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Abstract. Let E be a homotopy commutative ring spectrum, and sup-
pose the ring of cooperations E∗E is flat over E∗. We wish to address the
following question: given a commutative E∗-algebra A in E∗E-comodules,
is there an E∞-ring spectrum X with E∗X ∼= A as comodule algebras?
We will formulate this as a moduli problem, and give a way – suggested by
work of Dwyer, Kan, and Stover – of dissecting the resulting moduli space
as a tower with layers governed by appropriate André-Quillen cohomology
groups. A special case is A = E∗E itself. The final section applies this to
discuss the Lubin-Tate or Morava spectra En.

Some years ago, Alan Robinson developed an obstruction theory based
on Hochschild cohomology to decide whether or not a homotopy associative
ring spectrum actually has the homotopy type of an A∞-ring spectrum. In
his original paper on the subject [35] he used this technique to show that
the Morava K-theory spectra K(n) can be realized as an A∞-ring spectrum;
subsequently, in [3], Andrew Baker used these techniques to show that a
completed version of the Johnson-Wilson spectrum E(n) can also be given
such a structure. Then, in the mid-90s, the second author and Haynes Miller
showed that the entire theory of universal deformations of finite height formal
group laws over fields of non-zero characteristic can be lifted to A∞-ring
spectra in an essentially unique way. This implied, in particular, that the
Morava E-theory (or Lubin-Tate) spectra En were A∞ (which could have
been deduced from Baker’s work), but it also showed much more. Indeed,
the theory of Lubin and Tate [25] gives a functor from a category of finite
height formal group laws to the category of complete local rings, and one way
to state the results of [34] is that this functor factors in an essentially unique
way through A∞-ring spectra. It was the solution of the diagram lifting
problem that gave this result its additional heft; for example, it implied that
the Morava stabilizer group acted on En – simply because Lubin-Tate theory
implied that this group acted on (En)∗.

In this paper, we would like to carry this program several steps further.
One step forward would be to address E∞-ring spectra rather than A∞-ring
spectra. There is an existing literature on this topic developed by Robinson
and others, some based on Γ-homology. See [36], [37], and [4]. This can
be used, to prove, among other things, that the spectra En are E∞, and we
guess that the obstruction theory we uncover here reduces to that theory.
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152 Moduli Spaces of Commutative Ring Spectra

Another step forward would be to write down and try to solve the realization
problem as a moduli problem: what is the space of all possible realizations
of a spectrum as an A∞ or E∞-ring spectrum, and how can one calculate

the homotopy type of this space? Robinson’s original work on Morava K-
theory implied that this space would often have many components or, put
another way, that there could be many A∞-realizations of a fixed homotopy
associative spectrum. A third step forward would be to build a theory that
easily globalizes; that is, we might try to realize a diagram of commutative
rings by a diagram of E∞-ring spectra, or we might try to come to terms with
some sheaf of commutative rings. One particular such sheaf we have in mind
is the structure sheaf of a moduli stack of elliptic curves, but one could also
consider the structure sheaf of the moduli stack of formal group laws. In fact,
many of our examples arise by examining pieces of this latter stack. A final
step forward would be to build a theory that passes directly from algebra to
E∞ or A∞-ring spectra, rather than by an intermediate pass through the
stable homotopy category. This would be in line with the Lubin-Tate lifting
of the previous paragraph.

Let us expand on some of these points.
The E∞-realization problem is more subtle than the A∞-problem. If X is

a spectrum, the free A∞-ring spectrum A(X) on X has the homotopy type
of ∨n≥0X

∧n, so that if E∗ is a homology theory with a Künneth spectral
sequence and E∗X is flat over E∗, then E∗A(X) is isomorphic to the tensor
algebra over E∗ on E∗(X). This basic computation underlies much of the rest
of the theory. However, the free E∞-ring spectrum E(X) has the homotopy
type of ∨

n≥0

(EΣn)+ ∧Σn X∧n

where EΣn is a free contractible Σn-space. To compute E∗E(X) would re-
quire, at the very least, knowledge of E∗BΣn and, practically, one would need
define and understand a great deal about the E∗ Dyer-Lashof algebra. Even
if this calculation could be made, one would be left with a another problem.
In trying to realize some commutative E∗-algebra A in E∗E comodules as
an E∞ ring spectrum, one might not be able or might not want to stipu-
late a Dyer-Lashof algebra structure on A. Indeed, our problem is simply to
realize A as a commutative algebra – not to realize A with some stipulated
Dyer-Lashof algebra structure. Thus, any theory we build must allow for this
flexibility.

Our solution is to resolve an E∞ operad by a simplicial operad which at
once yields this desired flexibility and the possibility of computing the E∗-
homology of a free object. This has the drawback, of course, of getting us
involved with the cohomology of simplicial objects over simplicial operads.
Part of the point of this paper is to demonstrate that this is workable and,
in fact, leads into familiar territory. See section 6 and, more generally, [18].
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It is here that the Dyer-Lashof operations – which have to arise somewhere –
reappear in an explicit manner.

The moduli space of all possible realizations of a commutative E∗-algebra
A in E∗E-comodules is a Dwyer-Kan classification space in the sense of [12].
Let E(A) be the category whose objects are E∞-spectra X with E∗X ∼= A as
commutative E∗-algebras in E∗E-comodules. The morphisms are morphisms
of E∞-ring spectra which are E∗-isomorphisms. The moduli space TM(A)
of all realizations of A is the nerve of this category. According to Dwyer and
Kan, there is a weak equivalence

TM(A) '
∐
X

B Aut(X)

where X runs over E∗-isomorphism classes of objects in E(A) and Aut(X) is
the monoid of self equivalences of a cofibrant-fibrant model for X. Pleasant
as this result is, it is not really a computation in this setting; for example,
we cannot immediately tell if this space is non-empty or not. Thus, we need
some sort of decomposition of TM(A) with computable and, ideally, algebraic
input. This is accomplished in Section 5; the algebraic input is an André-
Quillen cohomology of A with coefficients in shifted versions of A. The basic
theory for this kind of construction is spelled out in [6]; the exact result we
obtain is gotten by combining Proposition 5.2, Proposition 5.5, and Theorem
5.8. Keeping track of basepoints in the resulting tower decomposition of
TM(A) yields an obstruction theory for realizing A. The details are in 5.9.

This material works equally well for A∞-structures. In this case the André-
Quillen cohomology we obtain is exactly the Quillen cohomology of associative
algebras; see [30]. Except possibly in degree zero, this is a shift of Hochschild
homology, as one might expect from Robinson’s work.

One detail about this theory is worth examining here: the moduli space
TM(A) and its decomposition do not require the existence of a homotopy
associative or commutative ring spectrum X with E∗X ∼= A. Of course, in
practice, such an X might be required for another reason. For example, in the
basic case where A = E∗E, then we need X = E to exist and be a homotopy
commutative ring spectrum.

Here is an outline of the paper. In the first section, we confront the founda-
tions. There are many competing, but Quillen equivalent, models for spectra
in the literature. We write down exactly what we need from any given model,
and point out that there exist models which have the requisite properties. The
next two sections are about resolutions, first of operads, and then of spec-
tra and algebras in spectra over operads. Here is where the resolution (or
“E2”) model category structures of Dwyer, Kan, and Stover ([14],[15]) come
in. We use an elegant formulation of this theory due to Bousfield [9]. Sec-
tion 4 is devoted to a definition of the requisite André-Quillen cohomology
groups and to a spectral sequence for computing the homotopy type of the
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154 Moduli Spaces of Commutative Ring Spectra

mapping space of E∞-maps between two E∞-ring spectra. Again we empha-
size that the E2-term of this spectral sequence requires no knowledge of a
Dyer-Lashof structure. Section 5 introduces the decomposition of the moduli
space. Section 6 talks about methods of calculation, and Section 7 applies
these techniques to the example of the diagram of Lubin-Tate spectra – the
Hopkins-Miller theorem in E∞-ring spectra. The result is the same as for
A∞-case.

Two notation conventions: First, for two objects in a model category,
the space of maps map(X, Y ) will always mean the derived simplicial mapping
set of maps. All our model categories will be simplicial model categories;
hence map(X, Y ) is weakly equivalence to the simplicial mapping set out of
cofibrant model for X into a fibrant model for Y . Alternatively, one can write
down map(X,Y ) as the nerve of an appropriate diagram category, such as
the Dwyer-Kan hammock localization [13].

Second, if X is a simplicial object in some category C, then we will say X
is s-free if the underlying degeneracy diagram is free. This means there are
objects Zn ∈ C and isomorphisms

Xn
∼=

∐

φ:[n]→[m]

Zm

where φ runs over the surjections in the ordinal number category. Further-
more, these isomorphisms respect degeneracy maps of X in the obvious way.

Contents

1. The ground category: which category of spectra to use? 154
2. Simplicial spectra over simplicial operads 162
3. Resolutions 166
4. André-Quillen cohomology 175
5. The moduli space of realizations 182
6. Computing with E∞ operads. 189
7. The Lubin-Tate Theories 194
References 198

1. The ground category: which category of spectra to use?

In the original drafts of these notes, and in other papers on this subject,
we used the category of spectra developed by Lewis, May, and Steinberger
in [26]. This had a number advantages for us; in particular, every object is
fibrant in this category, and the role of the operads is explicit, even elegant.
We needed every object to be fibrant so that we could apply the theory of
Stover resolutions and the E2-model categories of [14] to build our resolutions.
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However, since that time Bousfield [9] and Jardine [24] have both shown that
it is possible to remove the condition that every object is fibrant and still
have a theory of E2-model categories – or, as we (and Bousfield) prefer to call
them, resolution model categories. This opened up the possibility of using
any one of a number of other models for spectra – in fact almost any will now
do. We get a nice synergy with operads if the underlying category has a closed
symmetric monoidal smash product, so we will choose one of the current such
models with this property. The point of this section is to produce an exact
statement of what we need, along with some examples. This statement is
broken into two parts: see Axioms 1.1 and Axioms 1.4 below.

We note that we are surrendering one facet of the previous discussion by
this move away from LMS spectra. It turns out the homotopy category of
C-algebras in spectra, where C is some operad, depends only on the weak
equivalence type of C in the näıvest possible sense, which is in sharp distinc-
tion to the usual results about, say, spaces. (The exact result is below, in
Theorem 1.6.) For the LMS spectra this fact comes down to the fact that
one must use operads over the linear isometries operad, and such operads
always have free actions by the symmetric groups. For the categories under
discussion here, however, the reasons are less transparent, because they are
buried in the definition of the smash product – and only an avatar of this
freeness appears in the last of our axioms (in 1.4) for spectra.

To begin, here is exactly we will need about the symmetric monoidal struc-
ture. For the language of model categories, see [21]. In particular, the con-
cepts of a monoidal model category and of a module over a monoidal cat-
egory is discussed in Chapter 4.2 of that work. Specifically, simplicial sets
are a monoidal model category and a simplicial model category is a module
category over simplicial sets. For any category of spectra, the action of a
simplicial set K on a spectrum X should be, up to weak equivalence, given
by the formula

X ⊗K = X ∧K+

whenever this makes homotopical sense. Here the functor (−)+ means adjoin
a disjoint basepoint. This is the point of axiom 3 below.

1.1. Axioms for Spectra. We will assume that we have some category S of
spectra which satisfy the following conditions:

1.) The category S is a cofibrantly generated proper stable simplicial
model category Quillen equivalent to the Bousfield-Friedlander [10]
category of simplicial spectra; furthermore, S has a generating set of
cofibrations and a generating set of acyclic cofibrations with cofibrant
source.

2.) The category S has a closed symmetric monoidal smash product which
descends to the usual smash product on the homotopy category; fur-
thermore, with that monoidal structure, S is a monoidal model cate-
gory.
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3.) The smash product behaves well with respect to the simplicial struc-
ture; specifically, if S is the unit object of the smash product, then
there is a natural monoidal isomorphism

X ⊗K
∼=−→X ∧ (S ⊗K).

Note that Axiom 1 guarantees, among other things, that the homotopy
category is the usual stable category.

We immediately point out that at least three of the favorite candidates for
such a category satisfy these axioms. Symmetric spectra built from simplicial
sets are discussed in [22]; symmetric spectra and orthogonal spectra built
using topological spaces are defined and discussed in [27]. The spectra known
as S-modules are built from topological spaces and are discussed in [16]. It is
worth pointing out that S-modules are built on and depend on LMS spectra
[26]. The categories of symmetric spectra and of orthogonal spectra have at
least two Quillen equivalent model category structures on them. For the next
result either would do; later results will require the “positive” model category
structure of [27], §14.

1.2. Theorem. The category of symmetric spectra (in spaces or simplicial
sets), the category of orthogonal spectra, and the category of S-modules satisfy
the axioms 1.1.

Proof. Axioms 1, 2, and 3 are explicit in [22] for symmetric spectra in simpli-
cial sets. For othogonal spectra, symmetric spectra in spaces, and S-modules,
we note that these categories are not immediately simplicial model categories,
but topological model categories. But any topological model category is au-
tomatically a simplicial model category via the realization functor. Then
Axioms 1, 2, and 3 are in [27] for symmetric and orthogonal spectra and in
[16] for S-modules. ¤

As with all categories modeling the stable homotopy category one has to
explicitly spell out what one means by some familiar terms.

1.3. Notation for Spectra. The following remarks and notation will be used
throughout this paper.

1.) We will use the words cofibrant and cellular interchangeably. The gen-
erating cofibrations of S are usually some sort of inclusion of spheres
into cells.

2.) We will write [X, Y ] for the morphisms in the homotopy category
Ho(S). As usual, this is π0 for some derived space of maps. See point
(5) below.

3.) In the category S it is possible (indeed usual) that the unit object S
for the smash product (“the zero-sphere”) is not cofibrant. We will
write Sk, −∞ < k < ∞ for a cofibrant model for the k-sphere unless
we explicitly state otherwise. In this language the suspension functor
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on the homotopy category is induced by

X 7→ X ∧ S1.

