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Preface to the first edition

My initial inclination was to call this book The Music of the Spheres, but 1 was
dissuaded from doing so by my diligent publisher, who is ever mindful of the sensi-
bilities of librarians. The purpose of this book is threefold: (i) to make BP-theory
and the Adams—Novikov spectral sequence more accessible to nonexperts, (ii) to
provide a convenient reference for workers in the field, and (iii) to demonstrate the
computational potential of the indicated machinery for determining stable homo-
topy groups of spheres. The reader is presumed to have a working knowledge of
algebraic topology and to be familiar with the basic concepts of homotopy theory.
With this assumption the book is almost entirely self-contained, the major excep-
tions (e.g., Sections 5.4, 5.4, Al.4, and Al.5) being cases in which the proofs are
long, technical, and adequately presented elsewhere.

The subject matter is a difficult one and this book will not change that fact.
We hope that it will make it possible to learn the subject other than by the only
practical method heretofore available, i.e., by numerous exhausting conversations
with one of a handful of experts. Much of the material here has been previously
published in journal articles too numerous to keep track of. However, a lot of
the foundations of the subject, e.g., Chapter 2 and Appendix 1, have not been
previously worked out in sufficient generality and the author found it surprisingly
difficult to do so.

The reader (especially if she is a graduate student) should be warned that many
portions of this volume contain more than he is likely to want or need to know. In
view of (ii), results are given (e.g., in Sections 4.3, 6.3, and A1.4) in greater strengh
than needed at present. We hope the newcomer to the field will not be discouraged
by abundance of material.

The homotopy groups of spheres is a highly computational topic. The serious
reader is strongly encouraged to reproduce and extend as many of the computations
presented here as possible. There is no substitute for the insight gained by carrying
out such calculations oneself.

Despite the large amount of information and techniques currently available,
stable homotopy is still very mysterious. Each new computational breakthrough
heightens our appreciation of the difficulty of the problem. The subject has a highly
experimental character. One computes as many homotopy groups as possible with
existing machinery, and the resulting data form the basis for new conjectures and
new theorems, which may lead to better methods of computation. In contrast with
physics, in this case the experimentalists who gather data and the theoreticians
who interpret them are the same individuals.

The core of this volume is Chapters 2-6 while Chapter 1 is a casual nontechnical
introduction to this material. Chapter 7 is a more technical description of actual
computations of the Adams—Novikov spectral sequence for the stable homotopy

XV



xvi PREFACE TO THE FIRST EDITION

groups of spheres through a large range of dimensions. Although it is likely to be
read closely by only a few specialists, it is in some sense the justification for the
rest of the book, the computational payoff. The results obtained there, along with
some similar calculations of Tangora, are tabulated in Appendix 3.

Appendices 1 and 2 are utilitarian in nature and describe technical tools used
throughout the book. Appendix 1 develops the theory of Hopf algebroids (of which
Hopf algebras are a special case) and useful homological tools such as relative
injective resolutions, spectral sequences, Massey products, and algebraic Steenrod
operations. It is not entertaining reading; we urge the reader to refer to it only
when necessary.

Appendix 2 is a more enjoyable self-contained account of all that is needed
from the theory of formal group laws. This material supports a bridge between
stable homotopy theory and algebraic number theory. Certain results (e.g., the
cohomology of some groups arising in number theory) are carried across this bridge
in Chapter 6. The house they inhabit in homotopy theory, the chromatic spectral
sequence, is built in Chapter 5.

The logical interdependence of the seven chapters and three appendixes is dis-
played in the accompanying diagram.

It is a pleasure to acknowledge help received from many sources in preparing
this book. The author received invaluable editorial advice from Frank Adams,
Peter May, David Pengelley, and Haynes Miller. Steven Mitchell, Austin Pearlman,
and Bruce McQuistan made helpful comments on various stages of the manuscript,
which owes its very existence to the patient work of innumerable typists at the
University of Washington.

Finally, we acknowledge financial help from six sources: the National Science
Foundation, the Alfred P. Sloan Foundation, the University of Washington, the
Science Research Council of the United Kingdom, the Sonderforschungsbereich of
Bonn, West Germany, and the Troisieme Cycle of Bern, Switzerland.




Preface to the second edition

The subject of BP-theory has grown dramatically since the appearance of the
first edition 17 years ago. One major development was the proof by Devinatz, Hop-
kins and Smith (see Devinatz, Hopkins and Smith [2] and Hopkins and Smith [3])
of nearly all the conjectures made in Ravenel [8]. An account of this work can be
found in our book Ravenel [13]. The only conjecture of Ravenel [8] that remains
is Telescope Conjecture. An account of our unsuccessful attempt to disprove it is
given in Mahowald, Ravenel, and Shick [1].

Another big development is the emergence of elliptic cohomology and the theory
of topological modular forms. There is still no comprehensive introduction to this
topic. Some good papers to start with are Ando, Hopkins and Strickland [1],
Hopkins and Mahowald [2], Landweber, Ravenel and Stong [8], and Rezk [1], which
is an account of the still unpublished Hopkins-Miller theorem.

The seventh and final chapter of the book has been completely rewritten and is
nearly twice as long as the original. We did this with an eye to carrying out future
research in this area.

I am grateful to the many would be readers who urged me to republish this
book and to the AMS for its assistance in getting the original manuscript retypeset.
Peter Landweber was kind enough to provide me with a copious list of misprints
he found in the first edition. Nori Minami and Igor Kriz helped in correcting some
errors in § 4.3. Mike Hill and his fellow MIT students provided me with a timely
list of typos in the online version of this edition. Hirofumi Nakai was very helpful
in motivating me to make the revisions of Chapter 7.

xvii
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Z Integers

Z, p-agic integers

Z,) Integers localized at p

Z/(p) Integers mod p

Q Rationals

Q, p-adic numbers

P(z) Polynomial algebra on generators x
E(x) Exterior algebra on generators x

O Cotensor product (Section A1.1)

Given suitable objects A, B, and C and a map f: A — B, the evident map
A®C — B®C(C is denoted by f® C.
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CHAPTER 1

An Introduction to the Homotopy Groups
of Spheres

This chapter is intended to be an expository introduction to the rest of the book.
We will informally describe the spectral sequences of Adams and Novikov, which
are the subject of the remaining chapters. Our aim here is to give a conceptual
picture, suppressing as many technical details as possible.

In Section 1 we list some theorems which are classical in the sense that they do
not require any of the machinery described in this book. These include the Hurewicz
theorem 1.1.2, the Freudenthal suspension theorem 1.1.4, the Serre finiteness theo-
rem 1.1.8, the Nishida nilpotence theorem 1.1.9, and the Cohen—Moore—Neisendorfer
exponent theorem 1.1.10. They all pertain directly to the homotopy groups of
spheres and are not treated elsewhere here. The homotopy groups of the stable
orthogonal group SO are given by the Bott periodicity theorem 1.1.11. In 1.1.12
we define the J-homomorphism from 7;(SO(n)) to m,4;(S™). Its image is given
in 1.1.13, and in 1.1.14 we give its cokernel in low dimensions. Most of the former
is proved in Section 5.3.

In Section 2 we describe Serre’s method of computing homotopy groups using
cohomological techniques. In particular, we show how to find the first element of
order p in 7,(S%) 1.2.4. Then we explain how these methods were streamlined by
Adams to give his celebrated spectral sequence 1.2.10. The next four theorems
describe the Hopf invariant one problem. A table showing the Adams spectral
sequence at the prime 2 through dimension 45 is given in 1.2.15. In Chapter 2
we give a more detailed account of how the spectral sequence is set up, including
a convergence theorem. In Chapter 3 we make many calculations with it at the
prime 2.

In 1.2.16 we summarize Adams’ method for purposes of comparing it with
that of Novikov. The basic idea is to use complex cobordism (1.2.17) in place
of ordinary mod (p) cohomology. FiG. 1.2.19 is a table of the Adams-Novikov
spectral sequence for comparison with Fi1Gg. 1.2.15.

In the next two sections we describe the algebra surrounding the Es-term of
the Adams—Novikov spectral sequence. To this end formal group laws are defined
in 1.3.1 and a complete account of the relevant theory is given in Appendix 2. Their
connection with complex cobordism is the subject of Quillen’s theorem (1.3.4) and
is described more fully in Section 4.1. The Adams—Novikov Fs-term is described in
terms of formal group law theory (1.3.5) and as an Ext group over a certain Hopf
algebra (1.3.6).

The rest of Section 3 is concerned with the Greek letter construction, a method
of producing infinite periodic families of elements in the Es-term and (in favorable
cases) in the stable homotopy groups of spheres. The basic definitions are given in
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1.3.17 and 1.3.19 and the main algebraic fact required is the Morava—Landweber
theorem (1.3.16). Applications to homotopy are given in 1.3.11, 1.3.15, and 1.3.18.
The section ends with a discussion of the proofs and possible extensions of these
results. This material is discussed more fully in Chapter 5.

In Section 4 we describe the deeper algebraic properties of the Es-term. We
start by introducing BP and defining a Hopf algebroid. The former is a minimal
wedge summand of MU localized at a prime. A Hopf algebroid is a generalized
Hopf algebra needed to describe the Adams—Novikov Es-term more conveniently in
terms of BP (1.4.2). The algebraic and homological properties of such objects are
the subject of Appendix 1.

Next we give the Lazard classification theorem for formal group laws (1.4.3)
over an algebraically closed field of characteristic p, which is proved in Section A2.2.
Then we come to Morava’s point of view. Theorem 1.3.5 describes the Adams—Novikov
Es-term as the cohomology of a certain group G with coefficients in a certain poly-
nomial ring L. Spec(L) (in the sense of abstract algebraic geometry) is an infinite
dimensional affine space on which G acts. The points in Spec(L) can be thought
of as formal group laws and the G-orbits as isomorphism classes, as described in
1.4.3. This orbit structure is described in 1.4.4. For each orbit there is a stabilizer
or isotropy subgroup of G called S,,. Its cohomology is related to that of G (1.4.5),
and its structure is known. The theory of Morava stabilizer algebras is the algebraic
machinery needed to exploit this fact and is the subject of Chapter 6. Our next
topic, the chromatic spectral sequence (1.4.8, the subject of Chapter 5), connects
the theory above to the Adams—Novikov Fs-term. The Greek letter construction
fits into this apparatus very neatly.

Section 5 is about unstable homotopy groups of spheres and is not needed for
the rest of the book. Its introduction is self-explanatory.

1. Classical Theorems Old and New

We begin by recalling some definitions. The nth homotopy group of a connected
space X, m,(X), is the set of homotopy classes of maps from the n-sphere S™ to X.
This set has a natural group structure which is abelian for n > 2.

We now state three classical theorems about homotopy groups of spheres.
Proofs can be found, for example, in Spanier [1].

1.1.1. THEOREM. m(S') =Z and 7, (SY) =0 for m > 1. O

1.1.2. HUREWICZ’S THEOREM. 7,(S™) = Z and 7, (S™) = 0 for m < n.
A generator of m,(S™) is the class of the identity map. O

For the next theorem we need to define the suspension homomorphism
0 T (S™) = Ty (S™HY).

1.1.3. DEFINITION. The kth suspension X*X of a space X is the quotient of
I¥ x X obtained by collapsing OI* x X onto OI*, OI* being the boundary of I*,
the k-dimensional cube. Note that £'¥IX = XX and LF f: ¥ X — BFY is the
quotient of 1 x f: I* x X — I* x Y. In particular, given f: S™ — S™ we have
Yf: Smtl 5 St which induces a homomorphism 1, (S™) — Ty (S, O

1.1.4. FREUDENTHAL SUSPENSION THEOREM. The suspension homomorphism
0 Tk (S™) = Tnirt1(S™TY) defined above is an isomorphism for k <n —1 and
a surjection for k =n — 1. O
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1.1.5. COROLLARY. The group m,1x(S™) depends only on k ifn>k+1. O

1.1.6. DEFINITION. The stable k-stem or kth stable homotopy group of spheres
w08 mpyk(S™) for n >k + 1. The groups m,.,(S™) are called stable if n >k + 1
and unstable if n < k+ 1. When discussing stable groups we will not make any
notational distinction between a map and its suspensions. ([l

The subsequent chapters of this book will be concerned with machinery for
computing the stable homotopy groups of spheres. Most of the time we will not
be concerned with unstable groups. The groups W,f are known at least for k£ < 45.
See the tables in Appendix 3, along with Theorem 1.1.13. Here is a table of ﬂ,f for
k < 15:

k0] 1 2 3 [4[5] 6 7 8
m | Z]2/(2) [2/(2) [ Z/(24) [0]0]Z/(2) | Z/(240) | (Z/(2))?

k 9 10 11 [12] 13 14 15
m | (Z2/2)° [ Z/6 | Z/(504) | 0 | Z/(3) | (Z/(2))° | Z/(480) & Z/(2)

This should convince the reader that the groups do not fall into any obvious pattern.
Later in the book, however, we will present evidence of some deep patterns not
apparent in such a small amount of data. The nature of these patterns will be
discussed later in this chapter.

