t_{i+1}\cdots t_n} = \mathscr{P}^{t_1\cdots t_n} + (\text{higher terms})$ .

In either case the inductive hypothesis shows that  $\mathscr{T}^{t_1\cdots t_n}$  belongs to  $\mathscr{S}^*(n)$ . Since  $Q_0, \cdots, Q_n$  belong to  $\mathscr{S}^*(n)$  by Corollary 3, this completes

170

the proof of Proposition 2.

## Appendix 1. The case p = 2

All the results in this paper apply to the case p = 2 after some minor changes. The cohomology ring of the projective space  $\mathscr{P}^N$  is a truncated polynomial ring with one generator  $\alpha$  of dimension 1. It turns out that  $\lambda^*(\alpha) \in H^*(P^N, \mathbb{Z}_2) \otimes \mathscr{S}_*$  has the form

$$lpha\otimes oldsymbol{\zeta}_{0}+lpha^{2}\otimes oldsymbol{\zeta}_{1}+\cdots+lpha^{2'}\otimes oldsymbol{\zeta}_{r}$$

where  $\zeta_0 = 1$  and where each  $\zeta_i$  is a well defined element of  $\mathcal{S}_{2^{i}-1}^{i}$ . The algebra  $\mathcal{S}_{*}$  is a polynomial algebra generated by the elements  $\zeta_1, \zeta_2, \cdots$ .

Corresponding to the basis  $\{\zeta_1^{r_1}\zeta_2^{r_2}\cdots\}$  for  $\mathscr{S}_*$  there is a dual basis  $\{Sq^R\}$  for  $\mathscr{S}^*$ . These elements  $Sq^{r_1r_2}$ ...multiply according to the same formula as the  $\mathscr{S}^R$ . The other results of this paper generalize in an obvious way.

## Appendix 2. Sign conventions

The standard convention seems to be that no signs are inserted in formulas 1, 2, 3 of §2. If this usage is followed then the definition of  $\lambda^*$ becomes more difficult. However Lemmas 2 and 3 still hold as stated, and Lemma 4 holds in the following modified form.

LEMMA 4'. If  $\lambda^*(\alpha) = \sum \alpha_i \otimes \omega_i$  then for any  $\theta \in \mathscr{S}^*$ :

$$\theta \alpha = (-1)^{\frac{1}{2}d(d-1)+d \dim \alpha} \sum \langle \theta, \omega_i \rangle \alpha_i$$

where  $d = \dim \theta$ .

It is now necessary to define  $\tau_i \in \mathscr{S}_{2p}^{i}_{i-1}$  by the equation

$$\lambda^*(\alpha) = \alpha \otimes 1 - \beta \otimes \tau_0 - \beta^p \otimes \tau_1 - \cdots$$

Otherwise there are no changes in the results stated.

PRINCETON UNIVERSITY

#### References

- 1. J. ADEM, The relations on Steenrod powers of cohomology classes, Algebraic geometry and topology, Princeton University Press, 1957, 191–238.
- H. CARTAN, Sur l'itération des opérations de Steenrod, Comment. Math. Helv., 29 (1955), 40-58.
- 3. J. MILNOR and J. MOORE, On the structure of Hopf algebras, to appear.
- 4. N. STEENROD, Cyclic reduced powers of cohomology classes, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 217-223.
- R. THOM, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.