Also the suspension spectrum functor from pointed simplicial sets to
spectra is, by axiom 3, modeled by

K 7→ S0 ∧K
def
=

S0 ⊗K

S0 ⊗ ∗
Note that if the unit object S is not cofibrant, the functor S ⊗ (−) is
not part of a Quillen pair.

4.) Let K be a simplicial set and X ∈ S. We may write X ∧K+ for the
tensor object X ⊗K. This is permissible by axiom 3 and in line with
the geometry. The exponential object in S will be written XK .

5.) We will write map(X,Y ) or mapS(X, Y ) for the derived simplicial set
of maps between two objects of S. Thus, map(X, Y ) is the simplicial
mapping space between some fibrant-cofibrant models (“bifibrant”)
models for X and Y . This can be done functorially if necessary, as
the category S is cofibrantly generated. Alternatively, we could use
some categorical construction, such as the Dwyer-Kan hammock lo-
calization. Note that with this convention

π0 map(X, Y ) = [X, Y ].

6.) We will write F (X, Y ) for the function spectrum of two objects X, Y ∈
S. The closure statement in Axiom 2 of 1.1 amounts to the statement
that

HomS(X,F (Y, Z)) ∼= HomS(X ∧ Y, Z).

This can be derived:

map(X, RF (Y, Z)) ' map(X ∧L Y, Z)

where the R and L refer to the total derived functors and map(−,−)
is the derived mapping space. In particular

πkRF (Y, Z) ∼= [ΣkY, Z].

7.) If X is cofibrant and Y is fibrant, then there is a natural weak equiv-
alence

map(X, Y ) ' map(S0, F (X, Y ))

and the functor map(S0,−) is the total right derived functor of the
suspension spectrum functor from pointed simplicial sets to S. Thus
we could write

map(X,Y ) ' Ω∞F (X,Y ).

In particular, map(X,Y ) is canonically weakly equivalent to an infinite
loop space.
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We need a notation for iterated smash products. So, define

X(n) def
= X ∧ · · · ∧X←−−n−−→ .

This paper is particularly concerned with the existence of A∞ and E∞-ring
spectrum structures. Thus we we must introduce the study of operads acting
on spectra.

Let O denote the category of operads in simplicial sets. Our major source
of results for this category is [33]. The category O is a cofibrantly generated
simplicial model category where C → D is a weak equivalence or fibration
if each of the maps C(n) → D(n) is a weak equivalence or fibration of Σn-
spaces in the sense of equivariant homotopy theory. Thus, for each subgroup
H ⊆ Σn, the induced map C(n)H → D(n)H is a weak equivalence or fibration.
The existence of the model category structure follows from the fact that the
forgetful functor from operads to the category with objects X = {X(n)}n≥0

with each X(n) a Σn-space has a left adjoint with enough good properties
that the usual lifting lemmas apply.

If C is an operad in simplicial sets, then we have a category of AlgC of
algebras over C in spectra. These are exactly the algebras over the triple

X 7→ C(X)
def
= ∨n≥0C(n)⊗Σn X(n).

Note that we should really write X(n) ⊗Σn C(n), but we don’t.
The object C(∗) ∼= S ⊗ C(0) is the initial object of AlgC . If the operad is

reduced – that is, C(0) is a point – then this is simply S itself.
If f : C → D is morphism of operads, then there is a restriction of structure

functor f∗ : AlgD → AlgC , and this has a left adjoint

f ∗ def
= D ⊗C (−) : AlgC → AlgD

The categories AlgC are simplicial categories in the sense of Quillen and both
the restriction of structure functor and its adjoint are continuous. Indeed, if
X ∈ AlgC and K is a simplicial set, and if XK is the exponential object of
K in S, then XK is naturally an object in AlgC and with this structure, it is
the exponential object in SC . Succinctly, we say the forgetful functor makes
exponential objects. It also makes limits and reflexive coequalizers, filtered
colimits, and geometric realization of simplicial objects.

Here is our second set of axioms. The numbering continues that of Axioms
1.1.

1.4. Axioms for Spectra. Suppose we are given some category S of spectra
satisfying the axioms of 1.1. Then we further require that

4.) For a fixed operad C ∈ O, define a morphism of X → Y of C-algebras
in spectra to be a weak equivalence or fibration if it is so in spectra.
Then the category AlgC becomes a cofibrantly generated simplicial
model category.
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5.) Let n ≥ 1 and let K → L be a morphism of Σn spaces which is a weak
equivalence on the underlying spaces. Then for all cofibrant spectra
X, the induced map on orbit spectra

K ⊗Σn X(n) → L⊗Σn X(n)

is a weak equivalence of spectra.

We immediately note that we have examples.

1.5. Proposition. Let S be any of the categories of symmetric spectra in
topological spaces, orthogonal spectra, or S-modules. Then S satisfies the
axioms of 1.4.

Proof. First, axiom 4. For S-modules, this is nearly obvious, from a standard
argument that goes back to Quillen, but see also [33] or [5] for the argument
in the context of operads. In brief, since AlgC has a functorial path object
and the forgetful functor to S creates filtered colimits in AlgC , we need only
supply a fibrant replacement functor for AlgC . But every object is fibrant.

For symmetric or orthogonal spectra, the argument goes exactly as in §15
of [27]. The argument there is only for the commutative algebra operad, but
it goes through with no changes for the geometric realization of an arbitrary
simplicial operad.

Axiom 5 in all these cases follows from the observation that for cofibrant X
(in the positive model category structure where required), the smash product
X(n) is actually a free Σn-spectrum. For symmetric and orthogonal spectra,
see Lemma 15.5 of [27]; for S-modules see Theorem III.5.1 of [16]. ¤

We would guess this result is also true for symmetric spectra in simplicial
sets, but this is not immediately obvious: the case of symmetric spectra in
spaces uses that the inclusion of a sphere into a disk is an NDR-pair.

The following result is why we put the final axiom into our list 1.4.

1.6. Theorem. Let C → D be a morphism of operads in simplicial sets.
Then the adjoint pair

f ∗ : AlgC
// AlgD : f∗oo

is a Quillen pair. If, in addition, the morphism of operads has the property
that C(n) → D(n) is a weak equivalence of spaces for all n ≥ 0, this Quillen
pair is a Quillen equivalence.

Proof. The fact that we have a Quillen pair follows from the fact that the
restriction of structure functor (the right adjoint) f∗ : AlgD → AlgC certainly
preserves weak equivalences and fibrations.

For the second assertion, first note that since f∗ reflects weak equivalences,
we need only show that for all cofibrant X ∈ AlgC , the unit of the adjunction

X → f∗f ∗X = D ⊗C X
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is a weak equivalence. If X = C(X0) is actually a free algebra on a cofibrant
spectrum, then this map is exactly the map induced by f :

C(X0) =
∨
n

C(n)+ ∧Σn X
(n)
0 →

∨
n

D(n)+ ∧Σn X
(n)
0 = D(X0).

For this case, Axiom 5 of 1.4 supplies the result. We now reduce to this case.
Let X ∈ SC be cofibrant. We will make use of an augmented simplicial

resolution

P•−→X

with the following properties:

i.) the induced map |P•| → X from the geometric realization of P• to X
is a weak equivalence;

ii.) the simplicial C-algebra P• is s-free on a set of C-algebras {C(Zn)}
where each Zn is a cofibrant spectrum. (The notion of s-free was
defined at the end of the introduction.)

There are many ways to produce such a P•. For example, we could take an
appropriate subdivision of a cofibrant model for X in the resolution model
category for simplicial C-algebras based on the homotopy cogroup objects
C(Sn), −∞ < n < ∞. 1

Given P•, consider the diagram

(1.1) |P•| //

²²

|f∗f ∗P•|

²²
X // f∗f ∗X

For all n, we have an isomorphism

Pn
∼= C(

∨

φ:[n]→[k]

Zk)

where φ runs over the surjections in the ordinal number category. Thus we
can conclude that Pn → f∗f ∗Pn is a weak equivalence and that both P• and
f∗f ∗P• are Reedy cofibrant. The result now follows from the diagram 1.1. ¤

We now make precise the observation that Theorem 1.6 implies that the
notion of, for example, an E∞ ring spectrum is independent of which E∞
operad we choose.

First we recall the Dwyer-Kan [12] classification space in a model category.
Let M be a model category and let E be a subcategory of M which has the
twin properties that

1.) if X is an object in E and Y is weakly equivalent to X, then Y ∈ E;
2.) the morphisms in E are weak equivalences and if f : X → Y is a weak

equivalence in M between objects of E, then f ∈ E.

1Resolution model categories are reviewed in section 3.
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For example, E might have the same objects as M and all weak equiva-
lences, in which case we will write E(M).

Let BE denote the nerve of the category E. While the category E might not
be small, one of the theorems of Dwyer and Kan is that it is homotopically
small in the sense that each component has the weak homotopy type of a
simplicial set; thus, by limiting the objects of interest in some way we obtain a
useful weak homotopy type. In fact, there is a formula for this weak homotopy
type:

BE '
∐

[X]

BAutM(X)

where [X] runs over the weak homotopy types in E and AutM(X) is the
(derived) monoid of self-weak equivalences of X.

To this can be added the following result, immediate from Theorem 1.6.

1.7. Corollary. Let C → D be any morphism of simplicial operads so that
C(n) → D(n) is a weak equivalence of spaces for all n ≥ 0. Then the natural
map induced by restriction of structure

BE(SD) → BE(SC)

is a weak equivalence.

1.8. Remark. 1.) Note that Theorem 1.6 and Corollary 1.7 do not require
that the operads be cofibrant. Thus, if we define an E∞-operad C to be
an operad so that each C(n) is a free and contractible Σn-space, then C is
weakly equivalent to the commutative monoid operad Comm which is simply
a point in each degree. These results then say that the category of E∞-ring
spectra (algebras over C) is Quillen equivalent to the category of commutative
S-algebras (algebras over Comm).

2.) Let C ∈ O be an operad in simplicial sets and let X be a spectrum.
We now define the moduli space C[X] of C-algebra structures on X by the
homotopy pull-back diagram

C[X] //

²²

BE(SD)

²²
{X} // BE(S).

Thus, for example, C[X] is not empty if and only if X has a C-algebra
structure. Note that Corollary 1.7 implies that C[X] is independent of C up
to the näıvest sort of weak equivalence.

In the case of spaces (rather than spectra) Charles Rezk has shown in [33]
that C[X] is equivalent to the (derived) space of operad maps from C to the
endomorphism operad of X. Furthermore, he gives a way of approaching the
homotopy type of C[X] using a type of Hochschild cohomology. A similar
result is surely true here; see the last sections of [34] for more details on this
approach.
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Our project is slightly different. Rather than beginning with a spectrum X
we will begin with an algebraic model and try to construct E∞-ring spectrum
from this data. In effect, we deal directly with BE(SD).

2. Simplicial spectra over simplicial operads

Simplicial objects have often been used to build resolutions and that is our
main point here, also. However, given an algebra X in spectra over some
operad, we will resolve not only X, but the operad as well. The main results
of this section are that if X is a simplicial algebra over a simplicial operad T
then the geometric realization |X| is an algebra over the geometric realization
|T | and, furthermore, that geometric realization preserves level-wise weak
equivalences between Reedy cofibrant objects, appropriately defined.

Let’s begin by talking about simplicial operads. As mentioned in the pre-
vious section, the category of operads O is a simplicial model category. From
this one gets the Reedy model category structure on simplicial operads sO
([32]), which are the simplicial objects in O.2 Weak equivalences are level-
wise and cofibrations are defined using the latching objects. The Reedy model
category structure has the property that geometric realization preserves weak
equivalences between cofibrant objects. It also has a structure as a simplicial
model category; for example if T is a simplicial operad and K is simplicial
set, then

TK = {TK
n }.

However, note that this module structure over simplicial sets is inherited from
O and is not the simplicial structure arising externally, as in [31], §II.2.

Let us next spell out the kind of simplicial operads we want. If E∗ is
the homology theory of a homotopy commutative ring spectrum and C is
an operad in O, one might like to compute E∗C(X). As mentioned in the
introduction, this is usually quite difficult, unless E∗X is projective as an E∗
module and π0C(q) is a free Σq-set for all q. Thus we’d like to resolve C using
operads of this sort.

If T is a simplicial operad and E is a commutative ring spectrum in the ho-
motopy category of spectra, then E∗T is a simplicial operad in the category of
E∗ modules. The category of simplicial operads in E∗ modules has a simplicial
model category structure in the sense of §II.4 of [31], precisely because there
is a free operad functor. Cofibrant objects are retracts of diagrams which are
“free” in the sense of [31]; meaning the underlying degeneracy diagram is a
free diagram of free operads.

Given an operad C ∈ O, we’d like to consider simplicial operads T of the
following sort:

2These are bisimplicial operads, but when we say simplicial operad, we will mean a sim-
plicial object in O, emphasizing the second (external) simplicial variable as the resolution
variable. The first (internal) simplicial variable will be regarded as the geometric variable.
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2.1. Theorem. Let C ∈ O be an operad. Then there exists an augmented
simplicial operad

T −→ C

so that

1.) T is Reedy cofibrant as a simplicial operad;
2.) For each n ≥ 0 and each q ≥ 0, π0Tn(q) is a free Σq-set;
3.) The map of operads |T | → C induced by the augmentation is a weak

equivalence;
4.) If E∗C(q) is projective as an E∗ module for all q, then E∗T is cofibrant

as a simplicial operad in E∗ modules and E∗T → E∗C is a weak
equivalance of operads in that category.