When homotopy groups were first defined by Hurewicz in 1935 it was hoped
that m,4+%(S™) = 0 for k > 0, since this was already known to be the case for n =1
(1.1.1). The first counterexample is worth examining in some detail.

1.1.7. EXAMPLE. m3(5%)=Z generated by the class of the Hopf map n: % — 52
defined as follows. Regard S? (as Riemann did) as the complex numbers C with a
point at infinity. S3 is by definition the set of unit vectors in R* = C2. Hence a
point in S? is specified by two complex coordinates (21, 22). Define by

(21, 29) = {21/22 if 29 £40

It is easy to verify that 7 is continuous. The inverse image under 7 of any point
in S? is a circle, specifically the set of unit vectors in a complex line through the
origin in C2, the set of all such lines being parameterized by S?. Closer examination
will show that any two of these circles in S® are linked. One can use quaternions
and Cayley numbers in similar ways to obtain maps v: S7 — S* and o: S — S8,
respectively. Both of these represent generators of infinite cyclic summands. These
three maps (7, v, and o) were all discovered by Hopf [1] and are therefore known
as the Hopf maps.

We will now state some other general theorems of more recent vintage.

1.1.8. FINITENESS THEOREM (Serre [3]). m,4%(S™) is finite for k > 0 except
when n =2m, k =2m — 1, and 74y _1(S*™) = Z & F,,,, where F,, is finite. |
The next theorem concerns the ring structure of 73 = D~ ﬂ,f which is in-
duced by composition as follows. Let o € ﬂf and B € Wf be represented by

f: 8"t — S" and g: STt Snti respectively, where n is large. Then
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aff € 77, ; is defined to be the class represented by f-g: S*** — S™ Tt can be
shown that o = (—1)7af, so ¥ is an anticommutative graded ring.

1.1.9. NiLpoTENCE THEOREM (Nishida [1]). Each element o € w for k > 0
is milpotent, i.e., ot = 0 for some finite t. ([

For the next result recall that 1.1.8 says 7r21-+1+j(52”1) is a finite abelian group
for all 7 > 0.

1.1.10. EXPONENT THEOREM (Cohen, Moore, and Neisendorfer [1]). Forp > 5
the p-component of moi114;(S** ') has exponent p', i.e., each element in it has
order < p'. O

This result is also true for p = 3 (Neisendorfer [1]) as well, but is known to be
false for p = 2. For example, the 2-component of 3-stem is cyclic of order 4 (see Fig.
3.3.18) on S and of order 8 on S® (see Fig. 3.3.10). It is also known (Gray [1]) to
be the best possible, i.e., ;114 (5’2”1) is known to contain elements of order p’
for certain j.

We now describe an interesting subgroup of 72, the image of the Hopf-White-
head J-homomorphism, to be defined below. Let SO(n) be the space of nxn special
orthogonal matrices over R with the standard topology. SO(n) is a subspace of
SO(n + 1) and we denote |J,,-,SO(n) by SO, known as the stable orthogonal
group. It can be shown that m;(SO) = 7;(SO(n)) if n > i+ 1. The following result
of Bott is one of the most remarkable in all of topology.

1.1.11. BorT PERIODICITY THEOREM (Bott [1]; see also Milnor [1]).

Z ift=-1 mod4
mi(SO)=¢Z/(2) ifi=0o0r1l mod38 0
0 otherwise.

We will now define a homomorphism J: m;(SO(n)) — m,4;(S™). Let o €
7;(SO(n)) be the class of f: S* — SO(n). Let D" be the n-dimensional disc, i.e.,
the unit ball in R™. A matrix in SO(n) defines a linear homeomorphism of D™ to
itself. We define f: S*x D™ — D" by f(x,y) = f(x)(y), where z € S, y € D™, and
f(x) € SO(n). Next observe that S™ is the quotient of D™ obtained by collapsing
its boundary S™~! to a single point, so there is a map p: D™ — S™, which sends
the boundary to the base point. Also observe that S™*?, being homeomorphic to
the boundary of D'*! x D", is the union of S* x D™ and D**! x S"~1 along their
common boundary S* x §"~1. We define f: S"** — S™ to be the extension of
pf: St x D™ — S™ to S™* which sends the rest of S"** to the base point in S™.

1.1.12. DEFINITION. The Hopf-Whitehead J-homomorphism J: m;(SO(n)) —
Tnti(S™) sends the class of f: S* — SO(n) to the class of f: S"T" — S™ as
described above. d

We leave it to the skeptical reader to verify that the above construction actually
gives us a homomorphism.

Note that both m;(SO(n)) and m,;(S™) are stable, i.e., independent of n, if
n > i+ 1. Hence we have J: m(SO) — m7. We will now describe its image.

1.1.13. THEOREM (Adams [1] and Quillen [1]). J: 7 (SO) — 7% is a monomor-
phism fork =0 or1 mod 8 and J(mar—1(S0)) is a cyclic group whose 2-component



2. METHODS OF COMPUTING 7, (S™) 5

is Z(2)/(8k) and whose p-component for p > 3 is Z, /(pk) if (p — 1) | 2k and O if
(p—1) {2k, where Z(y,) denotes the integers localized at p. In dimensions 1, 3, and
7, im J is generated by the Hopf maps (1.1.7) n, v, and o, respectively. If we denote
by x the generator in dimension 4k — 1, then nxgy and n’xay are the generators
of im J in dimensions 8k and 8k + 1, respectively. O

The image of J is also known to a direct summand; a proof can be found for
example at the end of Chapter 19 of Switzer [1]. The order of J(m4r—1(SO)) was
determined by Adams up to a factor of two, and he showed that the remaining
ambiguity could be resolved by proving the celebrated Adams conjecture, which
Quillen and others did. Denote this number by a. Its first few values are tabulated
here.

k|1 2 3 4 5 6 7 8 9 10
ap | 24 | 240 | 504 | 480 | 264 | 65,520 | 24 | 16,320 | 28,728 | 13,200

The number a; has interesting number theoretic properties. It is the denominator
of By /4k, where By, is the kth Bernoulli number, and it is the greatest common
divisor of numbers n*(™) (n?* —1) for n € Z and t(n) sufficiently large. See Adams [1]
and Milnor and Stasheff [5] for details.

Having determined im J, one would like to know something systematic about
coker J, i.e., something more than its structure through a finite range of dimensions.
For the reader’s amusement we record some of that structure now.

1.1.14. THEOREM. In dimensions < 15, the 2-component of coker J has the
following generators, each with order 2:

772€7r§, V2€7Tg, I7€7T§7 nﬁzysewg, /16775,
nwE Ty, o>Emy, KET, and 7K € Tis.

(There are relations n° = 4v and n*u = 4x3). For p > 3 the p-component of coker J
has the following generators in dimensions < 3pq— 6 (where ¢ = 2p — 2), each with
order p:

ﬁl S qu_g, 041,51 S 7T57+1)q_3

where oy = T(p_1)/2 € ﬂ(‘;’ll is the first generator of the p-component of im J,

2 S 2 S S
ﬂl € 7T2pq—47 O‘lﬁl € 7-‘-(2111—&-1)(1—57 52 € 7.‘-(219—&-1)(]—27
S 3 S
a1 € T(2p+2)g—3+ and fy € T3pg—6- O

The proof and the definitions of new elements listed above will be given later
in the book, e.g., in Section 4.4.

2. Methods of Computing 7, (S™)

In this section we will informally discuss three methods of computing homotopy
groups of spheres, the spectral sequences of Serre, Adams, and Novikov. A fourth
method, the EHP sequence, will be discussed in Section 5. We will not give any
proofs and in some cases we will sacrifice precision for conceptual clarity, e.g., in
our identification of the Es-term of the Adams—Novikov spectral sequence.

The Serre spectral sequence (circa 1951) (Serre [2]) is included here mainly
for historical interest. It was the first systematic method of computing homotopy
groups and was a major computational breakthrough. It has been used as late as
the 1970s by various authors (Toda [1], Oka [1, 2, 3]), but computations made
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with it were greatly clarified by the introduction of the Adams spectral sequence
in 1958 in Adams [3]. In the Adams spectral sequence the basic mechanism of the
Serre spectral sequence information is organized by homological algebra.

For the 2-component of 7, (S™) the Adams spectral sequence is indispensable to
this day, but the odd primary calculations were streamlined by the introduction of
the Adams—Novikov spectral sequence (Adams—Novikov spectral sequence) in 1967
by Novikov [1]. It is the main subject in this book. Its Fs-term contains more
information than that of the Adams spectral sequence; i.e., it is a more accurate
approximation of stable homotopy and there are fewer differentials in the spectral
sequence. Moreover, it has a very rich algebraic structure, as we shall see, largely
due to the theorem of Quillen [2], which establishes a deep (and still not satisfac-
torily explained) connection between complex cobordism (the cohomology theory
used to define the Adams—Novikov spectral sequence; see below) and the theory of
formal group laws. Every major advance in the subject since 1969, especially the
work of Jack Morava, has exploited this connection.

We will now describe these three methods in more detail. The starting point
for Serre’s method is the following classical result.

1.2.1. THEOREM. Let X be a simply connected space with H;(X) =0 fori <n
for some positive integer n > 2. Then
(a) (Hurewicz [1]). m(X) = H,(X).
(b) (Eilenberg and Mac Lane [2]). There is a space K(mw,n), characterized up
to homotopy equivalence by
T ifi=n

mi(K(m,n)) = {0 if i # n.

If X is above and m = m,(X) then there is a map f: X — K(mw,n) such that H,(f)
and m,(f) are isomorphisms. O

1.2.2. COROLLARY. Let F be the fiber of the map f above. Then

+(X) fori> 1
I -
0 for i < n.

In other words, F' has the same homotopy groups as X in dimensions above
n, so computing 7, (F) is as good as computing 7. (X). Moreover, H,(K(m,n)) is
known, so H,(F') can be computed with the Serre spectral sequence applied to the
fibration FF — X — K(m,n).

Once this has been done the entire process can be repeated: let n’ > n be the
dimension of the first nontrivial homology group of F' and let H, (F) = «’. Then
T (F) = 7 (X) = 7’ is the next nontrivial homotopy group of X. Theorem 1.2.1
applied to F gives a map f': F — K(n',n’) with fiber F’, and 1.2.2 says

i(F') = mi(X) fori>n'
! 0 for i < n'.

Then one computes H,(F"') using the Serre spectral sequence and repeats the pro-
cess.

As long as one can compute the homology of the fiber at each stage, one can
compute the next homotopy group of X. In Serre [3] a theory was developed
which allows one to ignore torsion of order prime to a fixed prime p throughout the
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calculation if one is only interested in the p-component of 7.(X). For example, if
X = 3, one uses 1.2.1 to get a map to K(Z,3). Then H,(F) is described by:

1.2.3. LEMMA. If F is the fibre of the map f: S — K(Z,3) given by 1.2.1,
then
Z/(m) ifi=2mand m>1
0 otherwise.

H;(F)= { O
1.2.4. COROLLARY. The first p-torsion in m.(S®) is Z/(p) in ma,(S®) for any
prime p. [l

PRrOOF OF 1.2.3. (It is so easy we cannot resist giving it.) We have a fibration
0K (Z,3) = K(Z,2) - F - S°

and H*(K(Z,2)) = H*(CP>) = Z[z], where z € H?*(CP*) and CP> is an
infinite-dimensional complex projective space. We will look at the Serre spectral
sequence for H*(F') and use the universal coefficient theorem to translate this to
the desired description of H,.(F). Let u be the generator of H3(S®). Then in the
Serre spectral sequence we must have ds(z) = £u; otherwise F' would not be 3-
connected, contradicting 1.1.2. Since dj is a derivation we have d3(z") = tnuz™~!.
It is easily seen that there can be no more differentials and we get

Z/(m) ifti=2m+1,m>1
0 otherwise

H'(F) = {
which leads to the desired result. O

If we start with X = S™ the Serre spectral sequence calculations will be much
easier for m4,(S™) for kK < n — 1. Then all of the computations are in the stable
range, i.e., in dimensions less than twice the connectivity of the spaces involved.

This means that for a fibration F 5 X i> K, the Serre spectral sequence gives a
long exact sequence

(1.2.5) o Hy(F) 5 Hy(X) L5 Hy(K) S Hy_(F) = -

where d corresponds to Serre spectral sequence differentials. Even if we know
H,(X), H.(K), and f., we still have to deal with the short exact sequence

(1.2.6) 0 — coker f, — H.(F) — ker f,. — 0.

