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Abstract

The central aim of this monograph is to provide decomposition results
for quasi-coherent sheaves on the moduli stack of formal groups. These
results will be based on the geometry of the stack itself, particularly the
height filtration and an analysis of the formal neighborhoods of the ge-
ometric points. The main theorems are algebraic chromatic convergence
results and fracture square decompositions. There is a major technical
hurdle in this story, as the moduli stack of formal groups does not have
the finitness properties required of an algebraic stack as usually defined.
This is not a conceptual problem, but in order to be clear on this point
and to write down a self-contained narrative, I have included a great deal
of discussion of the geometry of the stack itself, giving various equivalent
descriptions.

For years 1 have been echoing my betters, especially Mike Hopkins, and
telling anyone who would listen that the chromatic picture of stable homotopy
theory is dictated and controlled by the geometry of the moduli stack Mg,
of smooth, one-dimensional formal groups. Specifically, I would say that the
height filtration of Mpg dictates a canonical and natural decomposition of a
quasi-coherent sheaf on Mygg, and this decomposition predicts and controls the
chromatic decomposition of a finite spectrum. This sounds well, and is even
true, but there is no single place in the literature where I could send anyone in
order for him or her to get a clear, detailed, unified, and linear rendition of this
story. This document is an attempt to set that right.

Before going on to state in detail what I actually hope to accomplish here,
I should quickly acknowledge that the opening sentences of this introduction
and, indeed, this whole point of view is not original with me. I have already
mentioned Mike Hopkins, and just about everything I'm going to say here is
encapsulated in the table in section 2 of [19] and can be gleaned from the notes
of various courses Mike gave at MIT. See, for example, [18]. Further back, the
intellectual journey begins, for myself as a homotopy theorist, with Quillen’s
fundamental insight linking formal groups, complex orientable cohomology the-
ories, and complex cobordism — the basic papers are [44] and [45]. But the
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theory of formal groups predates Quillen’s work connecting algebraic topology
and the algebraic geometry of formal groups: there was a rich literature already
in place at the time he wrote his papers. Lazard did fundamental work in ’50s
(see [34]), and there was work of Cartier [2] on what happens when you work
localized at a prime, and even a thorough treatment of the deformation theory
given by Lubin and Tate [35]. In short, Quillen’s work opened the door for the
importation of a mature theory in geometry into homotopy theory.

It was Jack Morava, I think, who really had the vision of how this should
go, but the 1970s saw a broad eruption of applications of formal groups to
homotopy theory. The twin towers here are the paper of Miller, Ravenel, and
Wilson [38] giving deep computations in the Adams-Novikov Spectral Sequence
and Ravenel’s nilpotence conjectures [46], later largely proved by Devinatz,
Hopkins, and Smith in [7] and [20]. This period fundamentally changed stable
homotopy theory. Morava himself wrote a number of papers, most notably [40]
(see also Doug Ravenel’s Math Review of this paper in [47]), but there are
rumors of a highly-realized and lengthy manuscript on formal groups and their
applications to homotopy theory. If so, it is a loss that Jack never thought this
manuscript ready for prime-time viewing.

Let me begin the account of what you can find here with some indication of
how stacks come into the narrative. One simple observation, due originally (I
think) to Neil Strickland is that stacks can calculate homology groups. Specifi-
cally, if F, and F, are two 2-periodic Landweber exact homology theories and
if G and H are the formal groups over Ey and Fj respectively, then there is a
2-category pull-back square

Spec(EyF) — Spec(Fp)

| g

Spec(E) ——= Mg
This can be seen in Lemma 2.11 below. I heard Mike, in his lectures at Miinster,
noting this fact as piquing his interest in stacks. Beyond this simple calculation,
Strickland should certainly get a lot of credit for all of this: while the reference
[52] never actually uses the word “stack”, the point of view is clear and, in fact,
much of what I say here can be found there in different — and sometimes not so
different — language.

For computations, especially with the Adams-Novikov Spectral Sequence,
homotopy theorists worked with the cohomology of comodules over Hopf alge-
broids. A succinct way to define such objects is to say that a Hopf algebroid
represents an affine groupoid scheme; in particular, Quillen’s theorem mentioned
above amounts to the statement that the affine groupoid scheme arising from the
Hopf algebroid of complex cobordism is none other than the groupoid scheme
which assigns to each commutative ring A the groupoid of formal group laws
and their strict isomorphisms over A. Hopf algebroids were and are a power-
ful computational tool — as far as I know, the calculations of [38] remain, for
the combination of beauty and technical prowess, in a class with Secretariat’s



run at the Belmont Stakes — but an early and fundamental result was “Morava’s
Change of Rings Theorem” ; which, in summary, says that if two Hopf algebroids
represent equivalent (not isomorphic) groupoid schemes, then they have isomor-
phic cohomology. A more subtle observation is that the change of rings results
holds under weaker hypotheses: the groupoid schemes need only be equivalent
“locally in the flat topology”; that is, the presheaves 7wy of components and mq
of automorphisms induces isomorphic sheaves in the fpge topology. (See [21]
and [14] for discussions of this result.) In modern language, we prove this result
by combining the following three observations:

e the category of comodules over a Hopf algebroid is equivalent to the cat-
egory of quasi-coherent sheaves on the associated stack;

e two groupoid schemes locally equivalent in the flat topology have equiva-
lent associated stacks; and

e equivalent stacks have equivalent categories of quasi-coherent sheaves.

Note that in the end, we have a much stronger result than simply an isomor-
phism of cohomology groups — we have an entire equivalence of categories.
Once we've established an equivalence between the category of comodules
and the category of quasi-coherent sheaves (see Equation 3.5) we can rewrite
the cohomology of comodules as coherent cohomology of quasi-coherent sheaves;
for example,
Ext v (B2 MU, MU,) 2 H*(Mgg, w®")

where w is the invertible sheaf on Mg, which assigns to each flat morphism
g : Spec(R) — Myg the invariant differentials we of the formal group classified
by G. Thus, one of our most sensitive algebraic approximations to the stable
homotopy groups of spheres can be computed as the cohomology of the moduli
stack Mgg.

There are other reasons for wanting to pass from comodules over Hopf al-
gebroids to quasi-coherent sheaves. For example, there are naturally occuring
stacks which are not canonically equivalent, even in the local sense mentioned
above, to an affine groupoid scheme. The most immediate example is the mod-
uli stack U(n) of formal groups of height less than or equal to some fixed integer
n > 0. These stacks have affine presentations, but not canonically; the canonical
presentation is a non-affine open subscheme of Spec(L), where L is the Lazard
ring. Thus the quasi-coherent sheaves on U (n) are equivalent to many categories
of comodules, but no particular such category is preferred (except by tradition
— this is one role for the Johnson-Wilson homology theories E(n).) and the
quasi-coherent sheaves themselves remain the basic object of study. The point
is taken up in [25] and [41].

Here is what I hope to accomplish in these notes.

e Give a definition of formal group which evidently satisfies the effective
descent condition necessary to produce a moduli stack. See Proposition
2.6. This can be done in a number of ways, but the I have chosen to use



the notion of formal Lie varieties, a concept developed by Grothendieck
to give a conceptual formulation of smoothness in the formal setting.

A formal group law is equivalent to a formal group with a chosen coor-
dinate. The scheme of all coordinates for a formal group G over a base
scheme S is a torsor Coordg over S for the group scheme A which assigns
to each ring R the group of power series invertible under composition. Us-
ing coordinates we can identify Mg, as the quotient stack of the scheme
of formal groups by the algebraic group A. See Proposition 3.13. This
makes transparent the fact that Mg, is an algebraic stack (of a suitable
sort) and it makes transparent the equivalence between comodules and
quasi-coherent sheaves.

The stack Mepgg is not an algebraic stack in the sense of the standard
literature (for example, [33]) because it does not have a presentation by
a scheme locally of finite type — the Lazard ring is a polynomial ring on
infinitely many generators. It is, however, pro-algebraic: it can be written
as 2-category (i.e., homotopy) inverse limit of the algebraic stacks Mgg(n)
of n-buds of formal groups. This result is inherent in Lazard’s original
work — it is the essence of the 2-cocycle lemma — but I learned it from Mike
Hopkins and it has been worked out in detail by Brian Smithling [51]. An
important point is that any finitely presented quasi-coherent sheaf on Mgy
is actually the pull-back of a quasi-coherent sheaf on Mgg(n) for some n.
See Theorem 3.28.

Give a coordinate-free definition of height and the height filtration. Work-
ing over Z,), the height filtration is a filtration by closed, reduced sub-
stacks

L S M) S M(n—1) C - € M(1) € Mg

so that inclusion M(n) C M(n — 1) is the effective Cartier divisor defined
by a global section v,, of the invertible sheaf w®®" 1) over M(n—1). This
implies, among other things, that M(n) C My, is regularly embedded,
a key ingredient in Landweber Exact Functor Theorem and chromatic
convergence. The height filtration is essentially unique: working over Z,),
any closed, reduced substack of Mg, is either Mg, itself, M(n) for some
n, or M(o0o) = NM(n). See Theorem 5.14. This is the geometric content
of the Landweber’s invariant prime ideal theorem. The stack M(c0) is
not empty as the morphism classifying the additive formal group over
F, factors through M(oco). This point and the next can also be found
in Smithling’s thesis [51]. Some of this material is also in the work of
Hollander [15].

Identify H(n) = M(n) — M(n + 1), the moduli stack of formal groups
of exact height n, as the neutral gerbe determined by the automorphism
scheme of any height n formal group I'y, over F,,. See Theorem 5.38. This
automorphism scheme is affine and, if we choose I',, to be the Honda
formal group of height n, well known to homotopy theorists — its ring



of functions is the Morava stabilizer algebra (see [48], Chapter 6) and its
group of F,» points is the Morava stabilizer group. This is all a restatement
of Lazard’s uniqueness theorem for height n formal groups in modern
language; indeed, the key step in the argument is the proof, essentially
due to Lazard, that given any two formal groups G and G over an F,-
scheme S, then the scheme Isog(G1, G2) of isomorphisms from G to Gs is
either empty (if they have different heights) or pro-étale and surjective over
S (if they have the same height). See Theorem 5.25; we give essentially
Lazard’s proof, but similar results with nearly identical statements appear
in [29].

Describe the formal neighborhood ﬁ(n) of H(n) inside the open substack
U(n) of Mg of formal groups of height at most n. Given a choice of I', of
formal group of height n over the algebraic closure F,, of F,, the morphism

Def(F,, I,)—H(n)

from the Lubin-Tate deformation space to the formal neighborhood is pro-
Galois with Galois group G(F,,T,,), the automorphism group of the pair
(Fp,T,). Lubin-Tate theory identifies Def(F,,I',,) as the formal spectrum
of a power series ring; since a power series ring can have no finite étale
extensions, we may say Def(F,,T,) is the universal cover of H(n). If I',,
is actually defined over [, then (G(IF‘,,, I',,) is known to homotopy theorists
as the big Morava stabilizer group:

G(F,,T,) = Gal(F,/F,)  Autg (T).

From this theory, it is possible to describe what it means to be a module
on the formal neighborhood of a height n point; that is, to give a definition
of the category of “Morava modules”. See Remark 7.27.

If N' — My, is a representable, separated, and flat morphism of algebraic
stacks, then the induced height filtration

CCN@) CN(-1)C - SN CN

with V(n) = M(n) X s, N automatically has that the inclusions NV (n) C
N(n — 1) are effective Cartier divisors. The Landweber Exact Functor
Theorem (LEFT) is a partial converse to this statement. Here I wrote
down a proof due to Mike Hopkins ([18]) of this fact. Other proofs abound
— besides the original [32], there’s one due to Haynes Miller [37], and
Sharon Hollander has an argument as well [15]. The morphism from the
moduli stack of elliptic curves to Mgz which assigns to each elliptic curve
its associated formal group is an example. It is worth emphasizing that
this is a special fact about the moduli stack of formal groups — the proof
uses that H(n) has a unique geometric point.

Give proofs of the algebraic analogs of the topological chromatic conver-
gence and fracture square results for spectra. Work over Z,) and let



in 1 U(n) — M;gg be the open inclusion of the moduli stack of formal
groups of height at most n. If F is a quasi-coherent sheaf on Mgg, we can
form the derived push-forward of the pull-back R(i,).i%F. As n varies,
these assemble into a tower of cochain complexes of quasi-coherent sheaves
on Mg and there is a natural map

F— holim R(iy )iy F.

Chromatic convergence then says that if F is finitely presented, this mor-
phism is an equivalence. The result has teeth as the /(n) do not exhaust
M. To examine the transitions in this tower, we note that the inclusion
M(n) = Mgg —U(n — 1) C Mgy is defined by the vanishing of a sheaf
of ideals Z,, which is locally generated by regular sequence. Then for any
quasi-coherent sheaf on Mg, there is a homotopy Cartesian square (the
fracture square)

F L(f)é(n)

|

R(Z.nfl)*i:;_lj: —_— R(in—l)*izfl (L(]:)%(n))

where L(F )Q(n) is the total left derived functor of the completion of F.
Both proofs use the homotopy fiber of

F—R(in)«tn F

which is the total local cohomology sheaf RI" v(,,)F. This can be analyzed
using the fact that M(n) C Mg is a regular embedding and Greenlees-
May duality [12]; the requisite arguments can be lifted nearly verbatim
from [1], but see also [8] — the fracture square appears in exactly this form
in this last citation. Chromatic convergence is less general — the proof
I give here uses that any finitely presented sheaf can be obtained as a
pull-back from the stack of n-buds Mgg(m) for some m. This allows one
to show that the transition map

between the various total local cohomology sheaves is zero in cohomology
for large n.

I have said very little about the direct applications all this geometry to
stable homotopy theory. This is because of the Mahowald Uncertainty Principle,
a term coined by Doug Ravenel to encapsulate the observation, due to Mark
Mahowald, that any approximation to the stable homotopy groups of spheres
obtained from purely algebraic input will be infinitely far away from the real
answer. Under suitable hypotheses, the algebraic geometry and the homotopy
theory become relatively close; see for example, the illuminating paper of Jens



Franke [9] for a thorough discussion of this point and many further references.
The hypotheses in question usually require that we work at a prime p and
consider only formal groups of height bounded by that prime.
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1 Schemes and formal schemes

This section is devoted entirely to a review of the algebraic geometry we need
for the rest of the paper. It can — and perhaps should — be skipped by anyone
knowledgeable in these matters.

1.1 Schemes and sheaves

We first recall some basic definitions about schemes and morphisms of schemes,
then enlarge the category slightly to sheaves in the fpgc-topology. This is
necessary as formal schemes and formal groups are not really schemes.

Fix a commutative ring R. Schemes over R can be thought of as functors
from Algp to the category of sets. We briefly review this material — mostly to
establish language.

The basic schemes over R are the affine schemes Spec(B), where B is an
R-algebra. As a functor

Spec(B) : Algp—Sets
is the representable functor determined by R; that is,
Spec(B)(A) = Algr (B, A).
If I C B is an ideal we have the open subfunctor U; C Spec(B) with
U(A)={f:B—A| f(I)A= A } C Spec(B).

This defines the Zariski topology on Spec(B). The complement of U is defined
to be the closed subfunctor Z; = Spec(B/I); thus,

Zi(A)y={f:B—A| f(I)A=0 } C Spec(B).
Note that we can guarantee that
Ur(A)U Z;(A) = Spec(B)(A)

only if A is a field.
If X : Algrp — Sets is any functor, we define a subfunctor U C X to be
open if the subfunctor

U xx Spec(B) C Spec(B)

is open for for all morphisms of functors Spec(B) — X. Such morphisms are in
one-to-one correspondence with X (B), by the Yoneda Lemma. A collection of
subfunctors U; C X is called a cover if the morphism UU;(F) — X (F) is onto
for all fields FF.

As a matter of language, a functor X : Algp — Sets will be called an
R-functor.



1.1 Definition. An R-functor X is a scheme over R if it satisfies the following
two conditions:

1. X is a sheaf in the Zariski topology; that is, if A is an R-algebra and

ai,...,a, € A are elements so that ay + -+ a, = 1, then

X(A) —=[1X(Ala; ")) == [T X (Ale; 'a; )

is an equalizer diagram; and

2. X has an open cover by affine schemes Spec(B) where each B is an R-
algebra

A morphism X — Y of schemes over R is a natural transformation of R-
functors.

An open subfunctor U of scheme X is itself a scheme; the collection of all
open subfunctors defines the Zariski topology on X.

1.2 Remark (Module sheaves and quasi-coherent sheaves). There is an
obvious sheaf of rings Ox in this topology on X called the structure sheaf of X.
If U = Spec(B) C X is an affine open, then Ox (U) = B; this defintion extends
to other open subsets by the sheaf condition. A sheaf F of Ox-modules on X
is a sheaf so that

1. for all open U C X, F(U) is an Ox (U)-module;

2. for all inclusions V' — U, the restriction map F(U) — F(V) is a morphism
of Ox (U)-modules.

We now list some special classes of Ox-module sheaves. The following defini-
tions are all in [10], §0.5. Let X be a scheme. For any set I write (’)g) for the
coproduct of Ox with itself I times. This coproduct is the sheaf associated to
the direct sum presheaf.

QC. A module sheaf F is quasi-coherent if there is a cover of X by open sub-
schemes U; so that for each ¢ there is an exact sequence of O ,-sheaves

Oé{_) — (’),(in) — Flu, — 0.

LF. A quasi-coherent sheaf is locally free if the set J can be taken to be empty.

FP. A quasi-coherent sheaf F is finitely presented if the sets I and J can be
taken to be finite.

FT. A module sheaf F is of finite type if there is an open cover by subschemes
U; and, for each i, a surjection

qu:) — Flu, — 0.
with I finite.

10



C. A module sheaf F is coherent if is of finite type and for all open subschemes
U of X and all morphisms

f : 03—>~7:|U
of sheaves, the kernel of f is of finite type.

There are examples of sheaves of finite type which are not quasi-coherent.
Every coherent sheaf is finitely presented and, hence, quasi-coherent; however,
a finitely presented module sheaf is coherent only if Ox itself is coherent. For
affine schemes Spec(A), this is equivalent to A being a coherent ring — every
finitely generated ideal is finitely presented. This will happen if A is a filtered
colimit of a diagram of Noetherian rings with flat transition maps; for example,
the Lazard ring L.

If X1 — Y « X, is adiagram of schemes, the evident fiber product X; xy X»
of functors is again a scheme; furthermore, if U = X; — Y is an open subscheme,
then U xy X9 — X5 is also an open subscheme. Thus, if f : X — Y is a
morphism of schemes, and F is a sheaf in the Zariski topology on X, we get a
push-forward sheaf f,F onY with

[ FU) = F(U xy X).

In particular, f,Ox is a sheaf of Oy-algebras and if F is an Ox-module sheaf,
f«F becomes a Oy-module sheaf. Extra hypotheses are needed for f,.(—) to send
quasi-coherent sheaves to quasi-coherent sheaves. See Proposition 1.6 below.
The functor f, from Ox-modules to Oy-modules has a left adjoint, of course.
If f: X — Y is a morphism of schemes and F is any sheaf on Y, define a sheaf
f~1F on X by
[fLF)(U) = colim F(V)

where the colimit is taken over all diagrams of the form

U——X

|

V—Y

with V open in Y. If F is an Oy-module sheaf, then f~'F is an f~'Oy-module
sheaf and the pull-back sheaf is

f*}— =0y ®f—1OY filf.
Thus we have an adjoint pair
(11) f>k : Mody —= Modyx : f*

Here and always, the left adjoint is written on top and from left to right. If F
is quasi-coherent, so if f*F; if Ox is coherent and F is coherent, then f*F is
coherent.

11



1.3 Remark (The geometric space of a scheme). Usually, we define a
scheme to be a locally ringed space with an open cover by prime ideal spectra.
This is equivalent to the definition here, which is essentially that of Demazure
and Gabriel. Since both notions are useful — even essential — we show how to
pass from one to the other.

If X is a functor from commutative rings to sets, we define the associated
geometric space | X | as follows. A point in |X| — also known as a geometric point
of X — is an equivalence class of morphisms f : Spec(F) — X with F a field.
The morphism f is equivalent to f’ : Spec(F') — X is they agree after some
common extension. This becomes a topological space with open sets |U| where
U C X is an open subfunctor.

If X = Spec(B), then a geometric point of X is an equivalence class of
homomorphisms of commutative rings g : B — [F; this equivalence class is
determined by the kernel of g, which must be a prime ideal. Furthermore, the
open subsets of |Spec(B)]| are exactly the subsets D(I) where I C R is an ideal:
D(I) is complement of the closed set V' (I) of prime ideals containing I. Thus
|[Spec(B)| is the usual prime ideal spectrum of B.

If X = Spec(B), then |X| becomes a locally ringed space, with structure
sheaf O the sheaf associated to the presheaf which assigns to each D(I) the ring
Sl_lR where

Sr={a€eBla+p#pforalpec D)}

The stalk O, of O at the point x specified by the prime ideal p is exactly B,.
If X is a general functor, then there is a homeomorphism of topological spaces

colim |Spec(B)| — | X

where the colimit is over the category of all morphisms Spec(B) — X. This
equivalence specifies the structure sheaf on | X| as well. Indeed, if U C X is an
open subfunctor, then, by definition U X x Spec(B) is open in Spec(B) for all
Spec(B) — X and O(|U]) is determined by the sheaf condition.

If | X| is a scheme, then | X| has an open cover by open subsets of the form
V; = |Spec(B;)| and, in addition,

(O)x)

Vi = Olspec(B))|-

Whenever a locally ringed space (Y, O) has such a cover, we will say that Y has
a cover by prime ideal spectra.

The geometric space functor | — | from Z-functors to locally ringed spaces
has a right adjoint S(—): if Y is a geometric space, then the R-points of S(Y)
is the set of morphisms of locally ringed spaces

|Spec(B)|—Y.

The following two statements are the content of the Comparison Theorem of
§1.1.4.4 of [4].

12



1. Let (Y, O) be a locally ringed space with an open cover V; by prime ideal
spectra. Then the adjunction morphism |S(Y)| — Y is an isomorphism
of locally ringed spaces,

2. If X be a functor from commutative rings to sets. Then | X| has an open
cover by prime ideal spectra if and only if X is a scheme and, in that case,
X — S|X]| is an isomorphism.

Together these statements imply that adjoint pair | — | and S(—) induce an
equivalence of categories between schemes and locally ringed spaces with an
open cover by prime ideal spectra. For this reason and from now on we use one
or the other notion as is convenient.

1.4 Remark. If X is a scheme and = a geometric point of X represented by
f : Spec(F) — X, then the stalk Ox , of the structure sheaf at X can be
calculated as
Ox = colim Ox (U).
UCxX

where U runs over all open subshemes so that f factors through U. This is
the global sections of f~1Ox. If f factors as Spec(F) — Spec(B) C X with
Spec(B) open in X, then there is an isomorphism

OX7{L- = B,

where p is kernel of R — F. It is easy to check this is independent of the choice
of f.

If X — Y is a morphism of schemes, then we have a morphism of sheaves
10y — Ox. If x € X is a geometric point, we get an induced morphism of
local rings Oy, f(z) — Ox a-

1.5 Remark. We use this paragraph to give some standard definitions of prop-
erties of morphisms of schemes.

1.) A morphism f: X — Y of schemes is flat if for all geometric points of
X geometric space, the induced morphism of local rings

OY,f(:L’) - OX@

is flat. The morphism f is faithfully flat if it is flat and surjective. Here surjective
means X (F) — Y (FF) is onto for all fields or, equivalently, the induced morphism
of geometric spaces | X| — |Y| is surjective.

2.) A scheme X is called quasi-compact if every cover by open subschemes
U; C X has a finite subcover. A morphism of schemes X — Y is quasi-compact
if for every quasi-compact open V' C Y, the scheme V' xy X is quasi-compact.

3.) A morphism f : X — Y of schemes is called quasi-separated if the
diagonal morphism X — X xy X is quasi-compact.

4.) A morphism f : X — Y of schemes is finitely presented if for all open
UCY, f.Ox(U) is a finitely presented Oy (U)-algebra; that is, f.Ox(U) is a
quotient of Oy (U)[z1,...,z,] by a finitely generated ideal.

13



Any affine scheme Spec(B) is quasi-compact as the subschemes Spec(B[1/f])
form a basis for the Zariski topology. It follows that every morphism of affine
schemes is quasi-compact and quasi-separated.

The following is in [4], Proposition 1.2.2.4.

1.6 Proposition. Let f : X — Y be a quasi-compact and quasi-separated
morphism of schemes. If F is a quasi-coherent Ox-module sheaf, then f.F is
a quasi-coherent Oy module sheaf.

Thus, if f is quasi-compact and quasi-separated, Equation 1.1 yields an
adjoint pair

f*: Qmody ——= Qmody : f..

1.7 Remark (Faithfully flat descent). Let f : X — Y be an morphism of
schemes and let
XRZXXY---XyX

where the product is taken n times. If ¢ : [m] — [n] is any morphism in the
ordinal number category, define ¢* : X™ — X" by the pointwise formula

Ao, .., Tn) = (Tp0)s > Tg(n))-

In this way we obtain a simplicial R-functor X, augmented to Y. This is the
coskeleton of f.

A descent problem for f is a pair (F,t) where F is a sheaf on X and
Y 1 diF — dijF is an isomorphism of sheaves on X Xy X subject to the cocycle
condition

1% = dydyy

over X Xy X Xy X. A solution to a descent problem is a sheaf £ over Y and
an isomorphism ¢q : f*€ — F over X so that the following diagram commutes

dif*& —S=dif*€

dfﬁ’ol ldfﬁwo

i F ——d;F

where ¢ is the canonical isomorphism obtained from the equation fd; = fdj.
If f is faithfully flat, there is exactly one solution with £ quasi-coherent and
we get an evident equivalence of categories. This has many refinements; for
example, one could concentrate on algebra sheaves instead of module sheaves.
See Proposition 1.17 below.

1.8 Notation. Let C be a category, Cy a sub-category, and X € C. Let Pre(Cy)
the category of presheaves (i.e., contravariant functors) from Cy to sets.! Then

IThe category of presheaves as defined here is not a category as it might not have small
Hom-sets. There are several ways to handle this difficulty, one being to bound the cardinality
of all objects in question at a large enough cardinal that all objects of interest are included.
The issues are routine, so will ignore this problem. The same remark applies to category of
R-functors.
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the assignment
X — Home(—, X)

defines a functor C — Pre(Cy) and we will write X equally for the object X
and the associated representable presheaf. In our main examples, C will be
R-functors and Cy will be affine schemes or schemes over R. In this case, the
C — Pre(Cy) is an embedding; if C is R-functors and Cy = Aff/R, it is an
equivalence.

1.9 Remark (Topologies). In [3] Exposé IV, topologies on schemes over a
fixed base ring R are defined as follows.

First, if X is an R-functor, then a sieve on X is a subfunctor F' of the
functor on R-functors over X represented by X itself; thus for every ¥ — X,
F(Y) is either either empty or one point. The collection E(F) of Y — X so
that F(Y) # ¢ has the property that if Y € E(F) and Z — Y, then Z € E(F).
The collection E(F') determines F'; conversely any such collection E determines
a sieve F' with E(F) = E.

Next, let f; : X; — X be a collection of morphisms R functors. This
determines a sieve by taking E to be the set of Y — X which factor through
some f;. This collection of morphisms is the base of resulting sieve; any sieve
has at least one base, for example E(F'). Thus, it may be convenient to specify
sieves by families of morphisms.

In [3] IV.4.2., a topology on the category of R-functors is an assignment, to
each R-functor, a set of covering sieves J(X) subject to the following axioms:

1. X e J(X);

2. if F is a sieve for X and Spec(B) xx F € J(Spec(B)) for all morphisms
of R-functors Spec(B) — X with affine source, then F € J(X);

3. (Base change) if F' € J(X) and Y — X is a morphism of R-functors then
FxxYe J(Y),

4. (Composition) if F € J(X) and G € J(F), then G € J(X);

5. (Saturation) if F is a sieve for X, G a sieve for F and G € J(X), then
F e J(X);

These axioms together imply
6. (Local) If Fy and F are in J(X), so is Fy N Fs.

As in [3] IV.4.2.3, these axioms can be reformulated in terms of families of
morphisms: it is equivalent to assign to each R-functor X a collection C'(X)
of sets of covering families of morphisms {X; — X} of R-functors with the
following properties:

1. If Y — X is an isomorphism, then {Y — X} € C(X);

15



2. If {X; — X} is a set of morphisms so that {Spec(B) x x X; — Spec(B)} €
C(Spec(B)) whenever Spec(B) — X is a morphism from an affine scheme,
then {X; — X} € C(X);

3. (Base change) If Y — X is a morphism of schemes and {X; — X} € J(X),
then {Y xx X; - Y} e C(Y);

4. (Composition) If {X; — X} € C(X) and {X;; — X;} € C(X;), then
{Xij — X} e C(X);

5. (Saturation) If {X; — X} € J(X) and {Y; — X} is a set of morphisms
of R-functors so that for ¢ there is a j and a factoring X; — Y; — X of
X; — X, then {Y; — X} € C(X).

These conditions imply

6. (Local) If {Y; — X} is a set of morphisms so that there exists a set
{X; — X} € C(X) with {Y; xx X; — X;} € C(Y;) for all j, then

If we are simply given, for each X, a collection of morphisms Jy(X) satisfying
the axioms (1), (3), and (4), then we have a pretopology; the full topology can
be obtained by completing in the evident manner using axioms (2) and (5).

Notice that while the preceding discussion defines a topology on R-functors
we can restrict to a topology on schemes by simply considering only those R-
functors which are schemes. Note, however, that the covering sieves J(X) may
contain R-functors which are not schemes.

A category of schemes C with a collection J(X) of covering sieves is called a
site. For example, if X is a scheme, the Zariski site on X is has base category
C the set of open immersions U — X. A covering family for U is a finite set of
open immersions U; — U so that LWU; — U is surjective. This is a pretopology,
and we get the topology by extending as above. The small étale site on X has
base category the étale morphisms U — X; a covering family is a finite family
of étale maps U; — U so that UU; — U is surjective. The big étale topology
has as its underlying category the category of all schemes over X. The covering
families remain the same.

This examples can be produced in another way. Let P be a fixed property
of schemes closed under base change and composition, and with the property
that open immersions have property P. We then define a P-cover of an affine
scheme U to be a finite collection of morphisms U; — U with affine source and
satisfying property P. For a general scheme X a P-cover is a finite collection of
morphisms V; — X so that for all affine open subschemes U of X, the morphisms
Vi xx U — U become a P-cover. This is a pretopology and, from this, we get
the P-topology. If P is the class of étale maps we recover the étale sites; if P is
the class open immersions, the small P-site is the Zariski site.

We write Jp(X) for the resulting covering sieves. These topologies and the
fpgc topology about to be defined are sub-canonical; that is, the presheaf of
sets represented by a scheme X is a sheaf; see [3] IV. 6.3.1.iii.
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1.10 Definition (The fpgc-topology). The fpgc-topology on schemes is
the topology obtained by taking the class P of morphisms of schemes to be flat
maps. Thus a fpqc-cover of an affine scheme U is a finite collection U; — U of
flat morphisms so that LUU; — U 1is surjective and a fpqc-cover of an arbitrary
scheme X is a finite collection of morphisms V; — X so that V; xx U — U is
a cover for all affine open U C X. The fpqc-site on X is the category of all
schemes over X with the fqpc-topology.

A related topology, which we won’t use is the fppf-topology, for which we
take the class P to be the class of all flat, finitely presented, and quasi-finite
maps. The acronym fppf stands for “fidelement plat de présentation finie”;
this is self-explanatory. The acronym fpqc stands for “fidelement plat quasi-
compact”. The name derives from the following result; see [3] IV. 6.3.1.v.

1.11 Proposition. Let X be a scheme and let X; — X be a finite collection of
flat, quasi-compact morphisms with the property that

L XZ—>X

is surjective. Then {X; — X} is a cover for the fpqc-topology. In particular,
any flat, surjective, quasi-compact morphism is a cover for the fpqc-topology.

1.12 Remark (Sheaves). Continuing of synopsis of [3] Exposé IV, we define
and discuss sheaves. If X is an R-functor and F'is a sieve on R, then F' become a
contravariant functor on the category Aff /X of affines over X. Given a topology
on schemes defined by covering sieves J(—), a sheaf on X is a contravariant
functor F on Aff/X so that for all affines U — X over X and all G € J(U),
the evident morphism

F(U) 2 Hom(U, F)—Hom(G, F)

is an isomorphism. Here Hom means natural transformations of contravariant
functors. If G is defined by a covering family U; — U of affines, then Hom(G, F)
is the equalizer of

H}—(Uz) :}—(Uz XU U])

and we recover the more standard definition of a sheaf. By [3] IV.4.3.5, if the
topology is generated by a class of covering families closed under base change,
it is sufficient to check the sheaf condition on those families.

We will be considering only those topologies defined at the end of Remark
1.9; thus all our sieves will be be obtained by saturation from a class of mor-
phisms V' — U on affine schemes which are closed under base change and
composition and contains open immersions. For such topologies, we can restrict
the domain of definition of presheaves to appropriate subcategories of Aff/X.

Before proceeding, we need to isolate the following concept.

1.13 Definition. Let I be an indexing category and let X = X4 be an I-diagram
of schemes. A cartesian Ox-module sheaf consists of
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1. for each i € I a quasi-coherent sheaf F; on X;;
2. for each morphism f : X; — X; in the diagram, an isomorphism
O : f*F; = Fi
of quasi-coherent sheaves

subject to the following compatibility condition:

Given composable arrows X; . X; . Xy in the diagram, then we
have a commutative diagram

ey,
[ g Fe ——f"F;

.| lef

(gf)*}—k T Fi

1.14 Remark (Quasi-coherent sheaves in other topologies). Let X be a
scheme and consider the topology defined by some class of morphisms P closed
under base change, composition, and containing open inclusions. We assume
further that covering families are finite and faithfully flat. This includes the
Zaraski, étale, and fpgc topologies. Then there is a structure sheaf O% on a
site with this topology determined by

O% (Spec(B) — X) = B.