This theorem is not hard to prove, once one has the explicit construction
of the free operad; for example, see the appendix to [33]. Indeed, here is
a construction: first take a cofibrant model C ′ for C. Then, if FO is the
free operad functor on graded spaces, one may take T to be the standard
cotriple resolution of C ′. What this theorem does not supply is some sort of
uniqueness result for T ; nonetheless, what we have here is sufficient for our
purposes.

Note that if C is the commutative monoid operad, then we can simply take
T to be a cofibrant model for C in the category of simplicial operads and
run it out in the simplicial (i.e., external) direction. Then T is, of course, an
example of an E∞-operad; and E∗T will be an E∞-operad in E∗-modules in
the sense of Definition 6.1.

Now fix a simplicial operad T = {Tn}. Since the free algebra functor
X 7→ C(X) is natural in X and the operad C, we see that if X is a simplicial
spectrum, so is T (X). Hence a simplicial algebra in spectra over T is a
simplicial spectrum X equipped with a multiplication map

T (X) −→ X

so that the usual associativity and unit diagrams commute. In particular,
if X = {Xn}, then each Xn is a Tn-algebra. Let s AlgT be the category of
simplicial T -algebras.

The category s AlgT is a simplicial model category. Recall that given
a morphism of operads C → D, then the restriction of structure functor
AlgD → AlgC is continuous. This implies that if K is a simplicial set and
X ∈ s AlgT , we may define X ⊗K and XK level-wise; for example,

X ⊗K = {Xn ⊗K}.
We could use this structure to define a geometric realization functor; how-

ever, we prefer to proceed as follows.
If M is a module category over simplicial sets, then the geometric realiza-

tion functor | · | : sM→M has a right adjoint

Y 7→ Y ∆ = {Y ∆n}.
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where ∆n is the standard n-simplex. In particular, this applies to simplical
operads, and we are interested in the unit of the adjunction T → |T |∆. If C is
any operad and Y is a C-algebra, then for all simplicial sets K, the spectrum
Y K is a CK algebra. From this it follows that Y ∆ is a simplicial C∆ algebra.
Setting C = |T | and restricting structure defines a functor

Y 7→ Y ∆ : Alg|T | −→ s AlgT .

The result we want is the following.

2.2. Theorem. Let T be a simplicial operad and X ∈ s AlgT a simplicial T -
algebra. Then the geometric realization |X| of X as a spectrum has a natural
structure as a |T | algebra and, with this structure, the functor

X 7→ |X|
is right adjoint to Y 7→ Y ∆.

Proof. We know that for an operad C ∈ O the forgetful functor from AlgC

to spectra makes geometric realization. Actually, what one proves is that if
X is a simplicial spectrum and C(X) is the simplicial C-algebra on X, then
there is a natural (in C and X) isomorphism

C(|X|)−→|C(X)|.
Now use a diagonal argument. If T is a simplicial operad and X is a simplicial
spectrum, then

T (X) = diag{Tp(Xq)}.
Since the functor D 7→ D(Y ) is a continuous left adjoint, taking the realiza-
tion in the p-variable yields a simplicial object

{|{T•(Xq)}|} ∼= {|T |(Xq)}.
Now take the realization in the q variable and get

|T (X)| ∼= |T |(|X|)
using the fact about the constant case sited above. The result now follows. ¤

In light of Theorem 2.1 and Theorem 1.6, this theorem gives a tool for
creating homotopy types of algebras over operads.

The next item to study is the homotopy invariance of the geometric realiza-
tion functor, in this setting. The usual result has been cited above: realization
preserves level-wise weak equivalences between Reedy cofibrant objects. The
same result holds in this case, but one must take some care when defining
“Reedy cofibrant”. The difficulty is this: the definition of Reedy cofibrant
involves the latching object, which is the colimit

LnX = colim
φ:[n]→[m]

Xm

where φ runs over the non-identity surjections in the ordinal number category.
We must define this colimit if each of the Xm is an algbera over a different
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operad. The observation needed is the following. Let S : I → O be a diagram
of operads. Then an I-diagram of S-algebras is an I-diagram X : I → S of
spectra equipped with a natural transformation of I-diagrams

S(X) → X

satisfying the usual associativity and unit conditions. For example if I = ∆op

one recovers simplicial S-algebras. Call the category of such AlgS.3 Then
one can form the colimit operad colim S = colimI S and there is a constant
diagram functor

Algcolim S −→ AlgS

sending X to the constant I-diagram i 7→ X where X gets an Si structure
via restriction of structure along

Si −→ colim
I

S.

2.3. Lemma. This constant diagram functor has a left adjoint

X → colimI X.

Despite the notation, colimI X is not the colimit of X as an I diagram of
spectra; indeed, if X = S(Y ) where Y is an I-diagram of spectra

colimI X ∼= (colimI S)(colimI Y ).

If T is a simplicial operad we can form the latching object

LnT = colim
φ:[n]→[m]

Tm.

There are natural maps LnT → Tn of operads. If X is a simplicial T -algebra
we extend this definition slightly and define

LnX = Tn ⊗LnT colim
φ:[n]→[m]

Xm

where, again, φ runs over the non-identity surjections in ∆. In short we
extend the operad structure to make LnX a Tn-algebra and the natural map
LnX → Xn a morphism of Tn-algebras.

With this construction on hand one can make the following definition. Let
T be a simplicial operad and f : X → Y a morphism of simplicial T -algebras.
Then f is a level-wise weak equivalence (or Reedy weak equivalence) if each
of the maps Xn → Yn is a weak equivalence of Tn-algebras – or, by definition,
a weak equivalence as spectra. The morphism f is a Reedy cofibration if the
morphism of LnT -algebras

LnY tLnX Yn −→ Yn

is a cofibration of Tn-algebras. The coproduct here occurs in the category of
Tn-algebras. The main result is then:

3This is a slight variation on the notation sAlgT . If T is a simplicial operad, this new
notation would simply have us write AlgT for sAlgT . No confusion should arise.
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2.4. Theorem. With these definitions, and the level-wise simplicial struc-
ture defined above, the category s AlgT becomes a simplicial model category.
Furthermore

1.) The geometric realization functor | − | : s AlgT → Alg|T | sends level-
wise weak equivalences between Reedy cofibrant objects to weak equiv-
alences; and

2.) if T is Reedy cofibrant as a simplicial operad, then any Reedy cofibra-
tion in s AlgT is a Reedy cofibration of simplicial spectra.

The importance of the second item in this result is that, in light of Theorem
2.2, one can calculate the homotopy type of the geometric realization of a T -
algebra entirely in spectra.

3. Resolutions

Building on the results of the last section, we’d like to assert the following.
Let X be a simplicial algebra over a simplicial operad T , and suppose T
satisfies all the conclusions of Theorem 2.1. Then there is a simplicial T -
algebra Y and a morphism of T -algebras Y → X so that a.) |Y | → |X| is
a weak equivalence and b.) E∗Y is cofibrant as an E∗T algebra. The device
for this construction is an appropriate Stover resolution ([38],[14],[15]) and,
particularly, the concise and elegant paper of Bousfield [9].4 We explain some
of the details in this section.

We begin by specifying the building blocks of our resolutions. We fix a
spectrum E which is a commutative ring object in the homotopy category of
spectra. Let D(·) denote the Spanier-Whitehead duality functor.

3.1. Definition. A homotopy commutative and associative ring spectrum E
satisfies Adams’s condition if E can be written, up to weak equivalence, as a
homotopy colimit of finite cellular spectra Eα with the properties that

1.) E∗DEα is projective as an E∗-module; and
2.) for every module spectrum M over E the Künneth map

[DEα,M ] −→ Hom
E∗−mod(E∗DEα,M∗)

is an isomorphism.

This is the condition Adams (following Atiyah) wrote down in [1] to guar-
antee that the (co-)homology theory over E has Künneth spectral sequences.
If M is a module spectrum over E, then so is every suspension or desuspen-
sion of M ; therefore, one could replace the source and target of the map in
part 2.) of this definition by the corresponding graded objects.

Many spectra of interest satisfy this condition; for example, if E is the
spectrum for a Landweber exact homology theory, it holds. (This is implicit
in [1], and made explicit in [34].) In fact, the result for Landweber exact

4Bousfield’s paper is written cosimplicially, but the arguments are so categorical and so
clean that they easily produce the simplicial objects we require.
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theories follows easily from the example of MU , which, in turn, was Atiyah’s
original example. See [2]. Some spectra do not satisfy this condition, however
– the easiest example is HZ.

We want to use the spectra DEα as detecting objects for a homotopy theory,
but first we enlarge the scope a bit.

3.2. Definition. Define P(E) = P to be a set of finite cellular spectra so
that

(1) the spectrum S0 ∈ P and E∗X is projective as an E∗-module for all
X ∈ P ;

(2) for each α there is finite cellular spectrum homotopy equivalent to
DEα in P;

(3) P is closed under suspension and desuspension;
(4) P is closed under finite wedges; and
(5) for all X ∈ P and all E-module spectra M the Künneth map

[X, M ] −→ Hom
E∗−mod(E∗X, M∗)

is an isomorphism.

The E2 or resolution model category which we now describe uses the set P
to build cofibrations in simplicial spectra and, hence, some sort of projective
resolutions.

Because the category of spectra has all limits and colimits, the category
of simplicial spectra is a simplicial category in the sense of Quillen using
external constructions as in §II.4 of [31]. However, the Reedy model category
structure on simplicial spectra is not a simplicial model category using the
external simplicial structure; for example, if i : X → Y is a Reedy cofibration
and j : K → L is a cofibration of simplicial sets, then

i⊗ j : X ⊗ L tX⊗K Y ⊗K → Y ⊗ L

is a Reedy cofibration, it is a level-wise weak equivalence if i is, but it is not
necessarily a level-wise weak equivalence if j is.

The following ideas are straight out of Bousfield’s paper [9].

3.3. Definition. Let Ho(S) denote the stable homotopy category.

1.) A morphism p : X → Y in Ho(S) is P-epi if p∗ : [P,X] → [P, Y ] is
onto for each P ∈ P .

2.) An object A ∈ Ho(S) is P-projective if

p∗ : [A,X]−→[A, Y ]

is onto for all P-epi maps.
3.) A morphism A → B of spectra is called P-projective cofibration if it

has the left lifting property for all P-epi fibrations in S.

The classes of P-epi maps and of P-projective objects determine each other;
furthermore, every object in P is P-projective. Note however, that the class
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of P-projectives is closed under arbitrary wedges. The class of P-projective
cofibrations will be characterized below; see Lemma 3.7.

3.4. Lemma. 1.) The category Ho(S) has enough P-projectives; that is, for
every object X ∈ Ho(S) there is a P-epi Y → X with Y P-projective.

2.) Let X be a P-projective object. Then E∗X is a projective E∗-module,
and the Künneth map

[X, M ]−→Hom
E∗−mod(E∗X, M∗)

is an isomorphism for all E-module spectra M .

Proof. For part 1.) we can simply take

Y =
∨

P∈P

∨

f :P→X

P

where f ranges over all maps P → X in Ho(S). Then, for part 2.), we note
that the evaluation map

Y =
∨

P∈P

∨

f :P→X

P−→X

has a homotopy section. Then the result follows from the properties of the
elements of P. ¤

We now come to the P-resolution model category structure. Recall that
a morphism f : A → B of simplicial abelian groups is a weak equivalence if
f∗ : π∗A → π∗B is an isomorphism. Also f : A → B is a fibration if the
induced map of normalized chain complexes Nf : NA → NB is surjective
in positive degrees. The same definitions apply to simplicial R-modules or
even graded simplicial R-modules over a graded ring R. A morphism is a
cofibration if it is injective with level-wise projective cokernel.

3.5. Definition. Let f : X → Y be a morphism of simplicial spectra. Then

1.) the map f is a P-equivalence if the induced morphism

f∗ : [P,X]−→[P, Y ]

is a weak equivalence of simplicial abelian groups for all P ∈ P ;
2.) the map f is a P-fibration if it is a Reedy fibration and f∗ : [P, X] →

[P, Y ] is a fibration of simplicial abelian groups for all P ∈ P ;
3.) the map f is a P-cofibration if the induced maps

Xn tLnX LnY−→Yn, n ≥ 0,

are P-projective cofibrations.

Then, of course, the theorem is as follows. Let sSP denote the category of
simplicial spectra with these notions of P-equivalence, fibration, and cofibra-
tion.
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3.6. Theorem. With these definitions, the category sSP becomes a simplicial
model category.

The proof is given in [9]. We call this the P-resolution model category
structure. It is cofibrantly generated; furthermore there are sets of generating
cofibrations and generating acyclic cofibrations with cofibrant source. An
object is P-fibrant if and only if it is Reedy fibrant. The next result gives a
characterization of P-cofibrations.

Call a morphism X → Y of spectra P-free if it can be written as a compo-
sition

X
i // X ∨ F

q // Y

where i is the inclusion of the summand, F is cofibrant and P-projective, and
q is an acyclic cofibration. The following is also in [9].

3.7. Lemma. A morphism X → Y of spectra is a P-projective cofibration if
and only if it is a retract of a P-free map.

There are two ways to characterize P-equivalences. The first comes directly
from the definition of P-equivalences. If X ∈ sS and P ∈ P , then

[P, X] = {[P,Xn]}
is a simplicial abelian group, and we may define

πi(X; P ) = πi[P,X].

Then, a morphism is a P-equivalence if and only if it induces an isomorphism
on π∗(−; P ) for all P ∈ P .

There are other homotopy groups. Define “sphere objects” in sS as follows:
let P ∈ P , n ≥ 0, and let ∆n/∂∆n be the standard simplicial n-sphere. As
always, ∆0/∂∆0 = (∆0)+ is the two-point simplicial set. Then the nth P -
sphere P ∧∆n/∂∆n is defined by the push-out diagram

P ⊗ ∗ = P //

²²

P ⊗∆n/∂∆n

²²
∗ // P ∧∆n/∂∆n.