It may lead to some ambiguity in H,(F'), which must be resolved by some other
means. For example, when computing 7, (S™) for large n one encounters this prob-
lem in the 3-component of m,110(S™) and the 2-component of m,14(S™). This
difficulty is also present in the Adams spectral sequence, where one has the pos-
sibility of a nontrivial differential in these dimensions. These differentials were
first calculated by Adams [12], Liulevicius [2], and Shimada and Yamanoshita [3]
by methods involving secondary cohomology operations and later by Adams and
Atiyah [13] by methods involving K-theory

The Adams spectral sequence of Adams [3] begins with a variation of Serre’s
method. One works only in the stable range and only on the p-component. Instead
of mapping X to K(m,n) asin 1.2.1, one maps to K =[], K(H/(X;Z/(p)),j) by
a certain map g which induces a surjection in mod (p) cohomology. Let X; be the
fiber of g. Define spaces X; and K; inductively by K; = ][, K(H¥(Xi;Z/(p)),5)
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and X;.1 is the fiber of g: X; — K; (this map is defined in Section 2.1, where the
Adams spectral sequence is discussed in more detail). Since H*(g;) is onto, the
analog of 1.2.5 is an short exact sequence in the stable range

(1.2.7) 0+ H*(X;) « H"(K;) « H*(2X;11) < 0,
where all cohomology groups are understood to have coefficients Z/(p). Moreover,

H*(K;) is a free module over the mod (p) Steenrod algebra A, so if we splice
together the short exact sequences of 1.2.7 we get a free A-resolution of H*(X)

(1.2.8) 0+ H*(X) + H*(K) + H*(Z'K;) + H*(X*K3) < - --
Each of the fibration X;;1 — X; — K; gives a long exact sequence of homotopy
groups. Together these long exact sequences form an exact couple and the asso-

ciated spectral sequence is the Adams spectral sequence for the p-component of
m(X). If X has finite type, the diagram

(1.2.9) K—Y'K 272Ky — -

(which gives 1.2.8 in cohomology) gives a cochain complex of homotopy groups
whose cohomology is Ext4(H*(X);Z/(p)). Hence one gets

1.2.10. THEOREM (Adams [3]). There is a spectral sequence converging to the
p-component of T4k (S™) for k <n—1 with

By = Ext}'(Z/(p), Z/(p)) = H*"(4)

and d,.: E$t — EStrHr=1 " Here the groups ES! for t — s = k form the associated
graded group to a filtration of the p-component of mn1x(S™). O

Computing this Fs-term is hard work, but it is much easier than making similar
computations with Serre spectral sequence. The most widely used method today is
the spectral sequence of May [1, 2] (see Section 3.2). This is a trigraded spectral
sequence converging to H**(A), whose Es-term is the cohomology of a filtered form
of the Steenrod algebra. This method was used by Tangora [1] to compute E§’t
for p =2 and t — s < 70. Most of his table is reproduced here in FiG. A3.1la—c.
Computations for odd primes can be found in Nakamura [2].

As noted above, the Adams Fs-term is the cohomology of the Steenrod algebra.
Hence Ey* = H'(A) is the indecomposables in A. For p = 2 one knows that A
is generated by Sq?' for i > 0; the corresponding elements in Ey™* are denoted by
h; € E;z For p > 2 the generators are the Bockstein 3 and PP’ for i > 0 and the

corresponding elements are ag € Ey' and h; € EQL‘”’Z, where ¢ = 2p — 2.
For p = 2 these elements figure in the famous Hopf invariant one problem.

1.2.11. THEOREM (Adams [12]). The following statements are equivalent.

(a) 52—V is parallelizable, i.e., it has 20 —1 globally linearly independent tangent
vector fields.

(b) There is a division algebra (not necessarily associative) over R of dimen-
sion 2t _ _

(¢) There is a map S*2 ~1 — S?' of Hopf invariant one (see 1.5.2).

(d) There is a 2-cell complex X = S Ue? [the cofiber of the map in (c)] in
which the generator of HTH(X) is the square of the generator of H? (X).

(e) The element h; € E21’21 is a permanent cycle in the Adams spectral sequence.

O
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Condition (b) is clearly true for ¢ = 0, 1, 2 and 3, the division algebras being
the reals R, the complexes C, the quaternions H and the Cayley numbers, which
are nonassotiative. The problem for ¢ > 4 is solved by

1.2.12. THEOREM (Adams [12]). The conditions of 1.2.11 are false for i > 4
and in the Adams spectral sequence one has dg(h;) = hoh?_| # 0 fori > 4. O

For ¢ = 4 the above gives the first nontrivial differential in the Adams spectral
sequence. Its target has dimension 14 and is related to the difficulty in Serre’s
method referred to above.

The analogous results for p > 2 are

1.2.13. THEOREM (Liulevicius [2] and Shimada and Yamanoshita [3]). The
following are equivalent.

(a) There is a map G2 =1y G20 iy Hopf invariant one (see 1.5.3 for the
definition of the Hopf invariant and the space §2m).

(b) There is a p-cell complex X = §2P" U el Uet? U--- U e [the cofiber
of the map in (a)] whose mod (p) cohomology is a truncated polynomial algebra on
one generator.

(¢) The element h; € E;’qu is a permanent cycle in the Adams spectral sequence.

O

The element hg is the first element in the Adams spectral sequence above
dimension zero so it is a permanent cycle. The corresponding map in (a) suspends
to the element of m2,(S?) given by 1.2.4. For i > 1 we have

1.2.14. THEOREM (Liulevicius [2] and Shimada and Yamanoshita [3]). The
conditions of 1.2.13 are false for i > 1 and da(h;) = agbi—1, where bi_1 is a

generator of EX" (see Section 5.2). O

For i = 1 the above gives the first nontrivial differential in the Adams spectral
sequence for p > 2. For p = 3 its target is in dimension 10 and was referred to
above in our discussion of Serre’s method.

Fic. 1.2.15 shows the Adams spectral sequence for p = 3 through dimension
45. We present it here mainly for comparison with a similar figure (1.2.19) for the
Adams-Novikov spectral sequence. ES" is a Z/(p) vector space in which each basis
element is indicated by a small circle. Fortunately in this range there are just two
bigradings [(5,28) and (8,43)] in which there is more than one basis element. The
vertical coordinate is s, the cohomological degree, and the horizontal coordinate
is t — s, the topological dimension. These extra elements appear in the chart to
the right of where they should be, and the lines meeting them should be vertical.
A d, is indicated by a line which goes up by r and to the left by 1. The vertical
lines represent multiplication by ag € Eé’l and the vertical arrow in dimension
zero indicates that all powers of ag are nonzero. This multiplication corresponds to
multiplication by p in the corresponding homotopy group. Thus from the figure one
can read off T = Z, T11 = T45 = Z/(g), o3 = Z/(Q) D Z/(3), and T35 = Z/(27)
Lines that go up 1 and to the right by 3 indicate multiplication by hy € E21’4,
while those that go to the right by 7 indicate the Massey product (hg, hg, —) (see
A1.4.1). The elements ag and h; for i = 0, 1, 2 were defined above and the elements
by € Eg’u, ko € EE’QS, and b, € E§’36 are up to the sign the Massey products
(ho, ho, ho), (ho,h1,h1), and (h1, h1,h1), respectively. The unlabeled elements in
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EY" ! for i > 2 (and hg € E21’4) are related to each other by the Massey product
(ho, ap, —). This accounts for all of the generators except those in ES 26 E;’% and
ES ’50, which are too complicated to describe here.

We suggest that the reader take a colored pencil and mark all of the elements
which survive to F,, i.e., those which are not the source or target of a differential.
There are in this range 31 differentials which eliminate about two-thirds of the
elements shown.

Now we consider the spectral sequence of Adams and Novikov, which is the
main object of interest in this book. Before describing its construction we review
the main ideas behind the Adams spectral sequence. They are the following.

1.2.16. PROCEDURE. (i) Use mod (p)-cohomology as a tool to study the p-
component of 7,(X). (ii) Map X to an appropriate Eilenberg—Mac Lane space K,
whose homotopy groups are known. (iii) Use knowledge of H*(K), i.e., of the
Steenrod algebra, to get at the fiber of the map in (ii). (iv) Iterate the above and
codify all information in a spectral sequence as in 1.2.10. O

An analogous set of ideas lies behind the Adams—Novikov spectral sequence,
with mod p cohomology being replaced by complex cobordism theory. To elaborate,
we first remark that “cohomology” in 1.2.16(i) can be replaced by “homology” and
1.2.10 can be reformulated accordingly; the details of this reformulation need not
be discussed here. Recall that singular homology is based on the singular chain
complex, which is generated by maps of simplices into the space X. Cycles in
the chain complex are linear combinations of such maps that fit together in an
appropriate way. Hence H.(X) can be thought of as the group of equivalence
classes of maps of certain kinds of simplicial complexes, sometimes called “geometric
cycles,” into X.

Our point of departure is to replace these geometric cycles by closed complex
manifolds. Here we mean “complex” in a very weak sense; the manifold M must
be smooth and come equipped with a complex linear structure on its stable normal
bundle, i.e., the normal bundle of some embedding of M into a Euclidean space
of even codimension. The manifold M need not be analytic or have a complex
structure on its tangent bundle, and it may be odd-dimensional.

The appropriate equivalence relation among maps of such manifolds into X is
the following.

1.2.17. DEFINITION. Maps f;: M — X (i =1, 2) of n-dimensional complex (in
the above sense) manifolds into X are bordant if there is a map g: W — X where W
is a complex mainfold with boundary OW = My U Ms such that g|M; = f;. (To
be correct we should require the restriction to My to respect the complex structure
on My opposite to the given one, but we can ignore such details here.) O

One can then define a graded group MU, (X), the complez bordism of X, anal-
ogous to H,(X). It satisfies all of the Eilenberg—Steenrod axioms except the dimen-
sion axiom, i.e., MU, (pt), is not concentrated in dimension zero. It is by definition
the set of equivalence classes of closed complex manifolds under the relation of
1.2.17 with X = pt, i.e., without any condition on the maps. This set is a ring
under disjoint union and Cartesian product and is called the complex bordism ring.
as are the analogous rings for several other types of manifolds; see Stong [1].

1.2.18. THEOREM (Thom [1], Milnor [4], Novikov [2]). The complex bordism
ring, MU, (pt), is Z[x1,x2,...| where dimx; = 2i. a
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Now recall 1.2.16. We have described an analog of (i), i.e., a functor MU, (—)
replacing H,(—). Now we need to modify (ii) accordingly, e.g., to define analogs of
the Eilenberg—Mac Lane spaces. These spaces (or rather the corresponding spec-
trum MU) are described in Section 4.1. Here we merely remark that Thom’s
contribution to 1.2.18 was to equate MU;(pt) with the homotopy groups of certain
spaces and that these spaces are the ones we need.

To carry out the analog of 1.2.16(iii) we need to know the complex bordism of
these spaces, which is also described (stably) in Section 4.1. The resulting spec-
tral sequence is formally introduced in Section 4.4, using constructions given in
Section 2.2. We will not state the analog of 1.2.10 here as it would be too much
trouble to develop the necessary notation. However we will give a figure analogous
to 1.2.15.

The notation of F1G. 1.2.19 is similar to that of F1c. 1.2.15 with some minor
differences. The Es-term here is not a Z/(3)-vector space. Elements of order > 3
occur in ES -0 (an infinite cyclic group indicated by a square), and in E21 128 and
ES’AS, in which a generator of order 3**! is indicated by a small circle with k
parentheses to the right. The names a4, 3¢, and ,/, will be explained in the next
section. The names ag; refer to elements of order 3 in, rather than generators of,
E21’12t. In ES’AS the product «;fs is divisible by 3.

One sees from these two figures that the Adams—Novikov spectral sequence
has far fewer differentials than the Adams spectral sequence. The first nontrivial
Adams—Novikov differential originates in dimension 34 and leads to the relation
a1} in m.(SY). It was first established by Toda [2, 3].

3. The Adams—Novikov Es-term, Formal Group Laws,
and the Greek Letter Construction

In this section we will describe the Es-term of the Adams—Novikov spectral
sequence introduced at the end of the previous section. We begin by defining formal
group laws (1.3.1) and describing their connection with complex cobordism (1.3.4).
Then we characterize the Es-term in terms of them (1.3.5 and 1.3.6). Next we
describe the Greek letter construction, an algebraic method for producing periodic
families of elements in the Fs-term. We conclude by commenting on the problem
of representing these elements in 2.

Suppose T is a one-dimensional commutative analytic Lie group and we have
a local coordinate system in which the identity element is the origin. Then the
group operation T x T' — T can be described locally as a real-valued analytic
function of two variables. Let F(x,y) € R][z,y]] be the power series expan-
sion of this function about the origin. Since 0 is the identity element we have
F(z,0) = F(0,z) = x. Commutativity and associativity give F(z,y) = F(y,x)
and F(F(z,y),z) = F(z, F(y, 2)), respectively.

1.3.1. DEFINITION. A formal group law over a commutative ring with unit R
is a power series F(x,y) € R[[z,y]] satisfying the three conditions above. O

Several remarks are in order. First, the power series in the Lie group will have
a positive radius of convergence, but there is no convergence condition in the defini-
tion above. Second, there is no need to require the existence of an inverse because
it exists automatically. It is a power series i(z) € R[[z]] satistying F(z,i(z)) = 0;
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it is an easy exercise to solve this equation for i(x) given F. Third, a rigorous
self-contained treatment of the theory of formal group laws is given in Appendix 2.

Note that F(x,0) = F(0,z) = x implies that F = 2 +y mod (z,y)? and that
x+y is therefore the simplest example of a formal group law; it is called the additive
formal group law and is denoted by F,. Another easy example is the multiplicative
formal group law, F,, = z+y+rzy for r € R. These two are known to be the only
formal group laws which are polynomials. Other examples are given in A2.1.4.