Notice that, by the sheaf condition, it is only necessary to specify O% on affines.
This a sheaf of rings and we write M0d§ for the category of module sheaves
over this sheaf. If Mody is the category of module sheaves over Ox in the
Zariski topology (see 1.2), then there is an adjoint pair

*

(1.2) Modx 4><% Mod%

with €* defined by pull-back. The right adjoint €, is defined by restricting the
affine open inclusions U — X and then extending by the sheaf condition.

This theory extends well to quasi-coherent sheaves. Define a module sheaf
F € Mod?( to be cartesian if it is cartesian (as in Definition 1.13) for the
category of affines over X; that is, given any morphism

Spec(B)
-
7

Spec(4)

X
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in Aff/X, the induced map
B ®4 F(Spec(A) — X) — F(Spec(B) — X)

is an isomorphism of R-modules. If £ € Modx is quasi-coherent, then €*£ is
cartesian; conversely if F is cartesian, then €,F is quasi-coherent. Thus the
adjoint pair Equation 1.2 descends to an adjoint pair

*

(1.3) Qmod 2 Mod%,

This is an equivalence of categories; therefore, we drop the clumsy notation
Modf(’Cart and confuse the notion of a quasi-coherent sheaf with that of carte-
sian sheaf.

There are important sheaves in Modz which are not cartesian; for example,
the sheaf (2(_), x of differentials over X is quasi-coherent for the Zariski topology,
cartesian for the étale topology, but not cartesian for the fpgc topology.

We finish this section with a review of an important class of morphisms.

1.15 Definition. 1.) A morphism f : X — Y of schemes over R is called
affine if for all morphisms Spec(B) — Y, the R-functor Spec(B) xy X is
isomorphic to an affine scheme.

2.) A morphism f : X — Y of schemes is a closed embedding if it is
affine and for all flat morphisms Spec(B) — Y, the induced morphisms of rings

B =0y (B)—f.Ox(B) = Ox(Spec(B) xy X — X)

18 surjective.

3.) A morphism f : X — Y of schemes is separated if the diagonal
morphism X — X Xy X is a closed embedding. A scheme over a commutative
R is separated if the morphism X — Spec(R) is separated.

If f: X — Y is an affine morphism of schemes, then the Oy algebra sheaf
f+Ox is quasi-coherent. Conversely, if B is quasi-coherent Oy-algebra sheaf,
define a R-functor Specy-(B) over Y by

Specy (B)(A) =[]  Alga(B(Spec(4) —Y), A).
Spec(A)—Y

Then g : Specy (B) — Y is an affine morphism of schemes and ¢.Ogpec,, (8) = B.
This gives an equivalence between the category of quasi-coherent Oy-algebras
and the category of affine morphisms over Y. Restricting this equivalence gives a
one-to-one correspondence between closed embeddings X — Y and ideal sheaves
7 COy.

An analogous result with an analogous construction holds for quasi-coherent
sheaves.
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1.16 Proposition. Let f : X — Y be an affine morphism of schemes. Then
the push-forward functor f. defines an equivalence of categories between quasi-
coherent sheaves on X and quasi-coherent f.Ox-module sheaves on'Y . In par-
ticular, fy is exact.

If f: T — S is a morphism of schemes and X — S is an affine morphism,
the f*X =T xg X is also affine. If f is faithfully flat, we have the following
result.

1.17 Proposition. Let f : T — S be a faithfully flat morphism of schemes.
Then f*(—) defines and equivalence of categories from the category of schemes
affine over S to the category of descent problems in schemes affine over T.

1.2 The tangent scheme

If A is a commutative ring, let A(e) = A[z]/(2?) be the A-algebra of dual
numbers. Here we have written ¢ = x + (22). There is an augmentation ¢ :
A(e) — A given by € — 0.

Let R be a commutative ring and let X be R-functor. Define the tangent
functor Tanx — X over X to be the functor

Tanx(A) = X(A(e))

with the projection induced by the augmentation g : A(¢) — A. There is a zero
section s : X — Tany induced by the unit map A — A(e). If X — Sis a
morphism of R-functors, then the relative tangent functor 7anx g is defined by
the pull-back diagram

TanX/S _— TanX

|

S ——Tang

If we let A(er,ea) = Alz,y]/ (22, 2y, y?), then the natural A-algebra homomor-
phism A(e) — A(eq, €2) given by € — €1 + € defines a multiplication over X

Tanx/s X x TanX/S — TanX/S

so that Tany /g is an abelian group R-functor over X.

If X — S is a morphism of schemes, then Tanx /s is an affine scheme over
X. See Proposition 1.23. We will see this once we have discussed the connection
between the Tany,g and the sheaf of differentials Q5.

Let X be an R-functor for some commutative ring R. Define the Ox-module
presheaf of differential Qx,r by the formula

Qx/r(Spec(B) — X) = Qp/g.

This became a quasi-coherent sheaf in the Zariski topology. If f : X — Y is a
morphism of R-functors, define Qx/y by the exact sequence of Ox-modules (in
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the Zariski topology)
[*Qy/r — Ox/r — Qx/v — 0.
Since Qp,p = J(B)/J(B)? where J(B) is the kernel of the multiplication map
B ®r B—B
this definition can be reformulated as follows. A proof can be found in [4] §1.4.2.

1.18 Lemma. Let X — S be a separated morphism of schemes, so that diagonal
morphism : A : X — X xXg X is a closed embedding. Then there is a natural
isomorphism of quasi-coherent sheaves on X

Qx/s XA T/ T?
where J is the module of the closed embedding A.

If X is not separated, we can still identify the differentials by a variation on
this method: if we factor the diagonal map as a closed embedding followed by
an open inclusion

XL>V—>X><SX

then Qx g = j*J/J? where J is the ideal defining j.

Needless to say, there is a close connection between differentials and deriva-
tions. If R is a commutative ring and M is an R-module, the square-zero
extension of R by M is the R-algebra R x M which is R x M as an R-module
and multiplication

(a,x)(b,y) = (ab,ay + bx).
This has an extension to sheaves.
1.19 Definition. Let F be a quasi-coherent sheaf on a scheme X. Then we
define the Ox-algebra sheaf Ox x F on X to be the square-zero extension of

Ox. Then a deriwation of X with coefficients in F is a diagram of sheaves of
commutative rings

Ox — L s 0y xF
Ox.

If g: X — S is a scheme over S, then an S-derivation of X with coefficients in
F is a derivation of X with coefficients in F so that

Q*f : q*OX_)q*OX X q*]:

is a morphism of Og-algebra sheaves. We will write Derg(X,F) for the set of
all S-derivations of X with coefficients in F.
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1.20 Example. Suppose X — S is a separated morphism of schemes. Then,
by definition, A : X — X Xg X is a closed embedding; let J be the ideal
of this embedding. Write (X xg X); C X xg X for the subscheme defined
by the vanishing of J2. Then the splitting provided by the first projection
p1: X Xg X — X defines an isomorphism

A*O(XXsX)l = OX X QX/S-
Then the second projection defines an S-derivation of X
Ju: Ox—0x % Qx/s

The morphisms f, or the resulting morphism d : Ox — Qx/g is called the
universal derivation.

The module of S-derivations is the global sections of the sheaf Derg(X,F)
which assigns to each Zariski open U C X the module of derivations

DerS(U, -7:|U)
This is an Ox-module sheaf, although not necessarily quasi-coherent.

1.21 Proposition. There is a natural isomorphism of Ox-module sheaves
homox (QX/S7 .7:)—>D6T5(X, ]:)
given by composing with the universal derivation.

Proof. The inverse to this this morphism is given as follows. Let f : Ox —
Ox x F be any derivation and let fy be the zero derivation; that is, inclusion
into the first factor. Also let p: Ox X F — Ox be the projection. Consider the
lifting problem

X—— > (X xgX)1

7
—~
p e c
—~
—~

SpecX(OX X f) WX Xg X.

Here we have written h for a morphism when we mean Specy (h). Since Ox xF
is a square-zero extension, this lifting problem has a unique solution g and that
g yields a morphism

A*O(XXSX)l = 0x X QX/S —O0x xF
of Ox-algebra sheaves over Ox as needed. O

The following result follows immediately from the previous proposition upon
taking global sections. Note that if X = Spec(B) — Spec(R), this amounts to
the usual isomorphism

MOdB(QB/R,M) = DerR(B7M).
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1.22 Corollary. There is a natural isomorphism of modules over the global

sections over X
MOdX(QX/Saj:) = D(%I',s()(7 .7:)

given by composing with the universal derivation.

If F is a quasi-coherent sheaf of Ox-modules on a scheme X, we can form
the symmetric algebra Sym,  (F); this is a sheaf of quasi-coherent Ox-algebras

on X and we denote by
V(F)—X

the resulting affine morphism. If A is an R-algebra, then

V(F)(A) = ][] Moda(F(A),A).
Spec(A)—X

The diagonal map F — F @ F gives V(F) the structure of an abelian group
scheme over X.
Proposition 1.21 implies the following result — in the latter proposition set
F = Ox and note that
Ox(ﬁ) = OX X Ox.

1.23 Proposition. If X — S is a separated morphism of schemes, there is a
natural isomorphism of abelian group schemes over X

V(Qy/s) = Tanyys.
The following standard fact is useful for calculations.

1.24 Lemma. Leti: X — Y be a closed embedding of separated schemes over
S defined by an ideal T C Oy . Then there is an exact sequence of sheaves on X

#T)T? —L> i*Qyys —> Qx5 —> 0

where d is induced by the restriction of the universal derivation.

Proof. Let F be a sheaf of Ox-modules on X. The statement of the lemma is
equivalent to the exactness of the sequence

0 — Derg(X,F) — Ders(Y,i,F) — homo, (T/I?,i.F)

which is easily checked. U

1.3 Formal Lie varieties

We next review the notion of a formal Lie variety, which can be interpreted
as a notion of a smooth formal scheme affine over a base scheme S with a
preferred section. The first concept (which appeared implicitly in Lemma 1.24)
is important in its own right.
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1.25 Definition. Let i : X — Y be a closed embedding of schemes defined by
an ideal T C Oy . Then the quasi-coherent Ox-module

w; T /12
18 called the conormal sheaf or the module of the embedding i.

Note that the canonical map Z/Z? — i,w; of quasi-coherent sheaves on Y is
an isomorphism.

1.26 Definition. Ifi: X — Y is a closed embedding of schemes defined by an
ideal T, define the nth infinitesimal neighborhood

Y, =Inf%(Y)CY

of X in'Y to be the closed subscheme of Y defined by the ideal T,

More generally, suppose that X — Y is an injection of fpqgc sheaves over
some base scheme S. Define Inf’y(Y) CY to be the subsheaf with the following
sections. If U — S is quasi-compact, then [Inf'x (Y)](U) is the set of all a €
Y (U) which satisfy the following condition: there is an fpgc cover V.— U and
a closed subscheme V' C'V defined by an ideal with vanishing (n + 1)st power
so that

CL|V S X(V/)

1.27 Remark. The proof that the notion of infinitesimal neighborhoods for
sheaves generalizes that for schemes is Lemma I1.1.02 of [36]. This lemma is
stated for the fppf-topology, but uses only properties of faithfully flat maps of
affine schemes, so applies equally well to the fpgc-topology. In the same ref-
erence, Lemma I1.1.03, Messing shows that infinitesimal neighborhoods behave
well with respect to base change. Specifically, if X C Y is an embedding of
fpqc-sheaves over a scheme S and f: T — S is a morphism of schemes, then

(1.4) Inff.  (f7Y) = f*Inf% (V).

If X — Y is a closed embedding of schemes, we get an ascending chain of
closed subschemes
X=YCY1CY,C---CY.

The conormal sheaves of X — Y,, are all canonically isomorphic; hence this
module depends only on Y;. To get an invariant which depends on Y, filter
Oy by the powers of the ideal Z to get a graded Oy /Z-algebra sheaf on Y. By
Proposition 1.16 this determines a unique graded Ox-algebra sheaf gr,(Y) on
X with

ey (Y) = i* (24 /74)

In particular, gry(Y) = w;. We immediately have that

gry,(Yn) =
0, k> n.
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Now suppose Y is a scheme over S and e : S — Y is a closed inclusion and
a section of the projection Y — S. Let us define

(1.5) Oy(e) g Oy

to be the ideal sheaf defining this inclusion. It can be thought of as the sheaf
of functions vanishing at e. In this case the natural map of Lemma 1.24

d:we =€e"Oy(e)/Oy(e)*—e* Qy/s
becomes an isomorphism; indeed, the exact sequence of the proof collapses to
an isomorphism.

1.28 Remark. Let S be a scheme, X a sheaf in the fpgc-topology over S and
e : S — X a section of the structure map X — S. Then we can make the
following definitions and constructions.

1. Let X, = Inf§(X). We say X is ind-infinitesmal if the natural map
colimInf§(X) — X
is an isomorphism of sheaves.

2. Suppose each of the X, is representable. Then w, can be defined as the

conormal sheaf of any of the embeddings S — X,,; furthermore w, =
e*Qx, /s for all n.

3. More generally, if each of the X, is representable define the graded ring
gr,(X) =limgr,(X,); then if k <n

gr (X) = gry (Xy).

1.29 Definition (Formal Lie variety). Let S be a scheme, X a sheaf in the
fpgc-topology over S and e : S — X a section of the structure map X — S.
Then (X, e) is a formal Lie variety if

1. X is ind-infinitesmal and X,, = Inf'(X) is representable and affine over
S for allm > 0;

2. the quasi-coherent sheaf w, is locally free of finite rank on S;
3. the natural map of graded rings Sym, (w.) — gr,(X) is an isomorphism.

A morphism [ : (X,e) — (X', €') of formal Lie varieties is morphism of sheaves
which preserves the sections.

1.30 Remark. By Remark 1.27 and Equation 1.4 formal Lie varieties behave
well under base change. If (X, e) is a formal Lie variety over a base scheme S
and T — S is a morphism of schemes, then f*X — T has an induced section

f*e and
def

[1(X,e) = (f*X, f7€)

is a formal Lie variety. We will often drop the section e from the notation.
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1.31 Remark. We show that, locally in the Zariski topology, every formal Lie
variety is isomorphic to the formal spectrum of a power series ring.

1.) Let S = Spec(A) and let X be the formal scheme Spf(A[[zy, - ,x¢]]).
Thus for an A-algebra B,

X(B)={ (b1,...,bt) | b; is nilpotent } C B"
Let e : S — X be the zero section, then
X, = Spec(Alzy, -, z4]/(z1,...,2)" )

and w, is the sheaf obtained from the free A-module of rank t generated by the
residue classes of x1,- -, x¢. It follows that (X, e) is a formal Lie variety.

2.) Conversely, suppose that S = Spec(A) and that the global sections of
we on S is a free A-module with a chosen basis z1,...,x;. There is an exact
sequence of quasi-coherent Ox  -sheaves

0— Ox,(e) = Ox, —e.0s—0
whence an exact sequences of quasi-coherent sheaves on Og
0— Q*OXn (e) - Q*OXn — Og — 0.

Here we are writing ¢ : X,, — S for the projection. Since ¢.Ox, (e¢) —
¢+O0x, _,(e) is onto for all n and ¢.Ox,(e) = w. we may choose compatible
(in n) splittings w. — ¢.Ox, (e) and get compatible maps

Symg(we) — ¢.0x,,
which, by Definition 1.29.3, induce isomorphisms
Symg(we) /T — ¢.0x,

where J = ®g>0Symy (we) is the augmentation ideal. Since the global sections
of Symg(w,)/J" ! are isomorphic to A[z1, -+, z¢]/(x1,- - ,24)" T we say that
the choice of the basis for the global sections of w, and the choice of compatible
splittings yield an isomorphism X 2 Spf(A[[x1,- - ,x¢]]) of formal Lie varieties
over Spec(A). This isomorphism is very non-canonical, however.

3.) Finally, for a general base scheme S, choose an open cover by affines
U; = Spec(4;) so that the sections of w, over U; is free. Then, after making
suitable choices, we get an isomorphism

Ui xs X = Spf(A;[[z1, -+ @]]).

1.32 Remark (The tangent scheme of a formal Lie variety). Let (X,e)
be a formal Lie variety over a scheme S. Then Tany,g is not necessarily a

26



scheme, but only a sheaf in the fpgc topology. We’d like to give a description
of Tany,s as a formal Lie variety. Define Liex,s as the pull-back

LieX/S *E>Tanx/s

]

S ———X.
More generally, define (Tany,g), by the pull-back diagram

(TanX/S)n —_— TanX/S

| |

X, ———X,
so that (Zanyx,g)1 = Liex/g. There are natural maps
Tany, /s — (Tanx/g)n
but these are not in general isomorphisms; however, we do have that
colim7any, /s — colim(7anx/s), — ZTanx,g

are all isomorphisms.
To analyze the sheaves (Tany,g), let us write j. : X, — Xpqp for the
inclusion. Then Lemma 1.24 shows that for all k£ > 0, the natural map

jz+1QX'rL+k+l/S HjZQXn#»k/S
is an isomorphism of locally free sheaves on X,,. Write (Q2x/g), for this sheaf.
Again Lemma 1.24 shows that there is a surjection
(Qx/8)n—0x,, /s

but the source is a locally free sheaf and the target is not in general. For
example, if n = 1, (x,g)1 = we but Qx,,5 = 0. Now we check, using that
X = colim X,, and Lemma 1.23 that there is a natural isomorphism of abelian
sheaves over X,

Vi, (Qx/s)n) = (Tanx;s)n-

In particular
Vs(we) = LieX/S.

The natural map we = g«eswe — ¢+(Qx/5)n of quasi-coherent sheaves on S
defines a coherent sequence of projections

(Tanx/s)n—Liex/s
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and ¢ : Liex,g — (Zanx/g)n is a section of this projection. Local calculations,
using Remark 1.31, now imply that the map (7T any /S5 ¢) is a formal Lie variety
over Liey,g; the scheme (7anx/g), is the nth infinitesimal neighborhood of
LieX/S in Tanx/s.

The local calculations are instructive. If S = Spec(A) and suppose X =
Spf(A[[z1,...,2¢]] with e : S — X defined by the ideal I = (x1,...,x,), then

(Tanx/s)n = Spec((Al[z1, - . an]]/T") [y, .. ., dy])

In particular
Liex,g = Spec(A[dxy, . .., dzy]).

The projection (7anx,s), — Liex/s is induced by the natural inclusion of A
into Al[x1,...,z]]/I™.
It is worth noting that in the case where t = 1,

Tany, s = Spec(Az, dz]/ (2", na™ " 'dz)).

1.33 Remark. Let f: (X,e,;) — (Y, ey) be a morphism of formal Lie varieties
over a fixed base scheme S. Then f determines a sequence of morphims of
schemes affine over S

Fo i Xp =Inf(X) = Infi(Y) = Y,

with the property Infg(fix) = fn when k& > n. Conversely, given any such
sequence of morphisms define f : X — Y by f = colim f,; then f is a morphism
of formal Lie varieties. Thus we have a one-to-one correspondence between
morphisms of formal Lie varieties and compatible sequences of morphisms on
infinitesimal neighborhoods. This is the key to following results.

1.34 Lemma. Let X and Y be two formal Lie varieties over a scheme S and
define the presheaf Isos(X,Y) to be the functor which assigns to each morphism
1: U — S of schemes the set of isomorphisms i* X — i*Y of formal Lie varieties.
Then Isog(X,Y) is a sheaf in the fpgc-topology.

Proof. Suppose f : T — S is a quasi-compact and faithfully flat morphism of
schemes and suppose ¢ : f*X — f*Y is an isomorphism of formal Lie varieties
so that dj¢ = dij¢ over T' xgT. Then

also satisfies the sheaf condition. Thus, by faithfully flat descent for affine
schemes (Proposition 1.17), there is a unique isomorphism of affine schemes
¥y X — Y, so that f*¢, = ¢,. By uniqueness Inf(¢r) = ¢n. Set ¢ =
colim,. Then f*y = ¢ as needed. This argument extends to the entire site
by replacing S by U and X and Y by i*X and i*Y respectively. O

The notion of descent problem was defined in Remark 1.7. The following
result can be upgraded to an equivalence of categories, as in Proposition 1.17.
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1.35 Lemma. Let f : T — S be a faithfully flat quasi-compact morphism of
schemes. Let (X, ¢) be a descent problem in formal Lie varieties over T. Then
there is a unique (up to isomorphism) solution in formal Lie varieties over S.

Proof. This again follows from faithfully flat descent. We begin by using Propo-
sition 1.17 to get unique (up to isomorphism) schemes Y, affine over S and
isomorphisms ¢, : f*Y,, — X, solving the descent problem for X,,. Uniqueness
implies that there are unique isomorphisms S = Yy = S and infi(Yy;) & Y,.
Thus Y = colimY,, is the candidate for the solution to the descent problem. We
must verify points (2) and (3) of Definition 1.29.

For (2) we have that f*we, = we, . Since a quasi-coherent sheaf F over Y is
locally free and finitely generated if and only if f*F is locally free and finitely
generated. (See [11]§2.6.) For (3), the map (with e = ey)

Sym, (we) — gr.(Y)

is an isomorphism because it becomes an isomorphism after applying f*(—).
Thus point (3) is covered. O

The notion of a category fibered in groupoids is defined in Définition 2.1
of [33]. The associated notion of stack is defined in Définition 3.1 of the same
reference.

Define a category Mgy fibered in groupoids over schemes as follows. The
objects of Mgy are pairs (S, X) where S a scheme and X — S is a formal Lie
variety over S. A morphism (T,Y) — (5,X) in Mg, is a pair (f,$) where
f:T — S is a morphism of schemes and ¢ : ¥ — f*X is an isomorphism of
formal Lie varieties over T.

1.36 Proposition. The category May fibered in groupoids is a stack in the
fpgc-topology.

Proof. For a category fibered in groupoids to be a stack, isomorphisms must
form a sheaf (Lemma 1.34) and the groupoids must satisfy effective descent
(Lemma 1.35). O

1.37 Remark. With the notion of formal schemes developed by Neil Strickland
in [52], it’s possible to show that the fibered category of all formal schemes is a
stack for the fpgc topology.

2 Formal groups and coordinates

In this section, we introduce formal groups and the moduli stack Mgg of formal
groups — these are the basic objects of study of this monograph. Except on
extremely rare occasions, “formal group” will mean a commutative group object
in formal Lie varieties of relative dimensions 1 over S, as in Definition 2.2. Thus
we may think of G as affine and smooth of dimension 1 over S.

We will begin with a definition of formal group which does not depend on a
theory of coordinates for formal groups; however, that theory is important, and
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we will spend part of the section working out the details. Specifically, we note
that choices of coordinates amount to sections of scheme over S and we explore
the geometry of that scheme. The main result is Theorem 2.25, which shows we
are dealing with particularly simple scheme.

Part of this section also explores formal group laws, which are particulary
familiar to homotopy theorists.

2.1 Formal groups

We first note that the category of formal Lie varieties has products. If X and
Y are formal Lie varieties over a scheme S, let X xXgY be the product sheaf in
the fpgc topology. We have that

X xgY = colim(X,, xg ¥y).

2.1 Lemma. The sheaf X XgY is a formal Lie variety and the product of X
and Y in the category for formal Lie varieties.

Proof. We leave most of this as exercise. The key observations are that
Inf(X xsY) CInfg(X) x Infg(Y) C Infi«"(X xY)
and that
Wiex,ey) = Wex D Wey -
O
This product has a simple description Zariski locally. (Compare 1.31.) If we
choose an affine open U = Spec(A) — S over which the global sections of w,,

and we, are free with bases {x1, -+, 2.} and {y1, -+ ,yn} respectively, then
there is an isomorphism of formal Lie varieties

(X Xg Y)'U = Spf(A[[:vl, s Tms Y1, 72/71”)

2.2 Definition. Let S be a scheme. A formal group over S is an abelian group
object (G, e) in the category of formal Lie varieties over S with the property that

def
wag = We

18 locally free of rank 1. A homomorphism of formal groups is a morphism of
group objects.

If f:T — S is a morphism of schemes and G is a formal group over S, then
f*G =T xg G is a formal group over T. If i : U — S is a Zariski open, we
write G|y for i*G.

2.3 Example (Formal group laws). A formal group (G,e) defines and is
defined by a formal group law Zariski locally. This is an expansion of Remark
1.31.
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In more detail, if A is a commutative ring, a commutative formal group law
of dimension 1 is a power series

F(x1,22) = 21 +F 22 € Al[21, 22]]

so that

1. 04+px=2+r0=ux;

2.z +F 2 = T2+ 213

3. (z1+F x2) +F 23 =21 +F (T2 +F T3).

If we think of a formal group law F' as the homomorphism F' : A[z]] —
Al[z1, z2]] sending x to F(z1,x2), then F defines a formal group G over S =
Spec(A) by setting G = Spf(A[[z]]) with multiplication

Spf(F)

G x5 G = Spf(Al[z1, 22]]) Spf(A[[z]]) = G.

Conversely, if G is a formal group choose a cover U; = Spec(A4;) — S by
affines so that for each i, the sections of wg is free of rank 1. A choice of
generator x for these sections defines an isomorphism

Glu, = Spf(As[[z]])
and the multiplication on G defines a continuous morphism of power series

Then ot
Fi(z1,20) = A(w)

is a formal group law.

2.4 Example (Homomorphisms). Homomorphisms of formal groups are de-
termined by power series, at least Zariski locally. A homomorphism ¢ : F —
F' of formal group laws over R is a power series ¢(x) € zA[[z]] so that

(2.1) ¢(x1 +F x2) = d(71) +50 f(2).

A homomorphism is an isomorphism if it is invertible under composition; that
is, if ¢’(0) is a unit in A. Any homomorphism of formal group laws induces a
homomorphism of the formal groups defined by the formal group laws.

Conversely, let ¢ : G — G’ be a homomorphism of formal groups over S and
choose a cover U; = Spec(4;) so that the global sections of both wg and wer are
free over A;. Choose a generator z and y for these global sections and let F' and
F’ be the associated formal group laws over A;. Then we get a commutative
diagram induced by ¥

SpE(A;[[2]]) ———> Spf(A;[[y]])

s %)

Spf (Ao, 22]) —— SpE(Ail [y, 2])

31



If we let ¢;(z) = ¥*(y) € A;[[z]], this diagram implies ¢; : F — F' is a
homomorphism of formal group laws

We now introduce the moduli stack Mgg of formal groups — meaning formal
Lie groups of dimension 1. This stack will be algebraic, although not in the
sense of [33]. See Theorem 2.30 below.

2.5 Definition. The moduli stack of formal groups Myg, is the following
category fibered in groupoids over schemes. The objects in Mgg are pairs (S, G)
where S is a scheme and G — S is a (commutative, 1-dimensional) formal
group over S. A morphism (S,G) — (T, H) is a pair (f,$) where f: S — T is
a morphism of schemes and ¢ : G — f*H is an isomorphism of formal groups.

Of course, we still must prove the following result.

2.6 Proposition. The category Mygg fibered in groupoids over schemes is a
stack in the fpqc topology.

Proof. The argument exactly as in Proposition 1.36, once we note that the
proofs of Lemmas 1.34 and 1.35 immediately apply to this case. O

2.2 Formal group laws
Here we review some of the classical literature on formal group laws.

2.7 Theorem (Lazard). 1.) Let fgl denote the functor from commutative
rings to sets which assigns to each ring A the set of formal group laws over A.
Then fgl is an affine scheme; indeed, if L = Zlxy,29, -] is the Lazard ring,
then

fgl = Spec(L).

2.) Let Isofgl be the functor which assigns to each commutative ring A the
set of isomorphisms f : F — F' of formal group laws over A. Then Isofgl is
an affine scheme; indeed, if W = L[aoﬂ7 ay,as,- -], then

Isofgl = Spec(W).
Put another way, the functor which assigns to any commutative ring A

the groupoid of formal group laws over A and their isomorphisms is an affine
groupoid scheme; that is, the pair (L, W) is a Hopf algebroid.

2.8 Remark. It is worth noting that the isomorphism L & Z[z1, zo, .. .] is not
canonical. The difficult part of Lazard’s argument is the symmetric 2-cocycle
lemma ([48] A.2.12), which we now revisit. Let

Culitsy) = glla +9)" =" — "]

where d = p if n is a power of p and d = 1 otherwise. This is the nth homo-
geneous symmetric 2-cocycle. Then Lazard proves that if F(x1,z9) is a formal
group law over a ring A, then there are elements by, bs,... in A so that

F(l‘l,xg) =21+ 22 + b102(331,$2) + b203(.731,.132) “+ -
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modulo (b1, be, . ..)%
The isomorphism W = L[a(fl7 aj,...] depends only on the usual coordinates
on power series.

We now introduce the prestack Mgg of formal group laws. It will not be a
stack as it does not satisfy effective descent.

Let Affz be the category of affine schemes over Spec(Z). Recall from [33],
Definition 3.1, that a prestack M over Affy is a category fibered in groupoids
over Affy so that isomorphisms between objects form a sheaf in the fpgc topol-
ogy.

If F(x1,22) is a formal group law over a ring A and f : A — B is a ring
homomorphism, let f*F(x1,x2) be the formal group law over B obtained by
pushing forward the coefficients. The resulting formal group over Spec(B) is
the pull-back of the formal group over Spec(A) defined by F'; hence, we will
refer to f*F as the pull-back of F' along f.

2.9 Definition. Define a category Megg fibered in groupoids over Affz as fol-
lows. The objects are the pairs (Spec(A), F') where A is a commutative ring and
F is a formal group law over A. A morphism (Spec(A), F) — (Spec(B), F') is
a pair (f,¢) where f : B — A is a homomorphism of commutative rings and
¢: F — f*F' is an isomorphism of formal group laws.

2.10 Lemma. The category Mygg fibered in groupoids over Affz is a prestack.

Proof. Let S = Spec(A) and let F' and F’ be two formal group laws over S.
We are asking that the functor which assigns to each morphism Spec(f) : U =
Spec(R) — S the set of isomorphisms

¢: (f7F) — (f*F)

be a sheaf in the fpgc-topology. Theorem 2.7.2 gives that this functor is the
the affine scheme Spec(A ® W @, A). The assertion follows from the fact the
the fpgc topology is sub-canonical. See the end of Remark 1.9. O

The functor which assigns to each formal group law F' over a ring A the
associated formal group G over the affine scheme Spec(A) defines a morphism

Mfgl—h/\/lfg

of prestacks over Aff;. This is not an equivalence, but we will see that this
morphism identifies Mg, as the stack associated to the prestack Mpgg. See
Theorem 2.34.

The next result, which I learned from Neil Strickland, is an indication that
stacks have a place in stable homotopy theory.

2.11 Lemma. Suppose F;, i = 1,2 are formal group laws over commutative
rings A; respectively. Let

Gi — Si = Spec(Ai), 1= 1,2
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be the corresponding formal groups. Then the two category pull-back Sy X pg, S2
is an affine scheme. Specifically, if L — A; classifies F;, then there is an
isomorphism

S X Mg Sy = Spec(A1 QLW ®p Ag)

Proof. By construction we have a factoring

F;
Sy —> Mgl ——— Mg

of the morphism classifying GG;. By Remark 2.4, the reduction map Mgg — Mg
is full and faithful; hence, the natural map

S1 XMfgl So — 51 XMfg So

is an isomorphism. If R is any commutative ring (S1 X atg, S2)(R) is the trivial
groupoid with object set the triples

(f1, for & : fiFL— f5 )

where f; : A; — R are ring homomorphisms. Applying Theorem 2.7.2 now
implies the result. O

If G; and G5 are two formal groups over a scheme S, let Isog(G1, G2) be the
presheaf of sets which assigns to any morphims f : U — S with affine source
the set of isomorphisms f*G; — f*Gs. There is a pull-back diagram

ISOS(Gl,GQ) — S5 XMfg S

l |

S S x S.

Proposition 2.6 implies that Isog(G1,G2) is actually a sheaf. Lemma 2.11 im-
mediately implies the following.

2.12 Lemma. Suppose F;, i = 1,2 are formal group laws over a single com-
mutative ring A and let

G; — S = Spec(4), i=1,2

be the corresponding formal groups. Then the sheaf Isog(G1,G2) is an affine
scheme over S. Specifically, if L — A classifies F;, then there is an isomorphism

ISOS(Gl,Gg) = Spec(A XA A (A R, W Qg A))
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2.3 Coordinates

We now begin to discuss when a formal group can arise from a formal group
law. In the following definition, the base scheme need not be affine. The sheaves
Og, (e) where defined in Equation 1.5 as the kernel of the map Og, — e.Os.
If G is a formal group with nth infinitesimal neighborhood G,,, then there is an
exact sequence

0 — ¢.0q,(e) = ¢.0¢q, — Os — 0

of sheaves on S. If S = Spec(A) and w, has a generating local section then
H°(8,¢.0c,(e)) = wAla]/(a" ).

2.13 Definition. Let S be a scheme and q : G — S a formal group over S with
conormal sheaf w.. Then a coordinate for G is a global section

S limHO(S, 4:Og, (€))

so that for all affine morphisms f : U = Spec(A) — S, x|y generates the global
sections of (we)|u-

Every formal group has coordinates locally, as in Example 2.3; this definition
asks for a global coordinate.

2.14 Remark. If E*(—) is a complex oriented 2-periodic homology theory, the
associated formal group is Spf(E°(CP*) over Spec(E®). A coordinate is then
a class z € E°CP* which reduces to generator of ECCP!. This is the usual
topological definition. See [48], Definition 4.1.1.

2.15 Remark. 1.) Let (G, z) be a formal group law over S with a coordinate
x. Since x provides a global trivialization of the locally free sheaf w,, Definition
1.29.3 allows us to conclude that

(2.2) G, = Specg(Og|z]/(z"Th)).
Equivalently, we have ¢.Og, = Og[z]/(z"!). In particular,
lim H°(S, ¢.0¢,,) = H°(S, Os)][z]].

2.) Suppose F' is a formal group law over a commutative ring A and Gp
is the associated formal group over Spec(A), as in Example 2.3. Then, as in
Remark 1.31.1, G has a preferred coordinate = defined by the definition

Gr = Spf(A[[z]]).
Then there is an equality of formal group laws
1 +(Gp,x) T2 = 21 +F T2.