If X ∈ sS is a simplicial spectrum, then the mapping space map(P,X) is
a loop space – in fact, an infinite loop space. Now define the “natural”
homotopy groups of a simplicial spectrum X by the formula

π\
n(X; P ) = [P ∧∆n/∂∆n, X]P ∼= πn map(P, X)

where we take the constant map as the basepoint of the mapping space. The
symbol [ , ]P refers to morphisms in the homotopy category obtained from
the P-resolution model category structure.

The two notions of homotopy groups are related by the spiral exact se-
quence. Let Σ : Ho(S) → Ho(S) be the suspension operator on the homo-
topy category of spectra.
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3.8. Proposition. For all P ∈ P and all simplicial spectra X, there is a
natural isomorphism

π\
0(X; P ) ∼= π0(X; P )

and a natural long exact sequence

· · · → π\
n−1(X; ΣP ) →π\

n(X; P ) → πn(X; P )

→π\
n−2(X; ΣP ) → · · · → π1(X; P ) → 0.

See [15]. Note that this implies that a morphism of simplicial spectra is
a P-equivalence if and only if it induces an isomorphism on π\

∗(−, P ) for all
P ∈ P .

The long exact sequences of Proposition 3.8 can be spliced together to give
a spectral sequence

(3.1) πp(X; ΣqP ) =⇒ colimk π\
k(X; Σp+q−kP ).

using the triangles

(3.2) π\
p−1(X; Σq+1P ) // π\

p(X; ΣqP )

zzuuuuuuuuu

πp(X; ΣqP )

ffL
L

L
L

L

as the basis for an exact couple. Here and below the dotted arrow means a
morphism of degree −1. This is actually a very familiar spectral sequence in
disguise.

We may assume that X is Reedy cofibrant, and let sknX denote the nth
skeleton of X as a simplicial spectrum. Then geometric realization makes
{|sknX|} into a filtration of |X| and the standard spectral sequence of the
geometric realization of a simplicial spectrum is gotten by splicing together
the long exact sequences obtained by applying the functor [Σp+qP,−] to the
cofibration sequence

|skp−1X|−→|skpX|−→Σp(Xp/LpX).

If we let

[Σp+qP, |skpX|](1) = Im{[Σp+qP, |skpX|]−→[Σp+qP, |skp+1X|]}
then the first derived long exact sequence of this exact couple is

(3.3) [Σp+qP, |skp−1X|](1) // [Σp+qP, |skpX|](1)

xxqqqqqqqqqq

πp[Σ
qP,X]

ggN N N N N N

and we obtain the usual spectral sequences

(3.4) πp(X; ΣqP ) = πp[Σ
qP,X] =⇒ [Σp+qP, |X|].
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Thus the two spectral sequences have isomorphic E2-terms. More is true.
The next result says that the two exact couples obtained from the triangles
of 3.2 and 3.3 are isomorphic; hence, we have isomorphic spectral sequences
and we can assert that geometric realization induces an isomorphism

colimk π\
k(X; Σp+q−kP )

∼=−→[Σp+qP, |X|].
3.9. Lemma. Geometric realization induces an isomorphism between the spi-
ral exact sequence

· · · → π\
p−1(X; Σq+1P ) → π\

p(X; ΣqP ) → πp(X; ΣqP ) → · · ·
and the derived exact sequence

· · · → [Σp+qP, |skp−1X|](1)−→[Σp+qP, |skpX|](1)−→πp[Σ
qP,X] → · · ·

Proof. The difficulty is to construct the map of exact sequences inducing an
isomorphism πp(X; ΣqP ) ∼= πp[Σ

qP, X]. Once that is in place, the five lemma
and an induction argument show that we must have an isomorphism.

In [15] the spiral exact sequence is obtained by deriving another exact
sequence. If K is a finite pointed simplicial set and X is a simplicial spectrum,
there is a spectrum CKX characterized by the natural isomorphism

HomsS(Z ∧K, X) ∼= HomS(Z,CKX)

for all spectra Z. In particular, we write

ZpX = C∆p/∂∆pX and CpX = C∆p/∆p
0
X

where ∆p
0 is the union of all but the 0th face. If X is Reedy fibrant, there is

a fibration sequence
ZpX−→CpX−→Zp−1X

with maps induced by the cofibration sequence of simplicial sets

∆p−1/∂∆p−1 d0−→∆p/∆p
0−→∆p/∂∆p.

Then the spiral exact sequence is the first derived sequence of the triangle

(3.5) [Σq+1P, Zp−1X] //________ [Σq+1P, ZpX](1)

xxqqqqqqqqqq

[Σq+1P, CpX]

ffMMMMMMMMMMM

A key calculation is that [ΣqP,CpX] ∼= Np[Σ
p, X] where Np(−) is the pth

group in the normalized chain complex.
Geometric realization induces a function

HomS(Z, CKX) ∼= HomsS(Z ∧K,X)−→HomS(Z ∧ |K|, X).

This does not induce a map out of the triangle of 3.5; however, after taking
first derived triangles, we get a morphism from the triangle of 3.2 to the
triangle 3.3, as required. ¤
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3.10. Remark. At this point we can explain one of the reasons for using the
models P to define the resolution model category. Suppose X → Y is a weak
equivalence between cofibrant objects in the P-resolution model category.
Then for each of the spectra DEα we have an isomorphism

f∗ : πp(X; ΣqDEα)
∼=−→πp(Y, ΣqDEα).

However, if E∗(−) is our chosen homology theory

πpEqX ∼= colimα πp(Eα)qX
∼= colimα πp[Σ

qDEα, X]

= colimα πp(X; ΣqDEα).

We note that the spectral sequence of Equation 3.4 is natural in P ; thus,
taking the colimit as this equation, we obtain a spectral sequence

(3.6) πpEqX =⇒ Ep+q|X|.
This is, of course, the standard homology spectral sequence of a simplicial
spectrum. In any case, if X → Y is a P-equivalence, then we get isomorphic
E∗ homology spectral sequences.

Finally, also note that Lemma 3.9 yields an isomorphism

(3.7) colimα π\
p(X, ΣqDEα) ∼= Im{Eq|skpX| → Eq|skp+1X|}.

3.11. Remark. The category sS of simplicial spectra, and the more struc-
tured simplicial spectra defined below have Postnikov sections. That is, for
any X in sS we can produce a morphism of simplicial spectra X → PnX
so that π\

k(X; P ) ∼= π\
k(PnX; P ) for P ∈ P and k ≤ n, and, in addition,

π\
k(PnX; P ) = 0 for k > n. One way to construct PnX is to define PnX to

the colimit of simplicial spectra P i
nX where P 0

nX to be a fibrant model for X
and defining P i

nX to be a fibrant model for the spectrum simplicial spectrum
Y obtained as a push-out

∐
k>n

∐
f P ∧∆k/∂∆k //

²²

P i−1
n X

²²∐
k>n

∐
f P ∧∆k/∆k

0
// Y.

where f runs over all morphisms

f : P ∧∆k/∂∆k → P i−1
n X.

Note that since sSP is cofibrantly generated, this can be made natural in X.
If we are working with algebras in s AlgT for some simplicial operad T , we
would simply replace P ∧∆k/∂∆k by T (P ∧∆k/∂∆k), and so on.
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It is worth remarking that one can now recover the universal coefficient
theorem of Adams-Atiyah ([1] §III.13) from these constructions. If X is
a spectrum, we regard it as constant simplicial spectrum and choose a P-
cofibrant replacement Y for X. Then the spectral sequence of Equation 3.4,
with P = S0, implies that |Y | ' X. The universal coefficient spectral se-
quence is the Bousfield-Kan spectral sequence of the cosimplicial spectrum
F (Y, M) for an E-module spectrum M :

Exts
E∗(E∗X,M∗+t) ∼= πsπ−tF (Y,M) =⇒ π−t−sF (|Y |,M) ∼= M s+tX.

The E2-term is identified using Definition 3.2.5. Here the symbol M∗+t means
the graded group with (M∗+t)n = Mn+t.

The P-resolution model category structure can be promoted to a model
category for simplicial algebras over a simplicial operad. Fix a simplicial
operad T and let s AlgT be the category of algebras over T . This category
has an external simplicial structure; indeed, if K is a simplicial set and X ∈
s AlgT , one has

(3.8) (X ⊗K)n =
∐
Kn

TnXn.

The superscript Tn is indicates that the coproduct is taken in the category of
Tn algebras. The simplicial set of maps is defined again by

[n] 7→ Homs AlgT
(X ⊗∆n, Y ).

We say that a morphism X → Y of simplicial T -algebras is a P-fibration or
P-equivalence if the underlying morphism of simplicial spectra is. Then we
have the P-resolution model category structure on s AlgT :

3.12. Theorem. With these definitions, the category s AlgT becomes a sim-
plicial model category. Furthermore, for each X ∈ s AlgT there is a natural
P-equivalence

PT (X) → X

so that

1.) PT (X) is cofibrant in the P-resolution model category structure on
sST ;

2.) the underlying degeneracy diagram of PT (X) is of the form T (Z) where
Z is free as a degeneracy diagram and each Zn is a wedge of elements
of P.

Proof. The existence of the model category structure is the standard lifting
argument. In fact, since s AlgT has a functorial path object and the forgetful
functor to sS creates filtered colimits in s AlgT , we need only supply a P-
fibrant replacement functor for s AlgT . However, every Reedy fibrant object
in s AlgT (as in the previous section) will be P-fibrant, and the s AlgT in its
Reedy model category structure is cofibrantly generated, so we can choose a
Reedy fibrant replacement functor. This will do the job.
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The object PT (X) is produced by taking an appropriate subdivision (for
example the big subdivision of [8] §XII.3, Example 3.4) of a cofibrant model
for X. ¤

Here is how one might use this model category structure. We fix an operad
C ∈ O and a simplicial resolution T → C of C as in Theorem 2.1. If X is an
C-algebra, then X can be regarded as a constant object in s AlgT and, hence,
we have the resolution PT (X) → X of the previous result. Then PT (X) is
Reedy cofibrant in s AlgT and, by Theorem 2.4.2, also Reedy cofibrant as a
simplicial spectrum. Thus we can use the spectral sequence of Equation 3.4
with P = S0 to show that the natural map

|PT (X)| → X

is a weak equivalence. But also, arguing as in Remark 3.10 we have that the
augmentation PT (X) induces an isomorphism

π∗E∗PT (X) ∼= E∗X.

Finally, if E∗C(n) is projective as an E∗ module for all n, then E∗PT (X) is
a cofibrant E∗T algebra. In fact, since each of the spectra P ∈ P has the
property that E∗X is projective as an E∗-module, Theorems 2.1 and 3.12
imply that there is an isomorphism of underlying degeneracy objects:

(3.9) E∗(PT (X)) ∼= (E∗T )(E∗Z).

The fact that E∗PT (X) is cofibrant can be read off of this equation.
As this discussion indicates, and as the reader may have already suspected,

we are not really interested in the P-equivalence classes of objects in simplicial
spectra or simplicial T -algebras, but certain types of E∗-equivalences. There
is an appropriate model category, and it is a localization of the one supplied
in Theorem 3.12.

3.13. Theorem. The category s AlgT supports the structure of a cofibrantly
generated simplicial model category with

1.) a morphism f : X → Y is an E∗-equivalence if

π∗E∗(f) : π∗E∗X−→π∗E∗Y

is an isomorphism;
2.) a morphism is an E∗-cofibration if it is a P-cofibration; and
3.) a morphism is an E∗-fibration if it has the right lifting property with

respect to all morphisms which are at once an E∗-equivalence and an
E∗-cofibration.

Since every P-equivalence in s AlgT , is an E∗-equivalence, this model cate-
gory structure can be produced using the localization technology of Bousfield,
et al. The are many minute details, but the technology is now available in
[20].
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4. André-Quillen cohomology

If A is a commutative algebra over a commutative ring k, M an A-module
and X → A a morphism of k-algebras, then the André-Quillen cohomology
of X with coefficients in M is the non-abelian right derived functors of the
functor

X 7→ Derk(X, M)

which assigns to X the A-module of k-derivations from X to M . This coho-
mology has natural generalization to algebras over operads and their modules;
indeed, much of the formalism of Quillen’s paper [30] goes through without
difficulty. This section outlines the details and explains the application to the
computation of the homotopy type of the space of maps between structured
ring spectra.

It should be said that for someone interested primarily in some A∞ operad
– that is, in producing associative ring spectra – then the André-Quillen
cohomology produced and discussed here is exactly that of the associative
algebra case in [30]. It is, except possibly in degree zero, a shift of Hochschild
cohomology.

The first part of this section is written algebraically. We fix a commutative
ring k, possibly graded, and we consider k-modules (again possibly graded),
operads in k-modules, and so on. All tensor products will be over k. In our
applications k will be E∗ for some homotopy commutative ring spectrum E.
Any omitted details can be found in [18].

Let C be an operad in k-modules and suppose A is a C algebra. We define
what it means for M to be an A-module. Let Φ(A, M) to be the graded
k-module with

Φ(A, M)n =
⊕

i

A⊗ · · · ⊗ A⊗M
i
⊗A⊗ · · · ⊗ A

with M appearing once in each summand and then in the ith slot. Note that
Φ(A,M)n has an obvious action of the symmetric group Σn. Define

C(A,M) =
⊕

n

C(n)⊗kΣn Φ(A,M)n =
⊕

n

C(n)⊗kΣn−1 A⊗(n−1) ⊗M.

It is an exercise to show that there is a natural ismorphism of bifunctors

C(C(A), C(A,M)) ∼= (C ◦ C)(A,M))

where (·) ◦ (·) is the composition of operads. The k-module M is an A-
module over C (or simply an A-module) if there is a morphism of k-modules
η : C(A,M) → M which fits into a coequalizer diagram

C(C(A), C(A,M)) ∼= (C ◦ C)(A,M))
d0

⇒
d1

C(A,M)
η−→M

where the maps d0 and d1 are induced by the operad multiplication of C,
and by η and the algebra structure on A respectively. Furthermore, the unit
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1 → C defines a morphism of R-modules M = 1(A,M) → C(A,M) which is
required to be a section of η.