To see what formal group laws have to do with complex cobordism and the
Adams—Novikov spectral sequence, consider MU*(CP>), the complex cobordism
of infinite-dimensional complex projective space. Here MU*(—) is the cohomol-
ogy theory dual to the homology theory MU, (—) (complex bordism) described in
Section 2. Like ordinary cohomology it has a cup product and we have

1.3.2. THEOREM. There is an element v € MU?(CP®>) such that
MU"(CP*) = MU"(pt)[[z]]

and
MU*(CP*® x CP*) = MU*(pt)[[x® 1,1 ® z]].
O

Here MU™*(pt) is the complex cobordism of a point; it differs from MU, (pt) (de-
scribed in 1.2.18) only in that its generators are negatively graded. The generator x
is closely related to the usual generator of H?(CP>), which we also denote by .
The alert reader may have expected MU*(CP>) to be a polynomial rather than a
power series ring since H*(CP®°) is traditionally described as Z[z]. However, the
latter is really Z[[z]] since the cohomology of an infinite complex maps onto the in-
verse limit of the cohomologies of its finite skeleta. [MU*(CP™), like H*(CP"), is a
truncated polynomial ring.] Since one usually considers only homogeneous elements
in H*(CP), the distinction between Z[z] and Z[[z]] is meaningless. However, one
can have homogeneous infinite sums in MU*(CP>) since the coefficient ring is
negatively graded.

Now CP° is the classifying space for complex line bundles and there is a map
p: CP>® x CP*® — CP* corresponding to the tensor product; in fact, CP* is
known to be a topological abelian group. By 1.3.2 the induced map p* in complex
cobordism is determined by its behavior on the generator x € MU?(CP*) and one
easily proves, using elementary facts about line bundles,

1.3.3. PROPOSITION. For the tensor product map p: CP* x CP>* — CP*,
p(z) = Fy(z® 1,1 ®xz) € MU*(pt)[[z ® 1,1 @ z]] is an formal group law over
MU*(pt). O

A similar statement is true of ordinary cohomology and the formal group law
one gets is the additive one; this is a restatement of the fact that the first Chern
class of a tensor product of complex line bundles is the sum of the first Chern
classes of the factors. One can play the same game with complex K-theory and get
a multiplicative formal group law.

CP> is a good test space for both complex cobordism and K-theory. One
can analyze the algebra of operations in both theories by studying their behavior
in CP* (see Adams [5]) in the same way that Milnor [2] analyzed the mod (2)
Steenrod algebra by studying its action on H*(RP>;Z/(2)). (See also Steenrod
and Epstein [1].)
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The formal group law of 1.3.3 is not as simple as the ones for ordinary cohomol-
ogy or K-theory; it is complicated enough to have the following universal property.

1.3.4. THEOREM (Quillen [2]). For any formal group law F over any commuta-
tive ring with unit R there is a unique ring homomorphism 6: MU*(pt) — R such
that F(z,y) = 0Fy(z,vy). O

We remark that the existence of such a universal formal group law is a triviality.
Simply write F(z,y) = Y a; j2'y" and let L = Z[a;;]/I, where I is the ideal
generated by the relations among the a; ; imposed by the definition 1.3.1 of an
formal group law. Then there is an obvious formal group law over L having the
universal property. Determining the explicit structure of L is much harder and was
first done by Lazard [1]. Quillen’s proof of 1.3.4 consisted of showing that Lazard’s
universal formal group law is isomorphic to the one given by 1.3.3.

Once Quillen’s Theorem 1.3.4 is proved, the manifolds used to define complex
bordism theory become irrelevant, however pleasant they may be. All of the ap-
plications we will consider follow from purely algebraic properties of formal group
laws. This leads one to suspect that the spectrum MU can be constructed some-
how using formal group law theory and without using complex manifolds or vector
bundles. Perhaps the corresponding infinite loop space is the classifying space for
some category defined in terms of formal group laws. Infinite loop space theorists,
where are you?

We are now just one step away from a description of the Adams—Novikov
spectral sequence Er-term. Let G = {f(z) € Z[[z]] | f(z) = = mod (z)?}.
Here G is a group under composition and acts on the Lazard/complex cobordism
ring L = MU, (pt) as follows. For g € G define a formal group law F, over L
by Fy(z,y) = g 'Fuy(g(z),9(y)). By 1.3.4 F, is induced by a homomorphism
04: L — L. Since g is invertible under composition, §, is an automorphism and we
have a G-action on L.

Note that g(z) defines an isomorphism between F' and Fj. In general, isomor-
phisms between formal group laws are induced by power series g(x) with leading
term a unit multiple (not necessarily one) of x. An isomorphism induced by a ¢ in
G is said to be strict.

1.3.5. THEOREM. The Es-term of the Adams—Novikov spectral sequence con-
verging to w2 is isomorphic to H**(G; L). O

There is a difficulty with this statement: since G does not preserve the grading
on L, there is no obvious bigrading on H*(G; L). We need to reformulate in terms
of L as a comodule over a certain Hopf algebra B defined as follows.

Let g € G be written as g(z) = > ,5 bz with by = 1. Each b; for i > 0 can
be thought of as a Z-valued function on G and they generate a graded algebra of
such functions
(Do not confuse this ring with L, to which it happens to be isomorphic.) The
group structure on G corresponds to a coproduct A: B — B ® B on B given by
A(b) = oo bt @b;, where b= 3", b; and by = 1 as before. To see this suppose

g(x) = gW (g® () with ¢¥) (z) = Zbgk)x“‘l Then we have

S b = 3o (o)
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from which the formula for A follows. This coproduct makes B into a graded
connected Hopf algebra over which L is a graded comodule. We can restate 1.3.5 as

1.3.6. THEOREM. The Es-term of the Adams—Novikov spectral sequence con-
verging to © is given by Ey' = Ext3'(Z,L). O

The definition of this Ext is given in A1.2.3; all of the relevant homological
algebra is discussed in Appendix 1.

Do not be alarmed if the explicit action of G (or coaction of B) on L is not
obvious to you. It is hard to get at directly and computing its cohomology is a very
devious business.

Next we will describe the Greek letter construction, which is a method for
producing lots (but by no means all) of elements in the Ea-term, including the ay’s
and f;’s seen in 1.2.19. We will use the language suggested by 1.3.5; the interested
reader can translate our statements into that of 1.3.6. Our philosophy here is that
group cohomology in positive degrees is too hard to comprehend, but H°(G; M)
(the G-module M will vary in the discussion), the submodule of M fixed by G, is
relatively straightforward. Hence our starting point is

1.3.7. THEOREM. H°(G; L) = Z concentrated in dimension 0. O

This corresponds to the O-stem in stable homotopy. Not a very promising
beginning you say? It does give us a toehold on the problem. It tells us that the
only principal ideals in L which are G-invariant are those generated by integers and
suggests the following. Fix a prime number p and consider the short exact sequence
of G-modules

(1.3.8) 0—L%L—L/p)—0.
We have a connecting homomorphism
So: H'(G; L/(p)) — H(G; L).

1.3.9. THEOREM. H°(G;L/(p)) = Z/(p)[v1], where vy € L has dimension q =
2(p—1). |

1.3.10. DEFINITION. For t > 0 let oy = 8o(v}) € Ey?". O

It is clear from the long exact sequence in cohomology associated with 1.3.8
that a; # 0 for all ¢ > 0, so we have a collection of nontrivial elements in the
Adams—Novikov Es-term. We will comment below on the problems of constructing
corresponding elements in 7%; for now we will simply state the result.

1.3.11. THEOREM. (a) (Toda [4, IV]) For p > 2 each oy is represented by an
element of order p in 7r§t_1 which is in the image of the J-homomophism (1.1.12).
(b) For p =2 «; is so represented provided t 3 mod (4). Ift =2 mod (4)
then the element has order 4; otherwise it has order 2. It is inim J if t is even. O

Theorem 1.3.9 tells us that
(1.3.12) 0— X9L/(p) = L/(p) = L/(p,v1) — 0
is an short exact sequence of G-modules and there is a connecting homomorphism
o1: H'(Gy L/ (p,v1)) = H™H(G; L/ (p))-
The analogs of 1.3.9 and 1.3.10 are
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1.3.13. THEOREM. H°(G;L/(p,v1)) = Z/(p)[va] where vo € L has dimension
2(p? —1). O

1.3.14. DEFINITION. Fort > 0 let B; = §9d1(vh) € Egv“”“)q*q. O

More work is required to show that these elements are nontrivial for p > 2, and
B1 = 0 for p = 2. The situation in homotopy is

1.3.15. THEOREM (Smith [1]). For p > 5 B; is represented by a nontrivial
element of order p in 7T(p+1)tq,q,2(5’0). O

You are probably wondering if we can continue in this way and construct -,
d¢, etc. The following results allow us to do so.

1.3.16. THEOREM (Morava [3], Landweber [4]). (a) There are elements v, € L
of dimension 2(p™ — 1) such that I, = (p,v1,v9,...,0,—1) C L is a G-invariant
prime ideal for all n > 0.

(b) 0 — 22" -Vr/1, * L/I, = L/I,1 — 0 is an short exact sequence of
modules with connecting homorphism

§: H(G;L/I,41) — HTYG; L/1,).

(©) H(G: L/1,) = 2/(p)[v).

(d) The only G-invariant prime ideals in L are the I,, for 0 < n < oo for all
primes p. U

Part (d) above shows how rigid the G-action on L is; there are frightfully many

prime ideals in L, but only the I, for various primes are G-invariant. Using (b)
and (c) we can make

1.3.17. DEFINITION. For t,n > 0 let o\™ = 606y ... 6, 1(vl) € EP™*. O

Here o™ stands for the nth letter of the Greek alphabet, the length of which
is more than adequate given our current state of knowledge. The only other known
result comparable to 1.3.11 or 1.3.15 is

1.3.18. THEOREM. (a) (Miller, Ravenel, and Wilson [1]) The element
3,tq(p*+p+1)—q(p+2)

v € By is nontrivial for allt >0 and p > 2.
(b) (Toda [1]) For p > 7 each v is represented by a nontrivial element of
order p in Tyq(p2 +p11)—q(p+2)-3(5°)- O

It is known that not all ; exist in homotopy for p = 5 (see 7.6.1). Part (b)
above was proved several years before part (a). In the intervening time there was a
controversy over the nontriviality of v; which was unresolved for over a year, ending
in 1974 (see Thomas and Zahler [1]). This unusual state of affairs attracted the
attention of the editors of Science [1] and the New York Times [1], who erroneously
cited it as evidence of the decline of mathematics.

We conclude our discussion of the Greek letter construction by commenting
briefly on generalized Greek letter elements. Examples are f3/3 and S5/ (and
the elements in Ey* of order > 3) in 1.2.19. The elements come via connecting
homomorphisms from H°(G; L/J), where J is a G-invariant regular (instead of

prime) ideal. Recall that a regular ideal (29, z1,...,2,-1) C L is one in which each
x; 18 not a zero divisor modulo (xq,...,T;—1). _Hence G-invariant prime ideals are
regular as are ideals of the form (p,v}',...,v,"7'). Many but not all G-invariant

regular ideals have this form.
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1.3.19. DEFINITION. f,; (for appropriate s and t) is the image of vy €
H(G; L/(p,v})) and o,y is the image of vi € H(G; L/(p")). O

Hence pay /s = 41, as/1 = s, and By = B¢ by definition.

Now we will comment on the problem of representing these elements in the
Es-term by elements in stable homotopy, e.g., on the proofs of 1.3.11, 1.3.15, and
1.3.18(b). The first thing we must do is show that the elements produced are
actually nontrivial in the FEs-term. This has been done only for a’s, 8’s, and +’s.
For p = 2, 51 and ~; are zero but for ¢ > 1 §; and ; are nontrivial; these results
are part of the recent computation of E% " at p = 2 by Shimomura [1], which also
tells us which generalized (8’s are defined and are nontrivial. The corresponding
calculation at odd primes was done in Miller, Ravenel, and Wilson [1], as was that
of Ey* for all primes.

The general strategy for representing Greek letter elements geometrically is
to realize the relevant short exact sequences [e.g., 1.3.8, 1.3.12, and 1.3.16(b)] by
cofiber sequences of finite spectra. For any connective spectrum X there is an
Adams-Novikov spectral sequence converging to m.(X). Its Es-term [denoted by
FE5(X)] can be described as in 1.3.5 with L = MU, (S) replaced by MU, (X), which
is a G-module. For 1.3.8 we have a cofiber sequence

50 280 v (0),
where V(0) is the mod (p) Moore spectrum. It is known (2.3.4) that the long
exact sequence of homotopy groups is compatible with the long exact sequence
of Ey-terms. Hence the elements v! of 1.3.9 live in Ey?(V(0)) and for 1.3.11(a)
[which says a; is represented by an element of order p in my—1(S°) for p > 2
and t > 0] it would suffice to show that these elements are permanent cycles in
the Adams—Novikov spectral sequence for m,(V(0)) with p > 0. For ¢t = 1 (even if
p = 2) one can show this by brute force; one computes F2(V (0)) through dimension
q and sees that there is no possible target for a differential coming from v; € Eg .
Hence v is realized by a map
S?— V(0)

If we can extend it to X7V (0), we can iterate and represent all powers of v1. We can
try to do this either directly, using obstruction theory, or by showing that V(0) is a
ring spectrum spectrum. In the latter case our extension a would be the composite

SIAV(0) = V(0) AV(0) = V(0),

where the first map is the original map smashed with the identity on V' (0) and the
second is the multiplication on V(0). The second method is generally (in similar
situation of this sort) easier because it involves obstruction theory in a lower range
of dimensions.