Conversely, if G is a formal group over Spec(A4) with a coordinate x, then
Equation 2.2 provides a natural isomorphism (not an equality) of formal groups
over Spec(A)

Gr—G.
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3) If f:(G,z) — (H,y) is a homomorphism of formal groups over S with
chosen coordinates, then f is defined by a morphism of Og-algebra sheaves

¢: 4.0, = Os[lyll/(y"*") — Os[[z]l/(z"*") = p.Og,

and, thus, is defined by the power series

#(y) = f(x) € H(S, (Os)][x]]

which is a homomorphism of formal group laws:

f(@1) +ry f(22) = f(21 +Fg T2)-

Conversely, any such power series defines a homomorphism of formal group laws.
4.) Suppose we are given a 2-commuting diagram

and a coordinate for x for G over S. Then there is an induced coordinate for H
over T. Let ¢ : H — ¢g*G be the given isomorphism. Then the coordinate for
H is the image of « under the homomorphisms

o
H°(S,¢.0¢,(e)) — H(T, 9" 4.0, (e)) <z— H"(T, ¢.0n, (e))-
The next step is to examine the geometry of the scheme of possible coordi-

nates for G. We begin with the following result.

2.16 Lemma. Let ¢ : G — S be a formal group over a quasi-compact and
quasi-separated scheme S. Then there is a quasi-compact and quasi-separated
scheme T and a faithfully flat and quasi-compact morphism f : T — S so that
f*G has a coordinate.

Proof. Choose a finite cover U; — S by affine open subschemes so that the
global section of (w.)|y, are free. Set f: T = U U; — S to be the evident map.
Then f is faifthully flat, quasi-compact and f*w, is isomorphic to Op. Since T'
is a coproduct of affines, the map

lim H(T, O+, (e)) — HY(T, f*w.)
is onto, and we choose as our coordinate any preimage of a generator. O

2.17 Definition. Define a category Mecoord fibered in groupoids over schemes
as follows. The objects of Meoora are pairs (¢ : G — S,x) where G is a formal
group over a scheme S and x is a coordinate for G. A morphism in Mcoord

(q:G— S,2)—(¢ : G — S, 2")
is a morphism of schemes f : S — S’ and an isomorphim of formal groups

¢:G— f*G'.
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By forgetting the coordinate we get a projection map Mcoorda — Meg; if we
consider this as morphism of categories fibered in groupoids over affine schemes,
Remark 2.15.3 factors this projection as the composite

[
Meoord Mfgl Mfg'

2.18 Proposition. The morphism ¢ : Mcoord — Mgl of categories fibered
in groupoids is an equivalence over affine schemes; that is, for all commutative
rings A, the morphism of groupoids

Meoord (A) _>Mfgl(A)
is an equivalence of groupoids.
Proof. This is a restatement of Remark 2.15.3 and Remark 2.15.4. O

2.19 Corollary. The category Mecoora fibered in groupoids over schemes is a
prestack.

Proof. This requires only that if (G, x) and (H,y) are two objects over a scheme
S, the the isomorphisms Isos((G, z), (H,y)) form a sheaf. But

Isos((G,z),(H,y)) = Isos(G, H)

where Isog(G, H) is the the sheaf (by Proposition 2.6) of isomorphisms of formal
groups. O

We now give extensions of Lemmas 2.12 and 2.11, in that order.

2.20 Proposition. Let G1 and G4 be two formal groups over a quasi-compact
and quasi-separated scheme S. Then

ISOS(Gl, GQ) — S
18 an affine morphism of schemes.

Proof. We prove this by appealing to Lemma 2.12 and faithfully flat descent.

First, suppose G; and G5 can be each given a coordinate. Then, for a
fixed choice of coordinate for G; and G5 and for any morphism of schemes
f: U = Spec(A4) — S, the formal groups f*G; over U has an induced coordinate,
and Lemma 2.12 shows

fIsos(G1,Go) = Isoy(f* G, f*Gs) = U
is affine over U; indeed,
(2.3) Isoy (f*G1, [*G2) = Spec(A ®aga (AR W 1 A)).
Expanding this thought, define a presheaf A(G1,G2) of Og algebras by

A(Gl,GQ)(f U — S) = HO(U, ISOU(f*Gl,f*GQ))
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where f : U — S runs over all flat morphisms with affine source. Then Equation
2.3 implies that A(G1, G2) is a quasi-coherent sheaf of Og-algebras. We then
have

SpecS(A(Gl, Gz)) = ISOS(Gl, GQ)

over S. If f:T — S is any morphism of schemes, then f*G; also can be given
a coordinate, by Remark 2.15.4, and then Lemma 2.12 implies that

(2.4) [TA(G, G2) = A(f*Gr, [7G2)

as quasi-coherent Op-algebra sheaves. This is equivalent to the statement that

(2.5) T Xs ISOs(Gl, Gg) = ISOT(f*Gl7 f*GQ).

For the general case, we appeal to Lemma 2.16 to choose an fpgc-cover f :
T — S so that f*G; can each be given a coordinate. Then Isor(f*Gy, f*Gs) =
Specr(A(f*Gy, f*G2)) and Equation 2.4 (or Equation 2.5) yields an isomor-
phism of quasi-coherent Ory ;7-algebra sheaves

¢ PLA(f Gy, [*G2)—p3 A(f* Gy, [ Ga).

We check that this isomorphism satisfies the cocycle condition and we get, by
faithfully flat descent, a quasi-coherent Og-algebra sheaf A(G1, G2). Uniqueness
of descent and Equation 2.5 imply that Specg(A(G1,G2) = Isog(G1,G2) over
S. O

2.21 Corollary. Let G — S and H — T be formal groups over quasi-compact
and quasi-separated schemes. Then the projection morphism

S XMyg T—8 X T

is an affine morphism of schemes. In particular S X pmg, T is a scheme over S
and it is an affine scheme over S if T is an affine scheme.

Proof. One easily checks that there is an isomorphism
S fog T= ISOSXT(pTva;H)'
Now we use Proposition 2.20. O

In the following definition we are going to have a functor F' on affine schemes
over a scheme S. We'll write F|y for F(U) to in order to avoid too many
parentheses.

2.22 Definition. 1.) Let G be a formal group over a scheme S. Define a
functor Coord(G/S) from affine schemes over S to groupoids as follows. If
i:U — S is any affine morphism, then the objects of Coord(G/S)|u are pairs
(i*G, x) where x is a coordinate for i*G. The morphisms [ : (i*G,z) — (i*G,y)
of Coord(G/S)|uy are those morphisms of formal group laws so that the under-
lying morphism of formal groups fo =1 :9*G — i*G is the identity.
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2.) Let us write Coordg — S for the functor of objects of the groupoid
functor Coord(G/S)

3.) By 2.15.4, a morphism f : (G,x) — (G,y) so that the underlying mor-
phism of formal groups is the identity amounts to writing the coordinate y as a
power series in x. We will call this a change of coordinates.

In the following result, note that we have an isomorphism, not simply an
equivalence.

2.23 Lemma. Let G — S be a formal group over a scheme S and let S — Mygg
classify G. Then there is an isomorphism of groupoids over S

A Coord(G/S)—8 X pmy, Megr-

Proof. First we define the morphism. Let f : U = Spec(A) — S be a morphism
out of an affine scheme and let (f*G,x) € Coord(G/S)|y. Define \(f*G, x) to
the the triple

(f:U— S, F¢:Gp— f*G)

where F' is the formal group law determined by x (Remark 2.15.2) and ¢ is
the natural isomorphism from the formal group determined by F' (Example 2.4)
to f*G. The inverse of A sends (f, F,¢) to the pair (f*G,xz) where z is the
coordinate defined by ¢ (Remark 2.15.4). O

The next result follows immediately from Proposition 2.18. Notice we only
have an equivalence in this case.

2.24 Corollary. Let G — S be a formal group over a scheme S and let S —
Mg classify G. Then there is an equivalence of groupoids over S

A Coord(G/S)—S X My, Meoord-

In the following result, we will call a groupoid scheme G over S affine over
S if both the projection maps obG — S and morG — S are affine morphisms.

2.25 Theorem. 1.) Let G — S be a formal group over a quasi-compact and
quasi-separated scheme S. Then Coord(G/S) — S is a groupoid scheme affine
over S.

2.) For all morphisms f: T — S of schemes, the groupoid Coord(G/S)|r is
either empty or contractible.

3.) The objects Coordg — S of Coord(G/S) form an affine scheme over S.

Proof. Lemma 2.23 and Theorem 2.7 imply together that the objects and mor-
phisms of Coord(G/S) are, respectively,

S X My, Spec(L)
and

S X My, Spec(W).
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Part (1) of the theorem follows from Corollary 2.21. Since Coord is the scheme
of objects in Coord(G/S), part (3) follows from part (1).

For part (2), if f*G has no coordinate, then Coord(G/S)|r is empty. If,
however, f*G has a coordinate, then any two coordinates are connected by a
unique isomorphism, by Remark 2.15.3, and the groupoid is contractible. O

We remark that we have shown that the scheme Coordg of objects is actually
a torsor for an appropriate group scheme. See Lemma 3.11.

2.26 Remark. Since the proof of Theorem 2.25 is at the end of a logical thread
which winds in way through most of this section, it might be worthwhile to
consider the example where S = Spec(B) is affine and G is a formal group which
can be given a coordinate y. Then if f : Spec(4) = U — S is any morphism
from an affine scheme, and (f*G,z) € Coord(G/S)|y is any coordinate for G
over U, then x can be written in terms of y; that is,

def

z=apy+ary’ +ay’ + - = a(y)

where a; € A and qg is invertible. From this we see that the choice of the
coordinate y defines an isomorphism of schemes

Coordg 2 Spec(Blai!, ar,as,---]) = Spec(B @y W) = S X My, SPEC(L).

An isomorphism ¢ : (f*G,zo) — (f*G,z1) in Coord(G/S)|y is determined by
a power series
I = )\01’0 —+ )\11'(2) —+ )\21'(3) + e = )\(1’0)

and 21 = A(a(y)). This shows the choice of the coordinate y defines an isomor-
phism of schemes from the morphisms of Coord(G/S) to

Spec(Blaz!, a1, ..., A\t A1,...]) = Spec(B @ W @1 W).

2.4 My, is an fpgc-algebraic stack

We recall the notion of a representable morphism of stacks and what is means
for such a morphism to have geometric properties. All our stacks are categories
fibered in groupoids over affine schemes.

2.27 Definition. 1.) A morphism N' — M of stacks is representable if for
all morphisms U — M with affine source, the 2-category pull-back U X pq N is
a scheme.

2.) Let P be some property of morphisms of schemes closed under base
change and let f : N — M be a representable morphism of stacks, then f has
property P if the induced morphism

UXMN—>U

has property P for all morphisms U — M with affine source.
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In the situations which arise here, there are times when we only have to
check the property P once. This will happen, for example, with flat maps. The
results is the following.

2.28 Lemma. Let P be some property of morphisms of schemes closed under
base change, and suppose P has the following further property:

o Let f : X — Y be a morphism of schemes and let g : Z — Y be a
faifthfully flat morphism of schemes. Then f has property P if and only
if Z xy X — Z has property P.

Then if X — M is a presentation of M by an affine scheme, a representable
morphism of stacks N' — M has property P if and only if X X py N — X has
property P.

Now we define the notion of algebraic stack used in this monograph.

2.29 Definition. Let Y be a scheme and M any stack over Y. Then M is an
algebraic stack in the fpqc-topology or more succinctly an fpqgc-stack if

1. the diagonal morphism M — M Xy M is representable, separated, and
quasi-compact; and

2. there a scheme X and a surjective, flat, and quasi-compact morphism
X — M. The morphism X — M is called a presentation of M.

Note that if the diagonal morphism is representable, as in point (1), then all
morphism X — M are representable (cf. [33], Corollaire 3.13); hence point (2)
makes sense.

Definition 2.29 is a relaxation of the usual definition of algebraic stack (as in
[33], Définition 4.1) where the presentation X — M is required to be smooth,
so in particular flat and locally of finite type. It turns out that Mg can be
approximated by such stacks, as we see in the next chapter.

The following result is obtained by combining Propositions 2.31 and 2.32
below.

2.30 Theorem. The moduli stack Mgg is an algebraic stack over Spec(Z) in
the fpgc-topology. Let fgl = Spec(L) be the affine scheme of formal group laws
and let Ggp — fgl be the formal group arising from the universal formal group
law. Then

Gp : fgl— Mg,

is a presentation for Mgg.

Let M be a stack and z1,z2 : S — M be two 1-morphisms. Then the
2-category pull-back of

M

lA
(z1,22

§ ) sy M
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is equivalent to the fpgc-sheaf Isog(z1,22) which assigns to each affine scheme
U — S over S the isomorphisms Isoy (f*x1, f*x2).

2.31 Proposition. The diagonal morphism
./\/lfg—>/\/lfg X Mfg
is representable, quasi-compact, and separated.

Proof. We use Proposition 2.20: for any affine scheme S and any two formal
groups G1 and Ga, the morphism

ISOS(Gl, GQ) — S

is an affine morphism of schemes. Hence the diagonal is representable ([33],
3.13), quasi-compact, and separated ([33], 3.10). O

2.32 Proposition. Let fgl = Spec(L) be the affine scheme of formal group
laws and let G — fgl be the formal group arising from the universal formal
group law. Then

Gp : fgl— Mg,

is surjective, flat, and quasi-compact.

Proof. The morphism G is surjective because every formal group over a field
can be given a coordinate, and hence arises from a formal group law. To check
that it is quasi-compact and flat, we need to check that for all morphisms

G : Spec(A)— My,
with affine, source, the resulting map
Spec(A) X atg, fgl — Spec(A)

is quasi-compact and flat. It is quasi-compact because it is affine (by Proposition
2.21). To check that is flat, we choose an faithfully flat extension A — B and
check that

Spec(B) X my, gl = Spec(B) Xgpec(a) Spec(A) X aty, fgl — Spec(B)

is flat. Put another way, we may assume G has a coordinate and arises from a
formal group law. Then, by Lemma 2.11

Spec(A) X atg, fgl = Spec(A @ W)
and A — A®p W = Alat’, aq,.. ] is certainly faithfully flat. O
2.33 Theorem. The 1-morphism of prestacks
Meoord—— Mg

identifies Mgg as the stack associated to the prestack Mcoord -

42



Proof. We begin by giving a formal description of the stack Meoora associated
to Mcoord- Then we prove that there is an appropriate equivalence Mcoord —
Meg.

First, we define an equivalence class of coordinates for a formal group G over
S as follows. A representative of this equivalence class will be a coordinate z
for f*G =T xg G — T where f: T — S is a faithfully flat and quasi-compact
morphism. If x; and x5 are coordinates for 77 xg G and T» X g G respectively,
then we say they are equivalent if pfx1 = p3xs as coordinates for (T x sT2) X sG.
That this is an equivalence relation follows from the fact that Coordg is a sheaf
in the fpqc topology.

Now define the category Meoora fibered in groupoids over Aff; as follows.
The objects are pairs (G — S, [x]) where G is a formal group over S and [z] is
an equivalence class of coordinates, as in the previous paragraph. A morphism
f (G, [z]) — (H,[y]) is given by a morphism fy : G — H in Myg,. That
./\;lcoord is a stack is proved exactly as in Lemma 2.6. The projection map
Mcoord — Mg has an evident factorization

Meoord——Mecoord —’Mfg .

We will prove that the first map has the universal property necessary for the
associated stack, and we will show the second map is an equivalence of stacks.
First, we must show that any factorization problem

A
Meoord —> N

7
e
s
Ve
s

Mcoord

has a solution A : /\;lcoord — N so that the triangle 2-commutes. To do this,
let (G — S,[z]) be an object in Meoora and choose an fpgc cover d : T — S
so that d*G has a coordinate z representing [z]. If we apply A to the effective
descent data

¢ (did"G,diz) — (dyd* G, djx)

we obtain a object w € N'(S) and a unique isomorphism
(2.6) d*w = X\d*G, ).

Set A(G, [z]) = w. In like manner, A can be defined on morphisms. The unique
isomorphisms of Equation 2.6 shows that the resulting diagram 2-commutes.

Second, to show that Meoord — Mg is an equivalence, note that for all
schemes S, the morphism of groupoids

Mcoord(s) —>Mfg(S)

is a fibration.That is, given any object (H, [y]) in Meoora(S) and any morphims
¢ : G — H in Mgg(S), there is a morphism ¢ : (G : [z]) — (H, [y]) in Mcoord(S)
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whose underlying morphism is . This follows from Remark 2.15.5. If G €
Mg (S) is a fixed formal group, then the fiber at G is

C,ZQEIE Coord(G/T)

where T runs over all fpgc covers of S. Combining Theorem 2.25.2 and Lemma
2.16 we see that this fiber is contractible. O

The following is an immediate consequence of the previous result and Propo-
sition 2.18.

2.34 Theorem. The 1-morphism of prestacks
Mgl— Mg
identifies Mgg as the stack associated to the prestack Mgg.

2.5 Quasi-coherent sheaves

Here we define the notion of a quasi-coherent sheaf on an fpgc-algebraic stack
and give some preliminary examples for the moduli stack of formal groups. We
then recall the connection between quasi-coherent sheaves and comodules over
a Hopf algebroid and relate the cohomology of a quasi-coherent sheaf to Ext in
the category of comodules.

In 1.14 we noted that if X is scheme, then the category of quasi-coherent
sheaves over X is equivalent to the category of cartesian O x-module sheaves in
the fpgc-topology. We will take the latter notion as the definition of a quasi-
coherent sheaf on an fpgc-stack.

The fpgc-topology and fpgc-site were defined in Definition 1.10 and Remark
1.12 respectively.

2.35 Definition. Let M be an fpqc-algebraic stack. We define the fpqc site
on M to have

1. an underlying category with objects all schemes U — M over M and, as
morphisms, all 2-commuting diagram over M; and

2. for all morphisms U — M in this category we assign the fpqc-topology on
U.

We often specify sheaves only on affine morphisms Spec(A4) — M, extending
as necessary to other morphisms by the sheaf condition.

2.36 Remark. Let me expand on the notion of a 2-commuting diagram. This
is pair (f, ¢) expressed as a diagram



where f : V — U is a morphism of schemes and ¢ : y — f*x is an isomorphism
of objects (usually formal groups in this monograph) over V. The composition
of two such pairs can be written

(f:9)(9,9) = (fg,(g"d)¥).

Note the twisting. If ¢ is understood, or the notation gets cumbersome, then ¢
may be dropped from the diagram.

The structure sheaf on O = O, is defined by
O(Spec(A) — M) = B.

This is a sheaf of rings and has a corresponding category of module sheaves,
which we will write as Mlod ¢ or, perhaps, Modg, is we have some stack such
as the moduli stack of formal groups.

The notion of a cartesian sheaf can be found in Definition 1.13.

2.37 Definition. Let M be an fpqc-algebraic stack. A quasi-coherent sheaf
F on M is a cartesian Opq-module sheaf for the category of affines over M. In
detail we have

1. for each morphism u : Spec(A) — M an A-module F(u);

2. for each 2-commuting diagram

Spec(B)

Spec(A)
a morphism of A-modules F(u) — F(v) so that the induced map
0sB @ F(u) — F(v)
18 an tsomorphism.
These isomorphisms must satisfy the following cocycle condition
if (g,¢) and (f, ) are composable 2-commuting diagrams, then
099y = 00 (9" 05)-
2.38 Example. Here I give an ad hoc construction of the sheaf of invariant

differentials on Mgg. A more intrinsic definition will be given later. See Section
4.2.
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Because of faithfully flat descent, we can define an Ogg-module sheaf F on
Mg be specifying
F(G) = F(G : Spec(A) — Mgg)

for those formal groups for which we can choose a coordinate. Given such a
coordinate = for GG, we define the invariant differentials
f(x)dz € Alz]]dz

to be those continuous differentials which satisfy the identity

flz+ry)d(z+ry) = f(z)dz + f(y)dy

where = 4+ y is the formal group law of G with coordinate . The A-module
wg of invariant differentials is free of rank 1 and independent of the choice of
coordinate. See Example 4.9. Given a 2-commuting diagram

Spec(B) Y
f \ Mfg
—

Spec(A)
with isomorphism ¢ : H — f*@G, then we have an induced isomorphism
do: ffwg = B®4wg — wy.

See Example 4.10 for an explicit formula. Thus we have a quasi-coherent sheaf
w on Mge. This sheaf is locally free of rank 1 and we have also have all its
tensor powers

def
W = ", n € 7.

2.39 Remark (Quasi-coherent sheaves and comodules). Suppose M is
an fpgc-algebraic stack with an affine presentation Spec(A) — M with the
property that

Spec(A) x o Spec(A) = Spec(T)

is also affine. Then we get induced isomorphisms
Spec(A) X aq -+ xam Spec(A) = Spec(I'®@4 --- @4 T)

where the product has n > 2 factors and the tensor product has (n — 1)-factors.
The Cech nerve of the cover Spec(A4) — M then becomes the diagram of affine
schemes associated to the cobar complex

(2.7) -+ Spec(I' ®4 I') === Spec(I') === Spec(A) — M.

The pair (A4,T"), with all these induced arrows, becomes a Hopf algebroid. If we
set M = F(Spec(A) — M), then one of the arrows Spec(I') — Spec(A4) defines
an isomorphism

I'®as M = F(Spec(T') — M)
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and the other defines a morphism M — I' ® 4 M which gives the module M
the structure of an (A, T")-comodule. This defines a functor from quasi-coherent
sheaves on M to (A,T')-comodules. This is an equivalence of categories. See
[21] and [33] Proposition 12.8.2. The proof in the latter case is carried out in
a different topology, but goes through unchanged for the fpgc topology, as it is
an application of faithfully flat descent.

A pair f: Spec(4) — M where M is an fpqc-stack and f is a presentation
so that Spec(A) x ¢ Spec(A) is itself affine is called a rigidified stack. Such a
choice leads to the equivalence of categories in the previous paragraph, but any
stack M may have many (or no) rigidifications and the Hopf algebroid (A, A)
may not be in any sense canonical. An example is the moduli stack U(n) of
formal groups of height at most n. Rigidified stacks are discussed in [42] and
[16].

For the moduli stack Mygg, the universal formal group law gives a cover
Spec(L) — Mg and we conclude that the category of quasi-coherent sheaves
on My, is equivalent to the category of (L, W) comodules, where

W = L[a(j)d,al,ag,...]

as in Remark 2.8. The structure sheaf Ogg corresponds to the L with its standard
comodule structure given the by the right unit ngp : L — W; the powers of
the sheaf of invariant differentials w™ correspond to the comodule L[n] where
¢ : Lin] - W @, L[n] is given by

() = agnr(z).

2.40 Remark (Cohomology). If M is an fpgc-algebraic stack and F is a
quasi-coherent sheaf, then the cohomology H*(M,F) is obtained by taking
derived functors of global sections. If Spec(A) — M is a rigidified stack with
corresponding Hopf algebroid (A4, T'), then the equivalence of categories between
quasi-coherent sheaves and comodules yields an isomorphism

(2.8) H*(M, F) = Ext’ (A, M)

where M = F(Spec(A) — M) is the comodule corresponding to F. The Cech
nerve of Equation 2.7 yields the usual cobar complex for computing Hopf alge-
broid Ext.

2.6 At a prime: p-typical coordinates

When making calculations, especially with the Adams-Novikov spectral se-
quence, it is often very convenient to use p-typical formal group laws instead of
arbitrary formal group laws. We delve a little into that theory here. A point to
be made is that it is not a formal group which is p-typical, but a formal group
law or, equivalently, a coordinate for a formal group.

If F is a formal group over a ring A in which an integer n is invertible, the

power series

(@) Eatp-tpa
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with the sum taken n-times has a unit as its leading coefficient; hence, it has
composition inverse [1/n](z).

Let A be a commutative ring over Z,) and let F' be a formal group law over
A. Then, given any integer n prime to p and a primitive nth root of unity ¢,
we can form the power series

(2.9) fulz) = [%]F(I tplr4p+p " ).

Note that this is a power series over A.

More generally, if S is a scheme over Z,), G a formal group over S, and x a
coordinate for G, then we have a formal group law 21 + (g, 2 over H°(S,Og)
and we can form the power series f,,(z) over H%(S, Og).

2.41 Definition. 1.) A p-typical formal group law F' over a commutative
ring A is a formal group law F over A so that

fe(x) =0

for all primes ¢ # p. A homomorphism of p-typical formal group laws is simply
a homomorphism of formal groups.

2.) Let G be a formal group over a scheme S over Z,). Then a coordinate
for G is p-typical if the associated formal group law over H°(S, Og) is p-typical.
A morphism ¢ : (G,z) — (H,y) of formal groups with p-typical coordinates is
simply a homomorphism of the underlying formal groups.

The symmetry condition fy(z) = 0 arises naturally when considering the
theory of Dieudonné modules associated to formal groups. See [2].

2.42 Remark (Properties of p-typical formal group laws). Let us record
some of the standard properties of p-typical coordinates. A reference, with
references to references, can be found in [48], Appendix 2.

1. Let G be a formal group over a Z)-algebra A with a p-typical coordinate
x. Then there are elements u; € A so that

2
pla(z) = pxr +¢ wiz? +¢ uez? +¢--- .

Furthermore, the elements u; determine the p-typical formal group law.
However, the elements u; depend on the pair (G,z), hence are not in-
variant under changes of coordinate. Nonetheless, if f : A — B is a
homomorphism of Z,)-algebras, then

-6 (x) = pr +¢ f(ur)z? +¢ flug)a? +¢--- .

Thus, this presentation of [p]g(x) extends to schemes: given a p-typical
formal group law (G,xz) over a Z, scheme, there are elements u; €
H°(S, Os) so that [p|g(x) can be written as above.
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2. Let us write pfgl for the functor which assigns to each Z,)-algebra A the
set of p-typical formal group laws over A. Then pfgl is an affine scheme.
Indeed, if we write V' = Zp[u1,uz, .. ] there is a p-typical formal group
law F over V so that

2
Plr(y) = py +r way? +ruoy? +p---.
The evident morphism of schemes Spec(V') — pfgl is an isomorphism.
3. Let ¢ : (G, ) — (H,y) be an isomorphism of formal groups with p-typical

coordinates and let f(x) € R[[z]] be the power series determined by ¢.
Then there are elements ¢; € R so that

2
f_l(;v) =tox +¢ t12P +¢ tg +a .
More is true. If z is a p-typical coordinate, then y is p-typical if and only
if f~1(z) has this form.

As in Definitions 2.9 and 2.17 and Lemmas 2.10 and 2.19, we have prestacks
Mpeg1 of p-typical formal group laws and Mpcoora of formal groups with p-
typical coordinates. We also have the analog of Proposition 2.18:

2.43 Proposition. The canonical morphism of prestacks
Mpcoord—V\/lpfgl
s an equivalence.

A much deeper result is the following. If X is a sheaf over Spec(R) in the
fpgc-topology and R — S is a ring homomorphism, we will write

X®grS df x X Spec(R) Spec(S).

2.44 Theorem (Cartier’s idempotent). The canonical 1-morphism of cate-
gories fibered in groupoids over Affz

Moptgt— Mgl @ Zp)
s an equivalence.

Proof. Let A be a commutative Z,)-algebra. Cartier’s theorem (see, for exam-
ple, [48]A.2.1.18) is usually phrased as follows: Given any formal group law F'
over A there is a p-typical formal group law eF over A and an isomorphism
¢F : F' — el of formal group laws; furthermore, if F' is p-typical, then eF' = F
and ¢ is the identity. This implies that if ¢ : F — F’ is any isomorphism of
formal groups laws, then there is a unique isomorphism e so that the following
diagram commutes:

s er

J

F/T>6F/
F/
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Rephrased, we see that we have a retraction e : Mggi(A) — Mpgg1(A) of the
inclusion of groupoids ¢ : Mpgg1(A) — Mgg1(A) and a natural transformation
¢:1—te. U

The following is now and immediate consequence of Theorem 2.34 and The-
orem 2.44.

2.45 Corollary. The canonical 1-morphism of prestacks
Mpcoord—)Mfg ® Z(p)
identifies Mgg ® Zpy as the stack associated to the prestack Mpcoord-

Similarly Mpcoord — Mig®Z ) identifies the target as the stack associated
to the prestack source. Compare Theorem 2.33.

The following now follows from Corollary 2.45 and Remark 2.42, parts 2 and
3.

2.46 Corollary. Let V = Z[u1,uz,- -] and let Gp — Spec(V') be the formal
group formed from the universal p-typical formal group law F. Then the map

Spec(V)—Mgg @ Zp,

classifying G is an fpqc-presentation of Mgg @ Z(y,). There is an isomorphism
of affine schemes

Spec(V) X amy, Spec(V) = Spec(V[tOﬂ, ty,to,--]).

2.47 Remark (Gradings and formal group laws). There is a natural grad-
ing on the Lazard ring L and the ring V' = Z)[u1, uz, - - -] which supports the
universal p-typical formal group law. This can be useful for computations.

To get the grading, we put an action of the multiplication group G,, =
Spec(Z[t*']) on the scheme fgl = Spec(L) of formal group laws as follows. If

TH+ry= Z Cvzjfl?iyj

is a formal group law over a ring R and A € R* is a unit in R, define a new
formal group law AF over R by

T H+AFY = )\_1(()\56) +r ()\y))
This action translates into a coaction
Y L—Z[t) @ L

and hence a grading on L: = € L is of degree n if ¥(x) = t"®x. Then coefficients
a;i; of the universal formal group law have degree i 4 j — 1; since

r4+rpy=a+y+bCyz,y) +bCs(x,y)+ -
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modulo decomposables, we have that b; has degree i. In particular, c;; is a
homogeneous polynomial in by with k& < i + j.
The same construction applies to p-typical formal group laws and the p-series

2
ple(z) = pr +¢ w1z? +¢ uez? +¢ -

shows that, under the action of G,,, u; has degree p* — 1. Since the universal
p-typical formal group is defined over the ring V' = Z,)[u1,uz,---] we have
that the coefficients c;; of the universal p-typical formal group are homogeneous
polynomials in the uj where pF < i+ j.

The action of G,, extends to the entire groupoid scheme of formal group
laws and their isomorphisms. If ¢(z) = >_.., a;2" is an isomorphism from F to
G, define B

(Ad)(z) = A"o(Aa).

Then A¢ is an isomorphism from AF to AG. If ¢ is universal isomorphism over
W = L[aoil, ay,-- -], the a; has degree i. More interesting is the case of p-typical
formal group laws; if ¢ is the universal isomorphism of p-typical formal group
laws over V[7§§1,z€1,2527 -++], then

2
¢ (z) = tox +¢ tia? +¢g tax? 4G -

and we see that the degree of t;, is p¥ — 1. Thus if a; is the ith coefficient of this
power series, we have that a; is a homogeneous polynomial in ¢; and uj with
pr <.

Warning:The grading here is not the topological grading; in order to ob-
tain the usual topological gradings we should double the degree — so that, for
example, the degree of v; is 2(p’ — 1). Also, I'll say nothing about the role of
odd degree elements in comodules — and there are some subtleties here. See [37]
for a systematic treatment.

3 The moduli stack of formal groups as a homo-
topy orbit

One of the main points of this chapter is to describe the moduli stack Mgg as
the homotopy inverse limit if the moduli stacks Mgg(n) of n-buds for formal
groups. This is a restatement of classical results of Lazard. See Theorem 3.22.
This has consequences for the quasi-coherent sheaves on Mpgg; see Theorem 3.28.

3.1 Algebraic homotopy orbits

First some generalities, from [33] §§2.4.2, 3.4.1, and 4.6.1. Let A be an group
scheme over a base scheme S. Let X — S be a right-A-scheme. Thus, there is

an action morphism
X Xs A—X
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over S such that the evident diagrams commute. From this data, we construct a
stack X x o EA, called the homotopy orbits of the action of A on X, as follows.?

Recall that an A-torsor is a scheme P — S with a right action of A so that
there is an fpqc cover T'— S and an isomorphism of A-schemes over T’

TXSAgTXSP.

If you want a choice-free way of stating this last, we remark that this is equivalent
to requiring that the natural map

(T x5 P) x7 (T x5 A)—(T x5 P) x7 (T x5 A)

over (T xg A) sending (z, g) to (zg, g) is an isomorphism.

To define X x5 EA we need to specify a category fibered in groupoids.
Suppose U — S is a scheme over S. Define the objects [X xn EAJ(U) to be
pairs (P, ) where P — U is a A x g U-torsor and

a:P—UxgX

is a A-morphism over U. A morphism (P, «) — (@, 8) is an equivariant isomor-
phism P — @ so that the evident diagram over U x g X commutes. If V — U is
a morphism of schemes over S, then the map [X xx EAJ(U) — [X xa EAJ(V)
is defined by pull-back. This gives a stack (see [33], 3.4.2) ; we discuss to what
extent it is an algebraic stack.

There is a natural map X — X x, EA defined as follows. If f: U — X
is a morphism of schemes over S define P = U xg A and let a be the evident
composition over U

UXSAM>U><SX><SA—>U><SX

given pointwise by (u, g) — (u, f(u)g).
Note that if U — X x FA classifies P — U xg X, then a factoring

X

.

UHXXAEA

is equivalent to a choice of section of P — U and hence a chosen equivariant
isomorphism U xg A — P over U. The notion of an algebraic stack in the fpgc
topology was defined in Definition 2.29.

3.1 Proposition. Let A be a group scheme over S and suppose the structure
morphism A — S is flat and quasi-compact. Let X be a scheme over S with a
right A-action. Then X xp EA is an algebraic stack in the fpgc topology and

q: X—X xp EA

2Under appropriate finiteness hypotheses which will not apply in our examples, the homo-
topy orbit stack can become an algebraic orbifold.
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18 an fpqc presesentation. There is a natural commutative diagram

d,
X xgA——= X

o

X XXXAEAX?-
2

where do(x,9) = = and di(x,g) = xg and the vertical isomorphism sends (x,g)
to the triple (x,xg,g: xg — x).

3.2 Example. There are two evident examples. First we can take X = S itself
with the necessarily trivial right action, and we’ll write

BA % 5 %, EA.