We now come to derivations. If A is a commutative k-algebra, and M is an
A-module, we can can form a new commutative algebra over A called M oA,
which as an k-module is simply M ⊕ A, but with algebra multiplication

(x, a)(y, b) = (xb + ay, ab).

The algebra M o A is a square-zero extension and an abelian object in the
category of algebras over A; all abelian group objects in this category have
this form. It also represents the functor that assigns to an algebra over A the
A-module of k-derivations from X to M :

DerR(X, M) ∼= AlgComm /A(X, M o A)

where we write Comm for the commutative algebra operad in K-modules.
These concepts easily generalize. If C is an operad, A a C-algebra and M

an A-module, define a new C-algebra over A called M o A as follows: as an
k-module M oA is simply M ⊕A, but the C-algebra structure is defined by
noting that there is a natural decomposition

C(M ⊕ A) ∼= E(A,M)⊕ C(A,M)⊕ C(A)

where E(A,M) consists of those summands of C(M⊕A) with more than one
M term. Since M is an A-module we get a composition

C(M ⊕ A) → C(A,M)⊕ C(A) → M ⊕ A

which defines the C-algebra structure on M oA. The algebra M oA is again
a square-zero extension and an abelian object in the category of algebras over
A; again, all abelian objects have this form. This last observation makes it
possible to define the category of A-modules over C to be the category of
abelian C-algebras over A.

Note that if we are in a graded setting and M is an A-module, then the
graded object ΩtM with

(ΩtM)k = Mk+t

is also an A-module. Also, as obvious example of an A-module is A itself.
We will write

ΛA(x−t) = ΩtAo A

by analogy with the exterior algebra that arises in the commutative case.
The object MoA in the category of C-algebras over A represents an abelian

group valued functor which we might as well call derivations; in formulas we
write

DerC(X,M)
def
= AlgC/A(X,M o A)

for all C-algebras over X. Such a derivation is determined by an k-module
homomorphism d : X → M which fits into an appropriate diagram which
reduces to the usual definition of derivation in the commutative or associative
algebra case. We invite the reader to fill in the details.
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Cohomology in this context should be derived functors of derivations; this
immediately leads us to simplicial algebras. We also need simplicial operads.

Thus, we let C = C• be simplicial operad in k-modules and s AlgC the
category of simplicial algebras over C. This is a simplicial category in the
external simplicial structure; for example, if K is a simplicial set and X ∈
s AlgC then

(A⊗K)n =
∐
Kn

An

with the coproduct in Cn-algebras. Also, among the morphisms of s AlgC

we single out the free maps: a morphism X → Y is free if the underlying
morphism of degeneracy diagrams is isomorphic to a map of the form

X → X t C(Z)

where Z is a free degeneracy diagram on a free R-module.
The main theorem of [31] §II.4 immediately implies the following:

4.1. Proposition. The s AlgC has the structure of a simplicial model category
with a morphism f : X → Y

(1) a weak equivalence if π∗f : π∗X → π∗Y is an isomorphism;
(2) a fibration if the induced map Nf : NX → NY of normalized chain

complexes in k-modules is surjective in positive degrees;
(3) a cofibration if it is a retract of a free map.

If A ∈ s AlgC then π0A is a π0C-algebra. If M is a π0A-module (over the
operad π0C) then M is an An-module (over Cn) for all n ≥ 0. Then we can
form the simplicial module K(M, n) over A whose normalization NK(M, n) ∼=
M concentrated in degree n. From this object we can form the simplicial C-
algebra KA(M,n) = K(M, n)o A over A and, for X ∈ s AlgC /A an algebra
over A we will define the André-Quillen cohomology of X with coefficients in
M by the formula

(4.1) Dn
C(X, M)

def
= [X, KA(M, n)]s AlgC /A

∼= π0 maps AlgC /A(X,KA(M,n)).

We note immediately that there are natural isomorphisms

Dn−i
C (X,M) ∼= πi maps AlgC /A(X, KA(M,n))

and that, in fact, the collection of spaces maps AlgC /A(X, KA(M, n)), n ≥ 0,
assemble into a spectrum homs AlgC /A(X,KAM) so that

Dn
C(X,M) ∼= π−n homs AlgC /A(X,KAM).

As usual, this cohomology can be written down as the cohomology of a
chain complex. To be concrete about this, let us fix some notation. If C is
our simplicial operad and Y is a simplicial C-algebra over a constant algebra
A, and if M is an A-module, as above, then we have abelian groups

DerCn(Yn,M) = (AlgCn
/A)(Yn,M o A).
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Furthermore, if φ : [n] → [m] is a morphism in the ordinal number category,
the Yn is a Cm-algebra by restriction of structure along φ∗ : Cm → Cn and
then

φ∗ : Ym−→Yn

is a morphism of Cm-algebras. Hence we get a map

DerCn(Yn,M)−→DerCm(Ym,M)

and, in fact, DerC(Y, M) becomes a cosimplicial abelian k-module. Then,

(4.2) Dn
C(X,M) = HnN DerC(Y,M)

where Y is some cofibrant model for X and N is the normalization functor
from cosimplicial k-modules to cochain complexes of k-modules. This concept
is important enough that we will write

(4.3) DC(X, M) ∈ Ho(C∗k)

for the well-defined object in the derived category of cochain complexes de-
fined by N DerC(Y, M), with Y a cofibrant model for X.

In our applications we will have a homology theory E∗(·) and k = E∗.
We will also have a simplicial operad T – that is, a simplicial object in the
category O of simplicial operads – so C = E∗T and a typical C-algebra will
be of the form E∗X where X ∈ s AlgT . If E∗E if flat over E∗, this will
imply that we are actually working with operads, algebras and so forth in the
category of E∗E-comodules, rather than simply in the more basic category of
E∗-modules. Under appropriate hypotheses – for example, if E satisfies the
Adams condition of Definition 3.1 – the E∗E-comodule version of Proposition
4.2 is true, and one can use this to define André-Quillen cohomology in the
category of E∗E-comodules.

To do this requires a little care, as we are forced to resolve not only algebras,
but also the modules; the short reason for this technical difficulty is that not
every chain complex of comodules is fibrant. The same problem arose in [23]
and our solution is not much different.

To get started, fix a simplicial operad C in E∗E-comodules and an π0C
algebra A, also all in E∗E-comodules.

To ease notation, let us abbreviate the extended comodule functor by

Γ(M) = E∗E ⊗E∗ M.

The functor Γ also induces a right adjoint to the forgetful functor from A-
modules in E∗E-comodules to A-modules. Indeed, if M is an A-module, the
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module structure on Γ(A) is determined by the top split row of the diagram

Γ(M)

=

²²

// Γ(M)o A //

²²

Aoo

ψA

²²
Γ(M) // Γ(M o A) // Γ(A)oo

.

where the right square is a pull-back and where ψA is the comodule structure
map, which, by assumption, is a morphism of algebras. The functor Γ(−)
thus becomes the functor of a triple on A-modules in E∗E-comodules and for
a simplicial C-algebra Y in E∗E comodules we can form the bicosimplicial
E∗-module

DerC(Y, Γ•(M)) = {DerCp(Yp, Γ
q+1(M))}.

We now write

(4.4) DC/E∗E(X,M) ∈ Ho(C∗E∗E)

for the object in the derived category of comodules defined by taking Y to be
some cofibrant model for X and then taking the total complex of the double
normalization of the cosimplicial object DerC(Y, Γ•(M)). Then we have the
André-Quillen cohomology

(4.5) Dn
C/E∗E(X,M) = HnDE∗E/C(X, M).

However, with luck, one can reduce the calculation of this more complicated
object to the first case. Here is the result we will use. The definitions should
make the following results plausible; the proof is in [18].

4.2. Proposition. Let C be a simplicial operad in E∗E comodules and A a
π0C-algebra in E∗E-comodules. If M is a A-module in E∗-modules, then the
extended comodule Γ(M) = E∗E ⊗E∗ M is an A-module in E∗E-comodules
and there is a natural isomorphism for simplicial C-algebras X over A in
E∗E-comodules

D∗
C/E∗E(X, E∗E ⊗E∗ M) ∼= D∗

C(X, M).

A stronger assertion is true: there is an isomorphism

DC/E∗E(X, E∗E ⊗E∗ M) ∼= DC(X, M)

in the derived category of E∗-modules.
With this technology at hand, we can now define a spectral sequence for

computing the homotopy groups of the space of maps between two structured
ring spectra. We fix a commutative S-algebra E; that is an algebra in spectra
over the commutative algebra operad in O. Suppose further that E satisfies
the Adams condition of Definition 3.1. Let F be one of either the associative
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algebra operad or the commutative algebra operad in O.5 Now suppose X
is an F -algebra in spectra; thus, X is either an associative S-algebra or a
commutative S-algebra. Then E∗X is an algebra over the operad E∗F in
E∗E-comodules.

Now let φ : X → Y be a morphism of F -algebras in spectra. This amounts
to choosing a basepoint φ ∈ mapAlgF (X,Y ) for the space of F -algebra maps
from X to Y . The induced map

E∗φ : E∗X −→ E∗Y

makes E∗Y into an E∗X module over the operad E∗F , all in E∗E-comodules.
Let T → F be the resolution of operads supplied by Theorem 2.1. Also, for
any spectrum Y , let YE denote the E-completion of Y , defined as the total
space of the cobar complex:

YE
def
= Tot(E• ∧ Y ).

Since E is a commutative S-algebra, YE is an F -algebra if Y is an F -algebra.

4.3. Theorem. Let φ : X → Y be a morphism of F-algebras and let E be
a commutative S-algebra. Then there is a second quadrant spectral sequence
abutting to

πt−s(mapAlgF (X,YE), φ)

with E2 term
E0,0

2 = HomE∗F/E∗E(E∗X, E∗Y )

and
Es,t

2 = Ds
E∗T/E∗E(E∗X, ΩtE∗Y ) t > 0.

Of course, the E0,0
2 term is either the associative or commutative algebra

maps (in E∗E-comodules) from E∗X to E∗Y .
This is a Bousfield-Kan spectral sequence, as we will see in the next para-

graph. The standard references are [8] and [7]. The latter work, for example,
implies the following result:

4.4. Corollary. There are succesively defined obstructions to realizing a map
f ∈ HomE∗F/E∗E(E∗X, E∗Y ) in the groups

Ds+1
E∗T/E∗E(E∗X, ΩsE∗Y ) s ≥ 1.

In particular, if these groups are all zero, then the Hurewicz map

(4.6) π0(mapAlgF (X, YE)) → HomE∗F(E∗X, E∗Y )

is surjective. If, in addition, the groups

Ds
E∗T/E∗E(E∗X, ΩsE∗Y ) = 0

for s ≥ 1, the Hurewicz map of Equation 4.6 is a bijection.

5The reader sensitive to generalization will note that this restriction is only aesthetics.
A general operad in O will do.
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The spectral sequence of Theorem 4.3 is constructed as follows. We may
regard X as a constant simplicial T -algebra and take the simplicial resolution
in T -algebras PT (X) → X guaranteed by Theorem 3.12. In addition, since
E is a commutative S-algebra, the cobar complex

Y → E• ∧ Y = {Eq+1 ∧ Y }
is a cosimplicial F -algebra. We then obtain a cosimplicial space

maps AlgT
(PT (X), E• ∧ Y ) = {mapAlgTs

(PT (X)s, E
s+1 ∧ Y )}s

∼= {mapAlgF (F ⊗Ts PT (X)s, E
s+1 ∧ Y )}s

and the map φ : X → Y supplies this with the basepoint. The Bousfield-Kan
spectral sequence now reads

πsπt mapAlgT
(PT (X), E• ∧ Y ) =⇒ πt−sTot mapAlgT

(PT (X), Y )•.

One uses standard adjunction arguments, Theorem 1.6, Theorem 2.1, and
Theorem 2.2 to show

TotAlgT (PT (X), E• ∧ Y ) ∼= Alg|T |(|PT (X)|,Tot(E• ∧ Y )) ' AlgF(X, YE).

We then must identify the E2-term. Let’s abbreviate E(q+1) ∧ Y as E(q)Y .
Since the cosimplicial space in question is the diagonal of the bicosimplicial
space

{mapAlgTp
(PT (X)p, E

(q)Y )}
the E2 term can be computed as the cohomology of the total complex of the
double normalization of

{πt mapAlgTp
(PT (X)p, E

(q)Y )}.
If we let Y St

denote the spectrum of maps from the space St to the spectrum
Y , then Y St

has a natural structure of an F -algebra. Thus, because of The-
orem 3.12, the choice of the spectra used to build P-resolutions (Definition
3.2) and the conditions on the operads Ts from Theorem 2.1, we have, for
t > 0:

πt mapAlgTp
(PT (X)p, E

(q)(Y )) = πt mapAlgTp
(Tp(Zp), E

(q)(Y ))

= πt mapS(Zp, E
(q)(Y ))

= HomE∗E(E∗Zp, E∗(E(q)(Y )St

))

= HomE∗Tp/E∗E(E∗Tp(E∗Zp), ΛE∗E(q)(Y )(xt))

= DerE∗Tp/E∗E(E∗Tp(E∗Zp), Ω
tE∗E(q)Y ).

In short, we obtain exactly the complex DE∗T/E∗E(E∗X, ΩtE∗Y ) used to define
André-Quillen cohomology. See Equation 4.4.
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As an amusing reduction of this theory, one can consider the case of the
unit operad 1 in place of the commutative or associative algebra operad. An
algebra over 1 is simply a spectrum, and an E∗1-algebra is an E∗E-comodule.
The formalism carries over and the spectral sequence of Theorem 4.3 becomes
the Adams-Novikov spectral sequence

(4.7) Exts
E∗E(E∗X, ΩtE∗Y ) =⇒ πt−s mapS(X, YE) ∼= [Σt−sX,YE]

and the obstructions of Corollary 4.4 to realizing an E∗E-comodule map
E∗X → E∗Y lie in

(4.8) Exts+1
E∗E(E∗X, ΩsE∗Y ) s ≥ 1.