In the problem at hand both methods work for p > 2 but both fail for p = 2. In
that case V'(0) is not a ring spectrum and our element in 75(V'(0)) has order 4, so it
does not extend to 2V (0). Further calculations show that v? and v both support
nontrivial differentials (see 5.3.13) but v{ is a permanent cycle represented by map
S8 — V(0), which does extend to X8V (0). Hence iterates of this map produce the
homotopy elements listed in 1.3.11(b) once certain calculation have been made in
dimensions < 8.

For p > 2 the map a: X9V (0) — V(0) gives us a cofibre sequence

$1V(0) 5 V(0) — V(1),
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realizing the short exact sequence 1.3.12. Hence to arrive at 1.3.15 (which describes

the s in homotopy) we need to show that vy € Ev'®T9(V(1)) is a permanent

cycle represented by a map which extends to 3: ©®*DV(1) — V(1). We can do
this for p > 5 but not for p = 3. Some partial results for 5’s at p = 3 and p = 2 are
described in Section 5.5.

The cofiber of the map 8 (corresponding to ve) for p > 5 is called V(2) by
Toda [1]. In order to construct the v’s [1.3.18(b)] one needs a map

v 2207 DY (2) 5 V(2)

corresponding to v3. Toda [1] produces such a map for p > 7 but it is known not
to exist for p =5 (see 7.6.1).

Toda [1] first considered the problem of constructing the spectra V(n) above,
and hence of the representation of Greek letter elements in 72, although that ter-
minology (and 1.3.16) was not available at the time. While the results obtained
there have not been surprassed, the methods used leave something to be desired.
Each positive result is proved by brute force; the relevant obstruction groups are
shown to be trivial. This approach can be pushed no further; the obstruction to
realizing vy lies in a nontrivial group for all primes (5.6.13). Homotopy theorists
have yet to learn how to compute obstructions in such situations.

The negative results of Toda [1] are proved by ingenious but ad hoc methods.
The nonexistence of V(1) for p = 2 follows easily from the structure of the Steenrod
algebra; if it existed its cohomology would contradict the Adem relation Sq¢?Sq¢? =
Sq*Sq?Sqt. For the nonexistence of V(2) at p = 3 Toda uses a delicate argument
involving the nonassociativity of the mod (3) Moore spectrum, which we will not
reproduce here. We will give another proof (5.5.1) which uses the multiplicative
structure of the Adams—Novikov Es-term to show that the nonrealizability of 84 €
E22’60, and hence of V'(2), is a formal consequence of that of 33/3 € E22’36. This was
shown by Toda [2, 3] using an extended power construction, which will also not
be reproduced here. Indeed, all of the differentials in the Adams—Novikov spectral
sequence for p = 3 in the range we consider are formal consequences of that one in
dimension 34. A variant of the second method used for V(2) at p = 3 works for
V(3) (the cofiber of v) at p = 5.

4. More Formal Group Law Theory, Morava’s Point of View, and the
Chromatic Spectral Sequence

We begin this section by introducing BP-theory, which is essentially a p-local
form of MU-theory. With it many of the explicit calculations behind our results
become a lot easier. Most of the current literature on the subject is written in
terms of BP rather than MU. On the other hand, BP is not essential for the
overall picture of the FEs-term we will give later, so it could be regarded as a
technicality to be passed over by the casual reader. Next we will describe the
classification of formal group laws over an algebraically closed field of characteristic
p. This is needed for Morava’s point of view, which is a useful way of understanding
the action of G on L (1.3.5). The insights that come out of this approach are
made computationally precise in the chromatic spectral sequence , which is the
pivotal idea in this book. Technically the chromatic spectral sequence is a trigraded
spectral sequence converging to the Adams—Novikov Fs-term; heuristically it is like
a spectrum in the astronomical sense in that it resolves the Es-term into various
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components each having a different type of periodicity. In particular, it incorporates
the Greek letter elements of the previous section into a broader scheme which
embraces the entire Fo-term.

BP-theory began with Brown and Peterson [1] (after whom it is named), who
showed that after localization at any prime p, the MU spectrum splits into an
infinite wedge suspension of identical smaller spectra subsequently called BP. One
has

(1.4.1) T.(BP) = Zy)[v1,v2, ... ],

where Z,) denotes the integers localized at p and the v,’s are the same as the
generators appearing in the Morava—Landweber theorem 1.3.16. Since dimwv, =
2(p™ — 1), this coefficient ring, which we will denote by BP;, is much smaller than
L = 7,(MU), which has a polynomial generator in every even dimension.

Next Quillen [2] observed that there is a good formal group law theoretic reason
for this splitting. A theorem of Cartier [1] (A2.1.18) says that every formal group
law over a Z,)-algebra is canonically isomorphic to one in a particularly convenient
form called a p-typical formal group law (see A2.1.17 and A2.1.22 for the definition,
the details of which need not concern us now). This canonical isomorphism is
reflected topologically in the above splitting of the localization of MU. This fact
is more evidence in support of our belief that MU can somehow be constructed in
purely formal group law theoretic terms.

There is a p-typical analog of Quillen’s theorem 1.3.4; i.e., BP*(CP) gives us
a p-typical formal group law with a similar universal property. Also, there is a BP
analog of the Adams—Novikov spectral sequence, which is simply the latter tensored
with Z,y; i.e., its Ex-term is the p-component of H*(G; L) and it converges to the
p-component of 77 However, we encounter problems in trying to write an analog
of our metaphor 1.3.5 because there is no p-typical analog of the group G.

In other words there is no suitable group of power series over Z,y which will
send any p-typical formal group law into another. Given a p-typical formal group
law F over Z, there is a set of power series g € Z,)[[2]] such that g~ F(g(z), g(y))
is also p-typical, but this set depends on F. Hence Hom(BP,, K) the set of p-typical
formal group laws over a Z,-algebra K, is acted on not by a group analogous to G,
but by a groupoid.

Recall that a groupoid is a small category in which every morphism is an
equivalence, i.e., it is invertible. A groupoid with a single object is a group. In
our case the objects are p-typical formal group laws over K and the morphisms are
isomorphisms induced by power series g(x) with leading term z.

Now a Hopf algebra, such as B in 1.3.6, is a cogroup object in the category
of commutative rings R, which is to say that Hom(B, R) = G is a group-valued
functor. In fact G is the group (under composition) of power series f(z) over R
with leading term z. For a p-typical analog of 1.3.6 we need to replace b by co-
groupoid object in the category of commutative Z,)-algebras K. Such an object is
called a Hopf algebroid (A1.1.1) and consists of a pair (A,T") of commutative rings
with appropriate structure maps so that Hom(A, K) and Hom(T', K) are the sets of
objects and morphisms, respectively, of a groupoid. The groupoid we have in mind,
of course, is that of p-typical formal group laws and isomorphisms as above. Hence
BP. is the appropriate choice for A; the choice for T' turns out to be BP,(BP), the
BP-homology of the spectrum BP. Hence the p-typical analog of 1.3.6 is
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1.4.2. THEOREM. The p-component of the Es-term of the Adams—Novikov spec-
tral sequence converging to 7rf 18

Extpp, (Bp)(BPs, BP;). O

Again this Ext is defined in A1.2.3 and the relevant homological algebra is
discussed in Appendix 1.

We will now describe the classification of formal group laws over an algebraically
closed field of characteristic p. First we define power series [m|p () associated with
a formal group law F' and natural numbers m. We have [0]p(x) = 0, [1]p(z) = =,
and [m]p(z) = F(z,[m—1]p(z)). An easy lemma (A2.1.6) says that if F is defined
over a field of characteristic p, then [p]r(z) is in fact a power series over 2P" with
leading term ax?", a # 0, for some n > 0, provided F is not isomorphic to the
additive formal group law, in which case [p]p(x) = 0. This integer n is called the
height of F, and the height of the additive formal group law is defined to be oco.
Then we have

1.4.3. CLASSIFICATION THEOREM (Lazard [2]).

(a) Two formal group laws defined over the algebraic closure of F,, are isomor-
phic iff they have the same height.

(b) If F is nonadditive, its height is the smallest n such that 6(v,,) # 0, where
0: L — K is the homomorphism of 1.3.4 and v, € L is as in 1.3.16, where Kis
finite field. |

Now we come to Morava’s point of view. Let K = F,, the algebraic closure of
the field with p elements, and let Gx C K[[z]] be the group (under composition) of
power series with leading term x. We have seen that G acts on Hom(L, K), the
set formal group laws defined over K. Since L is a polynomial ring, we can think of
Hom(L, K) as an infinite-dimensional vector space V over K; a set of polynomial
generators of L gives a topological basis of V. For a vector v € V, let F, be the
corresponding formal group law.

Two vectors in V' are in the same orbit iff the corresponding formal group laws
are strictly isomorphic (strict isomorphism was defined just prior to 1.3.5), and
the stabilizer group of v € V (i.e., the subgroup of Gk leaving V fixed) is the
strict automorphism group of F,. This group S, (where n is the height) can be
described explicitly (A2.2.18); it is a profinite group of units in a certain p-adic
division algebra, but the details need not concern us here. Theorem 1.4.3 enables
us to describe the orbits explicitly.

1.4.4. THEOREM. There is one Gg-orbit of V' for each height as in 1.4.3. The
height n orbit V,, is the subset defined by v; =0 for i <n and v, # 0. ]

Now observe that V is the set of closed points in Spec(L,, ® K), and V}, is the set
of closed points in Spec(L,, ® K), where L,, = v, 'L/I,. Here V,, is a homogeneous
G -space and a standard change-of-rings argument gives

1.4.5. CHANGE-OF-RINGS THEOREM. H*(Gg; L, ® K) = H*(S,; K). O

We will see in Chapter 6 that a form of this isomorphism holds over F,, as well as
over K. In it the right-hand term is the cohomology of a certain Hopf algebra [called
the nth Morava stabilizer algebra ¥(n)] defined over F,, which, when tensored with
F,n, becomes isomorphic to the dual of Fp»[S,], the Fpn-group algebra of S,,.



22 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

Now we are ready to describe the central construction of this book, the chro-
matic spectral sequence, which enables us to use the results above to get more
explicit information about the Adams—Novikov Fs-term. We start with a long
exact sequence of G-modules, called the chromatic resolution

(1.4.6) 0> L®Zy — M - M — .-

defined as follows. M° = L® Q, and N' is the cokernel in the short exact sequence
0= L®Zy — M — N'"—0.

M™ and N™ are defined inductively for n > 0 by short exact sequences

(1.4.7) 0— N"— M™ — N""t -0,

where M™ = v,;!N". Hence we have
N'=L®Q/Zgy) =l L/(p') = L/(p™)

and

N = T L (5,080l = L0 o).
The fact that these are short exact sequences of G-modules is nontrivial. The long
exact sequence 1.4.6 is obtained by splicing together the short exact sequences 1.4.7.
In Chapter 5, where the chromatic spectral sequence is described in detail, M™ and
N™ denote the corresponding objects defined in terms of BP,. In what follows here
Extp(Z, M) will be abbreviated by Ext(M) for a B-module (e.g., G-module) M.
Standard homological algebra (A1.3.2) gives

1.4.8. PROPOSITION. There is a spectral sequence converging to Ext(L @ Z,))
with E7"° = Ext®*(M™), d,.: E™® — ErT7s=+ and dy: Ext(M") — Ext(M"*1)
being induced by the maps M™ — M"T1 in 1.4.6. [E%® is a subquotient of
Ext" (L ® Z)).] O

This is the chromatic spectral sequence. We can use 1.4.5 to get at its £ term
as follows. Define G-modules M;* for 0 < ¢ < n by M{ = M", and M is the
kernel in the short exact sequence

(1.4.9) 0— M — M | 2= M | — 0,

where vg = p. This gives M = L,, = v, 'L/, so the F,-analog of 1.4.5 describes
Ext(M]?) in terms of the cohomology of the stabilizer group S,,. Equation 1.4.9 gives
a long exact sequence of Ext groups of a Bockstein spectral sequence computing
Ext(M? ;) in terms of Ext(M). Hence in principle we can get from H*(S,)
to Ext(M™), although the Bockstein spectral sequences are difficult to handle in
practice.