This is the moduli stack of A-torsors on S-schemes or the classifying stack of A.
The other example sets X = A with the canonical right action. Let’s assume A
is an affine group scheme over S. Then the projection map

AxpyEA— S

is an equivalence. For if o : P — U x g A is any morphism of A-torsors over U,
then a becomes an isomorphism on some faithfully flat cover. Since A — S is
affine, a is then an isomorphism by faithfully flat descent. It follows that the
groupoid [A x FAJ(U) is contractible.

3.3 Remark. Note that the Cech cover of X x EA that arises from the cover
X — X x5 EA is the standard bar complex given by the action of A on X.
Thus, X x5 FA is that analog of the geometric realization of this bar complex,
whence the name homotopy orbits.

3.4 Remark. Suppose that S = Spec(R), X = Spec(A) and A = Spec(T).
Then the group action X xg A — X yields a Hopf algebroid structure on the
pair (A, A®gT). This is a split Hopf algebroid. By Remark 2.39 the category of
quasi-coherent sheaves over X x5 EA is equivalent to the category of (A, AQgI')-
comodules.

3.5 Remark. Let’s compare this construction of X x, EA with a construction
in simplicial sets. Suppose A is a discrete group (in sets) and X is a discrete
right A-set. Then the simplicial set X x, FA is defined to be the nerve of the
groupoid with object set X and morphism set X x G. However, this groupoid
is equivalent to the groupoid with objects a : P — X where P is a free and
transitive G-set; morphisms are the evident commutative triangles. This is a
direct translation of the construction above. Equivalent groupoids have weakly
equivalent nerves; hence, if we are only interested in homotopy type, we could
define X x5 EA to be the nerve of the larger groupoid.
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Next let us say some words about naturality. This is simpler if we make some
assumptions on our group schemes. A group scheme A over S is affine over S if
the structure map ¢ : A — S is an affine morphism. Since affine morphisms are
closed under composition and base change, the multiplication map A xg A — A
is a morphism of schemes affine over S. Thus the quasi-coherent Og-algebra
sheaf ¢.Op is a sheaf of Hopf algebras. In most of our examples, S = Spec(A)
is itself affine; in this case, A = Spec(T") for some Hopf algebra I" over A.

If A is a group scheme affine over S and P — S is a A-torsor, then P — S'is
an affine morphism by faithfully flat descent. If ¢ : A; — Ay is a morphism of
group schemes affine over S and P — S a A; torsor, let P xa, Ay be the sheaf
associated to the presheaf

A= (P(A) xs(a) M2(A))/ ~
where ~ is the equivalence relation given pointwise by
(xb,a) ~ (x,ba)
with € P(A), a € Ay(A4), and b € A1 (A).

3.6 Lemma. Let Ay — Ay be a morphism of groups schemes affine over S and
Let P — S be a Ai-torsor. Then P xa, Ay is actually a Aa-torsor over S.

Proof. If we can choose an isomorphism P = A; over S, then we get an induced
isomorphism P X, Ay = As. More generally, let f : T — S be an fpgc-cover
so that

T Xg P=T Xs Al.

Then
T xg (P XAy Ag)%(T Xsp) XTxgAy (T XsAg)%TXSAQ.

Since As is affine over S, T' xg Ag is affine over T' and faithfully flat descent
implies P x4, Ao is an affine torsor over S. O

Now suppose X is a right Aj-scheme, X5 is a right As-scheme and ¢ : X; —
X5 is a morphism of Aj-schemes. Then we get a morphism of stacks

X1 XAy EA1 —>X2 X Aq EAQ

sending the pair (P, ) to the pair (P XA, A, qa); that is, there is a commutative
diagram of Aj-schemes

P4(X>X1
"
IDXA1 A2 *>X2.

Such morphisms have quite nice properties. Recall that a morphism of
groupoids f : G — H is a fibration if for all x € H, all y € G and all mor-
phisms ¢ : x — f(y) in H, there is a morphism ¢ : ' — y in G with fy = ¢.
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Equivalently the morphism of nerves BG — BH is a Kan fibration of simplicial
sets. We will say that a morphism of stacks M — A is a fibration if for all
commutative rings R, the map M(R) — N(R) is a fibration of groupoids.3

A topological version of the following result can be found in Remark 3.9
below.

3.7 Proposition. Suppose f: Ay — As is a morphism of group schemes affine
over S, X1 is a A1-scheme, X5 is a Ay-scheme, and q : X1 — X5 is a morphism
of Ai-schemes. Then

X1 XAy EA1—>X2 XAy EAQ
1s a fibration of algebraic stacks in the fpqc topology.

Proof. Suppose we are given a diagram (over a base-scheme U suppressed from
the notation)

P—=X

l ’
/
@95y
with (1) P a Aj-torsor and « a Aj-morphism; (2) Q" and @ both As-torsors, 3
Ao-map and ¢ is As-isomorphism; and (3) P — @ a morphism of Aj-schemes

with P xa, Ay = Q. Then we take the pull-back

Q/XQPLP

|

Q' —¢> Q.
Then Q' x¢ P is a Aj-torsor and v is a A;-isomorphism. Finally, we must check
that the natural map (Q' x¢g P) xa, Ay — @' is an isomorphism of As-torsors.
If we can choose isomorphisms P = A; and @ = A this is clear. The general
case follows from faithfully flat descent. O

It is also relatively easy to identify fibers in this setting. We restrict ourselves
to a special case.

3.8 Proposition. Suppose f : Ay — Ao is flat surjective morphism of group
schemes affine over S with kernel K. Suppose that X1 is a Ai-scheme, Xs is
a Ao-scheme, and q : X1 — Xo is a morphism of Ai-schemes. Then there is a
homotopy pull-back diagram

Xl XKEKHXH XAy EAl

| |

X2 —_— X2 X Aq EA2

3This begs for a much more extensive and sophisticated discussion. See [27] and [14].
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Proof. Let f : U — X5 be a morphism of schemes. Then the composition
U — X3 xp, EAs classifies the pair (U xg Az, @) where « is the composition

XA
UXSAQ [xha

UXSX2 XSA2

U X5 Xg.

The homotopy fiber at U is the groupoid with objects the commutative diagrams
P U Xg X1

.

UXSAQT>UXSX2

where (P, ) is an object in [X7 xa, EA1](U) and g is a A; morphism so that the
induced map P x,, As — U Xg As is an isomorphism. Let P’ be the pull-back
of g at inclusions induced by the identity U — U xg Ay. Then P/ — U xg X3 is
an equivariant morphism from a K-torsor to Xs. This defines the functor from
the pull-back to X; X FK.

Conversely, given a K-torsor P over U and a K-morphism P — X; we can
produce a diagram

PXUXsK (U XsAl)HUXSXl

ig |

P xpyxsr (U xgAy) —=U xg Xo.

Since K is the kernel of Ay — As, projection gives a natural morphism of
Ao-torsors over U
P XUXSK (U XsAQ) — U XSA2

of As torsors over U. This defines the functor back and gives the equivalence of
categories. O

3.9 Remark. In the topological setting of Remark 3.5 we gave two ways to
construct X x y EA. With the smaller, and more usual construction, a morphism

X1 XAy EA1—>X2 X Ao EA2

is a fibration only if A; — As is onto. However, in the larger construction using
transitive and free A-sets, this morphism is always a fibration, by the same
argument as that given for Proposition 3.7. Either model allows us to prove the
analog of Proposition 3.8.

As a final generality we have:

3.10 Proposition. Suppose f : Ay — As is flat surjective morphism of group
schemes affine over S and let K be the kernel. Suppose that X1 is a Ai-scheme,
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X5 is a Ay-scheme, and q : X1 — X5 is a morphism of Ai-schemes. If X1 — X5
is a K-torsor over Xo, then

X1 XAy EA1—>X2 X As EAQ
s an equivalence of algebraic stacks.

Proof. The hypothesis of X; — X means that when the action is restricted
to K, then X; is (after pulling back to an fpgc-cover of X;) isomorphic to
X5 xg K. The result follows immediately from Propositions 3.7 and 3.8, but
can also be proved directly. For if a : P — U xg X5 is some As-equivariant
morphism from a As-torsor over U, then we can form the pull back square

QLUXSXl

.

PT>UXSX2

and 0 : Q — U xg X; is a Aj-equivariant morphism from a A;-torsor over U.
This defines the necessary equivalence of categories. O

3.2 Formal groups

We now specialize to the case where S = Spec(Z), A = Spec(Zlag', a1,...]) is
the group scheme of power series invertible under composition. We set X =
fgl = Spec(L) where L is the Lazard ring. Thus for a commutative ring R

A(R) = zR[[«]]"

and X (R) = fgl(R) is the set of formal group laws over R. The group scheme
A acts on fgl by the formula

(Fo)(w1,22) = ¢~ (F(d(1), d(22)).

In Theorem 2.25 we produced, for any formal group G over an affine scheme
U, an affine morphism of schemes

Coordg—S.
The following is essentially a combination of Lemma 2.16 and Theorem 2.25.2.

3.11 Lemma. For a formal group G over a quasi-compact and quasi-separated
scheme U, the scheme of coordinates Coordg — U is a A-torsor over U.

Proof. The formal group G over U may not have a coordinate. However, Lemma
2.16 implies that there is an fgpc-cover f : V' — U so that f*G has a coordinate.
Reading the proof of Lemma 2.16 we see that V' can be chosen to be affine. Then

V xy Coordg = Coord s«

is certainly a free right A-scheme over V. See Remark 2.26 for explicit formulas.
O
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The following result implies that every A-torsor over fgl arises in this way
from a formal group.

3.12 Lemma. Let S be a quasi-compact and quasi-separated scheme. Let P —
S be a A-torsor and let P — S x fgl be a morphism A-schemes over S. Then
there is a formal group G — S and an isomorphism P — Coordg of A-torsors
over S. This isomorphism is stable under pull-backs in S and natural in P.
Furthermore, if P = Coordy, then there is a natural isomorphism G = H.

Proof. We begin with an observation. Let f : U — S be any morphism of
schemes so that fiber P(U, f) of P(U) — S(U)) at f is a free A(U)-set. Then
we have a commutative diagram

P, f) fgl(U)

| l

P, )/AU) =+ —— fg(U)

and the image of the bottom map is a formal group Gy over U. Since the fiber
of fgl(U) — fg(U) at G is Coordg, (U) we have that Gy has a coordinate and
we have an isomorphism of free A(U)-sets

(3.1) P(U, f) = Coordg, (U).

To get a formal group over S we use descent. Choose a faithfully flat and
quasi-compact map ¢ : T — S so that fiber P(T,q) is a free A(T)-set. This
yields a formal group G, over T' as above. Next examine the commutative
diagram

P(T)—=P(T xsT)

S(T) == S(T x5 T)

where the horizontal maps are given by the two projections. Since the two maps

p
TxsT—=T7—1>g
P2

are equal the projection maps yield morphisms between fibers

Pi
P(T7q) H*P(T Xs T7 qpl)
pa

and hence a unique isomorphism p7G, = p5G,. This isomorphism will satisfy
the cocycle condition, using uniqueness. Now descent gives the formal group
G — S. Note that if P = Coordy, then G, = ¢*H; therefore, G = H.

We now define the isomorphism of torsors P — Coordg over S. Since both
P and Coordg are sheaves in the fpgc topology, it is sufficient to define a natural
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isomorphism P(U, f) — Coordg(U, f) for all f : U — S so that both P(U, f)
and Coordg(U, f) are free A(U)-sets. This isomorphism is defined by Equation
3.1 using the observation that

Coordf+q(U) = Coordg(U, f).

3.13 Proposition. This morphism
Mfg—>fg1 XA EA
s an equivalence of algebraic stacks.

Proof. Lemma 3.12 at once supplies the map fgl xy EA — Mg, and the needed
natural transformations from either of the two composites to the identity. [

3.14 Remark (More on gradings). In Remarks 2.39 and 3.4 we noted that
the category of quasi-coherent sheaves on Mygg is equivalent to the category of
(L, W)-comodules. In Remark 2.47 we noted that (L, W) has a natural grading.
We’d now like to put the gradings into the comodules and recover the Fr-term
of the Adams Novikov Spectral Sequence as the cohomology of the moduli stack
Mg

Let Ay be a group scheme with a right action by another group scheme H.
Then we can form the semi-direct product Ag x H = A. To specify a right action
of A on a scheme X is to specify actions of Ag and H on X so that for all rings
Aand all x € X(A), g € Ag(A), and u € H(A), we have

z(gu) = (zu)(gu).
We then get a morphism of algebraic stacks

(3.2) X//Ao % X x5, EAg—X x5 EA Y X//A

If H and Ag are both flat over the base ring R, then this is a reprentable and

flat morphism. We now want to identify the fiber product X//Ao x x4 X//Ao.
Let A be a commutative ring and Py a Ag-torsor over A. If u € H(A) is an

A-point of H, then we get a new A-torsor P* with underlying scheme P but a

new action defined pointwise by

x*g=2x(gu).

Here we have used * for the new action and juxtaposition for the old. If « : P —
A ® X is a morphism of Ag-schemes then we get a new morphism a* : P* — X
given pointwise by
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Conjugation by w in A defines an isomorphism ¢, : P xp, A — P* x5, A of
A-torsors over A so that the following diagram commutes

P xp, A
bu A®X.
P" xp, A
Thus we have defined a morphism
X//Ao x H— X//No xx//0 X/ /Mo
given pointwise by
((Pa),u) = ((P,a), (PY,a"), du)

and we leave it to the reader to show that this is an equivalence.

From this equivalence we can conclude that the category of quasi-coherent
sheaves on X x, FA is equivalent to the category of cartesian quasi-cohernet
sheaves on the Cech nerve induced by the morphism of Equation 3.2:

(33) o X//Aox H x HE== X//Ao x H === X//Ao — X//A.

This translates into comdodules as follows. Suppose that Ag = Spec(T'g) and
H = Spec(K) for Hopf algebras I'y and K respectively. Then A = Spec(T") where
I' =Ty ® K with the twisted Hopf algebra structure determined by the action of
H on Ag. Suppose X = Spec(A). If M is an (A, A® K)-comodule, then M ® Ag
has an induced structure as an (A, A® K )-comodule using the diagonal coaction.
We define the category of (4, A ® K)-comodules in (A, A ® Ag)-comodules to
be those comodules so that the comodule structure map

M—M ®4 (A®AQ)

is a morphism of (A, A ® K)-comodules. We have

1. the category of quasi-coherent sheaves on X x, EA is equivalent to the
category of (4, A ® I')-comodules; and

2. the category of cartesian sheaves on the Cech nerve of X//Ag — X//A
is equivalent to the category of (A4, A ® K) comodules in the category
(A, A ® Ag)-comodules.

From this we conclude that the category of (A, A®T")-comodules is equivalent
to the category of (4, A ® K)-comodules in (4, A ® Ag)-comodules.

As example, suppose H = G,,. Then the action of G,, on Gy and X
gives a grading to Ag and A and the category of (A, A ® K) comodules in the
category of (A, A® K)-comodules in (A, A® Ag)-comodules is equivalent to the
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category of graded (A, A ® Ag)-comodules. Thus we conclude that the category
(A, A® Aglat?]) comodules is equivalent to the category of graded (A, A® Ag)-
comodules. In this case it is possible to give completely explicit formulas for the
equivalence. For example, if M is an (A, A® Ay [a(jfl]) comodule, the comodule
structure map induces a homomorphism

M—> M ®4 (A® Aglat!]) —> M ® A @ Z[aF'] =% M © Z]aE!]

which defines the grading and the map

M— M ®4 (A® Aglai?]) L VN (A® Ao)

induces the comodule structure.

This equivalence of categories can be used to refine the isomorphism of Equa-
tion 2.8. If F is a quasi-coherent sheaf of X x, EA, let M be the associated
comodule. Then we have natural isomorphisms — where we have added asterisks
(*) to indicate where we are working with graded comodules.

(3.4) H*(X xg BG,F) 2 Exty (A, M)
~ Ext}, . (A., M.).

In the case of formal groups, we get the grading on the Lazard ring of this yields
the isomorphism of Remark 2.47; write L, for this graded ring. Then

W07* = L*[a:170127a'37 o ]

represents the functor of strict isomorphisms. The complex cobordism ring MU,
is L, with the grading doubled; likewise, MU, MU is Wy, with the grading
doubled. With all of this done, we can identify sheaf cohomology with Es-term
on the Adams-Novikov spectral sequence. For example,

H?*(Mgg,w") = Extw (L, L[t])
(3.5) ~ Extyp v (MU, Q**MU,)

The extra factor of 2 arises as part of the topological grading.

3.3 Buds of formal groups

One of the difficulties with the moduli stack Mgz of formal groups is that it
does not have good finiteness properties. We have written Mg, as fgl x, EA
and neither the group A or the scheme fgl is of finite type over Z. However, we
can write Mg, as the homotopy inverse limit of stacks Mgg(n) which has an
affine smooth cover of dimension n.

Let n > 1 and A(n) be the affine group scheme over Spec(Z) which assigns
to each commutative ring R, the partial power series of degree n

f(@) = a0z + a12* + -+ - + ap_12™ € R[[z]]/(z" 1)
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with ap a unit. This becomes a group under composition of power series. Of
course,

Aln) = Spec(Z[a(fl7 a1y .y Gp_1]).

Similarly, let fgl(n) be the affine scheme of n-buds of formal group laws

F(z,y) € Rl[z,y]l/(z,y)" .
Thus we are requiring that F(x,0) = = F(0,z), F(z,y) = F(y,z), and
Fa, Fy, 2)) = F(F(z,9),2)

all modulo (z,y)"*!. The symmetric 2-cocyle lemma [48] A.2.12 now implies
that ot
fgl(n) = Spec(Z[x1, 29, - ,xn_1]) = Spec(L(n))

and modulo (z1,...,2,)?, the universal n-bud reads
Fu(xa y) =zr+y+ 95102(3072!) + e xnflcn(x7y)
where C(z,y) is the kth symmetric 2-cocyle. The group A(n) acts of fgl(n).

3.15 Definition. The moduli stack of n-buds of formal groups is the
homotopy orbit stack

Mig(n) = fgl(n) x5y EA(R).

3.16 Remark. 1.) Warning: The stacks Mgg(n) are not related to the spectra
BP({n) which appear in chromtatic stable homotopy — see [48] — but I was
running out of notation. I apologize for the confusion. The objects BP(n) will
not appear in these notes, although the cognoscenti should contemplate Lemma
3.24 below.

2.) Using Remarks 2.47 and 3.14 we see that the category of quasi-cohernet
sheaves is equivalent to the category of graded comodules over the graded Hopf
algebroid (L(n),, W(n), ) where L(n), is the ring L(n) with the degree of ;
equal to ¢ and

*

W<n>0,* = L<n>*[a1, az, Q1]

with the degree of a; equal to 7. This will be important later in the proof of
Theorem 3.28. Note that W (n), , represents the functor of strict isomorphisms
of buds.

There are canonical maps
Meg— Mg (n)— Mig(n — 1).
3.17 Example. To make your confusion specific?, note that

Myig (1) = BG,, = Spec(Z) xg,, EG,.

4This is a quote from Steve Wilson. See [56].
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This is because A1 (R) = R* = G;,(R) is the group of units in R and, modulo
(x,9)?, the unique bud of a formal group law is z + 3. We also have

Mig(2) = A x5, EA,
where A, acts on A! by
(b, apx + arz?) — agh — 2(a1 /agp).

Note that, modulo (x,y)?, any bud of a formal group law is of the form x +y +
bxy.

The following implies that Mgg(n) is an algebraic stack in the sense of [33]
Définition 4.1. See also [33], Exemple 4.6.

3.18 Proposition. The morphism
Spec(L{n)) — Mgg(n)

classifying the universal n-bud of a formal group law is a presentation and
smooth of relative dimension n.

Proof. That the morphism is a presentation follows from Proposition 3.1. To see
that it is smooth of relative dimension n, we must check that for all morphisms
Spec(R) — Mgg(n) the resulting pull-back

Spec(R) X ag, (ny Spec(L(n)) — Spec(R)

is smooth of relative dimension n. Since smoothness is local for the fpgc topol-
ogy, we may assume that Spec(R) — Mgg(n) classifies a bud of formal group
law. Then

Spec(R) X Mg (n) Spec(L(n)) = Spec(R[aOﬂ, ay, - ,an—1]) = Spec(R) X A,
and this suffices. O

Recall that that nth symmetric 2-cocycle is

Culit,y) = -l(e )" =" — ")

mn

where
p, n =pk for a prime p;
d, =
1, otherwise.

Let G, be the additive group scheme and let Al(n) be the G, scheme with
action Al(n) x G, — Al(n) given by

(z,a) — x — dya.
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3.19 Lemma. The morphism A{n) — A{n — 1) of affine group schemes is flat
and surjective with kernel G,. Furthermore there is an equivariant isomorphism
of G, schemes over fgl(n — 1)

fgl(n) = fgl(n — 1) x Al(n).

Proof. The kernel of A(n)(R) — A(n —1)(R) is all power series of the form
$a(2) =z + az™ modulo (") Since @q(dar (¢)) = G(atar)(x) modulo (z"F1),
the first statement follows. For the splitting of fgl(n) note that if ¢,(z) is an
isomorphism of buds of formal group laws F' — F’, then

Fl(a,y) = F(z,y) +a[2" —y" — (x +y)"]
= F(z,y) — dnaC(x,y).
Thus the coaction morphism on coordinate rings
Zlx1, ..., x5)—Zx1,. .., 2,] @ Zla]
sends x; to x; is ¢ # n and z, to
T, ®1—-1R dy,a.
This gives the splitting. O

3.20 Remark. In Theorem 3.22, I am going to take a 2-category limit of a
tower of algebraic stacks. These limits can be defined inside the theory, but
they can also be defined using homotopy theory; therefore, I'm going to call it
a homotopy inverse limit. The category of categories fibered in groupoids over
affine schemes is a model category, by [14] and I'll define the 2-category limit
of a diagram of stacks to be the homotopy inverse limit in that category. If we
have a 2-sink

N ——M<—N;

of stacks, then the usual 2-category pull-back will be equivalent to the homotopy
pull-back simply because it is exactly the usual homotopy pull-back. As another
example, note that if we have a tower of stacks

C My My = e Mg — My

then the homotopy inverse limit will be equal to the actual inverse limit if each
of the maps is a locally a fibration of groupoids.

3.21 Proposition. For all n > 1 the reduction map
Mig(n)— Mig(n — 1)
is a fibration. If R is any commutative ring in which d,, is a unit, then
Msge(n) @ R—Mge(n —1) ® R

s an equivalence of algebraic stacks.
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Proof. This follows immediately from Example 3.2, Propositions 3.7 and 3.10,
Lemma 3.19, and the following fact: if d,, is a unit in A, then A'(n) is isomorphic
to G, as a right G,-scheme. O

3.22 Theorem. The natural map
Mgg— holim Mg (n)
18 an equivalence of stacks.

Proof. We must prove that for all rings R the natural morphism of groupoids
Mg (R)— holim Mgg (n)(R)

is an equivalence. By Proposition 3.21 we have that the projection map
Mg (n) (R)—Mag{n — 1)(R)

is a fibration of groupoids for all n. Thus we need only show Mge(R) =
lim Mg (n)(R), but this is obvious. O

The next result is an incredibly complicated way to prove that every formal
group over an algebra over the rationals is isomorphic to the additive formal
group. It proves more, however, as it also identifies the automorphisms of the
additive formal group. For the proof combine Theorem 3.22 and Proposition
3.21.

3.23 Corollary. The projection map
Mig ® Q—Mg(1) © Q =~ B(Gy, ® Q)
s an equivalence.

When working at a prime p, the moduli stacks Mgg(p") ® Z,) form the
significant layers in the tower. These should have covers by “p-typical buds”;
the next result makes that thought precise. Recall that the universal p-typical
formal group law F' is defined over the the ring V' = Zg,)[u1,ug,---]. See
Corollary 2.46.

3.24 Lemma. Let V,, = Zy[ua,. .., uy] be the subring of V' generated by uy,
kE <n. The p"-bud Fyn of the universal p-typical formal group law F' is defined
over V,, and the morphism

Fyn : Spec(Vy,) — Mg (p") @ Ly
classifying this bud is a presentation. Furthermore there is an isomorphism

Spec(Vi) X aMy, (n) Spec(Vy,) = Spec(V, [tE b1, tn)]).
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Proof. We use the gradings of Remark 2.47. The n-bud of a formal group law
G is given by the equation

Gn(z,y) = Z cia'y’.
it5<n

If F' is the universal p-typical formal group law, we see that F, is defined over
the subring of V generated by the u; with p* < n. Similarly if ¢(z) is the
universal isomorphism of p-typical formal group laws, then its bud

n—1
an(l") _ Z ail,erl
1=0

is defined over the subring of V[téﬂ, ty,---] generated by t;, and uy, with p* < n.

To show that we have a presentation, suppose G is a p™ bud of a formal
group over a field F which is a Z,)-algebra. Since F is a field, we may assume
G arises from the bud of formal group law, which we also call G. Choose any
formal group law G’ whose p™-bud is G and choose an isomorphism G’ — G”
where G” is p-typical. Then the p™-bud of G” is isomorphic to G and, by the
previous paragraph, arises from a morphism g : V,, — F. Thus we obtain the
requisite 2-commuting diagram

Spec(V,,)

Spec(TF) = Mg (p") @ L.

A similar argument computes the homotopy pull-back. O

3.25 Remark. It is possible to give an intrinsic geometric definition of an n-
bud of a formal group in the style of Definition 1.29 and Definition 2.2. First
an n-germ of a formal Lie variety X over a scheme S is an affine morphism of
schemes X — S with a closed section e so that

1. X = Inf3(X);
2. the quasi-coherent sheaf w, is locally free of finite rank on .S;

3. the natural map of graded rings Sym, (w.) — gr,(X) induces an isomor-
phism
Sym*(wﬁ)/jn+1 - gr*(X)
where J = @>0Symy, (w.) is the augmentation ideal.

An n-bud of a formal groupis then an n-germ G — S so that w. = wg is locally
free of rank 1 and there is a “multiplication” map

Inf%(G x5 G) — G

over S so that the obvious diagrams commute.
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3.4 Coherent sheaves over Mg,

We would like to show that any finitely presented sheaf over Mg, can be obtained
by base change from Mg (n) for some n.
Let m and n be integers 0 < n < m < oo and let

A(mn) = ¢+ Meg(m) — Mgg(n)

be the projection. I'll write ¢ for q(,, ) whenever possible. Also, I'm writing
Mg (00) for Mg itself.

Write Qmodg, (n) for the quasi-coherent sheaves on Mgg(n). We begin by
discussing the pull-back and push-forward functors

q" : Qmodg, (n) ——= Qmodg, (M) : g..

By Remark 3.4, the category of quasi-coherent sheaves on Mgg(n) is equiv-
alent to the category of (L{n), W(n}))-comodules. In fact, if F is a quasi-
coherent sheaf, the associated comodule M is obtained by evaluating F at
Spec(L(n)) — Mgg(n), and the comodule structure is obtained by evaluating
F on the parallel arrows

Spec(W (n)) —= Spec(L(n)) ——= Mg (n).

We will describe the functors g, and ¢* by giving a description on comodules.
Let T'(n,m) be the group scheme which assigns to each commutative ring A
the invertible (under composition) power series modulo (z™*1)

9 1 2 9
4 ape" ™t Fap 2"+ a,_2™ a; € R.

Then I'(n,m) = Spec(Zlan, an+1,--.,am—1]) and I'(n,m) is the kernel of the
projection map A{m) — A(n).
By Proposition 3.8 there is an equivalence of algebraic stacks

Spec(L(n)) X pme, (m) Mig(m) = fgl{m) Xp( my ET'(n,m).

Let F be a quasi-coherent sheaf on Mpgg(m). Then the value of ¢.F when
evaluated at Spec(L(n)) — Migg(n) is H°(Spec(L(n)) X pe(ny Mig(m), F).
If M = F(Spec(L{m))) is the (L{m), W(m))-comodule equivalent to F, then
these global sections are the (L{n), W (n))-comodule N defined by the equalizer
diagram
N >]\4*4 Z[anaanJrlyn'aamfl} ®L(m> M

where the parallel arrows are given by left inclusion and the coaction map. The
assignment M +— N determines q.F.

To describe ¢*, we give the left adjoint to the functor just described on

comodules. If N is a (L{n), W{n))-comodule, define a (L{(m), W (m)) comodule
M = L{m) ®p(,y N with coaction map

Lim) @rmy N — W{m) @rmy ®L{m) @rmy N = W(m) Qwny W(n) ®pmy N
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given by
R @Y : L{m) @pmy N—W({m) @w mny W{n) @pm) N.
3.26 Proposition. For allm andn, 0 < n < m < oo, the projection morphism
q : Meg{m)— Mgg(n)
18 faithfully flat.

Proof. The morphism ¢ is flat if and only if the functor F +— ¢*F is exact.
However, since the ring homomorphism L{n) — L{m) is flat, the equivalent
functor N — L(m) ®p(,) N on comodules is evidently exact. The morphism ¢
is now faithfully flat because it is surjective. O

The notions of finitely presented and coherent sheaves on schemes were de-
fined in Remark 1.2.

3.27 Definition. Let F be a quasi-coherent sheaf on on an fpqc-algebraic stack
M. Then F is finitely presented if there is an fgpc-presentation q: X — M
so that ¢*F is finitely presented.

By examining the definitions, we see that it is equivalent to specify that
there is an fgpc-cover p: Y — M and an exact sequence of sheaves

O&’)—>O$)—>p*f—>0.

with I and J finite. In many of our examples, the cover we have a cover X — M
with X = Spec(A) with A Noetherian or, at worst, coherent. In this case, a
finitely presented module sheaf is coherent (see Remark 1.2). Also F is finitely
presented if and only of F(Spec(4) — M) is a finitely presented A-module.

In the following result, there is experimental evidence to show that Fy might
actually by (g)«F, but I don’t need this fact and couldn’t find a quick proof.

3.28 Theorem. Let F be a finitely presented quasi-coherent sheaf on Mygg.
Then there is an integer m, a quasi-coherent sheaf Fo on Mgg(n) and an iso-
morphism

q;fo — F.

18 an isomorphism.

Proof. Using Remark 3.14 and Remark 3.16.2, this result is equivalent to the fol-
lowing statement. Let M be a graded comodule over the graded Hopf algebroid
(L4, Li[a1, azg, -+ -]) which is finitely presented as an L.-module. Then there is
an integer n and a graded comodule over (L(n),, L(n) [a1,a2, - ,an—1]) and
an isomorphism of graded comodules L. ®p,((n), Mo = M. This we now prove.

If N is a graded module, write £*N for the graded module with (X°N); =
Nk:—s~ Let

eYNL, 5@ X%L, - M —0
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be any finite presentation. Choose and integer n greater than or equal to the
maximum of the integers |a — b| where

a,b e { Si7tj }

Then we can complete the commutative square of L(n) -modules

@ THL0), — L >~ @ 95 L{n)

| |

oYL, —— @ X% L

*

and, if My is the cokerenel of f, a morphism of L{n) -modules My — M so that
L, S L(ny, My—M

is an isomorphism. We now need only check that Mo is a W(n), ,-comodule.
But this follows from the same condition on n we used above to produce f. [

4 Invariant derivations and differentials

4.1 The Lie algebra of a group scheme

We begin with a basic recapitulation of the notion of the Lie algebra of a group
scheme G over a scheme S. The tangent scheme and the connection between
the tangent scheme and differentials was discussed in §1.3.

4.1 Definition. Let G — S be a group scheme over S. Let Lieg to be the
scheme over S obtained by the pull-back diagram

Lieg —— Tang/s

L

S—6>G.

Let e : S — G be the inclusion of the identity, which we will assume is
closed. If w, is the conormal sheaf of this embedding, then, by Lemma 1.24 we
get a natural isomorphism

d:we—e"Qg/s

and it follows immediately from Proposition 1.23 that
LieG = V(we).

In particular, Lie(G) — S is an affine morphism. See Remark 1.32 for a similar
construction.
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4.2 Remark. The scheme Lieg — S has a great deal of structure; we’ll em-
phasize those points which apply most directly here.

1.) Since Tang,g is an abelian group scheme over G, Lieg is an abelian
group scheme over S. More than that, it is an Aj-module; that is, there is a
multiplication morphism of schemes

A}S Xs Lieg—>LieG

making Lieg into a module over the ring scheme A§. This is a coordinate free
way of saying that the abelian group Lieg(A) is naturally an A-module. To
get this A-module structure, let a € A and define u, : A(e) — A(e) to be
the A-algebra map determined by wu,(e) = ae. Then Lieg(u,) determines the
multiplication by a in Lieg(A).

2.) The zero section s : G — Tang/g defines an action of G on Lieg by
conjugation; if x € G(R), this action is written

Ad(z) : Lieg—Lieg.

The naturality of the semi-direct product construction shows that there is a
natural isomorphism of group schemes over GG

Tang/s =G XS Lieg.
In particular, if G is commutative we have an isomorphism
(41) Tang/s =xe X g Lieg

which is natural with respect to homomorphisms of abelian group schemes.
3.) There is a Lie bracket

[, ]: Lieg xg Lieg—Lieg.

Thus, Lieg is an AL-Lie algebra. If G is commutative — as is our focus here —
this bracket is zero, so we won’t belabor it.

4.3 Remark (Invariant derivations). In Corollary 1.22 we wrote down a
natural isomorphism between the module Derg(G, O¢) of derivations of G over
S with coefficients in Og and the module of sections of ¢ : Tang,g — G. If s
is a section of Lieg — S, then we get a section

s=5xG:G =58 xgG—Lieg x G = Tang/g

of Tang s — G and the assignment s’ — s induces an isomorphism from the
module of sections of Lieg to the module of left invariant sections of Tang/g.
The inverse assigns to s the composition

S _cs G i) Lieg(s>.

There is a sheaf version of this which defines an isomorphism from the lo-
cal sections of Lieg — G to an appropriate sheaf of invariant derivations in
DBTS (G, OG).
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Now let G — S be a formal group over S; we define Lieg exactly as above:
Lieg = e*Tang/g — S.