If Y is an E-module, then the cobar complex E• ∧ Y has a contraction; in
particular, Y = YE. We would expect a corresponding simplification of the
spectral sequence of Theorem 4.3. Indeed, the André-Quillen cohomology
groups simplify: we need only use the derived functors of derivations in E∗-
modules. We can also weaken the assumption that E be a commutative
S-algebra. The result then reads:

4.5. Theorem. Suppose that E is a homotopy commutative ring spectrum,
satisfying the Adams condition of Definition 3.1 and let φ : X → Y be a
morphism of F-algebras in spectra. Then there is a second quadrant spectral
sequence abutting to

πt−s(mapAlgF (X, Y ), φ)

with E2 term
E0,0

2 = HomE∗F(E∗X, Y∗)

and
Es,t

2 = Ds
E∗T (E∗X, ΩtY∗) t > 0.

Here the E0,0
2 -term is the set of E∗F -algebra morphisms from E∗X to Y∗.

The proof is identical to the proof of Theorem 4.3; the relevant cosimplicial
space is

mapAlgT
(PT (X), Y ) = {mapAlgTs

(PT (X)s, Y )}s.

Because we have a cosimplicial space, we again have obstructions to realizing
maps. In fact, there are succesively defined obstructions in

(4.9) Ds+1
E∗T (E∗X, ΩsY∗) ∼= Ds+1

E∗T/E∗E(E∗X, ΩsE∗Y ), n ≥ 1

to the realization of a map in HomE∗F/E∗E(E∗X, E∗Y ).

5. The moduli space of realizations

We now fix a homotopy commutative ring spectrum E satisfying the Adams
condition of Definition 3.1. Let F be an operad in O and suppose that A is
an E∗F -algebra in E∗E-comodules. The purpose of this section is to discuss
the homotopy type of the space TM(A) of realizations of A in AlgF . In
practice, of course, F is either the associative or commutative monoid operad
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and, hence, A is an associative or commutative algebra in E∗E-comodules.
The method here is exactly that of [6].

By definition, TM(A) is the nerve (or classifying space) of the category
E(A) with objects the F -algebra spectra X with E∗X ∼= A as E∗F -algebras
and morphisms are E∗-isomorphisms.6 As in section 1, the Dwyer-Kan de-
composition of TM(A) supplies a weak equivalence

TM(A) '
∐

[X]

B Aut(X)

where X ranges over the E∗-equivalence classes of realizations of A and
Aut(X) is the derived space of self-equivalences of X in the E∗-local model
category structure on AlgF . It is worth emphasizing that this result uses the
identification

(5.1) B Aut(X) 'M(X)

where M(X) is the nerve of the category with objects Y ∈ AlgF so that there
a chain of E∗-isomorphisms in AlgF between Y and X. The morphisms are
E∗-isomorphisms in AlgF .

The initial question, of course, is whether TM(A) is non-empty.
We now decompose TM(A). As always, we will let T → F be a simplicial

resolution of the sort supplied by Theorem 2.1.

5.1. Definition. Let X ∈ s AlgT be a simplicial T -algebra. We say that X
is a potential n-stage for the E∗F -algebra A if

(1) π0E∗X is isomorphic to A as an E∗F -algebra in E∗E-comodules;
(2) πiE∗X = 0 for 1 ≤ i ≤ n + 1; and

(3) For all P ∈ P , the groups π\
i(X; P ) = 0 for i > n.

The partial moduli space TMn(A) is defined to be the moduli space of all
simplicial T -algebras which are potential n-stages for A. The weak equiva-
lences are the simplicial E∗-equivalences of Section 4.

It follows from the spiral exact sequence of Proposition 3.8 that a potential
n-stage X for A has

(5.2) πiE∗X ∼=




A i = 0;
Ωn+1A i = n + 2;
0 i 6= 0, n + 2.

Furthermore, by the spiral exact sequence or, more exactly, the isomorphism
3.7, the A-module structure on πn+1E∗X is the evident shifted A-module
structure. The same calculation shows that for the natural homotopy groups

π\
iE∗X

def
= colim π\

i(X, Σ∗DEα) ∼=
{

ΩiA 0 ≤ i ≤ n;
0 i > n.

6The isomorphism E∗X ∼= A is not part of the data.
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Again, the A-module structure on π\
iE∗X is the evident shifted module struc-

ture.
Definition 5.1 makes sense for n = ∞: a potential ∞-stage is simply an

object X ∈ s AlgT so that π0E∗X ∼= A and πiE∗X = 0 for i > 0. Let
TM∞(A) be the resulting moduli space.

Theorem 2.2 and the spectral sequence of 3.4 imply that geometric realiza-
tion defines a map

| − | : TM∞(A)−→TM(A)

and the Postnikov stage construction of Remark 3.11 implies that there are
maps

TMn(A)−→TMm(A); 0 ≤ m < n ≤ ∞.

Here is the first part of the decomposition result.

5.2. Proposition. The map induced by geometric realization

| − | : TM∞(A)−→TM(A)

is a weak equivalence. Furthermore the map

TM∞(A)−→ holim
n<∞

TMn(A)

is a weak equivalence.

Proof. The first assertion is formal. Compare Theorem 9.3 of [6]. The second
assertion is not formal; however, it follows from the main theorem of [12].
Compare Theorem 9.4 of [6]. ¤

The next step is to investigate the tower {TMn(A)}. To do this we will
identify the bottom space as a K(G, 1), then tell how to pass from the (n−
1)st stage to the nth stage using André-Quillen cohomology. We begin by
constructing the 0-stage; in particular, we show TM0(A) 6= φ.

5.3. Definition. A simplicial T -algebra X is said to be of type BA if

1.) π0E∗X ∼= A as an E∗F -algebra in E∗E comodules; and
2.) for Y ∈ s AlgT , the natural map

[Y,X]s AlgT
−→HomE∗F/E∗E(π0E∗Y, A)

is an isomorphism. Here the homotopy classes of maps are in the
E∗-local homotopy category of s AlgT .

We write BA for any of the (essentially unique) objects of type BA and, if we
need to, will assume BA is E∗-local without saying so.

Simplicial T -algebras of type BA exist. This can be seen by a generators and
relations argument or by some generalized Brown representability theorem.
See [19].
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5.4. Remark. We have that for any simplicial T -algebra X of type BA that

π\
i(X; P ) =

{
HomE∗E(E∗P,A) i = 0;
0 i > 0.

Thus a simplicial spectrum of type BA is potential 0-stage for A. Furthermore,
the spiral exact sequence implies

πiE∗X ∼=




A i = 0;
ΩA i = 2;
0 i 6= 0, 2.

The following result says, among other things, that there is a unique po-
tential 0-stage of A up to E∗-equivalence and that it is of type BA.

5.5. Proposition. Let Aut(A) denote the discrete group of automorphisms
of the E∗F-algebra A in E∗E-comodules. Then there is a natural weak equiv-
alence

TM0(A) ∼= B Aut(A).

Proof. Fix a choice BA of an E∗-local space of type BA. Let X be a potential
0-stage for A. Then a choice of isomorphism π0E∗X ∼= A defines a morphism
in s AlgT

X−→BA

which defines an isomorphism on π∗E(−) by the spiral exact sequence. Thus
TM0(A) is connected and, by the Dwyer-Kan analysis (5.1)

TM0(A) = B Aut(BA).

But it is an easy calculation that

πnB Aut(BA) ∼=
{

Aut(A) n = 0;
0 n 6= 0.

¤
To pass between the various stages of the tower, we need to know that

André-Quillen cohomology is representable in the homotopy category of
s AlgT . Specifically, we have the following ideas.

5.6. Definition. Let A be an E∗F -algebra in E∗E-comodules and let M be
an A-module, also in E∗E-comodules. We say that a map X → Y in s AlgT

is of type BA(M, n), n ≥ 1 if

1.) X is of type BA and the induced map

πiE∗X → πiE∗Y

is an isomorphism for i < n;
2.) πnE∗Y ∼= M as a π0E∗Y ∼= A module; and

3.) π\
i(Y ; P ) = 0 if i > n.
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We may abuse notation and refer to the simplicial T -algebra Y as being of
type BA(M, n). Again, it is possible to construct such objects by a genera-
tors and relations argument, or by Brown representability using the evident
homotopy characterization supplied by Proposition 5.7 below.

We would like to give a homotopical interpretation of the simplicial T -
algebras of type BA(M, n); in fact, such objects will – in some sense – repre-
sent the functor

Z 7→ Dn
E∗T/E∗E(E∗Z, M).

The exact result is below in Proposition 5.7, but to get there requires some
preliminaries.

If X → Y is of type BA(M,n), we may assume that X is E∗-fibrant and
that the map from X to Y is a cofibration to an E∗-fibrant object – and we
may make this assumption without repeating it and then we will write

BA−→BA(M, n)

for such a map. If we suppose n ≥ 2, then the spiral exact sequence implies
that

(5.3) πiE∗BA(M, n) ∼= πiE∗BA ×




M i = n;
ΩM i = n + 2;
0 i 6= n, n + 2.

In particular, we get a natural isomorphism π0E∗BA(M, n) ∼= A and then
Remark 5.3 supplies a map BA(M, n) → BA so that the composite X →
Y → BA is an E∗-equivalence. In this way we will regard BA(M,n) as an
object over BA.

Because of the isomorphism of Equation 5.3, the simplicial E∗T -algebra
E∗BA(M,n) is not weakly equivalent to KA(M,n) = K(M, n) o A in the
category of simplicial E∗T -algebras over E∗E-comodules. However, there is
a natural map of E∗T algebras

(5.4) ε : E∗BA(M, n)−→KA(M,n)

over the constant simplicial E∗T -algebra A. This we now produce.
Let C be the push-out in s AlgE∗E/E∗T of the two-source

E∗BA(M, n) ←− E∗BA−→π0E∗BA
∼= A.

Then Equation 5.3 implies that the (n + 1)st Postnikov section Pn+1C of C
in s AlgE∗E/E∗T has the property that

πiPn+1C ∼=




A i = 0;
M i = n;
0 i 6= 0, n.

This alone is not enough to identify the homotopy type of Pn+1C. However
the map

A ∼= π0E∗BA → Pn+1C
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is a section of the map Pn+1C → π0Pn+1C ∼= A; hence Pn+1C is canonically
weakly equivalent to KA(M,n), and the composition

E∗BA(M,n) → C → Pn+1C

is a model for the morphism ε of Equation 5.4.

5.7. Proposition. Let BA → BA(M, n) be of type BA(M, n) and suppose
n ≥ 2. Let X ∈ s AlgT and suppose a morphism of F-algebras in E∗E-
comodules π0E∗X → A is represented by a map f : X → BA. Then the
morphism of simplicial E∗T -algebras

ε : E∗BA(M,n) → KA(M, n)

induces a natural weak equivalence

maps AlgT /BA
(X, BA(M,n))

'−→maps AlgE∗T/E∗E /A(E∗X, KA(M, n)).

In particular

πi maps AlgT /BA
(X, BA(M, n)) ∼= Dn−i

E∗T/E∗E(E∗X,M).

Proof. We have a natural map induced by ε. Since both source and target
take homotopy colimits to homotopy limits, it is sufficient to check the result
for objects of the form X = T (P ⊗ K) where P ∈ P and K is a simplicial
set. Inducting over the skeleta of K, we find it is sufficient to check the result
for objects of the form T (P ⊗ ∂∆n) equipped with some choice of map

E∗T (P ⊗ ∂∆n) → π0E∗T (P ⊗ ∂∆n) ∼= E∗F(E∗P ) → A.

But the objects of type BA(M,n) are built exactly so the result holds in this
case. For more details see Proposition 8.7 of [6]. ¤

To shorten notation, let us write

Hn(A,M)
def
= maps AlgE∗T/E∗E /A(E∗X,KA(M,n)).

Let Aut(A, M) of be the group of automorphisms of the pair (A,M). Then

Aut(A,M) acts in a natural way on the spaceHn(A,M); let Ĥn(A, M) denote
the Borel construction. The space Hn(A,M) has a basepoint given by

0 ∈ π0Hn(A,M) = Dn
E∗T/E∗E(A,M).

There is a choice of representative for 0 which is invariant under the action
of Aut(A,M); therefore we get an induced map

B Aut(A,M) → Ĥn(A,M).

5.8. Theorem. For all n ≥ 1 there is a homotopy pull-back diagram

TMn(A) //

²²

B Aut(A,M)

²²

TMn−1(A) // Ĥn+2(A, ΩnA).
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To interpret this result, let Y ∈ TMn−1(A) be a basepoint – that is, a
potential (n − 1)st stage of of A. Then the homotopy fiber of TMn(A) →
TMn−1(A) is non-empty if and only if Y is weakly equivalent to Pn−1X for
some potential nth stage of A. This, in turn, will occur if the image of Y in
π0Ĥn+2(A, ΩnA) is the zero element. Furthermore, if it is the zero element,
then homotopy fiber at Y is weakly equivalent to Hn+1(A, ΩnA). Therefore,
by trying to lift the basepoint of TM0(A) = B Aut(A) up the tower, we
obtain the following corollary.

5.9. Corollary. There are successively defined obstructions, well defined up
to the action of Aut(A,M),

θn ∈ Dn+2
E∗T/E∗E(A, ΩnA), n ≥ 1

to realizing the E∗F-algebra A by an F-algebra X. Obstructions to uniqueness
lie in

Dn+1
E∗T/E∗E(A, ΩnA).