Certain general facts about H*(S,,) are worth mentioning here. If (p—1) divides
n then this cohomology is periodic (6.2.10); i.e., there is an element ¢ € H*(S,,; F))
such that H*(S,;F)) is a finitely generated free module over F,[c|. In this case S,
has a cyclic subgroup of order p to whose cohomology ¢ restricts nontrivially. This
cohomology can be used to detect elements in the Adams—Novikov Es-term of high
cohomological degree, e.g., to prove

1.4.10. THEOREM. For p > 2, all monomials in the By pi (1.3.19) are nontriv-
ial. (]
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If n is not divisible by p — 1 then S, has cohomological dimension n?; i.e.,
Hi(S,) = 0if i > n?, and H*(S,) has a certain type of Poincaré duality (6.2.10).
It is essentially the cohomology of a certain n-stage nilpotent Lie algebra (6.3.5),
at least for n < p — 1. The cohomological dimension implies

1.4.11. MORAVA VANISHING THEOREM. If (p — 1) { n, then in the chromatic
spectral sequence (1.4.8) E{"° =0 for s > n?. O

It is also known (6.3.6) that every sufficiently small open subgroup of S,, has
the same cohomology as a free abelian group of rank n2. This fact can be used to
get information about the Adams—Novikov spectral sequence Fs-term for certain
Thom spectra (6.5.6).

Now we will explain how the Greek letter elements of 1.3.17 and 1.3.19 appear in
the chromatic spectral sequence. If J is a G-invariant regular ideal with n generators
[e.g., the invariant prime ideal I,, = (p,v1,...,v,—1)], then L/J is a submodule of
N™ and M", so Ext’(L/J) c Ext(N") c Ext®(M") = E°. Recall that the
Greek letter elements are images of elements in ExtO(J ) under the appropriate
composition of connecting homomorphisms. This composition corresponds to the
edge homomorphism EJ 0 E™0 in the chromatic spectral sequence. [Note that
every element in the chromatic Ey O s a permanent cycle; i.e., it supports no
nontrivial differential although it may be the target of one. Elements in EY' 0
coming from Ext(L/J) lift to Ext(N™) are therefore in kerd; and live in E5™° ]
The module N™ is the union of the L/.J over all possible invariant regular ideals J
with n generators, so ExtO(N ™) contains all possible nth Greek letter elements.

To be more specific about the particular elements discussed in Section 3 we must
introduce chromatic notation for elements in N™ and M™. Such elements will be

written as fractions 5 with z € L and y = pov® ... v" ' with all exponent positive,
which stands for the image of y in L/J C N™ where J = (p',v{',...,v,"7'). Hence

x/y is annihilated by J and depends only on the mod J reduction of . The usual
rules of addition, subtraction, and cancellation of fractions apply here.

1.4.12. PROPOSITION. Up to sign the elements a,ﬁ”) (1.3.17), asy¢ and By
(1.3.19) are represented in the chromatic spectral sequence by vl /pvy---v,_1 €
E}° v /pt € By, and vi/pvt € E3°, respectively. O

The signs here are a little tricky and come from the double complex used
to prove 1.4.8 (see 5.1.18). The result suggests elements of a more complicated
nature; e.g., B/, stands for vg/pilv’f, with the convention that if i; = 1 it is
omitted from the notation. The first such element with i; > 1is 8,2/, 2. We also
remark that some of these elements require correcting terms in their numerators;
e.g., (vl + 8vivp)/2* (but not v}/2%) is in Ext’(N') and represents /4, which
corresponds to the generator o € m,(S°).

We will describe E}"* for n < 1 at p > 2. For all primes E}"° = Q (concentrated
in dimension 0) and E"® = 0 for s > 0. For p > 2, E;"® = 0 for s > 1 and
B =Qq/ Zp,) concentrated in dimension 0, and E;? is trivial in dimensions not
divisible by ¢ = 2(p—1) = dim vy and is generated by all elements of the form v} /pt
for t € Z. Hence if p is the largest power of p dividing ¢, then E;° ~ Z/(p*!) in
dimension ¢t, and in dimension 0, Ell‘O =Q/Z,).
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The differential d; : £ — E}"° is the usual map Q — Q/Z ). Its kernel Z
is Ext’(L ® Z). On Byt = Q/Z,) the kernel of d; is trivial, so EY'=E?* =0

and Ext*(L ® Z,)) = EZ°. On E}'°) the kernel of d; consists of all elements in

nonnegative dimensions. Since the Q/Z,) in dimension 0 is hit by d, E21 0 consists

of the positive dimensional elements in E}" and this group is Ext!(L ® Z)). In
7.(SY) it is represented by the p-component of im .J.

Now the chromatic E;-term is periodic in the following sense. By defintion,
M™ = li_n>1v;1L /J,

where the direct limit is over all invariant regular ideals J with n generators. For
each J, Ext’(v;'L/J) contains some power of vy, say v¥. Then Ext(v,'L/J) is a
module over Z [vF v-k] i.e., multiplication by v¥ is an isomorphism, so we say
that this Ext is v,-periodic. Hence ET"" = Ext(M™) is a direct limit of such groups.
We may say that an element in the Adams—Novikov spectral sequence Es-term is
vp-periodic if it represents an element in E72* of the chromatic spectral sequence.

Hence the chromatic spectral sequence FE.-term is the trigraded group as-
sociated with the filtration of Ext(L ® Z,)) by wv,-periodicity. This filtration is
decreasing and has an infinite number of stages in each cohomological degree. One
sees this from the diagram

Ext®(N%) < Ext* ' (N!) < ... « Ext’(N®)

where N? = L®Z,); the filtration of Ext(N?) is by images of the groups Ext(N™).
This local finiteness allows us to define an increasing filtration on Ext(N) by
F; Ext*(N%) = imExt’(N*~%) for 0 < i < s, and Fy Ext(N) is the subgroup of
Greek letter elements in the most general possible sense.

5. Unstable Homotopy Groups and the EHP Spectral Sequence

In this section we will describe the EHP sequence, which is an inductive method
for computing 7,1 (S™) beginning with our knowledge of 7.(S1) (1.1.7). We will
explain how the Adams vector field theorem, the Kervaire invariant problem, and
the Segal conjecture are related to the unstable homotopy groups of spheres. We will
not present proofs here or elsewhere in the book, nor will we pursue the topic further
except in Section 3.3. We are including this survey here because no comparable
exposition exists in the literature and we believe these results should be understood
by more than a handful of experts. In particular, this section could serve as an
introduction to Mahowald [4]. For computations at the prime 3, see Toda [8],
which extends the known range for unstable 3-primary homotopy groups from 55
to 80.

The EHP sequences are the long exact sequences of homotopy groups associated
with certain fibration constructed by James [1] and Toda [6]. There is a different
set of fibrations for each prime p. All spaces and groups are assumed localized at
the prime in question. We start with p = 2. There we have a fibration

(1.5.1) Sm— QST 5 QgL

which gives the long exact sequence

(1.5.2)
o Tk (5™ D T (S D 1 (57N D g (ST = -
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Here FE stands for Einh&ngung (suspension), H for Hopf invariant, and P for White-
head product. If n is odd the fibration is valid for all primes and it splits at odd
primes, so for p > 2 we have

Tom+k(S™) = Tomik—1(S*""1) @ Top (ST 7).
This means that even-dimensional spheres at odd primes are uninteresting. Instead
one considers the fibration

(1.5.3) §2m s Qg2mHl _, G%mtl

where the second map is surjective in H.( ;Z)), and 52m i the (2mp—1)-skeleton
of Q82+l which is a CW-complex with p — 1 cells of the form S?™ Ue*™ U--- U
e2(P=1m The corresponding long exact sequence is

(15.4) - = m(S2) B (82 o (S2emty By (82
There is also a fibration

(1.5.5) 5§21, 5% Q5%ml

which gives

(15.6) - — m_1(S* 1) B ry(§2m) Ly 7,821y By o (82t

1.5.4 and 1.5.6 are the EHP sequences for odd primes. Note that for p = 2,
§2m — §2m and both sequences coincide with (1.5.2).

For each prime these long exact sequences fit together into an exact couple
(2.1.6) and we can study the associated spectral sequence, namely

1.5.7. PROPOSITION.

(a) For p = 2 there is a spectral sequence converging to 72 (stable homotopy)
with

B = gy (82771 and  d.: EP" — EFTLnOT

E™F s the subquotient im 41 (S™)/imm,1k—1(S""1) of 7. There is a similar
spectral sequence converging to m.(S7) with Ef" as above for n < j and Ef" =0
forn >j.

(b) For p > 2 there are similar spectral sequences with

Ef’Qm'H = 7rk+2m+1(82pm+1) and Ef’2m = 7Tk+2m(52pm71)-

The analogous spectral sequence with Ef" =0 for n > j converges to m.(S7) if j
is odd and to m.(S7) if j is even. O

This is the EHP spectral sequence. We will explain below how it can be used

~

to compute 7,15 (S™) [or mp1x(S™) if n is even and p is odd] by double induction
on n and k. First we make some easy general observations.

1.5.8. PROPOSITION.

(a) For all primes B = w1, (SY), which is Zy for k=0 and 0 for k > 0.

(b) Forp=2, E¥" =0 fork <n—1.

(c) Forp=2, Ef'" = T na1 Jor k< 3n—3.

(d) Forp > 2, EF*™*Y =0 for k < qm and EF®™ =0 for k < gm — 1, where
q=2(p—1).

(e) For p > 2, Ef’ZmH = ﬂ,f_qm for k < glpm + m + 1) — 2, and

E{c,zm = ﬂ',irktlm for k < q(pm +m) — 3. g
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Part (b) follows from the connectivity of the (2n — 1)-sphere and similarly for
(d); these give us a vanishing line for the spectral sequence. (¢) and (e) follow from
the fact that 7o, _14%(S*™ 1) = 7r;€9 for k < gm — 2, which is in turn a consequence
of 1.5.7. We will refer to the region where n — 1 < k and Ef” is a stable stem as
the stable zone.

Now we will describe the inductive aspect of the EHP spectral sequence. As-
sume for the moment that we know how to compute differentials and solve the group
extension problems. Also assume inductively that we have computed E7’ for all
(i,7) with i < k and all (k,) for j > n. For p = 2 we have EF'"™ = 7, (> 1).
This group is in the (k —n + 1)-stem. If n = 1, this group is m144(S*), which is
known, so assume n > 1. If n = 2 this group is w1 (S?%), which is 0 for k =0, Z
for k =1, and for k£ > 1 is the middle term in the short exact sequence

0— E§’1’2 — Try2(S%) = kerd; C ES’LB — 0.

Note that Eg 1.2 is the cokernel of the dy coming from Ef 3 and is therefore known
by induction. Finally, if n > 2, Ef" = Tk (S?"71) can be read off from the
already computed portion of the EHP spectral sequence as follows. As in 1.5.7 one
obtains a spectral sequence for 7, (52" 1) by truncating the EHP spectral sequence,
i.e., by setting all EJ"™ = 0 for m > 2n — 1. The group 7, 4£(52" 1) lies in a stem
which is already known, so we have Ef ' Similar remarks apply to odd primes.

We will illustrate the method in detail for p = 2 by describing what happens for
0 <k <7in Fig. 1.5.9. By 1.5.8(c) we have Ef’kﬂ = Wg = 7. Let z;, denote the
standard generator of this group. We will see below (1.5.13) that dy(xg) = 2z,
for even positive k and dy () = 0 otherwise. Hence Ey? = EL2 = 5 = Z/(2), so
Ef’k =Z/(2) for all k£ > 2. We denote the generator of each of these groups by 1
to indicate that, if the generator is a permanent cycle, it corresponds to an element
whose Hopf invariant suspends to the element corresponding to ;. Now the first
such generator, that of E12 ’2, is not hit by a differential, so we have Ef kel =
Top—1(S%F73) = Z/(2) for all k > 3. We denote these generators by 11, to indicate
that their Hopf invariants each desuspend to elements with Hopf invariant x.

In general we can specify an element o € m,41(S™) by a sequence of integers
adding up to k as follows. Desuspend « as far as possible, say to S™*!. The first
integer is then m (necessarily < k) and the desuspended a has a Hopf invariant
B € Tmi1+k(S?™TL). To get the second integer we desuspend [, and so forth.
After a finite number of steps we get an element with Hopf invariant in the zero
stem and stop the process. Of course there is some indeterminacy in desuspending
but we can ignore it for now. We call this sequence of integers the serial number
of @. In FI1G. 1.5.9 we indicate each element of Ef" = T4k (S?"71) by its serial
number. In almost all cases if pa # 0, its serial number differs from that of « itself.

To get back to Fic. 1.5.9, we now have to determine the groups Ef’kit =
Top_2(S?k75) for k > 4, which means examining the 3-stem in detail. The groups
E?? and E?* are not touched by differentials, so there is an short exact sequence

0— B> = m6(S%) — EP® = 0.

The two end terms are Z/(2) and the group extension can be shown to be nontrivial,
so Ef? = m(S%) = Z/(4). Using the serial number notation, we denote the
generator by 21 and the element of order 2 by 111. Similarly one sees 75(S?) =



27

5. UNSTABLE HOMOTOPY GROUPS AND THE EHP SPECTRAL SEQUENCE

) S Y pue g = d 10§ 9ouanbas [e1joads JHH 9L, "6°G T dUNDI]

L 8
T 9 L
T I Mg 9
¢ IT T va g
12
111
/ ¢ NTT NT Neg v
/ 1¢
IT1
1€ 1€ I NTT I e I
12 z
IT1
NITIC NIT1g g 11 1 ~g 4
/ 11
O0x T
L 9 G id € z I 0
(91)/Z (@)/z 0 0 (8)/Z (2)/z (2)/z Z 1y

g1

e1S

65

LS

)

)

195)



28 1. INTRODUCTION TO THE HOMOTOPY GROUPS OF SPHERES

Z/(2), m7(S*) = Z ® Z/(4) and there is an short exact sequence
0 — m6(5%) = 13(S°) = E3* — 0.