Let € : Lieg — Tang/s be the induced map. In Remark 1.32 we showed
that (Tang,s,¢) is a formal Lie variety over Lieg and that there is a natural
isomorphism of abelian group schemes

V(wg) = LieG

over S. Exactly as in Equation 4.1 we have an isomorphism (now as fpqc
sheaves)
TanG/S =ye X5 LieG

over S.

4.4 Remark. Let f : G — H be homomorphism of smooth, commutative
formal groups over S. In the presence of coordinates, it is possible to give a
concrete formula for computing Lie(f) and Tan(f).

First suppose that we choose can choose a coordinate y for G. Then y
determines an isomorphism

Ay : Gg—Lieg

from the additive group over S to Lieg sending a € G,(R) to ea € Lieg.
Next suppose that we also choose a coordinate x for H. Then the image of
y under f is a power series f(z) and we get a commutative diagram

GXsGa*)HXSGa

GxAy\L \LHX)\I

T an T an
G/S m H/S

where the top morphism is given pointwise by

(a,0) = (f(a), bf'(a)).

Restricting to the Lie schemes, we get a commutative diagram of schemes over
S
1(0)

G, —> G,

Li Lie .
1eq m H/S

Note that we have also effectively proved the following result.

4.5 Proposition. Let G be a smooth one-dimensional, commutative formal
groups over S. Then Lieg is a naturally a G,-torsor in the fpqc topology.
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Proof. The scheme Lieg — S is a G,-scheme because it is an Als—module. If
we choose an fpqc cover f : T — S so that f*G can be given a coordinate,
then we have just shown, in Remark 4.4, that a choice of coordinate defines an
isomorphism

F*Go—Liep(f*G) = f*Lieg.

4.2 Invariant differentials

Let g : G — S be a group scheme over S with identity e : S — G. Let us assume
that G is flat — and hence faithfully flat — and quasi-compact over S. Then we
have a diagram

P1
GxSGH?G

(O

GXSGH?G

where f is an isomorphism give pointwise by f(z,y) = (z,zy) and m is the
multiplication map. From this we conclude that we have a modified version of
descent for ¢ : G — S: the category of quasi-coherent sheaves on S is equivalent
to the category of quasi-coherent sheaves F on G equipped with an isomorphism

(M) F—-m*F

satisfying a suitable cocycle condition we leave the reader to formulate.
To apply this, we note that we have diagram

D1
GxsG—=@G

G S

q
and both the squares are Cartesian. This supplies an isomorphism
(P1)" Qs = Qaxsa/a Em* Qs

which satisfies the necessary cocycle condition. The resulting quasi-coherent
sheaf wg on S is the sheaf of invariant differentials on G. Since wg is already
the name we’ve given to the conormal sheaf of the unit e : S — G we have
to justify this notion. So for the next sentence, let’s write wg for the invariant
differentials and e*{2 /g for the conormal sheaf. Then, by construction, we have
that

(4.2) q'we = Qays
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from which it follows that
(4.3) e Qg/s = "¢ wg = wa.
Thus, from now on, we make no distinction between the two.

4.6 Example. This definition is less arcane that it seems. Unwinding the proof
of faithfully flat descent, we see that there is an equalizer diagram of sheaves of
S

dp1
wG —— (I*QG/S Ti Q*Q(Gx sG)/G
m

where I have written ¢ for the canonical projections to S. To be even more
concrete, suppose S = Spec(R) and G is affine over R; that is, G = Spec(A)
for some Hopf algebra A over R. Then w¢ is determined by the R-module wy
defined by the equalizer diagram
diq
wa — Qa/R % Qagray/a-

For example, if G = G,,, then A = R[z*!] with A(z) = 2 ® 2 and we calculate
that w4 is the free R-module on dz/x.

4.7 Remark. As Lieg = V(wg), the sheaf dual to wg is the quasi-coherent
sheaf which assigns to each Zariski open U C S the sections of Lieg|y — U. In
particular, the global sections of this dual sheaf are exactly invariant derivations
of G. If we need a name for this sheaf we will call it lieg g.

These notions extend to formal groups, with a little care. In this case we
don’t have a sheaf 0g/s defined — although we could produce it if need be.
However, in Remark 1.32, we did define sheaves (2¢/s)n over G,, and we define

* def ;. ~ e *
7" Qq/s = limq.(Qq/s)n Z1limq* Qg /s
over S, where ¢ : G,, — S is any of the projections. Similarly
:Qaxa/c =1limq.q, xa,/a,-
The following allows us to call wg the sheaf of invariant differentials for G.

4.8 Proposition. Let G — S be a formal group over S. Then there is an
equalizer diagram of sheaves on S

dp1
weg — ¢:8q/s ;d’ Qexsa) /6
m

4.9 Example. Suppose that S = Spec(A) is affine and that G can be given a
coordinate x. Then wg is determined by its S-module of global sections over S
and we we have an equalizer diagram of A-modules

HO(S, we) —— Alla]|de Z:A Allz, y]dz.
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Let’s write F(z,y) = A(x) for the resulting formal group law and F,(x,y) for
the partial derivative of that power series with respect to x. Then an invariant
differential f(x)dx must satisfy the equality

Setting x = 0 and then setting y = = we get that

_ [0
Since F;(0,0) = 1, we conclude that wg is the quasi-coherent sheaf on Spec(A)
determined by the free A-module of rank 1 with generator

_ dx
T F(0)
4.10 Example. Calculating with Lieg and wg is standard, at least locally.
Compare Remark 4.4. Suppose S = Spec(A) and f : G — H is a homomorphism
of formal groups over S. By passing to a faithfully flat extension, we may as
well assume that G and H can be given coordinates x and y respectively; then
f is determined by a power series f(z) € A[[z]] and the induced morphism

df : wg—wg

is multiplication by f(0).

4.3 Invariant differentials in characteristic p

As a warm-up for the next section, we will isolate some of the extra phenomena
that occurs when we are working over a base scheme S which is itself a scheme
over Spec(F,,). In this case there is a Frobenius morphism f : § — S. Indeed,
if R is an I, algebra, the Frobenius x — xP defines a natural morphism fg :
R — R of F,, algebras and

fs(R) = S(fr) : S(R)—5S(R),
If X — S is any scheme over S, we define X(®) to be the pull-back
X(P) — X

]

— S
and the relative Frobenius F : X — X® to the unique morphism of schemes

over S so that the following diagram commutes

f
X - X (@)

NI

S ——

!
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The following is an exercise in definitions and the universal properties of pull-
backs.

4.11 Lemma. Let X — S be a scheme over a scheme S over Spec(F)).

1.) There is a natural isomorphism Tangf'}s = Tanxw) )g-

2.) If G — S is a group scheme over S, then there is a natural isomorphism
Lie) 2 Lieg) /-

3.) The relative Frobenius F : X — X®) induces the the zero homomorphism
Tany/s(F): Tany;s — Tan&‘?}s; that is, Tanx,s(F) can be factored

(p)

Tany/s — X i>)((p) — s TanX/S

where s is the zero section.

4.) If G — S is a group scheme, the relative Frobenius F : G — GP) induces
the the zero homomorphism Lie(F) : Lieg — Lieqw) g; that is, Lie(F) can be
factored

Lieqg —— § . Lieg(p)/s.

Proof. The first of two of these statements are an exercise in definitions and the
universal properties of pull-backs. The second two follow from the fact that if
R is an [Fp-algebra, the fr()(—) = (=)? : R(e) — R(e) factors

R(e) =—=R > R R(e).

O

While the morphism Lie(F) induced by the relative Frobenius F : G — G®)
is the zero map, the relative Frobenius

F: Lieg — Lie) 2 Lieg /s
is not. This is the map on affine schemes over S
V(we)—V(wa)” = V(wgw)
induced by the Frobenius morphism on algebra sheaves
Symg(wae ) — Symg(wg).

By restricting to the sub-Og-module wgp) of Symg(wgw)) we get the map
needed for the following result. Sym,,(—) is the pth symmetric power functor.

4.12 Lemma. Let G be a group scheme over S and S a scheme over Fy,. Then
the pth power map induces a natural homomorphism of quasi-coherent sheaves
over S

Wwem — Sym,(wg)
which, if G is smooth of dimension 1, becomes an isomorphism

wam = Symp("‘)G) = wgp'
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Proof. The last statement follows because wg is locally free of rank 1. O
The exact same argument now proves:

4.13 Lemma. Let G be a formal group over S and S a scheme over F,. Then
the pth power map induces a natural homomorphism of quasi-coherent sheaves
over S

wem — Sym,(wg)
yields an isomorphism

waee = Sym,(wg) = wgp.

5 The height filtration

The theory of formal groups in characteristic zero is quite simple: in Corollary
3.23 we saw that over Q, we are reduced to studying the additive formal group
law and its automorphisms. In characteristic p > 0 (and hence over the integers)
the story is quite different. Here formal groups are segregated by height and it
is the height filtration which is at the heart of the geometry of Mge. The point
of this section is to spell this out in detail.

5.1 Height and the elements v,

We are going to study formal groups G over schemes S which are themselves
schemes over Spec(F,). In Lemma 4.11 we introduced and discussed the relative
Frobenius F' and its effect on tangent and Lie schemes. The following is a
standard lemma for formal groups. The homomorphism F : G — G®) is the
relative Frobenius.

5.1 Lemma. Let f : G — H be a homomorphism of formal groups over S
which is a scheme over Spec(F,). If

0 = Lie(f) : Lieg — Lieg.

then there is a unique morphism g : G?) — H so that there is a factoring

G*F>Gw)
g
N
H

Proof. It follows immediately from the natural decomposition 7ang g = G x
Lieg that the induced map

Tan(f): Tang,s — Tangs
is the zero homomorphism as well. Because of the uniqueness of g it is sufficient

to prove the result locally, so choose an fqpc-cover g : T' — S so that ¢*G and
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q*H can each be given a coordinate. As in Remark 4.4, we write f as a power
series f(x) and because Tan(f) = 0 we conclude that f/(x) = 0. Because we
are working over IF,,, we may write f(z) = g(a?) for some unique g(z) and we
let g define the needed homomorphism g* : G®) — H. 0

Let G be a formal group over S, with S a scheme over Spec(F,). Since G is
commutative the pth power map

[p] : G—G

is a homomorphism of formal groups over S. If G can be given a coordinate,
then Remark 4.4 implies that Lie([p]) = 0. More generally, we choose an fpqc
cover f: T — S so that f*G has a coordinate. Then, since f is faithfully flat
and f*Lie([p]) = 0, we have Lie([p]) = 0. Therefore, Lemma 5.1 implies there
is a unique homomorphism V : G®) — @ so that we have a factoring

a—Ls 2]
v

(] l

G.

The homomorphism V' is called the Verschiebung. . The induced morphism
Lie(V) : Lieg’) — Lieg may itself be zero; if so, we obtain a factoring

(p)
a5 a0

Nt

G.
We may continue if Lie(V3) = 0.

5.2 Definition (The height of a formal group). Let G be a formal group over
a scheme S which is itself a scheme over Spec(F,). Define G to have height
at least n if there is a factoring

F F® 5. FPD FE"TH

G G GQP’) —— - —— ge")
Vi

(] i

G.

We will define what it means for G to have exact height n below in Definition
5.5.

Note that a formal group may not have finite height; for example, if G, is
the formal additive group, then 0 = [p] : G, — G, so it must have infinite
height. It follows from Lazard’s uniqueness theorem (Corollary 5.26) that every
infinite height formal group is locally isomorphic to the additive group.
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5.3 Proposition. Let G be a formal group over a scheme S which is itself a
scheme over Spec(F,). Suppose that G has height at least n. Then there is a
global section

v (@) € HO(S,wE"" ™)

so that G has height at least n+ 1 if and only if v, (G) = 0. The element v, (G)
s natural; that is, if H — T is another formal group, f : T — S is a morphism
of schemes and ¢ : H — f*G is an isomorphism of formal groups, then

ffon(G) = v (H).

Proof. Since G is of height at least n, we have the morphism V,, : G®") — G
and G has height at least n + 1 if and only if Lie(V,,) = 0. This will happen if
and only if the induced map

dVy s wg—weaen) = wgp .

is zero. The last isomorphism uses Lemma 4.13. Since wg is an invertible sheaf,
dV,, corresponds to a unique morphism

v (G) : Ogiwg(pn_l).
This defines the global section. The naturality statement follows from the com-
mutative diagram
Liegm) —— Liey
Lie(¢(w))l \LLie(q&)
FLiegem — > f*Lieg
O

5.4 Remark. The global section v, can be computed locally as follows. Let
S = Spec(R) be affine and suppose G — S can be given a coordinate z. Then
if G is of height at least n, the power series expansion of [p] : G — G gives the
p-series:

pl(2) = anz®" + azpa®" + -
If n(G,z) = dx/F,(0,z) is the invariant differential associated to this coordi-
nate, then

U (G) = apn(G,z)®P" 1 ¢ wg(pn_l).
In particular, v, (G) = 0 if and only if a,, = 0.
We wish to define a descending chain of closed substacks
- CM(3) ST M(2) S M(1) C Mgy
with M(n) the moduli stack of formal groups of height greater than or equal

to n. Of course, M(n) will be defined by the vanishing of p,vy,...,v,—_1, but
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it’s worth dwelling on the definition so that the behavior of M(n) under base
change is transparent.

Let M be an fgpc-algebraic stack over a base scheme S. Recall that an
effective Cartier divisor D C M is a closed substack so that the ideal sheaf
Z(D) C Opy defining D is locally free of rank 1.° If we tensor the exact sequence

OHI(D)—?OMHOD—)()

of sheaves on M with the dual sheaf Z(D)~!, then we get an exact sequence

0 Opm —=I(D)"' —= Op ®o,, (D)™ —=0
with s a section of Z(D)~!. Conversely, given an invertible sheaf £, a section s

of £, and an exact sequence

S

0 Om

L ﬁ/OM —0

then the substack of zeros of s is an effective Cartier divisor with ideal sheaf
defined by the image of the injection

s: LT —0p.

This establishes a one-to-one correspondence between effective Cartier divisors
and isomorphism classes of pairs (£, s) as above. We will say that the divisor
is defined by the pair (£, s). For example

M(l) c Mfg

is the effective Cartier divisor defined by (Ogg,p). Suppose M(n) has been
defined and classifies formal groups of height at least n.

5.5 Definition. 1.) Define the closed substack M(n + 1) C M(n) to be the
effective Cartier divisor defined by the pair (WP~ v,).

2.) Let H(n) = M(n) — M(n + 1) be the open complement of M(n + 1)
in M(n). Then H(n) classifies formal groups of exact height n or simply of
height n.

3.) Let U(n) be the open complement of M(n + 1); then U(n) is the moduli
stack of formal groups of height less than or equal to n.

Then Proposition 5.3 implies that M (n+1) classifies formal groups of height
at least n + 1. The inclusion M(n) C Mg, is closed; let Z,, € Oy be the ideal
sheaf defining this inclusion. Thus we have an ascending sequence of ideal
sheaves

0CTi=(p)CToC O
and an isomorphism
(@) i w™ " T /T,
on M(n).
5Some authors (cf [30], Chapter 1) require also that D be flat over S. This implies that if
f:T — S is a morphism of schemes, then T' X g D is an effective Cartier divisor for T' x g M.

But is also means that if X is a scheme with Ox torsion free then the closed subscheme
obtained from setting p = 0 is not an effective Cartier divisor for X over Z.
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5.6 Remark. A formal group G' — S has exact height n if the global section
v, (G) € HO(S,wh ~') is invertible in the sense that

—(p"—1
Up wG(p )—>OS

is an isomorphism. This makes sense even if n = 0, where would have p invertible
in H°(S, Og). This defines the notion of a formal group of height 0.

5.7 Remark. We can follow up Remark 5.4 with a local description of Z,, and
the process of defining M(n). If G — Spec(R) can be given a coordinate x and
G has height a least n, then we can write

vn(G) = unn(G, x)®pn_1

where 7(G,z) = dz/F,(0,2) is the generator of wg. The choice of generator
n(G,2)2P" =1 for w¥ " defines an isomorphism R = w% ~' and the section
O ! becomes isomorphic to multiplication by u,. Thus

Zn1(G)/In(G) = (un)

is the principal ideal generated by u,. Note that wu, is not an isomorphism
invariant, but the ideal is.

It is tempting to write, for a general formal group G with a coordinate, that
there is an isomorphism

IH(G) = (pa Uty - .- 7un71)~

In general, u,_; is only well-defined modulo Z,,_1(G), so we must be careful
with this notation. It is possible to choose a sequence p,uq,...,u,_1 defining
the ideal Z,,(R), but the choices make the sequence unpleasant. In the presence
of a p-typical coordinate, the situation improves. See the next remark.

5.8 Remark. The form v, is defined globally only when p =v; = ---v,,_1 = 0.
But if GG is a formal group with a coordinate over a Z,) algebra R, then Cartier’s
theorem gives a p-typical coordinate x for G. Let F' be the resulting formal group
law for G. Then we can write the p-series

pl(2) = pz +p wz? +p uga? +p -
Remark 5.4 implies that if p =u; = ---u,—1 = 0, then
on(H) = unn(G,2) "

and we really can write Z,,(G) = (p, w1, ..., Un—1)-
Note that v,(G) = 0 if and only if u, = 0. Since the morphism

Spec(Z(p) [ur,us, .. .])—>Mfg ® Z(p)

classifying the universal p-typical formal group is an fpgc-cover, this remark
implies the following result.
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5.9 Proposition. For all primes p and all n > 1, there is an fpqc-cover
X (n) Y Spec(Fplun, i1, . ..]) — M(n).
Furthermore,

p?[(p’ Uty .- 7“11—1) = p;(pvuh .. '7un—1) C OX(n)XM(n)X(n)

and
X(n) X pm(n) X(n) = Spec(Fpln, Uni1,- - ][t(jfl,tl,tg, ).

If g : N — M is a representable and flat morphism of algebraic stacks and
D C M is an effective Cartier divisor defined by (£, s), then

FDY DX NCN

is an effective Cartier divisor defined by (¢*L,¢*s). To see this, note that
because f is flat, we have an exact sequence

0= [*T(D)— f*Opi— [*Op — 0
which is isomorphic to
0— f"Z(D)—On—0Of-p — 0.
Thus f*Z(D) =2 Z(f*D). From this we can immediately conclude the following.

5.10 Proposition. Let ¢ : N' — Mg, be a representable and flat morphism of
stacks and define
N(n) = M(n) X pteg N

Then
S CN@E)SN(I)CN

s a descending chain of closed substacks so that
N(n+1) CN(n)
is the effective Cartier divisor defined by (wP" ', v,,).

This implies that for all n the section v,, defines an injection

oy Opr—wP 7L

If N' = Spec(R) — My, classifies a formal group for which we can choose a
coordinate, this implies that each of the ideals 7, (R) is generated by a regular
sequence. The Landweber Exact Functor Theorem 6.19 is a partial converse to
this result.

In these examples, the closed embedding N'(n) C N is a regular embedding;
that is, the ideal sheaf defining the embedding is locally generated by a regular
sequence.

81



5.2 Geometric points and reduced substacks of My,

Suppose we now work at a prime p, so that Mgz = Mgg @ Z(,,). We will show
that Mgz has exactly one geometric point for each height n, 0 < n < oo and
use this to show that the substacks M(n) C Mg, give a complete list of the
reduced substacks of Mgg.

We begin with the following definition.

5.11 Definition. Let M be an algebraic stack.

1.) A geometric point £ of X is an equivalence class of the morphisms
x : Spec(F) — M where F is a field. Two such morphisms (z',F') and (", F")
are equivalent if B’ and F” have a common extension F and the evident diagram

Spec(IF) —— Spec(F")

DT

Spec(F') ——— M

2-commutes.

2.) The set of geometric points |X| has a topology with open sets |U| where
U C M is an open substack. When we write | X | we will mean this set with this
topology. This is the geometric space of the stack.

5.12 Remark. The following result implies that the topology of |[Mgg| is quite
simple. The proof will use that over a separably closed field F there is a unique
isomorphism class of formal groups of a fixed height. This is proved below in
Corollary 5.26 and is a consequence of the more global Theorem 5.25. But it
is also simple to give a proof at this point. Let G; be the Honda formal group
over F with p-typical coordinate z so that the associated formal group law F}

has p-series
Lp]Fl (.’L’) =zP .

Let G5 be another formal group over F and choose a p-typical coordinate and
associated formal group law F5. To construct an isomorphism, we need to find
a power series ¢(x) so that

¢([plr) (@) = [plr (¢(2)) = ¢(2)" .

Working inductively by degree in ¢(x) we obtain equations such as in Equations
5.3 and 5.4, which always have solutions over F. This is the same proof as in
[48], §A.2.

5.13 Proposition. Let U C Mg be an open substack and suppose that U has
a geometric point of height n. Then it has a geometric point of height k for all
k<n.

Proof. Let G : Spec(k) — U represent the geometric point of height n and
Spec(L) — Mygg be the cover by the Lazard ring. Then we have a 2-commutative
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diagram
U % pyy Spec(L) — Spec(L)
q
Spec(k) e u Mg

obtained by choosing a coordinate for G. The morphism j is open and the
morphism ¢ is flat, as it is the pull-back of a flat map. Choose an affine open
Spec(R) C U X pqq, Spec(L) so that the morphism F' factors through Spec(R).
Let Gy be the resulting formal group over R.

By localizing R if necessary, we may assume that R — k is onto. Choose an
element w € R which reduces to v,(G) € k. Since G has height n, v,(G) # 0;
thus, w is not nilpotent. By forming R[w~!] if necessary, we may assume that w
is a unit. From this we conclude that Z,41(Go) = R. Since Spec(R) — Mgg is
flat, Proposition 5.10 implies that the ideals Zy(Go), k < n+ 1, is generated by
a regular sequence. (Note that Go has a canonical coordinate by construction.)
Let k < n, Ry = R/Zi(Gyp), and let g : R — Ry be the quotient map. We
conclude immediately that vi(q;;Go) is not nilpotent in Rj;. Choose a prime
ideal p in Ry so that vg(q;Go) # 0 in R/p and let K be the field of fractions of
of R/p. Then

Spec(K) — Spec(R) — U

represents a geometric point of height k. O

The importance of the closed substacks M(n) is underlined by the following
result. Recall we are working at a prime, so that Mgz = Z,) @ Mgg.

5.14 Theorem. For alln, 1 < n < oo the algebraic stack M(n) is reduced.
Furthermore if N C Mgg is any closed, reduced substack, then either N' = Mgg
or there is an n so that

M(n)=N.

Before proving this result, we need to recall what it means for an algebraic
stack to be reduced and how to produce the reduced substack of a stack, as-
suming it exists.

Fix an fpqc-algebraic stack M. We define a diagram C of closed substacks
of M as follows:

1. An object of C is a closed substack A' C M so that the induced inclusion
on geometric points || — |[M] is an isomorphism;

2. A morphism N; C N, is an inclusion of closed substacks.

This diagram C of closed substacks is filtered; furthermore it determines and
is determined by a filtered (or cofiltered) diagram {Zx } of quasi-coherent ideals
in O . Define

Tred = colimeop Zar.
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The colimit is taken pointwise and, since tensor products commute the colimits,
Tred is a quasi-coherent ideal. Let

Mred g M

be the resulting closed substack. Note that M,eq is the initial closed substack
N C M so that |[N| = |[M|. We say that M is reduced if Myeq = M or,
equivalently, if Z..q = 0.

The sheaf Z,.q should be closely related to the ideal of nilpotents in Oay.
Some care is required here, however. If we define Nilr(U) = Nily for any
fpgce-morphism U — M, the resulting ideal sheaf may not be cartesian in the
fapc-topology; thus it is not evidently quasi-coherent. (If R — S is a faithfully
flat morphism of rings, then it is not necessarily true that Nilg = S @ g Nilg.)
However it is a sheaf in more restrictive topologies, such as the “smooth-étale”
used for the algebraic stacks of [33].

5.15 Definition. Let M be an algebraic stack in the fpqc-topology and suppose
that X — M is an fpqc-presentation so that

pTNilX gNilXXMX %JPSNZ'ZX

as ideal sheaves in Oxy ,,x. Then descent theory yields a quasi-coherent ideal
sheaf N'ilpg € Opq. This is the sheaf of nilpotents for M.

5.16 Remark. 1.) It is not immediately clear that Al does not depend on
the choice of cover X — M; however, this will follow from Proposition 5.18 to
follow.

2.) If M has a smooth cover, then Nil ¢, when restricted to the smooth-étale
topology, agrees with the sheaf Nl as defined in [33].

3.) In many of our standard examples, Nilx = 0 = Nilxx,x. In particular,
this applies to Mg and M(n), by Proposition 5.9.

We need the following preliminary result before preceding.

5.17 Lemma. Let M be an algebraic stack and N C M a closed substack. Let
X — M be an fqpc-cover. Then the natural map

[ X X N|— X[ x 04 V]
s an isomorphism.

Proof. This morphism is onto for a general pull-back; that is, we don’t need
N — M to be a closed inclusion. To see that is one-to-one, note that X x , N
is equivalent to closed subscheme Y C X and that, hence, the composite

Y] =X xm N|—[X| X IN] = [X]

is an injection. O
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5.18 Proposition. Suppose that M is an algebraic stack in the fpqc topology
and there is an fpqc-presentation X — M so that Niln, is defined. Then

Nilpg = Tred-

Proof. Let Mg € M be the closed substack defined by Nilx. Then X,eq —
My is a cover. Since |Xyeq| = |X| and | Xyeq| — |[Mo| is surjective, we can
conclude that |[Mg| = |M]|. This shows that M,eq C M or, equivalently, that
Trea C NZZM .

For the other inclusion, let N' C M be a closed inclusion defined by an ideal
J and suppose |N| = |M| and let Y = N xy X — N be the resulting cover.
Then Y is the closed subscheme of X defined by J|x and the natural map

Y| —X] X V]

is an isomorphism, by Lemma 5.17. Thus, |Y| = | X|, which implies that X;cq C
Y, or Nilx C J|x. Since Nilx = (Nilap)|x and X is a cover M, this implies
that Nilyg C J. In particular, Nilpg C Zred- O

5.19 Corollary. Suppose that M is an algebraic stack in the fpqc topology and
there is an fpqc-presentation X — M so that X and X X X are reduced.
Then M is reduced.

We next begin an investigation of the closed substacks of Mgg. Recall that

M(1) = Mgz @ F,.

5.20 Proposition. Let N'C Mg, be a closed substack. If N has a geometric
point of height n, then
M(n) CN.

Proof. We begin with the following observation: suppose that A; and A5 are
closed substacks of an algebraic stack, that A is reduced in the strong sense of
Proposition 5.18, and that |[Ni]| C |[N2|. Then N7 C Ns. For if we let X — M
be a cover and Y; C X, i = 1,2 the resulting closed subscheme which covers of
N;, then Y7 is reduced and Lemma 5.17 implies that |Y;]| C |Y3|. Then Y; C Y,
and arguing as the end of the proof of Proposition 5.18, we have N7 C N>.

To prove the result, then, we need only show that there is an n so that
IM(n)| C |N]|. Thus we must prove that if N C Mg, is closed and contains a
geometric point of height n, then it contains a geometric point of height k for all
k > n. This can be rephrased in terms of the complementary open U = Mgg—N
as follows: if U does not have a geometric point of height n, it does not have
a geometric point of height k, k& > n. Rephrasing this as a positive statement
gives exactly Proposition 5.13. O

5.21 Proof of the Theorem 5.14. Suppose N' C Mg is closed and reduced.
If N # Mygg, then we have N' C F), ® Mgz = M(1). Indeed, if U = Mgg — N is
not empty, then it must contain a geometric point of height 0, by Proposition
5.13. Let n be the smallest integer 1 < n < oo so that N has a geometric
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point of height n. Then Proposition 5.20 implies that M(n) C N. Furthermore
M(n)| = |N]|. The argument in the first paragraph of Proposition 5.20 shows
that M(n) = N.

5.3 Isomorphisms and layers

We continue to work at a prime p. In this section we discuss the difference
between the closed substacks M(n) and M(n + 1); that is, we discuss the
geometry of

def

H(n) = M(n) — M(n+1).

and the geometry of
def

M(0) = NpyM(n).
In both case we will find that we have stacks of the form BA where A is the
group of automorphisms of some height n formal group law. The group A is not
an algebraic group as it is not finite; however, it will pro-étale in an appropriate
sense. See Theorem 5.25.
Here is a preliminary result.

5.22 Lemma. The inclusion
frn i H(n)—Mgg
18 an affine morphism of algebraic stacks.

Proof. Suppose Spec(R) — My, is classifies a formal group G with a chosen
coordinate z. Then the 2-category pull-back Spec(R) x a1, H(n) is the groupoid
scheme which assigns to each commutative ring S the triples (f,T',¢) where
f: R — S is a morphism of commutative rings, I' is formal group of exact
height n over S and ¢ : I' — f*G is an isomorphism of formal groups. An
isomorphism of triples (f,T, ¢) — (f,I",¢’) is an isomorphism of formal groups
¥ : T — I so that ¢'¢p = ¢. Given such a triple, (f,T,¢), the existence of ¢
forces f to factor as a composition

R—"= R/T,(G)u;'] —=§

n

where [p]g(z) = upz?” + --- modulo Z,(G). We now check that the morphism
of groupoid schemes

Spec(R/Zn(G))luy, 1) — Spec(R) x g, H(n)

sending ¢ to (gq,(9q)*G,1) is an equivalence. For more general G, we use
faithfully flat descent to describe the pullback as an affine scheme. O

5.23 Remark. From this result and Proposition 5.9 we have that there is an

fpgc-cover

Y (n) def Spec(Fp[uf!, w1, unta, - - ]) — H(n).
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and that
Y(n) Xy@m) Y(n) = Spec(Fp[ul! wn 1, unra, . |2 1, ta, . . ]).

Now let S be a scheme and let G; and G2 be two formal groups over S.
Define the scheme of isomorphisms from G to G by the 2-category pull-back

ISOS(Gl,Gg) Mfg

| |

S Mfg X Mfg.

G1 XG2

Thus if f : T — S is a morphism of schemes, then a T-point of Isos(G1, G2)
is an isomorphism ¢ : f*G; — f*G4 of formal groups over T. By Proposition
2.20, Isog(G1,G2) is affine over S.

If G5 is another formal group over .S, then there is a composition

ISOS(GQ, Gg) Xs ISOS(Gl, GQ)—>ISOS(G1, Gg)

In particular, Auts(G1) = Isog(G1, G1) acts on the right on Isos(G1, Gs).

Because isomorphisms are locally given by power series, it is fairly clear that
Isog(G1,G2) — S does not have good finiteness properties. To get well-behaved
approximations, fix an integer k and let

Isog(Gl, GQ) - ISOS(Gl, GQ)

be the normal subgroup functor which assigns to each scheme f : T — S over
S the isomorphisms ¢ : f*G; — f*G2 which become become the identity on
pF-buds. Thus, in the presence of a coordinate ¢(x) = z modulo 2" 1. Now
define the quotient sheaf

ISOS(G1, Gz)k = ISOS(Gl, Gg)/ISOIjg(Gl, GQ).

Let me emphasize that at this point Isog(G1,G2)i is only a sheaf, but we will
see in Theorem 5.25 that it is actually an étale group scheme over S.

5.24 Remark. Let G; and G be two formal groups over a scheme S and let
Isos((G1)pr, (G2),x) to be the isomorphism scheme of the resulting p*-buds.
Thus, for f: T — S, a T-point of Isos((G1)yk,(G2),x) is an isomorphism of
the p*-buds ¢ : (G1),x — (G2)px. There is an evident map Isos(G1,G2) —
Isos((G1)pr, (G2)pr), but it is not onto; indeed, the image is Isos(G1, G2).

I am very grateful to Eike Lau for pointing out this subtlety to me.

Let Isos(G1,G2)oo = Isog(G1,G2) and let Isos(G1,Ga)o = S; then there is
a tower under Isog(G1,G2) and over S with transition morphisms

ISOS(Gl, Gg)k—JSOS(Gl, Gg)k_l.
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We have that
Isos(G1,G2)— limIsog(G1, G2)k

is an isomorphism.
The following is a refined version of Lazard’s uniqueness theorem. See Corol-
lary 5.26 below.

5.25 Theorem. Let S be a scheme over F, and let G1 and G2 be two formal
groups of strict height n, 1 < n < oo over S. Then

ISOS(Gl, G2)14>S

18 a surjective and étale morphism of schemes of degree p™ — 1. For all k > 1,
the morphism
Isos(G1, G2)r—Is05(G1, G2) k-1

s a surjective and étale morphism of schemes of degree p™. Finally, the mor-
phism
ISOS(Gl, Gg)—>S

1s surjective and pro-étale.
The proof is below in 5.29.

5.26 Corollary (Lazard’s Uniqueness Theorem). Let F be a field of char-
acteristic p and G1 and Go two formal groups of strict height n. Then there
1s a separable extension f :F — E so that f*Gy1 and f*Gs are isomorphic. In
particular, if F is separably closed, then G1 and G4 are isomorphic.

Proof. If the height n < oo, this follows from the surjectivity statement of
Theorem 5.25. If n = oo, then the p-series of G; must be zero; hence, a choice
of p-typical coordinate for G; defines an isomorphism from G; to the additive
formal group. O

5.27 Remark. If G; and G2 are two formal groups over a scheme S classified
by maps G; : § — Mg, we have a pull-back diagram

ISOS(Gl, GQ) — S X Mg S

| l

S—A>S><S.

If S = Spec(A) is affine and each of the formal groups G; can be given a
coordinate, then this writes (by Lemma 2.12) Isog(G1,G2) as the spectrum of
the ring

A®(A®A)A QL W ®g A.

Thus if x € A we have (using the standard notation for Hopf algebroids)

r = ng(r)
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in this commutative ring. This makes it very unusual that
ISOS(Gl, Gg)—>S
is flat, let alone étale. Thus the Theorem 5.25 is something of a surprise.