Theorem 5.8 is proved exactly in the same manner as the main theorem of
[6]. If one is interested only in the obstructions to realization, one can proceed
as follows. Let Y be a potential (n− 1)st stage for A. We’d like to construct
a potential nth stage X so that Pn−1X ' Y . We may assume that Y is a
cofibrant simplicial T -algebra. By a Postnikov section argument, we see that
it is necessary and sufficient to produce a map of simplicial T -algebras over
BA

Y−→BA(ΩnA, n + 1)

which induces an isomorphism on πn+1E∗(−). Because the space BA(ΩnA, n+
1) represents André-Quillen cohomology, this is equivalent to producing a map
of simplicial E∗T -algebras over A

E∗Y−→KA(ΩnA, n + 1)

which (by calculating with the spiral exact sequence) is a weak equivalence.
Since, as a simplicial E∗T -algebra, E∗Y is a two-stage Postnikov tower, it is
determined up to weak equivalence by a morphism in s AlgE∗T over A

A ' P0E∗Y−→KA(ΩnA, n + 2).

The class of this map in

π0Ĥn+2(A, ΩnA) ∼= Dn+2
E∗T/E∗E(A, ΩnA)/ Aut(A, ΩnA)

is the obstruction. The Borel construction is necessary as we have not fixed
our various isomorphisms to A and ΩnA.

The obstructions to uniqueness can found in Equation 4.9.
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6. Computing with E∞ operads.

If Comm is the commutative monoid operad, then Theorem 2.1 supplies an
augmented simplicial operad T → Comm so that the augmented simplicial
operad E∗T → E∗Comm is an algebraic E∞ operad in a sense to be defined
shortly. Since it is the simplicial operad T and the methods of the previous
section that we will use to attempt to impose E∞ structures on spectra, we
need to be able to compute the André-Quillen cohomology functor D∗

E∗T . The
purpose of this section is to reduce that computation, at least in some cases,
to the calculation of ordinary André-Quillen homology or cohomology. The
main result is the two spectral sequences supplied by the Propositions 6.4
and 6.5 below. Note that E∗Comm is the commutative algebra operad in
E∗ modules; hence ordinary André-Quillen cohomology is cohomology over
the operad E∗Comm.

We will first say what we mean by an E∞ operad. If k is a commutative ring,
we will write Comm for the commutative monoid operad in k-modules—
rather than, for example, k[Comm].

6.1. Definition. For any commutative ring k (possibly graded) an E∞-operad
E is a simplicial operad in k-modules equipped with a weak equivalence
E → Comm and so that for each q ≥ 0, E(q) is a cofibrant (i.e., level-wise
projective) simplicial k[Σq] module.

There is a canonical such operad—namely a cofibrant model for Comm in
the category of simplicial k-operads —but we don’t need that much structure
in this discussion.

If V∗ is a cofibrant simplicial k-module, the shuffle chain equivalence of
normalized chain complexes

N(V )⊗ · · · ⊗N(V )←−−−−−n−−−−−→ → N(V ⊗ · · · ⊗ V )←−−−−n−−−−→
is Σn-equivariant; thus if C is any simplicial k-module operad, the normalized
object NC = {NC(k)}k≥0 is an operad of k-chain complexes. In particular,
if E is an E∞ operad in the sense of Definition 6.1, then NE is an E∞ operad
in the category of chain complexes over k. More is true. If V is a simplicial
k-module, and C is a simplicial operad, then there is a natural map of chain
complexes

(6.1) NC(q)⊗kΣq NV ⊗q → N(C(q)⊗kΣq V ⊗q)

and if C(q) is cofibrant as a kΣq-module and V is cofibrant as a k-module,
this is a quasi-isomorphism. In shorthand,

(6.2) NC(NV ) → NC(V )

is a quasi-isomorphism of NC algebras. Furthermore, if A is any simplicial
C-algebra, NA is an NC algebra via

NC(NA) → NC(A) → NA.
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From these considerations, and from [28], it immediately follows that if
k is an algebra over a field F of characteristic p > 0, and E is a simplicial
E∞ operad, then the homotopy of any simplicial E-algebra is an “unstable”
algebra over the Dyer-Lashof algebra. That is, if A ∈ s AlgE , then π∗A is a
graded commutative algebra equipped with operations

Qi : πnA → πn+iA, i ≥ 0, p = 2

or

βεQi : πnA → πn+2i(p−1)−εA i ≥ 0, ε = 0, 1, p > 2

subject to the Adem and Cartan formulas of [11], §I.1. Unstable in this
context means, at p = 2,

Qi(x) =

{
0 i < deg(x)
x2 i = deg(x)

and at p > 2

βεQi(x) =

{
0 2i− ε < deg(x)
xp 2i = deg(x) and ε = 0.

This condition arises because we are dealing with a normalized object, not
an arbitrary algebra over an E∞ operad in chain complexes.

Also if k is not the prime field Fp, these operations are not k-linear; if
φ : k → k is the Frobenius, a ∈ k and x ∈ π∗A, then

(6.3) βεQi(ax) = φ(a)βεQi(x).

There is an obvious category UR of unstable algebras over the Dyer-Lashof
algebra. The forgetful functor UR → nMk to graded k-modules has a left
adjoint SR. It follows from the quasi-isomorphisms of 6.1 and 6.2 and the
calculations of [28] that if E is an E∞ operad and V ∈ sMk, then the natural
map

(6.4) SR(π∗V ) → π∗E(V )

is an isomorphism in UR provided that π∗V is a graded projective k-module.
Note that this isomorphism does not depend on E : if V a cofibrant simplicial
k-module, π∗E(V ) is independent of the E∞ operad E and we have:

6.2. Proposition. Let f : E → E ′ be a morphism of E∞ operads over an F
algebra k, where F is a field of positive characteristic. Then the restriction of
structure functor and its left adjoint induce a Quillen equivalence

E ′ ⊗E (·) = f ∗ : s AlgE
// s AlgE ′ : f∗.oo

This result is true over any ground ring k, although in general a less compu-
tational proof is required. Furthermore, any two E∞-operads are connected
by a chain of such weak equivalences.

The algebra SR(W ) has a simple description, at least when W is a graded
projective k-module. See [11] §I.1. The operations βεQi can be assembled
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into an algebra R over Fp using the Adem relations (see [11], §I.2). This is
the Dyer-Lashof algebra. If W ∈ nMk is a graded k-module, let

(6.5) R(W ) = R⊗Fp W/U

where U is the sub-R-module generated by elements of the form

Qi ⊗ x, i < deg(x) (p = 2)

βεQi ⊗ x, 2i− ε < deg(x) p > 2.

Then, if W is a graded projective k-module,

(6.6) SR(W ) = S(R(W ))/I

where S is the graded symmetric algebra functor over k and I is the ideal
generated by the elements

Qi(x)− x2 deg(x) = i, p = 2

Qi(x)− xp deg(x) = 2i, p > 2

In particular SR(W ) is a free graded commutative k-algebra.
If Γ ∈ UR then Γ is, among other things, a graded commutative alge-

bra and, as such, we can form its André-Quillen homology D∗Γ as a graded
commutative algebra:

D∗Γ
def
= π∗LΓ/k

where LΓ/k is the cotangent complex as a graded commutative algebra. As
usual (cf. [29],[17]), the André-Quillen homology inherits structure from the
Dyer-Lashof operations. We next spell out exactly what this structure is.

Let U be the category of non-negatively-graded modules over the Dyer-
Lashof algebras R. These are graded k-modules and R acts with the Frobe-
nius twist as in Equation 6.3, and unstable means that

Qi(x) = 0 if i ≤ deg(x) (p = 2)
βεQi(x) = 0 if 2i− ε < deg(x) or 2i = deg(x) (p > 2)

If Γ ∈ UR then U(Γ) is the category of objects M which are at once in
U , and graded Γ-modules subject to the compatibility condition that the
multiplication map

Γ⊗k M → M

is a morphism in U .
Such structures arise naturally as follows: If M ∈ U(Γ), let DerR(Γ,M)

be the module of commutative k-algebra derivations that commute with the
elements of R. The following is proved with a minor variation of the (entirely
standard) techniques of [17] §1.

6.3. Lemma. Let Γ ∈ UR. The graded module ΩΓ/k of commutative algebra
derivations is naturally an object in U(Γ) and there is a natural isomorphism

DerR(Γ,M) ∼= HomU(Γ)(ΩΓ/k,M).
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The functor which assigns to an algebra Γ ∈ UR the module of derivations
DerR(Γ, M) has non-abelian right derived functors. Choose a cofibrant X
model for Γ ∈ UR regarded as a constant object in sUR. Then these derived
functors are a kind of André-Quillen cohomology:

(6.7) Dn
R(Γ, M) = πn DerR(X,M).

This cohomology can be dissected. We may assume Xq = SR(Vq) for some
graded, projective k-module Vq; hence, as a simplicial graded commutative
algebra, X → Γ is still a cofibrant model for Γ. Thus

(6.8) LΓ/k ' Γ⊗X ΩX/k

acquires, by Lemma 6.3, the structure of a cofibrant simplicial sU(Γ) module.
This implies that the ordinary André-Quillen homology

(6.9) D∗Γ ∼= π∗LΩΓ/k

is a graded object in U(Γ), and this structure is independent of the choice of
X.

This noted, it is not surprising that the natural isomorphism of Lemma 6.3
yields a composite functor spectral sequence:

6.4. Proposition. Let Γ ∈ UR. Then there is a spectral sequence

Extp
U(Γ)(Dq(Γ),M) ⇒ Dp+q

R (Γ,M).

This is important because of the following result. Let k be an algebra over
a field of positive characteristic, and E a simplicial E∞ operad over k. If A is a
simplicial E algebra and M is a π0A module (over the operad π0E = Comm),
then M is an object in U(π∗A).

6.5. Proposition. Let E be an E∞ operad over an F-algebra k, where F is a
field of characteristic p > 0. Let A ∈ s AlgE . Then there is a spectral sequence

Dp
R(π∗A,M)q ⇒ Dp+q

E (A,M).

Proof. Here is an outline of the proof. We may assume A is cofibrant. Let
P E
• A ∈ s(sAT ) be a simplicial resolution of A by E algebras of the form E(W )

where W is a cofibrant simplicial k-module with the property that π∗W is a
projective k-module. Here resolution means that

π∗π∗P E
• A ∼= π∗A

via the augmentation. It is possible to construct such by a Stover resolution
argument. Compare section 3. Note that this and Equation 6.4 imply that

π∗P E
• A−→π∗A

is a cofibrant model for π∗A as a simplicial object in UR.
Taking the geometric realization, which is possible because s AlgE is a sim-

plicial model category, we obtain a weak equivalence

|P E
• A| −→ A
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and hence a spectral sequence

πpDq
E(P

E
• (A),M) =⇒ Dp+q(|P E

• A|,M) ∼= Dp+q(A,M).

The last isomorphism follows because |P E
• A| is cofibrant. The claim is that

D∗
E(E(W ),M) ∼= DerR(SR(π∗W ),M).

This is easily verified, completing the proof. ¤
6.6. Remark. If k is an algebra over a field of characteristic 0 and E is an
E∞-operad for k-modules, then the weak equivalence of simplicial operads
ε : E → Comm induces a Quillen equivalence

ε∗ : s AlgE
// s AlgComm : ε∗.oo

Furthermore, André-Quillen cohomology over E reduces to André-Quillen co-
homology for commutative k-algebras.

In our applications, we will encounter simplicial algebras of the form E∗X
where X is some simplicial algebra over some simplicial operad. In this case,
the ground ring will be k = E∗ and very rarely will this be an algebra over
a field of characteristic p. Therefore, we close this section with two results
intended to reduce calculations to the case considered above.

The first is this. Suppose m ⊆ k is an ideal with the property that k/m
is an algebra over a field of chacteristic p. Then if E is an E∞ operad over
k in the sense of Definition 6.1, then k/m ⊗k E is an E∞ operad over k/m.
Furthermore, if A is a simplicial E algebra, then k/m ⊗k A is a simplicial
k/m⊗k E algebra. If M is module over

π0(k/m⊗k A) ∼= k/m⊗k π0A

then M is a module over π0A and we’d like to use these facts to compute
D∗
E(A,M). If X is a cofibrant E algebra, then X is cofibrant as simplicial k

module; hence if X → A is a weak equivalence of E algebras with X cofibrant,
then k/m⊗k X is a model for the derived tensor product k/m⊗Lk A.

6.7. Proposition. Let A be a simplicial E algebra over an E∞ operad over k
and let M be a k/m⊗k π0A module. Then there is a natural isomorphism

D∗
E(A,M) ∼= D∗

k/m⊗kE(k/m⊗Lk A,M).

If π∗A is flat over k, then

π∗(k/m⊗Lk A) ∼= k/m⊗k π∗A.

Now suppose M is simply a module over π0A and suppose that M is flat as
a k-module. Then we can filter the module M by powers of the ideal m ⊆ k
to get a spectral sequence:

6.8. Proposition. There is a spectral sequence

Ep,q
1 = Dp

k/m⊗kE(k/m⊗Lk A, mqM/mq+1M) =⇒ lim
q

Dp
E(A,M/mqM).
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If M is m-complete in the sense that M ∼= limq M/mqM and there is an r so
that for all (p, q) we have Ep,q

r = Ep,q
∞ , then

lim
q

Dp
E(A,M/mqM) ∼= Dq

E(A,M).

7. The Lubin-Tate Theories

In the section we apply the technology developed in the previous sections
to show that the techniques used by Haynes Miller and the second author (cf.
[34]) to show that the algebraic theory of deformations of height n formal
group laws actually lifts to E∞-ring spectra.

The Lubin-Tate theory [25] of deformations of finite height formal group
laws works over an arbitrary perfect field of characteristic p. However, we will
specialize to algebraic extensions of the prime field Fp to keep the language
simple.