Here the subgroup and cokernel are Z/(4) and Z/(2), respectively, and the group
extension is again nontrivial, so ms(S®) = EF"*~2 = Z/(8) for k > 5. The generator
of this group is the suspension of the Hopf map v: S7 — S* and is denoted by 3.

To determine Ef’k_g = Top_3(8?*=7) for k > 5 we need to look at the 4-stem,
i.e., at the column E**. The differentials affecting those groups are indicated on
the chart. Hence we have Ey? = 0 so m7(S®) = E>? = Z/(2); the dy hitting E;"*
means that the corresponding element dies (i.e., becomes null homotopic) when
suspended to 79(S%); since it first appears on S3 we say it is born there. Similarly,
the generator of E;LA corresponds to an element that is born on S* and dies on S°
and hence shows up in Ef 3 = 79(9%). We leave it to the reader to determine the
remaining groups shown in the chart, assuming the differentials are as shown.

We now turn to the problem of computing differentials and group extensions
in the EHP spectral sequence. For the moment we will concentrate on the prime 2.
The fibration 1.5.1 can be looped n times to give

Qnsn N Qn+lsn+1 — Qn+152n+1'
In Snaith [1] a map is constructed from Q2"S™ to QRP™ ! which is compatible with

the suspension map Q"S™ — Q15"+l (Here QX denotes liganZkX.) Hence
we get a commutative diagram

(1.5.10) Qrgn o Qntlgntl > Ont1g2ntl

L] |

QRP" ! — - QRP" — > Q5"

where both rows are fibre sequences and the right-hand vertical map is the standard
inclusion. The long exact sequence in homotopy for the bottom row leads to an
exact couple and a spectral sequence as in 1.5.7. We call it the stable EHP spectral
sequence.

There is an odd primary analog of 1.5.10 in which RP"™ is replaced by an
appropriate skeleton of BY,, the classifying space for the symmetric group on p
letters. Recall that its mod (p) homology is given by

Z/(p) ifi=0or -1 mod (q)

(1.5.11) Hi(BZy; Z/(p)) = {0 otherwise.

1.5.12. PROPOSITION. (a) For p = 2 there is a spectral sequence converging
to 75 (RP>) (stable homotopy of RP™) with EP™ = T g1 for n > 2 and
d,: EF" — EF=Lr=r Here B s the subquotient im 73 (RP™™ 1)/ im 7y (RP™~2)
of i (RP>). There is a similar spectral sequence converging to 75 (RPI~1) with
Ef" as above for n < j and Ef" =0 forn>j.

(b) For p > 2 there is a similar spectral sequence converging to ﬂf(BEp) with
Ef’QmH = 7y and Ef’2m = Tk+1-mq- 1here is a similar spectral sequence with
Ef’" =0 forn > j converging to ﬂf(BZz(,q)j_l) if 7 is even and to W*(BZ](DQ)(j_l))
if 7 is odd.
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(¢) There are homomorphisms to these from the corresponding EHP spectral
sequences of 1.5.7 induced by suspension on the Fy level, e.g., at p = 2 by the
suspension map Trin(S*71) — w,f_nH. Hence the Ey-terms are isomorphic in
the stable zone.

We remark that this stable EHP spectral sequence is nothing but a reindexed
form of the Atiyah—Hirzebruch spectral sequence (see Adams [4], Section 7) for
73(B%,). In the latter one has Ey* = H,(BY,;n?) and this group is easily seen
to be E;‘H’f(s) in the EHP spectral sequence where

£(s) = s/(p—1)+1 ifs=0 mod (2p—2)
(s+1)/(p—1) ifs=-1 mod (2p—2).

Since everything in 1.5.12 is stable one can use stable homotopy theoretic meth-
ods, such as the Adams spectral sequence and K-theory, to compute differentials
and group extensions. This is a major theme in Mahowald [1]. Differentials origi-
nating E**+1 for p = 2 correspond to attaching maps in the cellular structure of
R P°°, and similarly for p > 2. For example, we have

1.5.13. PROPOSITION. In the stable EHP spectral sequence (1.5.12), the differ-
ential dy: EP™ — EF~V"7N s multiplication by p if k is even and trivial if k is
odd. O

Another useful feature of this spectral sequence is James periodicity: for each r
there is a finite i and an isomorphism EF" ~ EFtaP".»+2P" which commutes with
differentials (note that ¢ = 2 when p = 2). This fact is a consequence of the vector
field theorem and will be explained more fully below (1.5.18).

For p = 2, the diagram 1.5.10 can be enlarged as follows. An element in the
orthogonal group O(n) gives a homeomorphism S"~1 — S"~!. Suspension gives
a basepoint-preserving map S™ — S™ and therefore an element in 2"S™. Hence
we have a map J: O(n) — Q"S™ (compare 1.1.12). We also have the reflection
map r: RP"! — O(n) sending a line through the origin in R"™ to the orthogonal
matrix corresponding to reflection through the orthogonal hyperplane. Combining
these we get

(1.5.14) RP"! RP™ Sn

O(n+1)——=gn

|

QnSn X QnJrl Sn+1 . Qn+152n+1

|

QS™.

Here the top row is a cofiber sequence while the others are fiber sequences. The
right-hand vertical maps are all suspensions, as is the composite RP" — QRP™.
The second row leads to a spectral sequence (which we call the orthogonal spectral
sequence) converging to m,(O) which maps to the EHP spectral sequence. The map
on

O(n)

QRP"' —— QRP"
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EP™ = 14 (5™1) is an isomorphism for k < 2n — 3 by the Freudenthal suspension
theorem 1.1.10. The middle right square of this diagram only commmutes after a
single looping. This blemish does not affect calculations of homotopy groups.

Hence we have three spectral sequences corresponding to the three lower rows
of 1.5.14 and converging to 7.(O), the 2-component of 72, and 7¥(RP>). In
all three we have generators z; € Ef #*1 = Z and we need to determine the first
nontrivial differential (if any exists) on it for £ odd. We will see that this differential
always lands in the zone where all three spectral sequences are isomorphic. In the
orthogonal spectral sequence xj survives to E,. iff the projection O(k + 1)/O(k +
1 —7) — S* admits a cross section. It is well known (and easy to prove) that such
a cross section exists iff S¥ admits r — 1 linearly independent tangent vector fields.
The question of how many such vector fields exist is the vector field problem, which
was solved by Adams [16] (see 1.5.16). We can give equivalent formulations of the
problem in terms of the other two spectral sequences.

1.5.15. THEOREM (James [2, 3]). The following three statements are equivalent:

(a) S~ admits r — 1 linearly independent tangent vector fields.

(b) Let ¢ be the generator of map_1(S**1) = Z. Then P(1) € mor_3(S*1)
(see 1.5.2) desuspend to mop,_,_o(S*7T).

(c) The stable map RP*~'/RPk=" — Sk=1 admits a cross section. O

The largest possible r above depends on the largest powers of 2 dividing k + 1.
Let k =27(2s5 + 1),

25 ifj=1or2 mod (4)
d(J)=<2j+1 ifj=0 mod (4)
2j+2 ifj=3 mod (4)

and p(k) = 6(j)-

1.5.16. THEOREM (Adams [16]).

(a) With notation as above, S¥=1 admits p(k) — 1 linearly independent tangent
vector fields and no more.

(b) Let ap = 2 € w5 and for j > 0 let a; denote the generator of im J in Wf(j)71
(see 1.5.15 (c)). Then in the 2-primary EHP spectral sequence (1.5.7) dg(;)(Tr—1)
is the (nontrivial) image of o in Eg(_jk_] O

We remark that the p(k) — 1 vector fields on S* were constructed long ago by
Hurwitz and Radon (see Eckmann [1]). Adams [16] showed that no more exist by
using real K-theory to solve the problem as formulated in 1.5.15(c).

Now we turn to the odd primary analog of this problem, i.e., finding differentials
on the generators x4, of Ei’k_l’% = Z. We know of no odd primary analog of
the enlarged diagram 1.5.14, so we have no analogs of 1.5.15(a) or 1.5.16(a), but
we still call this the odd primary vector field problem. The solution is

1.5.17. THEOREM (Kambe, Matsunaga and Toda [1]). Let &; generate im J C

moi1 (1.1.12), let xgp_1 generate EI*L2R n the EHP spectral sequence (1.5.7)

for an odd prime p (here ¢ = 2p — 2), and let k = p’s with s not divisible by p.

Then z4,—1 lives to Eojio and dajio(xer—1) is the (nontrivial) image of &jy1 in

ak—2,2k—2j -2 O
25 .
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Now we will explain the James periodicity referred to above. For p = 2 let
RP" = RP"/RP™ ! for m < n. There is an i depending only on n —m such that

RP::;QQTI ~ ZTHRP", a fact first proved by James [3]. To prove this, let A be
the canonical real line bundle over RP"~"™. Then RP, is the Thom space for mA.

The reduced bundle A — 1 is an element of finite order 2i 4+ 1 in KO*(RP”_"‘), SO
(2 +m)\ = mA+27! and the respective Thom spaces RP"Hl+1 and ©2"'RP"
are equivalent. The relevant computations in KO*(RP™ ™) are also central to the
proof of the vector field theorem 1.5.16. Similar statements can be made about the
odd primary case. Here one replaces A by the CP~! bundle obtained by letting X,
act via permutation matrices on CP and splitting off the diagonal subspace on
which X, acts trivially.

For p = 2 one can modify the stable EHP spectral sequence to get a spectral
sequence converging to m.(RP.) by setting E 9 = 0 for j<m-—1landj>n-—1.
Clearly the d,: EF™ — EF=17=7 in the stable EHP spectral sequence is the same
as that in the spectral sequence for m,(RP”~! |) and similar statements can be
made for p > 2, giving us

1.5.18. JAMES PERIODICITY THEOREM. In the stable EHP spectral sequence

(1.5.12) there is an isomorphism E¥™ — EF+a0':n+20" commuting with d,., where
i=[r/2]. O

Note that 1.5.17 is simpler than its 2-primary analog 1.5.16(b). The same is
true of the next question we shall consider, that of the general behavior of elements
in im J in the EHP spectral sequence. It is ironic that most of the published work
in this area, e.g., Mahowald [2, 4], is concerned exclusively with the prime 2, where
the problem appears to be more difficult.

Theorem 1.5.17 describes the behavior of the elements 2451 in the odd primary
EHP spectral sequence and indicates the need to consider the behavior of im J.
The elements &; and their multiples occur in the stable EHP spectral sequence
in the groups E‘fk_2’2m and Efk_l’QmH for all k > m. To get at this question
we use the spectrum J, which is the fibre of a certain map bu — X2bu, where
bu is the spectrum representing connective complex K-theory, i.e., the spectrum
obtained by delooping the space Z x BU. There is a stable map S° — J which
maps im.J C 72 isomorphically onto m,(J). The stable EHP spectral sequence,
which converges to (BZ ), maps to a similar spectral sequence converging to
J(BX,) = m.(J A BX,). This latter spectral sequence is completely understood
and gives information about the former and about the EHP spectral sequence itself.

1.5.19. THEOREM.
(a) For each odd prime p there is a connective spectrum J and a map S° — J
sending the p-component of im J (1.1.12) isomorphically onto m.(J), i.e.,

Z,) ifi=0
mi(J) =<K Z/(pPY) ifi=qk—1,k>0,k=sp’ withpts
0 otherwise.

(b) There is a spectral sequence converging to J.(BX,) with

Ef,2m+1 _ Wk—mq(‘]) and Ef’Zm — 7Tk+1—mq(J);
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the map S° — J induces a map to this spectral sequence from the stable EHP
spectral sequence of 1.5.12.

(¢) The dy in this spectral sequence is determined by 1.5.13. The resulting
E5-term has the following nontrivial groups and no other:

EPF12% —7Z/(p)  generated by x4, for k > 0,
Eg(kﬂ‘)—wk =7Z/(p) generated by &; for k,j > 0,

and

Eg(kﬂ‘)fl’%r1 =7Z/(p) generated by «; for k,j > 0,

where o is an element of order p in mg;_1(J).
(d) The higher differentials are determined by 1.5.17 and the fact that all group
extensions in sight are nontrivial, i.e., with k and j as in 1.5.17,

_ ah—2,2(k—j~1)
djra(Tqr—1) = Qj11 € By

and dyjy3 is nontrivial on ng;;gmﬂ forj+2<m<k.

(e) The resulting Eo-term has the following nontrivial groups and no others:
E3=22m for |t > m > k —j and EZ=12m+1 for 1 < m < j+ 1. The group
extensions are all nontrivial and we have for i > 0

Z/(p’) fori=qsp’ —2withpts

0 otherwise.