5.28 Example. We can be very concrete about the scheme Autp(T',,) where
[}, is of strict height n over over a field F. The formal group I';, can be given a
coordinate and we can display Autg(I';,) as

Autp(T',,) = Spec(F @ W @ F)

where L — F classifies I';, with a choice of coordinate. For example, if 1 <
n < oo and if I';, is the Honda formal group over I, with coordinate so that
[p](x) = 2P", then we have an isomorphism of Hopf algebras

(5.1) F, @, W @ F, =F,[at', a1, a9, - ]/(af — a;).
This is the Hopf algebra analyzed by Ravenel in Chapter 6 of [48], where it is

called the Morava stabilizer algebra . The scheme Autg(I',),x = Isop(I'y, ')
can be displayed as

Autp(Ty),r = Spec(]Fp[a(j)ﬂ7al7 e ,ak]/(afn —a;)).

In the infinite height case, the failure to be étale can be easily seen: if we take
' = G, with its standard coordinate, then

(52) FP®LW®LIFP:Fp[aéd,al,ag,---].
This is closely related to the mod p dual Steenrod algebra.

5.29 Proof of the Theorem 5.25. This argument is a rephrasing of an ar-
gument I learned from Neil Strickland [52]. But see also [29]. We will work
inductively in k. We first note that we can reduce to the case where S is affine
and both G; and G3 have p-typical coordinates over S.

For example, to show that each of the sheaves Isog(G1, G2)y is a scheme we
can use descent. If f:T — S is any morphism, then

T Xs ISOS(Gl, Gg)k = ISOT(f*Gl7 f*Gg)k.

We will show that T is affine and G; and G5 both have p-typical coordinates
over T, then

T xgIs05(G1,G2)k — T xgIsos(G1,G2)k—1

is an affine morphism of schemes. It then follows that there is a flat and
surjective map T — S so that this morphism is affine when base-changed
T. By descent, it then follows to that Isog(G1,G2)k is a scheme affine over
ISOS(G1,G2)k_1.
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Similarly, the properties listed — étale, degree, and surjectivity — are all local
in the fpgc-topology on S; thus, again we may assume that S is affine and that
G171 and G5 can each be given a p-typical coordinate.

So write S = Spec(A) and assume we have p-typical coordinates. Then we
may write the p-series of of the formal groups

n n+1
pla, () = upx? +q, uni12?  + -

n n41
[Pla, (z) = ula?" 4G, upyja? + e
and, hence, that the Verschiebungs may be written
VGl (‘T) = UnpT +G1 Un_;,_l{Ep “+ ..
Ve (@) =t +, 12" + -

Because the formal groups have strict height n, u, and w], are units.

First assume k = 0. Then an isomorphism ¢ : (G1), — (Ga2), of p-
typical formal group buds can be written ¢(x) = boxr modulo (zP). Since
Ve, (9P (z)) = ¢(Va, () we have u/,bh © = upbox. Since by, u,, and ul,
are all units we get an equation
(5.3) Bl —u =0
where v = uy,, /u/, is a unit. Thus,

Isos(G1, Ga)1 = Spec(A[bo]/(BE ~ = v)).
This is étale of degree p™ — 1 over Spec(A) since by is a unit in A[bo]/(bf)’n_1 —0).
Surjectivity follows from the fact that A — A[bo]/(BE ~* — v) is faithfully flat.
Now assume k > 0 and keep the notation above. We make the inductive

assumption that Isog(G1, G2)k—1 = Spec(Ak—_1) for some A-algebra Ay_;1. Sup-
pose we have an isomorphism

do(x) : (G1)pr—1 — (G2)pr—1

of p*~1-buds over some A-algebra R. We want to lift this to an isomorphism
¢ . (Gl)pk —>(G2)pk
so that ¢ = ¢g as isomorphisms of (G1),k-1 to (G2),x-1. We may write ¢(x) =

oo(x) +a, bkxpk. Then again we must have
Ve, (677 (2)) = 6(Ve, ()
and, equating the coefficients of 2P we get an equation
(5.4) bzn —vby+w=0
where v = u?" /u/, is a unit. Thus,
Tsos(G1, Ga)r, = Spec(Ag_1[br] /(B2 — vby, + w)).
This is faithfully flat, étale and of degree p™ over Spec(Ag_1). O
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If Gi = Ga, we write Auts(Gh)y for Isog(G1,G1)k; this is a étale group
scheme over S if k < co. The projection morphism Isog(G1,G2)r — S has a
right action by Autgs(G1)r — S, 1 < k < oo and this action induces a diagram
of schemes over Isog(G1, Ga)

ISOS(Gl, Gg)k X s Auts(Gl)k E—— ISOS(Gl, Gg)k X g ISOS(Gl, Gg)k

ISOS(Gl,GQ)k ISOS(Gl,GQ)k

where the top map is given pointwise by

(6, 9) = (¢, 09).

This map is evidently an isomorphism; hence we have proven the following
result.

5.30 Proposition. The morphism Isog(G1,G2)r — S is an Autg(G)-torsor.

We can specialize this result even further, but first some notation and defi-
nitions.

5.31 Remark. If X is a finite set, define X7 to be the scheme Spec(map(X, Z)).
Then for any category Y fibered in groupoids over affine schemes we get a new
functor Y x Xz. If Y = Spec(R), then

Y x Xz = Spec(map(X, R)) def Xg.
If G is a finite group, the Gz is a finite group scheme over Z and the action of
G on itself extends to a right action on Y x Gz.
If X =lim X}, is a profinite set, define

Xz = lim(X})z = Spec(colim map(Xk, Z)).

If G = lim G is a profinite group, then Gz is a profinite group scheme over Z.
The notation Gz is cumbersome; we will drop it if G is evidently a profinite
group.
Now suppose X — S is a finite and étale morphism of schemes; let Autg(X)
denote the automorphisms of X over S. This is finite group. Then X is Galois
over S if the natural map

Autg(X) xg X—X xg X

given pointwise by (¢, z) — (z,¢(z)) is an isomorphism. If X = lim X}, — S

where { X} is a tower of finite and étale maps over S, then X is pro-Galois if

there there is a coherent set of morphisms Autgs(X) — Auts(Xy) so that
Autg(X) = lim Autg(X%)

and each of the morphism X; — S is Galois.
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5.32 Remark. Suppose that I' is a formal group of height n over a separably
closed field F and let G (T') be the F-points of Autg(I'). If k < oo, then G (T')
has order p™k — 1. The equations 5.3 and 5.4 imply that the natural map

Gk(F)F—> Aut]p‘(r)k, k < o0

is an isomorphism. Furthermore,

G(D) % G oo (1) 2 lim Gy (T).

This displays G(I') as a profinite group. Note that the equations 5.3 and 5.4
also imply that

Gi(T) =F} and Gy(T)/Gp_1(T) = Fpn.

5.833 Theorem. Let S be a scheme over a separably closed field F and let G1
and Gy be two formal groups of strict height n, 1 < n < oo over S. Suppose that
G1 obtained by base change from a formal group T of height n over Fp. Then
for all k < 0o, the morphism

Isos(G1,G2)r—S
is Galois with Galois group Gi(T'). Finally, the morphism
Isog(G1, G2)—S
is pro-Galois with Galois group G(T).
Proof. Let f:T — S be any morphism of schemes. Then
T xg Iso(G1, G2)r = Isor(f*G1, f*Ga)p.

In particular
Auts(Gy)p =S X Spec(F) Autp(D), =2 Gi(T)s

and the result now follows from Proposition 5.30. O

The étale extensions we produced in the proof of Theorem 5.25 were of a very
particular type. See Equations 5.3 and 5.4. This can be rephrased Proposition
5.35 below, which can be proved by examining the proof just given. Here,
however, we give a more conceptual proof, based on the following observation.

If R is an Fj-algebra, let us write fr : R — R for the Frobenius homomor-
phism sending = to zP. If M is any stack over Spec(F,), we get a Frobenius
homomorphism

fM : M—M
of stacks over Spec(F,) which, upon evaluating at an F,, algebra R is given by
fm = M(fr) : M(R)—M(R).

For example if M(1) = Mg ® Spec(F,) is the moduli stack of formal group
schemes over F,, then

fm(G—8) =GP - 5.
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5.34 Remark (The Frobenius trick). Let H(n) be the moduli stack of formal
groups of exact height n, with 1 < n < oco. For all formal groups G of exact
height n the natural factoring of the morphism [p] : G — G in Definition 5.2
yields a natural isomorphism

Vo, =VE: G —aqG.

Thus, if far : H(n)—H(n) is the Frobenius — which, as we have just seen,
assigns to each G — S the formal group G») — S — we get a natural transfor-
mation

Vot frr—1
from f}- to the identity of H(n).
5.35 Proposition. Let 0 < k1 < ko < 00. Then the relative Frobenius

ISOS(Gl,Gg)kz ISOS(G1,G2),(€Z)

~, 7

ISOS(Gl, G2)k1

18 an isomorphism.
Proof. We will first do the absolute case of Isog(G1,G2) — S — that is, k; =0
and ko = oo — and indicate at the end of the argument what changes are needed
in general.

The scheme Isog (G, Gg)(p) over S assigns to each morphism f : T — S of
schemes the set of isomorphisms

oSG — Gy
The relative Frobenius F : Isog(G1,G2) — Isog(G1,G2)®) over S sends a T-
point ¢ : f*Gq — f*G4 to the T-point ¢P) : f*G(lp) — G(Qp). It is this we must

show is an isomorphism. However, if we are given 1, we may produce ¢ using
the following commutative diagram of isomorphisms

n—1

w(p

f* Ggpn) f* Gépn)
vcll lVGQ
[ G1 [Ga.

As Voo = (Vg)® we may conclude that ¢®) = 9 from the diagram

() (p)

\%
o <2 Qe — s gt
¢(p)l llz,(p") \Lw
n+1
f*Gép) e f*Gép ) e f*Ggp)
Go Go
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The same proof works in the relative case, but the notation is more com-
plicated, as Isos(G1,Ga)y is a quotient group, and we must keep track of the
cosets. U

5.36 Proposition. Let N'(n) = H(n) if 1 < n < oo and let N'(oco0) = M(o0).
Let
g : Spec(A) — N(n), 1<n<c

be any morphism. Then g is an fpqc-cover. In particular, g is faithfully flat.

Proof. If g; : Spec(A;) — H(n) be any two maps. Then, by Theorem 5.25 there
is a faithfully flat extension A; ® Ay — B so that the two formal groups over
the tensor product become isomorphic over B. Thus, we have a 2-commutative
diagram

Spec(B) L Spec(As)

Spec(A;) H(n)

g1

where both f; and f are faithfully flat.
Now take g; to be faithfully flat and gs to be arbitrary. Then g, f7 is faithfully
flat and, since f; is faithfully flat, go must be faithfully flat as well. Since

Spec(A1) @y, Spec(Az) — Spec(Ay)

is affine, it follows by descent that Spec(As) — M(n)[viF!] is affine as well. In
particular, it is quasi-compact. O

The following is now immediate. We will almost always take F to be an
algebraic extension of F,,.

5.37 Corollary. Let N'(n) =H(n) if 1 <n < oo and let N (c0) = M(c0). Let
F be a field of characteristic p and G — Spec(F) any formal group of height n,
1 <n < oo. Then the classifying map for G

Spec(F)—N(n)

is a cover in the fpqc-topology. In particular, H(n) and M(oo) each has a single
geometric point.

Now fix a formal group I',, over F, of height n; for example, the Honda
formal group. If n = oo we may as well fix I';, = Ga, the completion of the
additive group. Define Aut(T',) to be the group scheme which assigns to each
Fp-algebra i : F,, — A the automorphisms of the formal group ¢*I',, over A. See
Example 5.28 for a concrete discussion.
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5.38 Theorem. Let H(n) = M(n) — M(n+ 1) be the open substack of M(n)
complementary to M(n+1). Then H(n) has a single geometric point represented
by the formal group I'y, of height n over F),. Furthermore, the map

H(n)— B Aut(T',,)

sending a formal group G of height n over an Fy-algebra A to the Aut(T'y,)-torsor
Iso(T'y, G) is an equivalence of stacks.

5.39 Theorem. Let M(co) = NM(n). Then M(oo) has a single geometric
point represented by the formal additive group G, over F,. Furthermore, the
map

M(0c0)— B Aut(G,,)
sending a formal group G of infinite height over an IFp-algebra A to the Aut(@a)—

torsor 1so(Gy, G) is an equivalence of stacks.
The apparent choice of the formal group I';, makes this result a bit puzzling.

This can be rectified by coming to terms with the notion of a gerbe. Here we
appeal to [33] §3.15ff.

5.40 Definition. 1.) Let S be a scheme and X — S a scheme over S. Then a
gerbe over X is a stack q: G — X over X with the properties that

i.) for all affine U — S and all pairs of morphisms x1,z2 : U — G so that
qr1 = qxo : U — X, there is an faithfully flat covering f : V. — U by an
affine so that there is an isomorphism f*xr; = f*xs;

i.) for all affine U — S and all f: U — X over S, there is an faithfully flat
covering g : V. — U by an affine so that there is a morphism z : V — G
with qr = fg.

2.) A gerbe q : G — X is neutral if there is a section s: X — G of q.
The following is exactly Lemma 3.21 of [33]

5.41 Lemma. Suppose q: G — X is a neutral gerbe over X. Then a section s
of q determines an equivalence of stacks over X

G ~ B Autg(s/X)

where Aut(s/X) is the group scheme which assigns to each f : U — X the group
Autg(f*s — U). This equivalence sends g € G(U) to the torsor Iso(sq(g),g).

5.42 Proof of Theorems 5.38 and 5.39. Let N(n) = H(n) if 1 <n < oo and
let NV (00) = M(00). We claim that N'(n) — Spec(F,) is a neutral gerbe. Then
the result follows from Lemma 5.41. The two conditions to be gerbe are easily
satisfied in this case: (1) any two height n formal groups over an Fp-algebra A
become isomorphic after a faithfully flat extension and (2) every F, algebra A
has a height n formal group over it. Finally the choice of I',, shows that we have
a neutral gerbe.
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5.43 Remark. The Morava stabilizer group S,, is defined to be the IF‘,, points
of the algebraic group Aut(T',,); that is, if : i : F, — F, is the inclusion, then S,,
is the automorphisms over F,, of the formal group i*T',,. By Theorem 5.26, this
is independent of the choice of I',,. The big Morava stabilizer group G,, is the
group of 2-commuting diagrams

N\ S

There is a semi-direct product decomposition

Spec(F,) —— Spec(F,)
i Ty,
M.

G = Gal(F,/F,) % S,.

6 Localizing sheaves at a height n point

In this section we define and discuss the sheaves F[v, !] when F is an Z,-torsion
quasi-coherent sheaf on the moduli stack Mg of formal groups. This is largely
groundwork for the results on chromatic convergence to be proved later, but we
do revisit the Landweber Exact Functor Theorem here, using a proof due to
Mike Hopkins [18]. We begin with a discussion of the derived tensor product
and derived completions, which — by results of Hovey [22] — have a particularly
nice form for the stacks under consideration here.

6.1 Derived tensor products and derived completion

We will want to control the derived tensor product of two quasi-coherent sheaves
on an algebraic stack M. While this works particularly well if M is quasi-
compact and separated, for the stacks encountered in homotopy theory we can
do even better: by using results of Mark Hovey, it is possible to give completely
functorial construction using resolutions by locally free sheaves. This is because
we will be able to assume that the category Qmod,, of quasi-coherent sheaves
is generated by the finitely generated locally free sheaves on M. There is no
reason to expect this assumption to hold in great generality, of course, but it
holds when M is one the stacks that arises in the chromatic picture. We will
discuss this below in Proposition 6.7.

The following is a restatement of some of the results of [22] §2, especially
Theorem 2.13 of that paper. Indeed, that result is a statement about the cofi-
brant objects in a model category structure on chain complexes of quasi-coherent
sheaves. Weak equivalences can be deduced from point (2) of the next state-
ment.

6.1 Proposition. Let M be an algebraic stack so that the finitely generated
locally free sheaves generate the category of Qmod,, of quasi-coherent sheaves
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on M. Then for any chain complex of quasi-coherent sheaves F on M there is
a natural quasi-isomorphism of chain complexes

PM(F) =Pe — Fo
with the properties that

1. for all n, the sheaf P, is a coproduct of finitely generated locally free
sheaves;

2. for all finitely generated locally free sheaves V on M the morphism of
function complezes

Hom(V, P, )—Hom(V, F,)
18 a quasi-isomorphim.

Let F be a sheaf on M. In much of the sequel we will write F(R) for
F(Spec(R) — M). We note that the tensor product of quasi-coherent sheaves
behaves particularly well.

6.2 Lemma. Let £ and F be two quasi-coherent sheaves in the fpqc-topology
on an algebraic stack M. Then presheaf ERQF = £ @ F which assigns to each
flat and quasi -compact morphism Spec(R) — M the tensor product

E(R) ©r F(R)
s a quasi-coherent sheaf.

Proof. To see that we actually have a sheaf, let R — S be faithfully flat exten-
sion. Then

E(R) @r F(R) —=&(S) @5 F(S) —= E(S®Rr S) ®(sgrs) F(S @r S)
is, up to isomorphism,
g(R) QR .7:(R) — S ®r (5(R) QR f(R)) —ZS®rS®r (8(R) QR f(R))

If we apply S®g(—) to the later sequence it becomes exact, as it has a retraction.
Since R — S is faithfully flat, it was exact to begin with. This proves we have
a sheaf; it is quasi-coherent because (as we have already noted)

S®prE(R)®r F(R) — E(S) @5 F(S).
O

6.3 Definition. Suppose M is an algebraic stack in the fqpc-topology so that
the finitely generated locally free sheaves generated Qmod,,. Let &€ and F
be two quasi-coherent sheaves on M. Define their derived tensor product
ERlF=¢ ®(LgM F to be the chain complex of quasi-coherent sheaves (for the
fpqc-topology) with values at Spec(R) — M given by

E(R) ®r Pe(R)

where Py — F is the natural resolution of Proposition 6.1.
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Many of the usual properties of tensor product apply to this construction.
For example, if
O—>51—>52—>53—>0

is a short exact sequence of quasi-coherent sheaves, then we get a distinguished
triangle in the derived category of quasi-coherent sheaves

QY F - &), F—E®H, F— (105, F)-1.

This definition and the distinguished triangle generalize to the case when £ and
F are bounded below complex chain complexes of quasi-coherent sheaves.
Closely related to the derived tensor product is the derived completion.

6.4 Definition. Let Z C M be a closed substack defined by a quasi-coherent
ideal sheaf I. Let F be a quasi-coherent sheaf on M. Then the derived com-
pletion of F at Z by

L(F)2 = L(F)) = holim(O/I" & F).
Thus, if Spec(R) — M is faithfully flat and quasi-compact, we can set
L(F)%(R) = lim Py(R)/I"(R)Po(R).

This is an O-module sheaf, but not necessarily quasi-coherent, as inverse limit
and tensor product need not commute. If j, : Z(™ C M are the infinitesimal
neighborhoods of Z defined by the powers of Z, then

L(}_)/Z\ = honm(jn)*(Ljn)*]:

where (Lj,)* is the total left derived functor of j.

We now turn to the question of when the hypotheses of Proposition 6.1
apply. There is a classical and useful notion from stable homotopy theory which
guarantees that the finitely generated locally free sheaves generate the category
of quasi-coherent sheaves.

6.5 Definition. 1.) A Hopf algebroid (A, A) is an Adams Hopf algebroid
if the left unit A — A is flat and the (A, A)-comodule A can be written as a
filtered colimit of comodules A; each of which is a finitely generated projective
A-module.

2.) An algebraic stack M will be an Adams stack if there is an fpqc-
presentation Spec(A) — M so that

Spec(A) x aq Spec(A) = Spec(A)

is itself affine and the resulting Hopf algebroid (A, A) is an Adams Hopf alge-
broid.

6.6 Remark. 1.) Definition 6.5 has a curious and unfortunate feature. We
would like to assert that if M has one fpgc-presentation Spec(A4) — M so that
(A, A) is an Adams Hopf algebroid then any other fpgc presentation would have
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the same property. But this is not known. See [22], Question 1.4.2.5 However,
we do have the following rephrasing of Proposition 1.4.4 of [22].

2.) More generally, one can ask whether the category of quasi-coherent
sheaves on an algebraic stack has the property that its category of quasi-coherent
sheaves can be generated by the finitely generated locally free sheaves. Results
of Thomason [54] imply that this will be the case if for homotopy orbit stacks
of the form X xg EG, at least under appropriate finiteness hypotheses. Totaro
[65] has considered the converse. Section 2 of that paper has a history of this
problem as well.

6.7 Proposition. Let M be an Adams stack. Then the finitely generated locally
free sheaves generate the category Qmod ,, of quasi-coherent sheaves on M.

We now make good on our claim that most of the stacks in this monograph
are of this kind.

6.8 Proposition. For alln, 0 < n < oo, the moduli stack Msgg(n) of n-buds
of formal groups is an Adams stack.

Proof. We show that the evident presentation
Spec(L(n))— M;gg(n)
has the desired property. Recall from Proposition 3.1 that
Spec(L(n)) X pmg, (n) Spec(Ln) = Spec(W(n)) = fgl(n) x A(n).

We use the gradings of Remark 3.14 and, especially, Remark 3.16.2.
Let
An,i Q Z[al, ey an,l] Q Z[a(:)tl, Alyeeny an,l]

be the elements of degree less than or equal to i, let

1
Bn,i = S An,iag C Z[ag yeey an—l]

—1<s<1t

and let

Then W (n, i) is a finitely generated free L(n) module, a sub-comodule of W (n),
and colim; W(n, 1) = W {n). O

6.9 Proposition. The following stacks are Adams stacks.

1. M(n), the closed substack of Mgg®Zy) of formal groups of height at least
n;

2. H(n) = M(n)[v1], the open substack of M(n) of formal groups of exactly
height n;

6This problem could be avoided by working with resolutions by appropriately flat modules;
these exist over any quasi-compact and separated stack. See [1] §1. I have chosen to use the
Adams condition only because it fits better with the culture of homotopy theory.
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8. U(n), the open substack of Mgg @ Z of formal groups of height at most
n.

Proof. Because we have base-changed over Z,), we can choose the morphism
Spec(Zpy[ui, ug, - - -]) — Mg @ Zy)

representing the universal p-typical formal group as the presentation. Then we
have presentations
Spec(Fp[tun, tn—1,---]) = M(n)

and
SpeC(FP[u?z:l’ Un—1,""" ]) — H(n)
and
Spec(Zpy[ut, - . Un—1, url]) — U(n).
Then we appeal to Theorem 1.4.9 and Proposition 1.4.11. of [22]. O

6.2 Torsion modules and inverting v,

In the next section on Landweber exactness, and later when we discuss chromatic
convergence, we are are going to need some technical lemmas about inverting v,
for Z,,-torsion sheaves on Mgs. We begin with some definitions so that we can
work in some generality with algebraic stacks N flat over Mgg. The following
definition generalizes the definition of regular scale given in [37].

6.10 Definition. Let N be an algebraic stack and
0= CJ1 ST C - COnx

be an ascending sequence of ideal sheaves. Then the sequence {J,} forms a
regular scale for N if for all n, the ideal sheaf Jyi1/Tn is locally free of rank
1 as a O/F, module. A regular scale is a finite if J,, = O for some n.

6.11 Remark. Given aregular scale on NV, let A/(n) denote that closed substack
defined by J,,. Then N'(n) C N'(n—1) is an effective Cartier divisor for N'(n—1).
An embedding Z C N of a closed substack is called regular if the ideal defining
the embedding is locally generated by a regular sequence. Thus a regular scale
produces regular embeddings N (n) C N, but it is does more: it specifies the
terms in the regular sequence modulo the lower terms.

6.12 Example. Fix a prime p, let M = Mgz and let
0CZ1 CTy C - C O

be the ascending chain of ideals giving the closed substacks M(n) C Mg, clas-
sifying formal groups of height greater than or equal to n. This, of course, is
the basic example of a regular scale. This scale is not finite; however, if we let
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in : U(n) — Mgg be the open substack classifying formal groups of height less
than or equal to n, then

is a finite regular scale as i, Z,, = i, T = Oy(p) for k > n.
This example can be generalized to stacks A representable and flat over
Mgg. See Proposition 5.10.

We now come to torsion modules and inverting v,. Let A be an algebraic
stack and let {7, } be a scale for V. Let j,, : N(n) C N be the closed inclusion
defined by J, and let 4,,—1 : V(n — 1) — AN be the open complement. (The
numerology is chosen to agree with case of Z,, C Og.) Let’s write O for O

6.13 Definition. An O-module sheaf F is supported on N (n) if i _, F = 0.
We also say that F is Jp-torsion if for any flat and quasi-compact morphism
Spec(R) — Mygg, the R-module F(R) is I, (R)-torsion.

In Definition 6.13 we do not assume that F is quasi-coherent; however, the
next result shows that the two notions defined there are equivalent for quasi-
coherent sheaves.

6.14 Lemma. Let F be a quasi-coherent O-module sheaf. Then F is supported
on N'(n) if and only if F is J,-torsion.

Proof. This is a consequence of the fact that 7, defines a regular embedding.
For each flat and quasi-compact morphism Spec(R) — Mg, choose — by passing
to a faithfully flat extension if necessary — generators (p, u1, ..., un—1) of Jn(R).

First suppose F is supported on N'(n). Then there are commutative dia-
grams

Spec(R[u; ]) £ . Spec(R)

Lo

V(in—-1) N.

Thus R[u; '] ®r F(R) = F(R[u;']) = 0, and we may conclude that F(R) is
JIn(R)-torsion.

Conversely, suppose F is J,-torsion and Spec(R) — V(n — 1) is any flat
and quasi-compact morphism. Then J,(R) = R, so J,(R)* = R for all k > 0.
If z € F(R), then Rz = J,(R)*z = 0 for some k, whence z = 0. Thus
i F=0. O

In the following result, let hom denote the sheaf of homomorphisms.

6.15 Lemma. Let F be a quasi-coherent [J,-torsion sheaf. Then evaluation
defines a natural isomorphism

colim homoe (0 JF, F) = F.
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If fx : N(n)x C N is the inclusion of the kth infinitesimal neighborhood of N'(n)
defined by the vanishing of I¥, then there is a quasi-coherent sheaf Fj, on N'(n)y
and a natural isomorphism

(fr)+Fr = home(O/I%, F).

Proof. The first statement can be checked locally, and there it follows from the
fact that 7, if finitely generated. For the second statement, we use the fact
that any closed inclusion is affine (see 1.15). From this it follows that (fx).
induces an equivalence between the categories of quasi-coherent O/J*-modules
on A and the category of quasi-coherent modules on N'(n)g. See Proposition
1.16. O

Suppose F is a quasi-coherent J,-torsion sheaf. The Lemma 6.14 implies
that 47 _;F = 0. We next consider iy, F or, more exactly, the resulting push-
forward (i, )% F, which is a sheaf on A/. The next result shows that the natural
map

(in)sin F — Rin)sin F
is an equivalence and gives a local description of (iy,).i}F.

6.16 Proposition. Let F be a quasi-coherent J,-torsion sheaf on N'. Let
Spec(R) — N be any flat and quasi-compact morphism so that J,,(R)/Tn—1(R)
is free of rank one over R/ J,—1(R). Then we have an isomorphism

[(in )i FI(R) 22 Flug']

where u, € J,(R) is any element so that u, + J,—1(R) generates the R-module
TIn(R)/Tn—1(R). Furthermore,

R(in)2i%F =0, s > 0.

Proof. By Lemma 6.15 and a colimit argument, we may assume that F = f,& for
some quasi-coherent sheaf £ on the kth infinitesimal neighborhood f : N'(n), —

N of N(n).
Consider the pull-back square”

N ()i xp V(n) == V(n)

N.

Then i f.€ = (p2)«p;&; thus, we may conclude that we have an equivalence in
the derived category

(6.1) R(in )iy, f+&€ = fuR(p1)p1E.

"In the case where N' = Mgg and Jn = I, we have that N'(n), X V(n) is the kth
infinitesimal neighborhood of H(n).
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The open inclusion N (n), xar V(n) € N(n) is the complement of the closed
inclusion N'(n + 1) € N(n)g. Locally, this closed inclusion is defined by the
vanishing of u,,. We see that this implies

(6.2) R(p1)+pi€ = (p1)+pi€ = Efuy ).
The result now follows because f, is exact. O

6.17 Remark. Now let f: N — My be a representable and flat morphism of
algebraic stacks and let {7,} = {f*Z,} be the resulting scale. See Proposition
5.10. Regard v, as a global section of w?" ! considered as a sheaf over A(n).
Suppose F is actually an O/7J,-module sheaf; that is, suppose F = (jn)+«&
for some quasi-coherent sheaf £ on N'(n). Then we can form the colimit sheaf

Flv; 1] of the sequence

f&]_—@wp"—l L>]:®w2(p"71)L>... .

We claim that Flv, ] 22 (i) .05 F.
By Equations 6.1 and 6.2, and because (j, )« is exact, it is sufficient to show
Elvy, '] 2= (p1).pi€.
Since multiplication by v, is invertible for sheaves on
N(n) xn V(n) = H(n) xape, N,

the natural map €& — (p1).p;€ factors as a map E[v, ] — (p1)«pi€. To show
this is an isomorphism we need only work locally. Let

G : Spec(R)— M (n)

be a flat and quasi-compact morphism classifying a formal group G. Taking a
faithfully flat extension if needed, we may choose an invariant derivation u € w(_;l
for G generating the free R-module wal; then the element

2 "Dy (G) € R = Wl

generates J,(R) = Jn(R)/Tn-1(R). Then we have a commutative diagram

g(G) U E(G) ® Wb 1 Un E(G) ® Ww2@"-1) U

=l J/up"—l lum"—l)
U

£(Q) "> E(G) i (@) L

Since the vertical maps are isomorphisms, the claim follows from Proposition
6.16.

This observation can easily be generalized to the case where F is an O/J}-
module sheaf for any k& > 1 because a power of v, is a global section of the
appropriate power of w.
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Because of the previous remark, the following definition does not create an
ambiguity.

6.18 Definition. Let f : N' — Mg be a representable and flat morphism of
algebraic stacks and let {T,} = {f*Z.} be the resulting scale for N'. If F is a
quasi-coherent J,-torsion sheaf on N define

Flo 1] = (in)«i F.

6.3 LEFT: A condition for flatness

Let f : N'— Mgy be a representable morphism of algebraic stacks. We would
like to give a concrete and easily checked condition on this morphism to guar-
antee that it be flat. This condition is a partial converse to Proposition 5.10
and a version of the Landweber Exact Functor Theorem (LEFT). This theorem
has a variety of avatars; the one we give here is due to Hopkins and Miller. See
[18] and [37]. The original source is [32].

In this section we will work over Mg, over Spec(Z), rather than at a given
prime.

Now let f : N' — Mg be a representable, quasi-compact, and quasi-
separated morphism of stacks. The hypotheses on the morphism guarantee
that if F is a quasi-coherent sheaf on A/, then f,F is a quasi-coherent sheaf on
Mge. Compare Proposition 1.6. Let J, € On be the kernel of the morphism

ON = f*ofg - f*(ofg/z.n)

Thus J,, defines the closed inclusion
dn N(n) = M(n) X ey N = N.

Thus there is a surjection f*Z, — J, which becomes an isomorphism if f is
flat. Also note that

(jn)*ON(n) = ON/jn = ON/f*In

From this we can conclude that the global section v, € H?(M(n),w?" ~1) defines
a surjection

Un - ON/jn—l - jn/jn—l ® w? 71.
This includes the case n = 0; we set vyg = p. The basic criterion of flatness is
the following. Note that if N is a stack over Z for some prime /, then the

hypotheses are automatically true for all prime p # ¢. This remark will have a
variant for all our other versions of Landweber exactness below.

6.19 Theorem (Landweber Exactness I). Let f : N' — Mg be a repre-
sentable, quasi-compact, and quasi-separated morphism of stacks. Suppose that
for all primes p,

1 vy On /Tt = Tn)Tn-1 @ WP "~ is an isomorphism, and
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2. Jn = Opn for large n.

Then f is flat. Conversely, if for all primes p, J, = On for some n, then f is
flat only if condition (1) holds.

6.20 Remark. The hypotheses of Theorem 6.19 imply, in particular, that the
ideals 7,, form a finite regular scale for A/; in particular, in the descending chain
of closed substacks

SN SN -1 C---CNI N

each of the inclusions is that of an effective Cartier divisor and that there is an
n so that N (k) is empty for k > n. Furthermore, an inductive argument shows
that the natural surjections f*Z,, — J, are, in fact, isomorphisms. Indeed, if
Zp-1 =2 Jn_1, then we obtain a diagram

f*In/f*In—l

7
ON/F*Tuer
jn/f*:[n—l

and we can conclude f*Z,/f*Z,_1 — Jn/Jn—1 is an isomorphism.

By specializing to the affine case and using Remark 5.7, we obtain a more
classical version of Landweber exactness.

6.21 Corollary. Let g : Spec(A) — Mgy classify a formal group G with a
coordinate x. For all primes p, let p,ui,us,... be elements of A so that the
p-series can be written

() = w4 -

modulo (p,u,...,uk—1). Suppose the elements p,uy, ... form a reqular sequence
and suppose there is some n so that

(paulv s 7un—1) =A
Then g is flat.

In Landweber’s original paper [32] the hypothesis that Z,,(G) = A for some
n was not required. This finiteness condition was removed by Naumann in [41]
using some ideas of Mark Behrens. I believe Hollander also has a way to remove
this hypothesis. See [15].

6.22 Remark. We can reformulate the hypotheses of Theorem 6.19 as con-
ditions on the quasi-coherent algebra sheaf f.Ox on Mpgs. As a matter of
notation, let’s write

FlTn S (u)uiiF
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for any F be a quasi-coherent sheaf on Mg;. We will say that the regular scale
{Z,,} acts regularly and finitely on F if for all n

Op : F)Ty—F )T, @ wP" 1
is injective and F/Z,, = 0 for large n. Because have a pull-back square for all n

M(n) XMfg./\/4>./\/

| |

M(n) j—> Mg

n

we have that f.(On/Tn) = (f+On)/Ls.
Suppose the hypotheses of Theorem 6.19 hold. Then

Un * ON/jn—l - On/Jn—l ®an71

is injective and Onr/J, = 0 for large n. Since f, is left exact, we have that
{Z,,} acts regularly and finitely on f.Ox.