Fix a such a field k and a formal group law Γ over k. A deformation of
Γ to a complete local ring A (with maximal ideal m) is a pair (G, i) where
G is a formal group law over A, i : k → A/m is a morphism of fields and
one requires i∗Γ = π∗G, where π : A → A/m is the quotient map. Two such
deformations (G, i) and (H, j) are ?-isomorphic if there is an isomorphism
f : G → H of formal group laws which reduces to the identity modulo m.
Write DefΓ(A) for the set of ?-isomorphism classes of deformations of Γ over
A.

A common abuse of notation is to write G for the deformation (G, i); i is
to be understood from the context.

Now suppose the height of Γ is finite. Then the theorem of Lubin and Tate
[25] says that the functor A 7→ DefΓ(A) is representable. Indeed let

(7.1) A(Γ, k) = W (k)[[u1, · · · , un−1]]

where W (k) denotes the Witt vectors on k and n is the height of Γ. This is
a complete local ring with maximal ideal m = (p, u1, · · · , un−1) and there is a
canonical isomorphism q : k ∼= A(Γ, k)/m. Then Lubin and Tate prove there
is a deformation (G, q) of Γ over A(Γ, k) so that the natural map

(7.2) Homc(A(Γ, k), A) → DefΓ(A)

sending a continuous map f : A(Γ, k) → A to (f∗G, f̄q) (where f̄ is the map
on residue fields induced by f) is an isomorphism. Continuous maps here are
very simple: they are the local maps; that is, we need only require that f(m)
be contained in the maximal ideal of A. Furthermore, if two deformations
are ?-isomorphic, then the ?-isomorphism between them is unique.

We’d like to now turn the assignment (Γ, k) 7→ A(Γ, k) into a functor. For
this we introduce the category FGLn of height n formal group laws over fields
which are algebraic extensions of Fp. The objects are pairs (Γ, k) where Γ is
of height n. A morphism

(f, j) : (Γ1, k1) → (Γ2, k2)
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is a homomorphism of fields j : k1 → k2 and an isomorphism of formal group
laws f : j∗Γ1 → Γ2. This is the opposite of the category considered by Rezk
in [34]. We make this choice so we get a covariant functor. As a result, some
of our results below also have an opposite flavor – nonetheless, these are the
same results.

Let (f, j) be such a morphism and let G1 and G2 be the fixed universal
deformations over A(Γ1, k) and A(Γ2, k) respectively. If f̄ ∈ A(Γ2, k2)[[x]]
is any lift of f ∈ k2[[x]], then we can define a formal group law H over
A(Γ2, k2) by requiring that f̄ : H → G2 is an isomorphism. Then the pair
(H, j) is a deformation of Γ1, hence we get a homomorphism A(Γ1, k1) →
A(Γ2, k2) classifying the ?-isomorphism class of H – which, one easily checks,
is independent of the lift f̄ . Thus if Ringsc is the category of complete local
rings and local homomorphims, we get a functor

A(·, ·) : FGLn −→ Ringsc.

In particular, note that any morphism in FGLn from a pair (Γ, k) to itself is an
isomorphism. Thus, these endomorphisms form the “big” Morava stabilizer
group of the formal group law. It contains the usual Morava stabilizer group
as the subgroup of elements of the form (f, idk). The formal group law and
hence also its automorphism group is determined up to isomorphism by the
height of Γ if k is separably closed.

Next we put in the gradings. This requires a paragraph of introduction.
For any commutative ring R, the morphism R[[x]] → R of rings sending x to
0 makes R into a R[[x]]-module. Let DerR(R[[x]], R) denote the R-module of
continuous R-derivations; that is, continuous R-module homomorphisms

∂ : R[[x]] −→ R

so that
∂(f(x)g(x)) = ∂(f(x))g(0) + f(0)∂(g(x)).

If ∂ is any derivation, write ∂(x) = u; then, if f(x) =
∑

aix
i,

∂(f(x)) = a1∂(x) = a1u.

Thus ∂ is determined by u, and we write ∂ = ∂u. We then have that the
module DerR(R[[x]], R) is a free R-module of rank one, generated by any
derivation ∂u so that u is a unit in R. In the language of schemes, ∂u is a
generator for the tangent space at 0 of the formal scheme A1

R over Spec(R).
Now consider pairs (F, u) where F is a formal group law over R and u is

a unit in R. Thus F defines a smooth one dimensional commutative formal
group scheme over Spec(R) and ∂u is a chosen generator for the tangent space
at 0. A morphism of pairs

f : (F, u) −→ (G, v)

is an isomorphism of formal group laws f : F → G so that

u = f ′(0)v.
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Note that if f(x) ∈ R[[x]] is a homomorphism of formal group laws from F
to G, and ∂ is a derivation at 0, then (f ∗∂)(x) = f ′(0)∂(x). In the context
of deformations, we may require that f be a ?-isomorphism.

This suggests the following definition: let Γ be a formal group law of height
n over a field k which is an algebraic extension of Fp and let A be a complete
local ring. Define DefΓ(A)∗ to be equivalence classes of pairs ((G, i), u) where
(G, i) is a deformation of Γ to A and u is a unit in A. The equivalence relation
is given by ?-isomorphisms transforming the unit as in the last paragraph.
We now have that there is a natural isomorphism

Homc(A(Γ, k)[u±1], A) ∼= DefΓ(A)∗.

We impose a grading by giving an action of the multiplicative group scheme
Gm on the scheme DefΓ(·)∗ (on the right) and thus on A(Γ, k)[u±1] (on
the left): if v ∈ A× is a unit and (G, u) represents an equivalence class in
DefΓ(A)∗ define an new element in DefΓ(A)∗ by (G, v−1u). In the induced
grading on A(Γ, k)[u±1], one has A(Γ, k) in degree 0 and u in degree −2.

This grading is essentially forced by topological considerations. See the
remarks before Theorem 20 of [39] for an explanation.

We now collect a sequence of results, mostly from Rezk’s paper [34], to
develop the input to our machine.

7.1. Proposition. For all pairs (Γ, k) ∈ FGLn, the universal deformation
over A(Γ, k)[u±1] is a Landweber exact formal group law. Furthermore, the
resulting homology theory E(Γ, k)∗ is of Adams-type.

Proof. See Propositions 6.5 and 15.3 of [34]. ¤

We will write E(Γ, k) for the representing spectrum of this homology theory.

7.2. Remark. The importance of these homology theories – and of the whole
moduli problem we are discussing here – was first recognized by Morava.
Hence we might call these homology theories Morava E-theories. If we choose
k = Fpn and Γ to be the Honda formal group law of height n, the E(Γ, k)∗
is what is commonly written (En)∗. A mild variant of the resulting spectrum
was shown to be an A∞-ring spectrum by Baker [3]; his methods apply equally
to all of the spectra E(k, Γ).

Note that the ring E(Γ, k)0
∼= A(Γ, k) and, hence, it is a complete local

ring. Fix two objects (Γ1, k1) and (Γ2, k2) is FGLn and let F = E(Γ1, k1),
E = E(Γ2, k2).

7.3. Proposition. Let A∗ be a graded commutative ring so that A0 is a com-
plete local ring with maximal ideal m. Suppose i : E∗ → A∗ is a morphism of
graded commutative rings which is continuous in degree 0. Then the set

Hom
E∗−alg(E∗F,A∗)
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is isomorphic to the set of morphisms in FGLn

(Γ1, k1) → (i∗Γ2, A0/m).

Proof. This is a consequence of Landweber exactness and the groupoid point
of view to deformations. See section §17 of [34]. ¤

For example, if we set A∗ = E∗, the get that

(7.3) Hom
E∗−alg(E∗F, E∗) = HomFGLn

((Γ1, k1), (Γ2, k2)).

If k is field of characteristic p and A a k-algebra, let σ : A → A denote
the Frobenius. This is not a k-algebra homomorphism, but the commutative
diagram

k

σ

²²

// A

σ

²²
k // A

yields a k-algebra homomorphism

σ : k ⊗σ A → A

called the relative Frobenius. Now let mE ⊆ E0F be extension of the maximal
ideal m ⊆ A(Γ1, k1) = E0; that is mE = mE0F and

E0F/mE = k1 ⊗E0 E0F.

7.4. Proposition. The relative Frobenius

σ : k1 ⊗σ E0F/mE → E0F/mE

is an isomorphism. As a consequence

Lk1⊗E0
E0F/k1 ' 0.

Proof. The first statement follows easily from Proposition 7.3 and facts about
powers series. See [34], Proposition 21.5. The second statement follows from
the fact that

σ∗ : L(k1⊗RE0F )/k1 → LE0F/k1

is both an isomorphism and the zero map. See Proposition 21.2 of [34]. ¤
7.5. Corollary. The graded cotangent complex is contractible:

L(k1⊗E0
E∗F )/(k1[u±1)] ' 0.

Proof. This is a consequence of the previous result and flat base-change (see
[30]) for the square

k1
//

²²

k1[u
±1]

²²
k1 ⊗E0 E0F // k1 ⊗E0 E∗F

¤
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7.6. Corollary. The moduli space of a realizations of E(Γ, k)∗E(Γ, k) as a
commutative E(Γ, k)∗ algebra in E(Γ, k)∗E(Γ, k)-comodules has the homotopy
type of

B Aut(Γ, k)

where the automorphism group is computed in FGLn. In particular, E(Γ, k)
has a unigue E∞-structure realizing E(Γ, k)∗E(Γ, k) as a commutative
E(Γ, k)∗-algebra.

Proof. Let’s write E∗ and E∗E for E(Γ, k)∗, etc. We first show TM(E∗E) '
B Aut(E∗E). Putting together the decomposition of the moduli space given
Proposition 5.2, Proposition 5.5, and Theorem 5.8, we see that it is sufficient
to calculate that

D∗
E∗T/E∗E(E∗E, ΩtE∗E) = 0

for all t. By Proposition 4.2, these groups are isomorphic to

D∗
E∗T (E∗E, ΩtE∗).

Now Proposition 6.8, and the spectral sequences of Propositions 6.4 and 6.5,
and the previous result imply that this latter cohomology group is zero.

To finish the result we see that Proposition 7.3 – or more exactly its con-
sequence Equation 7.3 – implies that

Aut(E∗E) ∼= Aut(Γ, k).

¤
7.7. Corollary. Let E(Γi, ki) be two of the Lubin-Tate E∞ ring spectra. Then
the space of E∞-maps between these spectra has contractible components; fur-
themore the set of path components is isomorpic to the set of morphisms

(Γ1, k1) → (Γ2, k2)

is FGLn.

Proof. This is the same line of argument, where the mapping space is decom-
posed via the spectral sequence of Theorem 4.3 or 4.5. ¤
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[23] Illusie, L,, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol.
239, Springer-Verlag, Berlin, 1971.

[24] Jardine, J. F., “Bousfield’s E2 model theory for simplicial objects”, preprint University
of Western Ontario, 2002.

[25] Lubin, J. and Tate, J., “Formal moduli for one-parameter formal Lie groups”, Bull.
Soc. Math. France 94 (1966), 49-60.

[26] Lewis, L. G., Jr., May, J. P., Steinberger, M., Equivariant Stable Homotopy Theory,
Lecture Notes in Mathematics 1213, Springer-Verlag, Berlin, 1986.

[27] Mandell, M. A. and May, J. P. and Schwede, S. and Shipley, B., “Model categories of
diagram spectra”, Proc. London Math. Soc. (3), 82 (2001), No. 2, 441–512.

[28] May, J.P., “A general approach to Steenrod operations”, The Steenrod Algebra and
its Applications (Proc. Conf. to Celebrate N.E. Steenrod’s Sixtieth Birthday, Battelle

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511529955.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511529955.009


200 Moduli Spaces of Commutative Ring Spectra

Memorial Inst. Columbus, Ohio, 1970, pp. 153-231, Lecture Notes in Mathematics,
Vol. 168, Springer-Verlag, Berlin.

[29] Miller, H., “The Sullivan conjecture on maps from classifying spaces,” Ann. of Math.
120 (1984), pp. 39-87.

[30] Quillen, D.G., On the (co)-homology of commutative rings, Proc. Symp. Pure Math.
17 (1970), 65–87.

[31] Quillen D.G., Homotopical Algebra, Lecture Notes in Math. 43, Springer-Verlag,
Berlin-Heidelberg-New York, 1967.

[32] Reedy, C. L.,“Homotopy theory of model categories”, Preprint, 1973. Available from
http://math.mit.edu/~psh.

[33] Rezk, C. W., “Spaces of algebra structures and cohomology of operads”, Thesis, MIT,
1996.

[34] Rezk, C. W., “Notes on the Hopkins-Miller theorem”, in Homotopy Theory via Alge-
braic Geometry and Group Representations, M. Mahowald and S. Priddy, eds., Con-
temporary Math. 220 (1998) 313-366.

[35] Robinson, A., “Obstruction theory and the strict associativity of Morava K-theory,”
Advances in homotopy theory, London Math. Soc. Lecture Notes 139 (1989), 143-152.

[36] Robinson, A., “Gamma homology, Lie representations and E∞ multiplications”, In-
vent. Math., 152 (2003) No. 2, 331–348.

[37] Robinson, A. and Whitehouse, S., “Operads and Γ-homology of commutative rings”,
Math. Proc. Cambridge Philos. Soc., 132 (2002), No. 2, 197–234.

[38] Stover, C. R., “A Van Kampen spectral sequence for higher homotopy groups,” Topol-
ogy 29 (1990), 9–26.

[39] Strickland, N. P., “Gross-Hopkins duality”, Topology, 39 (2000) No. 5 (1021–1033).

Department of Mathematics, Northwestern University, Evanston IL

60208

pgoerss@math.nwu.edu

Department of Mathematics, MIT, Cambridge MA, 02139

mjh@math.mit.edu

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511529955.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511529955.009