Conversely, suppose {Z,} acts regularly and finitely on f.Oy. We will see
below in Theorem 6.26 that this implies that f is a flat morphism, which in
turn implies that f*Z,, = J, and, hence, that

f*(In/In—l) = jn/u7n—1~

This, in its turn, implies that the hypotheses of Theorem 6.19 hold. Thus,
Theorem 6.19 is equivalent to the following result.

6.23 Theorem (Landweber Exactness II). Let f : N — Mgz be a repre-
sentable, quasi-compact, and quasi-separated morphism of stacks. Suppose that
for all primes, the set of ideals {Z,,} acts regularly and finitely on f.Onr. Then
f is flat.

Conversely, if for all primes p, fxOn /I, =0 for some n, then f is flat only
if the set of ideals {Z,,} acts reqularly and finitely on f.Oxr.

This, in turn, is a corollary Proposition 5.10 and the following result. Here
and in what follows the higher torsion sheaves are defined by

Tor®(F,€) = H(F % &).

6.24 Theorem (Landweber Exactness III). Let F be a quasi-coherent sheaf
on Mgg. Suppose that for all primes p, the set of ideals {Z,,} acts regularly and
finitely on F. Then F is flat as an Ogg module; that is,

Tor®(F,€) =0, s>0.

Conversely, if for all primes p, F/Z,F = 0 for some n, then F is flat only if
the set of ideals {Z,,} acts regularly and finitely on F.
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Theorem 6.24 was proved by Mike Hopkins in [18]; the proofs here are the
same.

Let j, : M(n) — M;gg be the inclusion. The first result is this. The
argument requires careful organization of exact sequences.

6.25 Proposition. Suppose that for each prime p, the scale {I,,} acts regularly
and finitely on F and that for each n,

Tor® (F/Z,)[v;l],—) =0, s>n.
Then F is a flat Ogg-module sheaf.
Proof. By hypothesis, we have that for all large k,
Tor®(F /T, —) = 0.
This begins a downward induction, where the induction hypothesis is that
Tor® ((F/Zp41),—) =0, s>n+1.

The final result is the case n = —1.
We make the argument for the induction step, using the following fact: if £
is any locally free sheaf, then

Tor®(E @ L,E) = Tor® (£, @ L

for any quasi-coherent sheaves £ and &’.
Since the scale {Z,} acts regularly, we have an exact sequence

0— F/T,@w P~V F/T, — F/T,1 — 0.
The induction hypothesis implies that for any quasi-coherent sheaf £
vy : Tor9(F /T, E)— Tor® (F/T,,,E) @ wP" !

is an injection for s > n.
Now recall that in Remark 6.17 we showed that F/Z,[v,,!] can be written
as the colimit of the sequence

FlTy —> F/T, @ wP"~! —"> F/T, @ w?F" 1) s ...
Thus, we have for s > n,
0= TOI“S(]:/In['UglLE) = colim Tors(F/Z,, ) ® wt®" =1,

Since each of the maps in the sequence is an injection, the induction step follows.
O
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Now we must check the hypothesis of Proposition 6.25 in order to prove
Theorem 6.24. Recall from Definition 6.18, that if £ is any Z,-torsion sheaf,
then

Elvy ] = (in)sin€

where 4,, : U(n) — Mpgg is the inclusion. In the case where & = F/Z,,, we have
that £ is the push-forward of the sheaf j*F on M(n). Since there is a pull-back
diagram

9

H(n) —2> M(n)
k”l ijn
U(n) ——> Mz,

we have

inF [T = (kn)sGninF-
Write f,, : H(n) — M;gg for the inclusion Thus we can conclude that
FlTalvg ] = (fo)s(fa)*F.
The next result then verifies the hypothesis of Proposition 6.25.

6.26 Proposition. Let F be any quasi-coherent sheaf on H(n) and let £ be any
quasi-coherent sheaf on Mgg. Then

Tm“?((fn)*]:, &) =0, s> n.

Proof. Recall from Lemma 5.22, that the inclusion f,, : H(n) — Mpgg is affine.
This implies that the category of quasi-coherent sheaves on H(n) is equivalent,
via the the push-forward (f,)s, to the category of quasi-coherent (f,)«O%n)
modules on Mg,. (Compare Proposition 1.16.) In particular, (f,). is exact on
quasi-coherent sheaves. Also, for all quasi-coherent sheaves £ on My, there is
a natural isomorphism

(fn)s fn€ = (fn)xOn(n) @0y €-
It follows that there is a natural isomorphism
(6.3) (fn)+(F) © & = (fn)«(F @04y n€)
which becomes an equivalence of derived sheaves
(fa)e(F) @F € 2= (£).(F &5, LUDE).

By Theorem 5.38 we have that the morphism I, : Spec(FF,) — H(n) classifying
any height n formal group over F, is an fgpc-cover; hence, the category of
quasi-coherent sheaves on H(n) is equivalent to the category of (Fp, Opue(r,,))
comodules. Here we have written Spec(Oauyr,)) = Spec(Fp) X n) Spec(Fy).
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From this we have that the functor F®,) (—) is exact, since the corresponding
functor on comodules is simply

F(I' : Spec(Fp) — H(n)) ®r, (—).
Thus we need only show that
HLL(f)E =0

for s > n. Since (f,)« is exact, we need only check that H,(f,,)«L(f;)E = 0 for
s > n. We need only check this equation locally, thus we may evaluate at any
morphism

G : Spec(R)— Mgy

classifying a formal group with a coordinate. Applying the formula of Equation
6.3 we see that locally these homology sheaves are given by

Torf(u, 'R/, (G),£(Q)).

The result now follows from the fact that Z,,(G) is locally generated by a regular
sequence of length n. O

6.27 Remark. Almost all of the argument for Theorem 6.24 uses only that
we have a sequence of regularly embedded closed substacks {M(n)} of Mgg.
However, in the proof Proposition 6.26 we used Theorem 5.38 which, in turn,
ultimately depends on Lazard’s proof of the result that, over a separably closed
field of characteristic p, all formal groups of height n are isomorphic. Thus, it
does not appear to me that the Landweber exact functor theorem is a generality
— it seems quite specific to formal groups.

6.28 Remark (Presentations of U/(n)). Let R be a Z,)-algebra and G —
Spec(R) a formal group so that the classifying map

G Spec(R) — Mfg & Z(p)

is flat and so that v, (G) is invertible in the sense of Remark 5.6. For simplicity,
let’s assume G has a coordinate. Given a choice of p-typical coordinate, the
conditions on G amount to saying the element p,uq,... (See Corallary 6.21.)
form a regular sequence and u,, is invertible. Then the induced map

G : Spec(R)—U(n)

is a presentation, by Proposition 5.13. In particular, the resulting category
of comodules over the Hopf algebroid (R, R ®; W ®r, R) is equivalent to the
category of quasi-coherent sheaves over U (n); thus, as a consequence, any two
such pairs (R, G) produce equivalent categories of comodules. This point has
been discussed in further detail in [25] and [41]. From such pairs (R,G) we
get a homology theory E(R,G).(—) = R®r MUP,(—), where MUP, is the 2-
periodic version of complex cobordism. We call these theories Landweber exact
of height n.
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7 The formal neighborhood of a height n point

In this section we make the following slogan precise: the formal neighborhood
in Mgg of a height n formal group I' over a perfect field of characteristic p
is the Lubin-Tate space of the deformations of I'. This is not quite true as
stated; a more precise statement is that Lubin-Tate space is a universal cover
the formal neighborhood and the automorphisms of the formal group are the
covering transformations. The exact result is given in Theorem 7.22 below.

Let Ugg (n) = Mgg— M (n+1) be the open substack of Mgy classifying formal
groups of height less than or equal to n. Then

H(n) = Usg(n) — Ugg(n — 1)

is a closed substack of Ugg(n) defined by the vanishing of the ideal Z,,. Recall
the H(n) has a single geometric point, but that this point has plenty of auto-
morphisms. See Theorem 5.38. We wish to write down a description of the
formal neighborhood H(n) of H(n) C U (n).

By definition, ﬁ(n) is the category fibered in groupoids over Aff Z,, Which
assigns to each Z,)-algebra B the groupoid with objects the formal groups G
over B so that

1. Z,(G) C B is nilpotent; and

Thus, if ¢ : B — B/Z,(G) is the quotient map, the formal group ¢*G has strict
height n in the sense that v;(G) = 0 for ¢ < n and v,(G) is invertible. A
great many examples of such formal groups can be obtained as deformations
of a height n formal group; thus, we now discuss deformations and Lubin-Tate
space.

7.1 Deformations of height n formal groups over a field

Fix a formal group T of height n over a perfect field F of characteristic p. (In
practice, F will be an algebraic extension of a the prime field F,). Recall that
an Artin local ring is a Noetherian commutative ring with a unique nilpotent
maximal ideal. Let Artp denote the category of Artin local rings (A, m) so
that we can choose an isomorphism A/m = F from the residue field of A to
F. The isomorphism is not part of the data. Morphisms in Artp are ring
homomorphisms which induce an isomorphism on residue fields.

7.1 Definition. A deformation of the pair (F,T') to an object A of Arty is a
Cartesian square
r———@G

L,

Spec(F) 1. Spec(A)
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where G is a formal group over A and f induces an isomorphism Spec(F) =
Spec(A/m).

Deformations become a category Def(F,T) fibered in groupoids over Artg
by setting a morphism to be a commutative cube

- ———¢&
S
i G
Spec(F) — | = Spec(4’)
e e

Spec(F) —— Spec(A)

T

where the right face is also a Cartesian.

7.2 Remark. We can rephrase this as follows. A deformation of I" to A is
a triple (G, i, ¢) where G is a formal group over A, i : Spec(F) — Spec(A4/m)
is an isomorphism and ¢ : I' — i*Gq is an isomorphism of formal groups over
F. Here and always we write G for the special fiber of G; that is, the induced
formal group over A/m. There is an isomorphism of deformations ¢ : (G, i, ¢) —
(G,i',¢") to Aif i =4’ and ¢ : G — G’ is an isomorphism of formal groups so
that

¢ Z*GO
r J{i*wo
e

commutes.

In either formulation of a deformation, we note that if G is a deformation of
I to (A, m), then Z,,(G) C m and Z,,+1(G) = A.

7.3 Remark. Let R = (R, mpg) be a complete local ring so that R/mp = F.
We write Spf(R) equally for the resulting formal scheme and for the the cate-
gory fibered in groupoids over Arty that assigns to each object (A, m) of Arty
the discrete groupoid of all ring homomorphisms which induce an isomorphism
R/mp = A/m; so, in particular, f(mg) C m. This is an abuse of notation, but
a mild one, and should cause no confusion. Indeed, the formal scheme Spf(R)
is the left Kan extension of the functor Spf(R) on Arty along the inclusion of
Artp into all rings.

7.4 Theorem (Lubin-Tate). The category fibered in groupoids Def (F,T') is
discrete and representable; that is, there is a complete local ring R(F,T) and a
deformation

T H

i l

Spec(F) —— Spf(R(F,T))
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of T to R(F,T') so that the induced morphism
Spf(R(F,T"))—Def(F,T")
s an equivalence of categories fibered in groupoids over Artp.
The formal spectrum Spf(R(F,T") is called Lubin-Tate space.

7.5 Remark. The induced morphism Spf(R(F,T"))—Def(F,T") is not com-
pletely trivial to define. Given a homomorphism R(F,T") — A to an Artin local
ring which induces an isomorphism of residue fields, we are asserting there is
a unique way to complete the back square of the following diagram so that it
commutes.

r— f*H

r /—> H/
i

Spec(F) — | — Spec(A)

e e

Spec(F) — Spf(R(F,T))

Thus, given f : Spec(4) — Spf(R(F,T’), the universal deformation (H,j, ¢.,)

gets sent to
def

[ (H,j,¢u) = (fH, f()_lja bu)
where fo : Spec(A/my) — Spf(R(F,T")/m) is the induced isomorphism and we
have written ¢,, for both the universal isomorphism

Gu F_)J*HO
and the induced isomorphism
¢u s T—(fg '5)" (f*H)o = j* Ho.

In this language, the theorem of Lubin and Tate reads as follows: given a defor-
mation (G,i,¢) of T to A € Arty, there is a homomorphism f : R(F,T') — A
inducing an isomorphism on residue fields and a unique isomorphism of defor-
mations

¥ (G, ¢)—f"(H, j, du)-

The main lemma of Lubin and Tate is to calculate the deformations of I" to
the ring of dual numbers F[e], where €2 = 0. Indeed, they show for that ring
there is a non-canonical isomorphism

moDef (F,I)p(g = (Fe)" !
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k

where (—)* means the kth Cartesian power and

1 (Def(]Fa F)v G)]F[e] = {1}

for any deformation G. The general theory of deformations (see [50], Proposition
3.12) then shows that there is a (non-canonical) isomorphism

(7.1) moDef (F,T') = m"~*

where we are write m for the functor which assigns to an Artin local ring A its
maximal ideal m4. For any deformation G,

(7.2) m1(Def(F,T),G) = {1}.

It immediately follows that the ring R(F,T") is a power series ring. More ex-
plicitly, since R(F,T") is local, Noetherian, and p-complete, the universal defor-
mation H can be given a p-typical coordinate x for which the p-series of H
becomes

Pl (@) = pe +5 wa? +g g upa? g uga? g
Then there is an isomorphism
(7.3) R(F,T) =2 W(F)[[u1,. .., Un—1]]

where W(F) is the Witt vectors of F and the maximal ideal m = Z,,(H) =
(p,u1,y...,up—1). Note that u,, is a unit. This isomorphism is non-canonical as
it depends on a choice of p-typical coordinate.

Equation 7.2 can be deduced from the following result.

7.6 Lemma. Let (A,m) be an Artin local ring with A/m of characteristic p.
Let Gy and Gy be two formal groups over B so that (G1)o and (G2)o are of
height n < co. Then the affine morphism

Isop(G1, G2)—Spec(A)
18 unramified. In particular, if we are given a choice of isomorphism
¢ (G1)o—(G2)o

over (A/m), then there is at most one isomorphism v : Gy — G over A so that

(¥)o = ¢.
Proof. By Theorem 5.25 the morphism

I50.4/m ((G1)o, (G2)0) —Spec(A/m)

is pro-étale; that is, flat and unramified. Since Spec(A/m) — Spec(A) is the
unique point of Spec(A), the main statement follows. (See Proposition 1.3.2 of
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[39].) The statement about the unique lifting follows from one of the character-
izations of unramified: there is at most one way to complete the diagram

Spec(A/m) 2. Isop(G1,G2)

7
-
—~
-
~
~

Spec(A) Spec(A)

so that both triangles commute. O

7.7 Remark. We can give an alternate description of deformations in terms of
formal group laws. Fix a coordinate x for I" and let FT be the resulting formal
group law over F. Define Def . (F,T") to be the groupoid valued functor on Arty
which assigns to each Artin local ring (A, m) of Arty the groupoid with objects
all pairs (¢, F') where i : A/m — F is an isomorphism and F' is a formal group
law over A so that

i*Fo(l‘,y) = Fr(l‘,y) € F[[l‘,y“

Here we’ve written Fy(x,y) for the reduction of F' to A/m. There is a morphism
Y: (@, F)— (/,F)ifi=14 and ¢ : F — F’ is an isomorphism of formal group
laws so that

i*o(x) = x € F[[x]].

The set mpDef . (F,T) is the the set of x-isomorphism classes of deformations of
the formal group law Fr.
There is a natural transformation of groupoid functors

Def, (F,T')—Def(F,T).

This is a equivalence. It is obviously full and faithful, so we need only show
that every object in the target is isomorphic to some object from the source.

To see this, we’ll use the notation of Remark 7.2. Let (A, m) be an Artin
local ring over F and G a deformation of " to A. Since F is a field, Gg can be
given a coordinate; since A is local Noetherian, G can be given a coordinate
which reduces to a chosen coordinate for Gy. The isomorphism ¢ : I' — G
determines an isomorphism of formal group laws

¢ : FGo(xvy)_)(i*)_lFF(‘ray)'

Lift the power series ¢(x) to a power series ¥ (z) € A[[z]] so that o(x) = ¢(x)
and define a formal group law F(z,y) over A by requiring that

¢($) : Fg(x,y)—>F(a:,y)

is an isomorphism. Then F'(z,y) is the required formal group law.
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7.8 Remark. Following the example of Remark 7.3 we extend the notion of
deformations to all commutative rings by left Kan extensions along the forgetful
functor from Artp to rings. In more detail, let B be a commutative ring. Define
the category Arty/B to have objects the morphisms

A—DB

of commutative rings where (4, m) is an Artin local ring in Arty. Morphisms
in Art/B are commutative triangles. The category Arty/B has a cofinal sub-
category consisting of those morphisms which are injections. It is also filtered,
at least if IF is an algebraic extension of IF,. To see this, let

fi: Ai—B, i=12

be two morphism from Artin local rings in Art/F into B. If we choose isomor-
phisms \; : F — A;/m;, then the induced maps

fixi :F—B/[m1B + my B

may not be equal. However, there will be an automorphism o of F so that
fidx1 = fideo. Replacing Ay by Aso, we now use the universal property of Witt
vectors to obtain a commutative diagram

W(F) — A,

]

Ay —— B.
f1
The ring A; @) A2 is again in Art/FF; from this we can conclude that
Art/F is indeed filtered.

Since the tensor product A ®z A’ of Artin local rings is an Artin local ring,
the category Arty/B is filtered and has a cofinal subcategory consisting of those
morphisms which are injections.

Define the groupoid Def (F, T') g of deformations of " over B to be the colimit

Def(F,I") g = colima ¢,/ Def(F,I") 4.

Thus a generalized deformation of I' to B is a deformation of I" to an Artin local
subring A C B. This is probably easiest to understand using formal group laws.

Fix a coordinate of I and let Def, (F,T') be the groupoid defined in Remark
7.7. Then by that remark, there is an equivalence

colimp ¢, /g Def . (F,T') 4 — Def(F,T')p

and the elements of the source are easily described. The objects are equivalence
classes of pairs (F,i) where F is a formal group law

F(z,y) =Y aya'y’ € Blfz,y]]
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so that the coefficients a;; lie in an Artin local subring A C B and so that the
pair (F|a,i) € Def,(F,T')4. Isomorphisms in Def(F,T')p must similarly lie
over Artin local subrings.

The following result extends and follows immediately from Remark 7.3 and
Theorem 7.4.

7.9 Theorem. The natural isomorphism of functors on commutative Tings
Spf(R(F,T"))—moDef (F,I")

is an isomorphism and for all deformation G of I' over B
m1(Def(F,T)p,G) ={1 }.

Now let H(n) C Ugg(n) be the closed substack of formal groups of exact
height n and let H(n) denote its formal neighborhood. There is a 1-morphism

of groupoid schemes R
Def (F,I')—H(n)

which sends a deformation (G/B, ¢) to the formal group G.

Given a formal group G over B so that Z,,(G) is nilpotent and Z,,11(G) = B,
it is not necessarily true that G arises from a deformation; that would amount
to a choice of 2-commuting diagram

-

Spec(B)

ef (F,T)

Nonetheless, we have the following two results. Recall from Corollary 5.37
that if T' is a height n formal group over a field F, then the induced map
Spec(F) — H(n) is a presentation. Such a formal group also defines a trivial
deformation; that is, I is itself a deformation of T" to [F.

7.10 Proposition. Let I' be a height n formal group law over an algebraic
extension of Fy,. Then the 2-commuting square

Spec(F) —— Def(F,T")

1s 2-category pull-back square.

Proof. Write P for the 2-category pull-back. By Theorem 7.9, an object in P
over a ring B is a triple (G, f, ¢) where G is formal group of exact height n over
B, f: R(F,T') — B is a ring homomorphism so that B - f(m) is nilpotent, and

116



¢ : G — f*H is an isomorphism of formal groups. Here H is the universal defor-

mation as in Theorem 7.4 and m C R(F,T") is the maximal ideal. A morphism

v (G, f,¢) — (G, f,¢') is an isomorphism ¢ : G — G’ so that ¢'vv = ¢. In

particular, such a triple has no non-identity automorphisms and P is discrete.
Given a triple (G, f, ¢), we have that

0=7,(G) =Z.(f"H) = B f(m);

hence, the morphism f : R(F,T') — B factors through F. Furthermore ¢ itself
defines an isomorphism

(G’fﬁd))_> (f*H7f71)

It follows that there is an equivalence Spec(F) — P sending g : F — B to the
triple (f*H, f,1) with f the composite R(F,I') = F — B. O

7.11 Proposition. The morphism q : Def(F,T") — ﬁ(n) is representable, flat,
and surjective.

Proof. We first show it is representable; in fact, we will show that given a
diagram

Spec(B) < H(n) Spf(R(F,TI))

then
p1 : Spec(B) X 51(n) Spf(R(F,T')) — Spec(B)

is a formal affine scheme over B. By a descent argument, we may assume that
G has a coordinate. Then, arguing as in Lemma 2.11, we see that the pull-back
is equivalent to
Spf(B®r W @ R(F,T)),

the formal neighborhood of B@ W &, R(F,T') at the ideal Z,,(piG) = Z,,(p5 H)
where p;, i = 1,2 are the projections onto the two factors.

To see that ¢ is flat, we apply Theorem 6.19 (the Landweber Exact Functor
Theorem) and the description of R(F,T") given in Equation 7.3.

For surjectivity, note that if k is any field and ¢ : Spec(k) — H(n) classifies
a formal group G, then Z,,(G) = 0 and G is a height n; that is, g factors
through H(n). The result now follows from the first part and the fact that
Spec(F) — H(n) is surjective — see Corollary 5.37. O

7.2 The action of the automorphism group

Let G(F,T") = Aut(F,T'), the automorphism of the pair (F,I'). An element of
G(F,T) is a pull-back diagram

r—2 .7

L

Spec(IF) —— Spec([F).
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where ¢ is induced by a field automorphism. For historical and topological
reasons we call this the Morava stabilizer group of the pair (F,T"). We may
write such a diagram as a pair (o, \) where A\ : T' — ¢*T is the isomorphism
induced by g. If F is an algebraic extension of I, and I' is defined over F,, this
yields an isomorphism

G(F,T) = Gal(F/F,) x Aut(T)

where Aut(T") is the group of automorphisms of T' defined over F.
The group G(F,T") acts on the groupoid functor Def (F,T") on the right by
sending a diagram
r———G

Spec(IF) —— Spec(A)
to the outer square of the diagram

r J r G

o

Spec(IF) — Spec(FF) —— Spec(A)

This action commutes with the isomorphisms in Def(F,T'); thus we obtain a
right action on moDef (F,T") and hence a left action on R(F,T).

7.12 Remark. If, following Remark 7.2, we think of a deformation of I" to A
as a triple, (G,i,¢) and an element of G(F,T") as a pair (o, \) as above, then
the action of (o, A) on (G, 1, ¢) yields the triple

(G,io, (0" P)N).

Because moDef(F,I') is a set of equivalence classes, we must take a little
care in interpreting this action on R(IF,T"). See, for example, [6].

The following is the key lemma about this action.

7.13 Lemma. Let A be a Artin local ring with residue field isomorphic to F
and let (G,i,¢) and (G',i',¢") be two deformations of (F,T"). Suppose there is
an isomorphism of formal groups v : G — G’ over A. Then there is a unique
pair (o, ) € Aut(F,T") so that ¢ induces an isomorphism

) (Grio, 0" (9)A)—(G, i, ).

Proof. This is simply the assertion that there is a unique way to fill in left face
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of the following diagram so that it commutes
:7/ ‘ o
Spec(TF) - |- Spec(A/m)

v /

Spec(F) — Spec(A/m)

Go

Alternatively, writing down the equations provides both the pair (o, A) and
its uniqueness. Indeed, we need an equality of isomorphisms from Spec(F) to
Spec(A/m)

ioc =1

and a commutative diagram of isomorphisms of formal groups

o (@ 1 Go
T \L(if’)*wo
o
e

O

The action of the Morava stabilizer group is actually continuous in a sense
we now make precise. Assume now that F is an algebraic extension of F,. First
we notice that the extended automorphism group G(F,T’) is profinite. Define
normal subgroups G;(F,T") of G(F,T") as follows. The group G(F,T) is the set
of Cartesian squares

P—2——>T
i l
Spec(F) —— Spec(F)

under composition. The subgroup G;(F,T") is the set of those squares so that o
is the identity and X induces the identity on the p*-bud of the formal group T.
Then Go(F,T') = Autp(T),

G(F,T)/Go(F,T) = Gal(F,F,)

and
G(F,T) = lim Gi(F, T).

If F — F’ is an extension of subfields of F,, then we get an injection of groups
Go(F,T') — Go(F,T') which preserves the subgroups above. Thus the follow-
ing result displays G(F,T) as a profinite group. In Remark 5.32 we made the
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following calculation. There is an isomorphism

Go (]FZ% F)/Gl (va F) = IF;;"

and for k£ > 0 a non-canonical isomorphism
Gk(va F)/Gk-H(Fp: I) = Fpn

7.14 Remark (The continuity of the action). Define Def(F,T") to be the
groupoid of triples (G, i, ¢) where G is a formal group over an Artin local ring
A, i : Spec(F) — Spec(A/m) is an isomorphism and

¢ : Ty —1"(Go) pr

is an isomorphism of p¥-buds. The morphisms in Def(FF,T') are isomorphisms
¥ : G — G which induce the appropriate commutative triangle over F. (Note
that Def;(F,G) is not the deformation of the buds, as these isomorphisms
are defined over the whole group.) Since every isomorphism of buds over a
Noetherian local ring can be lifted to an isomorphism of the formal groups, we
have that the evident map

Def (F,T')—Def(F,T")
is surjective on objects and G(F, I')-equivariant; furthermore, the induced map
(7.4) Def (F,T')— lim Def, (F,T’)

is an isomorphism. The action of G(F,T') on Defy(F,T') factors through the
quotient group G(F,T")/Gy(F,T). If we give Defy(F,T') the discrete topology
and Def(F,T") the topology defined by the natural isomorphism 7.4, then the
action of G(F,T") on Def(FF,T") is continuous.

7.15 Lemma. There is a natural isomorphism of functors on Artin local rings
[roDef (F,T)] /Gy (F,T) — moDef},(F,T)
and for all (G,i,¢) in Defy(F,T) 4,
m (Defp(F,T)4,G) = Gi(F,T).

Proof. This is a direct consequence of Lemma 7.13. The natural transformation

moDef (F,T) /Gy (F,T)—moDef (F,T)
is onto. If (G, i, ¢) and (G',4,¢’) are two deformations and

U (G, ¢0)—(G i, ¢)

is an isomorphism in the Def(F,T') there is a unique automorphism A of " over
F so that

U (Gi, ) — (G4, )
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is an isomorphism in Def(FF,T"). Note that A is necessarily in G (F,I").
Almost the same proof gives the statement about 7. Indeed, if (G,1, ) is
any lift of (G, 14, @) to Def(F,T"), then an automorphism ¢ : (G, 4, ¢) — (G, 1, @)
determines a unique element in G (F,T") so that ¢ induces an isomorphism
/¢ : (G7 7;7 Q_S)‘)—>(G7 7;7 Q_S)

The assignment 1 — A induces the requisite isomorphism. O

The functor Def (F,T") from Artin rings to groupoids can be extended to
all commutative rings using a left Kan extension as in Remark 7.8. Since we are
taking a filtered colimit, the natural transformation Def(F,T') — Def(F,T")
remains onto for all commutative rings. We get a natural sequence of maps

moDef (F,T) 5 — lim moDef (F,T) 5 /Gy, (F,T') — lim Def,(F,T) 5.

The first map, which is an isomorphism for Artin rings, is not immediately an
isomorphism in this generality because colimits don’t commute with limits in
general; however it is continuous and, as a result, an injection.

7.3 Deformations are the universal cover

We now prove the main result — that Lubin-Tate space is the universal cover
of H(n). The notion of the group scheme defined by a profinite group G was
covered in Remark 5.31. In the following result G(T", F) is the profinite group of
automorphisms of the pair (I',F); that is, the big Morava stabilizer group.

7.16 Theorem. The natural transformations of groupoids over Artin local rings

Def (F,T) x G(A,F)—Def(F,T) x5, Def(F,T)

H(n)

given by
((G,i,9),(0,N) — ((G,i,9),(G,ic,pA),1 : G — G)

s an equivalence.

Proof. A typical element in the pull-back is a triple
(7.5) ((G,i,9),(G"i',¢), ¢ : G — G")

where the first two terms are deformations and 1) is any isomorphism of formal
groups. A morphism in the pull-back

(777/) : ((Glaia¢)a( /17i/7¢/)71/}1 : Gl - G/l) -
((G27ja ¢)7( /Qail7¢/)7w2 : G2 - G/Q)

are isomorphisms v and 4’ of deformations so that 12y = «'¢)1. Now we apply
Lemma 7.13. Given the typical element, as in 7.5, we get a unique pair (o, A)
in G(F,T') so that

(7.6) (L) : (G4, 9), (G,io, A), 1a) — ((G.i,9), (G, 7', ¢'), )
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is an isomorphism in the pull-back. The assignment

((G7 i? (?b)? (GI7 i/3 ¢/)3 ,lzj) = ((G7 i? (?b)? (G’ 7’0-7 (725)\)’ IG)

becomes a natural transformation of groupoids sending a morphism (y,~') to
(7,7)- Then 7.6 displays the necessary contraction. O

7.17 Definition. Let ¢ : Y — X be a morphism of categories fibered in
groupoids over some base category. The group Auty (X) of automorphisms of
Y over X consists of equivalence classes pairs (f,1) where f 1Y — Y is a 1-
morphism of groupoids and ¢ : ¢ — qf is a 2-morphism. Two such pairs (f, )
and (f', 1) are equivalent if there is a 2-morphism ¢ : f — f' so that ¥'¢ = 1.
The composition law reads

(9, 0)(f,0) = (af, (F*P)¢).

There is a homomorphism

G(F,T')— Autﬁ(n)

(Def(F. T))
sending (o, \) to the pair (f(,,x),1) where f(, x) is the transformation
(G,i,9) — (G,io, pA).

7.18 Theorem. This homomorphism

G(F,T)— Autﬁ(n)

(Def(F,T)).

s an isomorphism.

Proof. That the map is an injection is clear from the definitions. We now prove
that it’s surjective. Let (f,1) be an element of the automorphisms of Def (F, T")
over H(n). Let’s write

f(G,i,0) = (Gy,if, ¢p).

Then 1 gives isomorphism of formal groups ¥¢ : G — Gf. By Lemma 7.13
there is a unique pair (o, A) € G(F,T') so that

Vg : (Grio, pA) — (Gy,ig, dy)

is an isomorphism of deformations. The uniqueness of (o, \) and this equation
give us the needed 2-morphism

¢ fony—f
O

We wish to show that the isomorphism of Theorem 7.18 is appropriately
continuous.
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7.19 Lemma. There is a surjective homomorphism of groups

qr : Autgy, (Def(F,T)) — Autg, (Def(F,T))

)

which induces a commutative diagram of groups

G(F,T) Autg (Def(F,T))

| -

G(F,T)/Gpy1 (F,T) — Autg, (Def(F,T)).

Proof. We use Theorem 7.18. Any automorphism of Def(F,T") of the form f, )
immediately induces an automorphism of Defy (F,T"). This defines a morphism

G(F.I)— Autg, (Defy(F,T))

which factors through G(F,T')/Gg41(F,I'). It remains only to show that it’s
onto. To show this, we use a variant of the argument in the proof of Theorem
7.18. If (f, ) is an automorphism of Def(IF,T") over H(n), we again write

f(G,i,0) = (Gyip, dp).

choose isomorphisms ¢ and ¢ lifting ¢ and ¢ respectively. Then Lemma 7.13
supplies an element (o, A) € G(F,T') so that

Ve (G, io, pX) — (Gy,if, dy).

The class of (o,) in G(F,T")/Gy,1(F,T) is independent of the choice and
supplies the needed 2-morphism to show surjectivity. O

The groupoid Def((FF,T') has a simple description. Indeed, Defy(F,T') as-
signs to each Artin local ring A the pairs (G,i) where ¢ : F — A/m is an
isomorphism. Since F is perfect, the universal property of Witt vectors ([5]
§I11.3) implies there is a unique homomorphism of rings W (F) — A which re-
duces to F modulo maximal ideals. Thus, we conclude that Defy(FF,T") is the
functor from groupoids to which assigns to each Artin local W (IF)-algebra A so
that

W(F)/(p)—A/m

is an isomorphism the groupoid of formal groups G over A so that Z,,(G) C m
and Z,,+1(G) = A. Thus we have proved:

7.20 Lemma. There is a natural isomorphism of categories fibered in groupoids
over Arty

Def(F,T) — W (F) @z, H(n).

We now define what it means for a morphism to be Galois in this setting.
Galois morphisms of schemes were defined in Remark 5.31.
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7.21 Definition. A representable morphism q : X — Y of sheaves of groupoids
in the fpqgc-topology is Galois if q faithfully flat, and if the natural map

X x Auty(X)—>X Xy X
s an equivalence of groupoids over X .

The main result of the section is now as follows.

7.22 Theorem. Let F = ]Fp be the algebraic closure of the prime field and let
I' be any height n-formal group over F,,. Then

q : Def(F,T)—H(n)
1s Galois with Galois group
G(F,T') = Gal(F/F,) x Autg ().

The discrete groupoid Def (F,T") ~ Spf(R(F,T")) itself has no non-trivial étale
covers, so the morphism q is the universal cover.

Proof. To get that ¢ is Galois, combine Proposition 7.11, Theorem 7.16, Theo-
rem 7.18, Lemma 7.19, and Lemma 7.20. That R(FF,T") has no non-trivial étale
extensions follows from the fact that this ring is complete, local, and has an
algebraically closed residue field. O

7.23 Remark. All of these results can be rewritten in terms of the Lubin-
Tate ring R(F,I') of Theorem 7.4 if we wish. For example, we can define a
homomorphism

G(F,T')— Autﬁ(n)(Spf(R([F,F))

as follows. We refer to Remark 7.5. Let (H, j, ¢,) be the universal deformation
over Spf(R(F,T")) and let (o,) be in G(F,T"). Then we get a new deformation
(H, jo, ¢, \) over Spf(R(F,T'), classified by a map

f= T SPE(R(F,T)) — Spf(R(F,T)).

Thus there is a unique isomorphism of deformations

Y= ¢(o’,/\) : (Ha]7¢u) - f*(H7.]a¢u)

The pair (f(s,1), % (0,n)) Now produces the 2-commuting diagram

Sp Spf(R(F,T'))

f\/

(07 )\) — (f(a,)\)a ¢(o’,)\))

and the assignment
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defines a group homomorphism
G(F,T')— Autﬁ(n) (Spf(R(F,T))).
Theorem 7.18 then becomes the following result.

7.24 Proposition. This homomorphism
GF,T)— Autﬁ(n) (Spf(R(F,T))).
s an isomorphism.

Theorem 7.22 then reads as follows:

7.25 Theorem. Let I' be a formal group of height n over I, and let
¢ : Spf(R(F,,T)—H(n)

classify a universal deformation of T regarded as a formal group over F,. Then

q is the universal cover of the formal neighborhood 7‘Al(n) of T'; specifically, q is
pro-étale and Galois with Galois group the big Morava stabilizer group

G(F,.T)) = Gal(F,/F,) » Autg, (T).

7.4 Morava modules

We add two remarks intended to clarify what it means to be a comodule over

Morava E-theory

E, Y E(F,..T,).

The conceptual difficulty is that we define
(En)*En = W*LK(n) (En A En)

where L y) is localization at Morava K-theory. As such, the usual translation
from homotopy theory to comodules needs some modification. The appropriate
concept is that of a Morava module, and we will give some exposition of this in
Remark 7.27. To simplify matters we pass to E(F,,T).

7.26 Remark. Theorem 7.16 is the restatement of the well-known calculation of
the homology cooperations in Lubin-Tate theory. There is a 2-periodic homology
theory E(F,,T") with E(F,,T)o = R(F,,I') and whose associated formal group
is a choice of universal deformation of I'. Then E(F,,T) is Landweber exact
and

E(Fy, T)oE(Fy, T) € 7oL () (E(F,,T) A E(F,,T))
= map((G}(IF’p7 r), R(pr, I))

where map(—, —) is the set of continuous maps. Proofs of this statement can
be found in [53] and [23]; indeed, the argument given here for Theorem 7.16 is
very similar to Hovey’s.
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7.27 Remark (Morava modules). Theorem 7.25 allows us to interpret quasi-
coherent sheaves on ﬁ(n) as quasi-coherent sheaves on Spf(R(F,,I')) with a
suitable G(F,T") action. Let’s spell this out in more detail.

Let m = Z,(H) C R(F,,T), where H is any choice of the universal deforma-
tion. Recall that a a quasi-coherent sheaf on Spf(R(F,,T))) is determined by a
tower

i My — My — - — M,

where My, is an R(F,,I')/m*-module, M}, — Mjy_; is a R(F,,T)/mF-module
homomorphism and

R(Fy, T)/m* ™ @ ) jme Mg— My

is an isomorphism. Under appropriate finiteness conditions, this tower is deter-
mined by its inverse limit lim M}, regarded as a continuous R(F,, I')-module.
A quasi-coherent sheaf on

SPE(R(E,,T)) X5y SPE(R(F, T)) 2 Spf(map(G(F,, ), R(E,, )
has a similar description as modules over the tower
{map(G(Fy, I'), R(Fp, T)/m™)}.
A Morava module is a tower of R(F,,')-modules
ci— My — Mj_q — - — M
so that
1. My is an R(F,,I")/m*-module and the induced map
R(Fy, T)/m* ! @, 1) jme Mk—My—1
is an isomorphism;
2. Mj has a continuous G(Fp, I')-action, where M}, has the discrete topology;

3. the action of G(F,,T) is twisted over R(F,,T') in the sense that if a €
R(F,,T'), x € My, and g € G(F,,T"), then

glaz) = g(a)g(x).

Now Theorem 7.25 implies there in equivalence of categories between quasi-
coherent sheaves on H(n) and Morava modules.

126



8 Completion and chromatic convergence

In this section we give the recipe for recovering a coherent sheaf on Mg (over
Zyy) from its restrictions to each of the open substacks of formal groups of
height less than or equal to n. This has two steps: passing from one height to
the next via a fracture square (Theorem 8.18) and then taking a derived inverse
limit (Theorem 8.22). The latter theorem has particular teeth as the union of
the open substacks of finite height is not all of Mygg.

Students of the homotopy theory literature will see that, in the end, our ar-
guments are not so different from the Hopkins-Ravenel Chromatic Convergence
of [49]. Much of the algebra here can be reworked in the language of comodules
and, as such, it can be deduced from the work of Hovey and Strickland [25].

8.1 Local cohomology and scales

We begin by recalling some notation from Definition 6.10 and Proposition 5.10.
Let f: N'— Mg be a representable, separated, and flat morphism of algebraic
stacks. We will confuse the ideal sheaves Z,, defining the height filtration with
the pull-backs f*Z,,, which induce the height filtration on N. Thus, we let

0=20CT1 ST, C---COx

denote the resulting scale on V. Let N (n) = M(n) x pe, N C N be the closed
substack defined by Z,, and let V(n — 1) be the open complement. We will write
in:V(n) = N and j, : N(n) — N for the inclusions. Finally, let’s write O for
On.

If F is a quasi-coherent Z,,-torsion sheaf, we defined (in 6.18)

Flog'] = (in)sin F.

The notation was justified in Remark 6.17. A local description of this sheaf was
given in Proposition 6.16.

We wish to recursively define quasi-coherent sheaves O/Z° on N by setting
O/Z§° = O and then defining O/Z;% | by the short exact sequence

(8.1) 0—-0/I>X — O/I;"[vgl] — O0/1, —0.

In order to do this, we must prove the following lemma. In the process, we give
local descriptions on these sheaves. See Equations 8.2 and 8.3.

8.1 Lemma. For all n > 0, the sheaf O/I° is an I,-torsion sheaf and the
unit of the adjunction

O/TY = (in)«inO/I;° = O/ v ]

18 injective.
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Proof. Both statements are local, so can be proved by evaluating on an affine
morphism Spec(R) — M which is flat and quasi-compact. By taking a faithfully
flat extension if necessary, we may assume that there are elements u,, € R so
that

tun, +Zn(R) € O/I,(R) 2 R/(ug, "+ ,Un—1)

is a generator of Z,,(R)/Z,—1(R). Since we have a scale, multiplication by u,, on
R/(ug, -+ ,un—1) is injective. Define R-modules R/(ug°,--- ,us? ;) inductively
by beginning with R and by insisting there be a short exact sequence

OHR/(USOW" au;z.o—l)_)R/(ugo"" 7“?—1)[”;1] —>R/(u8°7 ’u?zo)_)o'

Then inductively we have, using Proposition 6.16

and
(8-3) (in)+in O/TX(R) = R/ (ug®, -+, ups ) [uy, '],
The result now follows. O

We note that Proposition 6.16 also implies:

8.2 Lemma. For alln >0 and all s >0
R?(in) 40 O/I° = 0.

8.3 Remark (Triangles and fiber sequences). In the rest of the section, we
are going to use a shift functor on (co-)chain complexes of sheaves determined
by the following equation. If C' is a cochain complex and n is an integer, then

H*C[n] = H*C.

If C is a chain complex, then we regard it as a cochain complex by the equation
H*C = H_,C; thus, H,C[n] = Hs;_,C. A distinguished triangle of cochain
complexes

A— B—C— Al

induces a long exact sequence in cohomology
-— H'A — H°B — H*C — H*A[l] = H*™'A — ...

To shorten notation we may revert to the homotopy theory conventions and say
that A — B — (' is a fiber sequence in cochain complexes.
If M is a sheaf, we may regard it as a cochain complex in degree zero; hence

H°M[-n] =



We now introduce local cohomology, which will be an important tool for the
rest of this section.

8.4 Definition. Let Z C N be any closed substack with open complement
i : U — N. If F is a quasi-coherent sheaf on N, define the derived local
cohomology sheaf of F by the the distinguished triangle

(8.4) RT (N, F) — F — Rii*F — RTz(N, F)[1].
Put another way, RTz(N, F) is the homotopy fiber of the map F — Rii*F.

If AV is understood, we may write RT'zF for R z(N,F); if Z is defined by
an ideal sheaf 7 C O, we may write R['zF for RT'z(N, F).
The local cohomology of F at Z is then the graded cohomology sheaf

Hy(N,F) < H*RT 4(N, F).

If V — N is an open morphism in our topology, then
Lz(N,F)(V) = Hy(N, F)(V)

is the set of sections s € F (V') which vanish when restricted to F(U xx V). If T
is locally generated by a regular sequence, then we can give the following local
description of I'z (N, F). Let Spec(R) — AN be any morphism so that Z(R) is
generated by a regular sequence uo, ..., u,—1. Then there is an exact sequence

(8.5) Lz(N,F)(R) — F(R) — H]—‘(R) [u; ).

This has the following consequence. See Corollary 3.2.4 of [1] for a generaliza-
tion.

In the next result and what follows, hom denotes the sheaf of homomor-
phisms and Hom denotes its global sections.

8.5 Lemma. Suppose that the ideal T C Opnr = O defining the closed substack
Z C N s locally generated by a reqular sequence. Then for any quasi-coherent
sheaf F on N there is a natural equivalence

colimy, Rhom (O /I, F) = RTz(N, F).

Proof. Before taking derived functors, we note that there is certainly a natural
map

colimy, Hom(O/T*, F)—T (N, F)

given by evaluating at the unit. We first prove that this is an isomorphism; for
this it is sufficient to work locally. Let Spec(R) — M where Z(R) is generated
by the regular sequence ug,--- ,ur_1. Then the exact sequence of 8.5 implies
that z € F(R) is in I'z(M, F)(R) if and only if for all ¢ there is a ¢; so that
uliz = 0. This yields the desired (underived) isomorphism. Since colimit is
exact on filtered diagrams, the derived version follows. O
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We now set Z = N(n+ 1), defined by Z,, 41, so that V(n) = N — N (n+ 1)
and there is a distinguished triangle

RFN(n-i—l)]: —F — R(Z',L)*Z':L]: — RFN(n+1)f[1].

If F is a quasi-coherent Z,-torsion sheaf, then Proposition 6.16 applies and
(in)sinF = Flvg'].

The exact sequence defining O/Z2° and Lemmas 8.1 and 8.2 imply following
result.

8.6 Lemma. For alln > 1 there is an isomorphism in the derived category
RN ()N, O/Z524) = O)T°[-1].
We also have the following key calculation.

8.7 Proposition. For all n > 1 there is an equivalence in the derived category
of quasi-coherent sheaves

R pr(ny(N, O) =~ O/I3°[—n].

That s,
0, s # n;
O/1r, s=n.

Proof. We proceed by induction to show that
RTn(myN, O/I52 ) =~ OJI2° [k

Lemma 8.6 is the case £ = 1. To get the inductive case, we have an exact
sequence

0— O/Irii(k+1) - (infk)*iszo/zﬁ(kﬂ) — O/T;2, — 0.
Hence we need to show that
RFN(n) (in—k)*i:;—ko/zgo—(k-o—l) =0,
or equivalently that
(in—k)win—rO/L2 (k1) = Rlin—1)win 1 (in—r)win 1O/ 11)
is an equivalence. Consider the sequence of inclusions

in—1

V(n—k) —L=V(n-1) 2 N
v//
zvnfk'
We easily check that i, (in—k)« = f; since ¢ _; is exact we have an equivalence
R(in-1)sin_rO/L.2 (1) = Rin—1)xin_1(in—k)+in_rO/L.2 (11)

The result now follows from Lemma 8.2. O
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8.8 Theorem. Let F be a quasi-coherent sheaf on N'. Then there are natural
equivalences in the derived category

RUpr (N, F) = O/ [-n] @6 F

Proof. This follows immediately from Lemma 8.5 and Proposition 8.7; indeed,
since O/ZF is locally finitely presented

RT \r(ny (N, F) = colim R hom(O/Z}, F)
~ colim Rhom(O/TF, 0) &% F
~ RFN(n)(N, 0) ol F.
O

Another consequence of Lemma 8.5 and Proposition 8.7 is the following
result.

8.9 Proposition. There is an equivalence
colimy, Rhom(0/IF, 0) = 0/I°[—n].

We also will be interested in what happens if we vary n. Consider the
sequence of inclusions

Recall that V(n) is the complement of A (n + 1). In the case where N' = Mgg,
N(n) = M(n) classifies formal groups of height at least n, V(n) = U(n) classifies
formal groups of height at most n and H(n) = M(n) NU(n) classifies formal
groups of exact height n.

8.10 Lemma. For all quasi-coherent F on N, there are fiber sequences of
cochain complezes of quasi-coherent sheaves

R(in)uit BT pr () F — Rlin)u(in)*F — Rlin_1)s(in_1)*F

and

RFN(n-i—l)]: - RPN(n)f - R(in)*i:RrN(,L)f

Proof. The fiber sequence which defines local cohomology (see Definition 8.4)
yields that these sequences are equivalent; so, we prove the first.
For any quasi-coherent sheaf on N, we have a fiber sequence

(8.6) RUy(ny(V(n), i F) — i, F — Rfuiy, F.

Here we have taken the liberty of writing H(n) for V(n) N M (n) and we have

used f*iy =ir_4.
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Next note that the adjoint to the equivalence R(i,,—1)« = R(in)«Rfx yields
a commutative diagram

RFH(n) (V(n),lz.}_) i F Rf.y_F.

Finally, for all quasi-coherent sheaves £ on V(n — 1), the natural map
i R(i5_)E—RJ.E

is an equivalence; indeed, we easily check that % (i,,—1)+«€ — f«& is an isomor-
phism and then we use that ¢}, is exact. From this we conclude that

RFH(n) (V(n), i;kl]:)—ﬂ;;RFN(n) (./\/, F)

is an equivalence. We feed this into Equation 8.6 and apply R(i,). to get the
result. O

Applying the second of the fiber sequences of Lemma 8.10 to F = O itself
and using Theorem 8.8, we get the fiber sequence

(8.7) O/T5[-n—1] = O/L¥[-n] — O/ [v™"][-n]

which is the evident shift of the defining sequence 8.1. From this we obtain the
following result.

8.11 Lemma. There is a natural commutative diagram

RT N1y (N, F) RL v (ny (N, F)

zi lz

O/I%,[-n — 1] @ F ——= 0/I°[-n| @% F

where the bottom morphism is the boundary morphism induced by the short exact

sequence
0— O/IF = O/TPlv; '] = O/T;5, — 0.

8.2 Greenlees-May duality

There is a remarkable duality between local cohomology and completion first
noticed by Greenlees and May [12] and globalized in [1]. Similar results appear
in [4], which also has the general version of the fracture square we will write
down below in Theorem 8.17. The techniques of [1] apply directly to the case
of a quasi-compact and separated stack A/ and the closed substacks N(n) C
N arising from a scale. The main result we’ll use is the following. Derived
completion was defined in Definition 6.4.
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8.12 Proposition. For all quasi-coherent sheaves F on N there is a natural

equivalence
L(F)Nr(ny = Rhom(O/L3¢[-n], F).

This result is actually equivalent to an apparently stronger result — Greenlees-
May duality:

8.13 Theorem. Let £ and F be two chain complezes of quasi-coherent sheaves
on N . Then there is a natural equivalence

RhOm(RFN(n)g,f) A Rhom(é, L(}—)j\\/(n))'

Certainly Theorem 8.13 implies Proposition 8.12 by setting £ = Ox and
applying Proposition 8.7. Conversely, Theorem 8.8 gives a natural isomorphism

Rhom(RT pr()E, F) = Rhom(O /I [—n] @ £, F)
~ Rhom(&, Rhom(O/Z*[—n],F)).

Hence Theorem 8.13 follows from Proposition 8.12.

The argument to prove Proposition 8.12 goes exactly as in [1]; hence we will
content ourselves with giving an outline.

Lemma 8.5 allows us to define a natural map

P L(]:)j\\/(n)—ﬂ% hom(RFN(n) (N, O), .7:)

as follows. First note that for O-module sheaves £ and F, there is a natural
map

(8.8) £ ® F—Hom(Hom(&, O), F)
given pointwise by sending z ® y to the homomorphism ¢,g, with
bacy(f) = [(@)y.
The morphism of Equation 8.8 can be derived to an morphism
£ @ F—RHom(RHom(&, O), F).
Now & is defined as the composition
L(F)r(n) = holim(F @ O/Z}) — holim Rhom(Rhom(O/Zf, O), F)

>~ Rhom(colim Rhom(O/ZF, O), F)
= Rhom(RT n(n) (N, O), F).

Proposition 8.12 now can be restated as

8.14 Proposition. For all quasi-coherent sheaves F, the natural map
D L(f)fv(n)—d% hom(RT pr(ny (N, O), F)

s an equivalence.
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The first observation is that the question is local; that is, it is sufficient to
show that ® is an equivalence when evaluated at any flat and quasi-compact
morphism Spec(R)— M for which Z,,(R) is generated by a regular sequence.
This follows readily from the definition of completion (6.4) and the remarks
immediately afterwards. If we write I = Z,,(R) and M = F(R), then we are
asking that the map

Oy : L(M)?—Rhom(RI'(R), M)

be an equivalence. This is exactly what Greenlees and May prove. There is
a finiteness condition in the argument which is worth emphasizing: for all 4,
the R-module R/(ud,--- ,u’,_,) has a finite resolution by finitely generated free
R-modules. The usual such resolution is the Koszul complex, which we now
review.

Let R be a commutative ring and let v € R. Define K (u) to the chain

complex

R——R
concentrated in degrees 0 and 1. If u = (ug, ..., un—1) is an ordered n-tuple of
elements in R, define the Koszul complex to be

Ku)=K(u)® - ® K(up_1).

Note that if u is a regular sequence in R and I is the ideal generated by
UQ, - - -y Un—1, then K (u) is the Kozsul resolution of R/I and

H, (K (u) ® M) = Tor®(R/I, M).

Now fix the n-tuple u and define u’ = (ué, ...,u} ;). The commutative
squares
R——R
'u]’ =
u?‘.fl
R——

combine to give morphisms f; : K(u') — K(u'~!). Thus if the elements of u
form a regular sequence,® then a simple bicomplex arguments shows that for
any R-module M there is an homology isomorphism

L(M)?} =~ holim; (K (u/) @ M).

This equivalence is natural in M, although it doesn’t look very natural in R or
1.

The dual complex

K*(u) ¥ Homp(K (u), R)

80r, more generally, if the elements of u are pro-regular as in [12].
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is a chain complex concentrated in degrees s, —n < s < 0. Note that if the u;
form a regular sequence
(8.9)

R/(ug,...,up—1), 8= —n;

1

H,K*(u) = Extp*(R/(uo, ..., Un—1),R)
0, s # —n.

The dual of the maps f; give maps f; : K*(u'~!) — K*(u’). Define
K*(u™) = colim K*(u").

We have have natural homology equivalences, assuming the elements in u form
a regular sequence:

K*(u>®) ®@ M ~ colim K*(u*) @ M
~ colim Hom g (K (u'), M)
~ colim Rhompg(R/(z}, ..., x% 1), M)
~ RT;(M).

More is true, because K (u’) is finitely generated as a chain complex of R-
modules we have that the map of Equation 8.8

K(u') ® M—Hom(K*(u"), M)

is an isomorphism, natural in M. Then the local version of Greenlees-May
duality follows:

L(M)% ~ holim(K (u/) ® R)
~ holim Hom (K *(u®), M)
~ Rhom(colim K*(u%), M)
~ Rhom(RI'[(R), M).

It is an exercise in bicomplexes to show that this is, up to natural homology
equivalence, the map ® of Proposition 8.14.

8.15 Remark. The isomorphism
H_(K*(u®)®@ M) = H;(R,M)

developed above extends the exact sequence of Equation 8.5. Indeed, K*(u®)®g
M is exactly the chain complex

MHHM[ul_l]H H M[ui_lluizl]H~~~HM[U51~~~UE_11]HO

11 <i2
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8.3 Algebraic chromatic convergence

We now supply the two results we promised: a fracture square for reconstructing
quasi-coherent sheaves for the completions and a decomposition of a coherent
sheaf as a homotopy inverse limit.

We begin with a preliminary calculation. Compare Corollary 5.1.1 of [1].

8.16 Theorem. Let F be a quasi-coherent sheaf on N'. Then the natural map
RFN(H).T—)RFN(,L)L<]:)5\\/(”)
18 an equivalence.

Proof. The question is local (again) and, therefore, reduces to the following
assertion. Let u = (ug,...,un—1) be a regular sequence in R, let I be the ideal
generated by this regular sequence, and let P be a projective R-module. Then

K*(u®) ® P—K*(u®) ® (P)}
is an equivalence. Indeed, if we apply homology to the map
K*(u') @ P—K*(u') ® (P)}
then, by Equation 8.9 we obtain the maps

Eth}%(R/(ulOa s 7ui —1)a P)—>EX'C§%(R/(U6, tee 7uiz—1)a (P)?)

n

Both source and target are zero if s # n and if s = n we have the map
P/(ug, -ty —y) = (P)7/ (g, - -y, 1)
which is an isomorphism. O

This result has the following fracture square as a consequence. Recall that
the open inclusion 4,1 : V(n—1) — A is complementary to the closed inclusion

Jn :N(n) — N.

8.17 Theorem (The fracture squares). Let F be a quasi-coherent sheaf on
N. Then there is a homotopy cartesian square in the derived category

|

R(infl)*i2,1.7:4>R(in—l)*i:b—ll/(f)j\\/(n)-

Proof. The induced morphisms on fibers of the vertical maps is exactly
RU () F =R A () L(F) Ny

which is an equivalence by Proposition 8.16. O
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8.18 Remark. An important special case is worth isolating. Let F be a quasi-
coherent sheaf on N and consider the sequence of inclusions

f in
V(n
S

in—1

V(n—1)

Applying Theorem 8.17 to a complex of sheaves of the form R(i,).i"F where
F is quasi-coherent on A/, we get a homotopy cartesian square

(8.10) R(in)wit F ———————— L(R(in)+ 13 F ) Ny

| l

R(anl)*lzflfﬁR(Zn—1)*22_1L(R(7’ﬂ)*22f)j\\/(n)

The right hand vertical column of this diagram seems excessively complicated,
but expected to those familiar with the results of [24] §7.3. The topological
analog of these calculations supplies a fracture square of spectra

L, X — LK(n)X
Ly, 1 X —— Ln—lLK(n)X-

The connection to completion is somewhat less than straightforward and given
by the equations

LK(n)X ~ LK(n)LnX = holim S/I ANL, X

where {S/I} is a suitable family of type n complexes.

Despite the unwieldy nature of the diagram of 8.10, the induced map on
the homotopy fibers of the vertical map actually simplifies somewhat, as the
following result shows. Compare Proposition 8.16.

8.19 Proposition. For all quasi-coherent sheaves F on N, the natural map
RFN(n)-F - RFN(n)R(Zn)*Z;ka
s an equivalence.

Proof. This follows from the fact that
Rin—1)siy, 1 F — Rlin-1)siy, 1 R(in)«ip F
is an equivalence, which in turn follows from the fact that
in—1(in)s = f*

and the fact that ¢} _; is exact. O
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Now let’s specialize to the case where N = My, itself and 4, : U(n) — Mg
be the inclusion of the open moduli substack of formal groups of height at most
n. Then we will show that if F is a coherent sheaf on Mygg, then the natural
map

F — holim R(iy) iy F

is an isomorphism in the derived category of quasi-coherent sheaves. This is an
algebraic analog of chromatic convergence. There is something to prove here as
the open substacks U(n) do not exhaust Mgg; indeed, the morphism

G : Spec(Fp)— Mgg

classifying the additive formal group (which has infinite height) does not factor
through U(n) for any n.

The proof is below in Theorem 8.22. The observation that drives the argu-
ment in this: recall from Theorem 3.28 that if F is a coherent sheaf on Mg,
then there is an integer r and a coherent sheaf Fy on the moduli stack of buds
Mg (p") so that F = ¢*Fy. Thus we begin with the next computation.

8.20 Theorem. Let F be a quasi-coherent sheaf on Mgg(p”). Then for all
n > r and all s, the map on local cohomology groups

H3y(ny1) Mg, ¢ F) = Hig () (Mg, ¢ F)
18 zero.
Proof. We apply Lemma 8.11 and show that the induced map
O/ @6 F — O/ @p F

is zero in homology. It is sufficient to prove this after evaluation at any affine
presentation f: X — Mgg. Let

X = Spec(Zy)[u1,uz, .. .]) o Spec(V)

and let f classify the formal group obtained from the universal p-typical formal
group law. Similarly, let

X, = Spec(Zy)[ur, s, - ., ur])  Spec(Vy) — Mg (p")

classify the resulting bud. This, too, is a presentation, by Lemma 3.24. Let
M = F(X, — Mg (p")). Then

V ey, M= (¢"F)(X — Mgg)
and we are trying to calculate
Tory (V/(p™,...,u?), V ®v, M) — Tor,_ (V/(p™,...,up2y),V @v, M).

Since V is a free V,.-module, to see this homomorphism is zero it is sufficient to
note that

V/(poo7 cee u;z.ofl> - V/<poo7 v ’uzofl)[uvjl]
is split injective as a V,.-module as long as n > r. O
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8.21 Corollary. Let F be a quasi-coherent sheaf on Mgg(p”). Then
H(O/T3 & ¢ F) = 0
fors>r.

Proof. Again one can work locally, using the presentations of the previous proof.
We prove the result by induction on n. If n < r the chain complex K*(u*)
of V-modules supplies a resolution of length n of V/(p*°,...,us ) by flat V-
modules; therefore,

H (O)TX @b ¢*F)=0, s>n.

So we may assume n > r. Then the previous result and the induction hypothesis
imply that

Hy(R(in)«i, 0132, @ ¢" F) = Hy(O/I;° @ ¢ F)
for s > r. Evaluated at Spec(V) — Mg this is an isomorphism

Tory (V/(p™, ... upt 1)un '], V @y, M) 2 Tor [ (V/(p™, ..., u?),V @v, M).

n—1
Since n > r, we have

Tor}:(V/(pOO, ool )[u;l], V @y, M)

n—1
= TorY (V/(p™®,...,u ),V @v. M)[u;'].
Since s > r, the latter group is zero by the induction hypothesis. O

8.22 Theorem (Chromatic Convergence). Let F be a coherent sheaf on
M. Then the natural map

F— holim R(iy) iy F
18 a quasi-isomorphism.
Proof. There are distinquished triangles
RT pymyF — F — R(in)winF — RT pq(n) F[1];
therefore, it is sufficient to show that
holim RT pq () F =~ 0.
But this follows from Theorem 8.20. 0

8.23 Remark. The chromatic convergence result holds in slightly greater gen-
erality: if Fy is any quasi-coherent sheaf on Mgg(p") for some r < co, then the
natural map

q*fo—> holim R(in)*izq*}—o

is a quasi-isomorphism. I also point out that Hollander [17] has a proof that
works if we only assume the the quasi-coherent sheaf F has finite projective
dimension in an appropriate sense.
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8.24 Remark. The Hopkins-Ravenel chromatic convergence theorem [49] says
that if X is a p-local finite spectrum, then the natural map

X—holim L, X

is an equivalence, where L, (—) denotes localization at the Johnson-Wilson ho-
mology theory E(n). or, indeed, any Landweber exact homology theory of
height n in the sense of 6.28. Translating Theorem 8.22 into a statement about
(BPy, BP.BP) comodules, using Corollary 2.46 and Remark 3.14 and appealing
to results of Hovery and Strickland [25], we see that we have proved that if X
is a p-local finite spectrum, there is an isomorphism of comodules

BP, X =2limBP, L, X

and, further, that the higher right derived functors of limit in comodules all
vanish:

lim BP,L, X = 0.

Thus, if an appropriate homology spectral sequence converges, topological chro-
matic convergence will follow. Such spectral sequences are notorious for not
converging, so some serious homotopy theoretic input is needed. In [49] this
takes the form of a vanishing line argument.

8.25 Theorem. Let F\ be a quasi-coherent sheaf on Mg (p") and let F = ¢* Fy
be the pull-back to Mgg. Then the natural map

H*(Mgg, F)—H*(U(n), i, F)
s an isomorphism for s < n —r and injective for s =n —r — 1.

Proof. The failure of this map to be an isomorphism is measured by the long
exact sequence

- — Hs(Mfg, RFM(n+1).7:) — Hs(Mfg,]:)
— H*(U(n),isF) — H* (Mg, RT pqnsyF) — -+

where H*(Msg, R pq(n+1)F) is the hyper-cohomology of the derived local co-
homology sheaf RI'pq(,+1)F. This can be computed via the spectral sequence

HP(Myg, HIRT pq(n11)F) = HPTI( Mg, RT pq(ni1) F)-
The isomorphism of Theorem 8.8
HIRT pgins1)F = Hys1-(O/ L3, @F F)

and Corollary 8.21 now give the result. O
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8.26 Remark. The Hopkins-Ravenel chromatic convergence results of [49] says
that if X is a p-local finite complex, then there is a natural weak equivalence

X = holim L, X

where L, X is the localization at the Johnson-Wilson theory E(n).. For such X,
BP,X is a finitely presented comodule and, as in [25], we can interpret Theorem
8.22 as saying that there is an isomorphism

BP,X =2 RlimBP, L, X

where R lim is an appropriate total derived functor of inverse limit in comodules.
Because homology and inverse limits do not necessarily commute, this is not,
in itself, enough to prove the Hopkins-Ravenel result; some more homotopy
theoretic data is needed.
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Index

(Eyn)+«En, and Lubin-Tate space, 125

Cln], 128

R-functor, 9

R(F,T), 112

V (ungraded BP,), 50

Auty (X)), 122

G(F,T'), Morava stabilizer group, 117

G(F,T), action on Lubin-Tate space,
118

Flv: 1], 104

M(n), 79

0/T=, 127

U(n), 79

fgl, 41

H(n), 110

H(n), 79

H(n), as classifying stack, 95

*-isomorphisms, 114

Up, as section of w? 178

Adams condition, 98

Adams stack, 98

Adams-Novikov spectral sequence, 61
affine scheme, 9

algebra sheaf, quasi-coherent, 19

buds of formal group laws, 62

cartesian vs. quasi-coherent, 19

Cartier divisor, effective, 79

Cartier idempotent, 49

chromatic convergence, algebraic, 139

chromatic convergence, in homotopy,
141

classifying stack, 53

closed embedding, 19

cobar complex, 46

coherent ring, 11

cohomology and comodule Ext, 47

comdules, graded, 61

comodules, 46

completion, derived, 98

conormal sheaf, 24

coordinate, 35

coordinate scheme, 39

coordinate, p-typical, 48

coordinates, and formal group laws, 35
coordinates, as torsor, 57

coskeleton of a morphism, 14

covering family, 15

deformation, of a formal group, 110
derivation, universal, 22
derivations, 21

descent problem, 14

differentials, 21

faithfully flat descent, 14

fibration of groupoids, 54

formal group, 30

formal group law, 30

formal group law, homomorphism, 31
formal Lie variety, 25

fracture square, 136

fracture square, in homotopy, 137
Frobenius trick, 93

Frobenius, relative, 74

Galois morphism, 91

geometric point of a scheme, 12

geometric point, of a stack, 82

geometric space of a scheme, 12

geometric space, of a stack, 82

gerbe, 95

gerbe, neutral, 95

gradings, 50

gradings, caution on, 51

Greenlees-May duality, 133

group scheme, defined by a group, 91

group scheme, defined by a profinite
group, 91

height, of a formal group, 77
homotopy orbit stack, 52
Hopf algebroid, 46

ideal sheaf of a point, Oy (e), 25
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infinitesimal neighborhood, 24
invariant derivations, 70

invariant differentials, 72

invariant differentials, formal, 73
inverting v,,, 104

isomorphism sheaf, Isog(G1, G2), 34

Koszul complex, 134

Lazard ring for buds, L(n), 62
Lazard ring, L, 32

Lazard’s uniqueness theorem, 88
Lie algebra, 69

local cohomology, 129

local cohomology complex, 135
Lubin-Tate space, 112

module sheaves, 10

Morava modules, 126
Morava stabilizer algebra, 89
Morava stabilizer group, 118
morphism, affine, 19
morphism, closed, 19
morphism, faithfully flat, 13
morphism, finitely presented, 13
morphism, flat, 13
morphism, Galois, 91
morphism, quasi-compact, 13
morphism, separated, 13, 19

open subfunctor, of an R-functor, 9
open subfunctor, of an affine scheme, 9

prestack, p-typical coordinate, 49

prestack, p-typical formal group laws,
49

prestack, coordinate, 36

prestack, formal group laws, 33

pretopology, 16

pull-back sheaf, f*, 11

push-forward sheaf, f,, 11

reduced substack, 84
reduced substacks of Mgg, 83
regular and finite action, 106

scale, 100

scheme, 10

scheme, affine, 9

sheaf, 17

sheaf of nilpotents, for a stack, 84
sheaf, cartesian, 17

sheaf, coherent, 11

sheaf, finite type, 10

sheaf, finitely presented, 10

sheaf, finitely presented, on a stack, 68
sheaf, locally free, 10

sheaf, quasi-coherent, 10

sheaf, quasi-coherent, on a stack, 45
sheaf, torsion, 101

sieve, 15

site, 16

site, fppf, 17

site, fpqc, 17

site, fpqc of a stack, 44

site, étale, 16

site, Zariski, 16

square-zero extension, 21

stack, fpgc, 41

stack, classifying, 53

stack, formal groups, 32

stack, formal Lie varieties, 29
stack, homotopy orbits, 52

stack, of buds, 62

stack, rigidified, 47

substack, reduced, 84

support, for a sheaf, 101
symmetric 2-cocyle, 32
symmetric algebra sheaf, V(—), 23

tangent functor, 20
tangent scheme, 23
tangent scheme, formal, 26
tensor product, derived, 97
topology, 15

topology, fppf, 17

topology, fpqc, 17
topology, sub-canonical, 16

torsion sheaf, 101
triangles vs fiber sequences, 128

Verschiebung, 77

Zariski topology, 10
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