Jl(BZp):ﬂ'l(J)EB{ U

We will sketch the proof of this theorem. We have the fibration J — bu — X2bu
for which the long exact sequence of homotopy groups is known; actually bu (when
localized at the odd prime p) splits into p — 1 summands each equivalent to an even
suspension of BP(1), where 7, (BP(1)) = Z,)[v1] with dimv; = ¢. It is convenient
to replace the above fibration by J — BP(1) — X4BP(1). We also have a transfer
map BY, — S?p), which is the map which Kahn and Priddy [2] show induces a
surjection of homotopy groups in positive dimensions (see also Adams [15]); the
same holds for J-homology groups. Let R be the cofiber of this map. One can show
that S?p) — R induces a monomorphism in BP(1)-homology (or equivalently in bu-
homology) and that BP(1) A R >~/ S HZ,, ie., a wedge of suspensions of
integral Eilenberg—Mac Lane spectra localized at p. Smashing these two fibrations
together gives us a diagram

(1.5.20) JAR BP(1) AR SYBP(1) AR

| | |

J— - BP1y—L P

| | |

J A BY, — BP(1) A BY, —> S4BP(1) A BS,

in which each row and column is a cofiber sequence. The known behavior of 7. (f)
determines that of 7, (f A R) and enables one to compute 7. (J A BE,) = J.(BX,).
The answer, described in 1.5.19(c), essentially forces the spectral sequence of 1.5.19
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to behave in the way it does. The Es-term [1.5.19(c)] is a filtered form of 7, (BP(1)A
BY,) @ m. (X971 BP(1) A BY,).

Corresponding statements about the EHP spectral sequence are not yet known
but can most likely be proven by using methods of Mahowald [4]. We surmise they
can be derived from the following.

1.5.21. CONJECTURE.

(a) The composite m, ("1 52" H1) — 1 (QBXIL") — Ji(BX4") is onto unless
k= qsp’ —2 (with j >0, sp >p and pts) andn = sp’ —i for 1 <i<j.

(b) The groups E=12m+1 of 1.5.19(e) pull back to the Eo-term of the EHP
spectral sequence and correspond to the element v, (1.3.19) of order p™ inim J €
ngfl. Hence ay /.y, is born in S2m+L and has Hopf invariant ay_,, except for o,

which is born on S? with Hopf invariant one. (This was not suspected when the
notation was invented!) O

We will give an example of an exception to 1.5.21(a) for p = 3. One has age
ag € Egg’s, which should support a ds hitting ag € E§8’2, but Efs’2 = m40(S%)
and ayg is only born on S7, so the proposed d3 cannot exist (this problem does not
occur in the stable EHP spectral sequence). In fact, ajag # 0 € m41(S7) = Ei’s’g’
and this element is hit by a dy supported by the ag € E§9’5.

The other groups in 1.5.19(e), Jp4i—2(BY,), are harder to analyze. FEPI=24
pulls back to the EHP spectral sequence and corresponds to 3 € ﬂfq_Q (1.3.14),
the first stable element in coker J (1.1.12), so 5y is born on 57 and has Hopf
invariant ;. Presumably the corresponding generators of EPi4=2:2Pi=2 for j > 1
each supports a nontrivial d, hitting a 3; in the appropriate group. The behavior of
the remaining elements of this sort is probably determined by that of the generators

of Egjq—Qv“fP =2 for j > 2, which we now denote by éj. These appear to be closely

related to the Arf invariant elements 6; = fpi-1/,-1 (1.4.10) in EZP'% of the
Adams—Novikov spectral sequence. The latter are known not to survive (6.4.1), so
presumably the éj do not survive either. In particular we know d2p2_6(é2) = (¥ in
the appropriate group. There are similar elements at p = 1 as we shall see below.
In that case the 6; are presumed but certainly not known (for j > 5) to exist in
ﬂ§j+1_2. Hence any program to prove their existence at p = 2 is doomed to fail if
it would also lead to a proof for p > 2.

We now consider the 2-primary analog of 1.5.19 and 1.5.21. The situation is

more complicated for four reasons.

(1) im J (1.5.15) is more complicated at p = 2 than at odd primes.

(2) The homotopy of J (which is the fiber of a certain map bo — %*bsp, where
bo and bsp are the spectra representing connective real and symplectic K-theory,
respectively) contains more than just im J.

(3) Certain additional exceptions have to be made in the analog 1.5.21.

(4) The groups corresponding to the Jp;q—2(BX,) are more complicated and
lead us to the elements n; € ng of Mahowald [6] in addition to the hypothetical
Qj S 7T§j+1_2.

Our first job then is to describe 7, (J) and how it differs from im J as described
in 1.1.12. We have m;(bo) = m;47(0O) and 7;(bsp) = m;+3(0) for i > 0 and 7.(0) is
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described in 1.1.11, i.e.,

Z if i =3 mod (4)
m(0)=42Z/(2) ifi=0o0r1 mod (8)
0 otherwise.

The map bo — X%bsp used to define .J is trivial on the torsion in 7, (bo), so these
groups pull back to m.(J). Hence 7g;+1(J) and 7g;42(J) for ¢ > 1 contain summands
of order 2 not coming from im J.

1.5.22. PROPOSITION. At p =2

Z3) ifi=0
Z/(2) ifi=1or2
() = Z/(8) ifi=3 mod (8) andi >0
’ Z/(2) ifi=0o0r2 mod8andi>8
Z/(2)®Z/(2) ifi=1 mod (8) and i >9
Z/(29+1) ifi=8m—1,m>1and 8n=2(2s+1).
Here, im J C 7.(J) consists of cyclic summands in w;(J) fori >0 andi=7,0, 1

or 3 mod (8). O

Now we need to name certain elements in 7, (J). Asin 1.5.16 let &; denote the
generator of im .J in dimension ¢(j) — 1, where

2j—1 ifj=1lor2 mod (4)
o(j)—1=12j if j=0 mod (4)
2j+1 ifj=3 mod (4).

We also define elements «; in 7. (J) of order 2 as follows. a; = n € m(J) and
Qi1 € Tsk+1(J) is a certain element not in imJ for k > 1. qupio = NQakt1,
Qaprs = N2upr1 = dQypyo, and ayy, € mgr—1(J) is an element of order 2 in that
cyclic group.

1.5.23. THEOREM (Mahowald [4]). (a) There is a spectral sequence converging
to J.(RP>®) with EX"™ = m,_n41(J); the map S° — J induces a homomorphism
to this spectral sequence from the stable EHP spectral sequence of 1.5.12. (We will
denote the generator of Ef’kﬂ by x, and the generator of Ef’kﬂﬂn form >0 by
the name of the corresponding element in mwy,(J).)

(b) The dy in this spectral sequence is determined by 1.5.13. The following is
a complete list of nontrivial do’s and d3’s.

Fork>1andt >0, dy sends

4k+1,4k+2
Tak+1 € E2 thak+ to o

_ 4k+8+i+8t,4k+2 _ .

Oiyt1 344 € E2 et + to aypy; fore=0,1
4k+24-8t,4k+-2

Q441 € E2 to Q42

_ A+ 148t+7,4k+1 _
Outya € B, to  Queys

and

e E;Lk+z+8t,4k+1

Agt4g to Agt444+1 for i = 1, 2.
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Fork>1andt>1, d3 sends

Ak+148t,4k+3
Yt € E2 to Q441
and
_ 4k+8t+1,4k+1 _
Q441 € E2 to  Qut42.

See F1G. 1.5.24.
(¢) The resulting Eq-term is a Z/(2)-vector space on the following generators
fork>1,t>0.

12, - 4,2 8t+i+1,2 .
€ By? acEY? aggs e BT fori =1, 2;

_ 8t4i+5,2 . , 8¢43,3. 86493,
Oip1q € E4 for ¢ = 3, 4, 5; Oyt11 € E4 ;o O4eaq € E4 ;
_ 8¢+10,3. Ak—1,4k, AR+ 8142,4K.
Q414 € By i xap—1 € Ey ; Qagy2 € By ;

_ Ak+8t+6,4k Ak48t43,4k+1 AR 8E4T, A1
Oyiy3 € By i oupq3 € By ;o oupqa € By ;

Ak+8t+3,4k+2.  — Ak+4,4k+2. = 4k+8t+10,4k+2
Quytyo € E4 ; Qo € E4 ;o Qupgs € E4 ;
4k+8t+3,4k+3, 4k+8t+10,4k+3

Oyt11 € E4 ;  and Qupqa € E4

(d) The higher differentials are determined by 1.5.15 and the fact that most
group extensions in sight are nontrivial. The resulting Eo-term has the following
additive generators and no others for t > 0.

z1 € BY? oupqa € BSOS gy € ESTTLE for i =1, 2;

8143,3. 3,4, 8t4+11,5.
oygp41 € EZT0 w23 € By Qs € B ;

Q4t+i € E§é+i+5’2 fori=3,4; =x7¢€ E;’)g;
Q444 € E§£+15’9; 4ty € E§£+7’8_i fori=1,2,3;
Ogitiai_j_2 € EUTIAH)-1x g 5> 3
dp € BATHAF2 and Qa; € Eii“(tﬂ)*z* for j > 2.
(e) Fori>0
Z/(2) ifi=0 mod (4)
Ji(RP®)=m(J)® < Z/(27) ifi=2/"25—2 for s odd O

0 otherwise.

Note that the portion of the F.-term corresponding to the summand 7, (J) in
1.5.23(e) [i.e., all but the last two families of elements listed in 1.5.23(d)] is near
the line n = 0, while that corresponding to the second summand is near the line
n=k.

The proof of 1.5.23 is similar to that of 1.5.19 although the details are messier.
One has fibrations J — bo — Z%bsp and RP>® — 5?2) — R. We have R A bo ~
\/j>0 E4jHZ(2) and we can get a description of R A bsp from the fibration ¥4bo —
bsp — HZy. The Ej-term in 1.5.22 is a filtered form of 7. (X%bsp A RP™) &
7+ (boARP*); elements with Hopf invariants of the form &; are in the first summand
while the other generators make up the second summand. By studying the analog
of 1.5.20 we can compute J,(RP>) and again the answer [1.5.23(e)] forces the
spectral sequence to behave the way it does.

Now we come to the analog of 1.5.21.
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1.5.25. THEOREM (Mahowald [4]). (a) The composite
T (RS2 o i (QRP?) — J(RP?")

is onto unless k = 0 mod (4) and k < 2n, or k =6 mod (8). It is also onto if
k=2 forj>3orifk=2 —2 mod (27*!) and k > 2n + 8 +2j. When k < 2n
is a multiple of 4 and not a power of 2 at least 8, then the cokernel is Z/(2); when
k < 2n is 2 less than a multiple of 8 but not 2 less than a power of 2, then the
cokernel is Ji,(RP?") = Ji,(RP>).

(b) All elements in the Eo-term corresponding to elements in 7. (J) pull back
to the EHP spectral sequence except some of the aupy; € ESITH52 for i = 3,4 and
t > 0. Hence H(ay) = H(az) = H(as) = 1, H(agy1) = oy, and if 2z = ayqq for
x €imJ then H(z) = ay—;. O

Theorem 1.5.23 leads one to believe that H(du4;) = Qagti—1 for i =4, 5 and
t > 0, and that these elements are born on S?, but this cannot be true in all cases.
If a4 were born on S2, its Hopf invariant would be in 719(S?), but this group does
not contain as, which is born on §*. In fact we find H(ay) = ag, H(as) = a3, and
H(ag) is an unstable element.

1.5.26. REMARK. Theorem 1.5.25(b) shows that the portion of im.J gener-
ated by auyiio and duyeys, i.e., the cyclic summands of order > 8 in dimensions
4k — 1, are born on low-dimensional spheres, e.g., du;42 is born on S°. However,
simple calculations with 1.5.14 show that the generator of m4;_1(O) pulls back to
Ta—1(0O(2k + 1)) and no further. Hence @usi2 € my4+5(S°) is not actually in the
image of the unstable .J-homomorphism until it is suspended to S4*+3.

Now we consider the second summand of J,(RP*) of 1.5.23(e). The elements
Qg € EF4F=2 for k > 1 have no odd primary analog and we treat them first. The
main result of Mahowald [6] says there are elements 7; € 9, (SY) for j > 3 with
Hopf invariant v = ao. This takes care of the case k = 2772 above.

1.5.27. THEOREM. In the FHP spectral sequence the element v = g € Ekak_?
for k > 2 behaves as follows (there is no such element for k =1).

(a) If k = 2772, j > 3 then the element is a permanent cycle corresponding to
n;; this is proved by Mahowald [6].

(b) If k =25+ 1 then dy(v) = V2. O

1.5.28. CONJECTURE. If k= (25 +1)2972 with s > 0 then do; _o(v) =n;. O

The remaining elements in 1.5.23(e) appear to be related to the famous Kervaire
invariant problem (Mahowald [7], Browder [1]).

1.5.29. CONJECTURE. In the EHP spectral sequence the elements
j+1 —2 % .
aj € E;J (t+1)-2, forj>2,t>0

behave as follows:

(a) If there is a framed (2911 — 2)-manifold with Kervaire invariant one then

Itl_2 % . .. .

a; € E; -, is a nontrivial permanent cycle corresponding to an element 0; €
Toi+1_5(S?) (These elements are known (Barratt, Jones, and Mahowald [2]) to exist
for 3 >0.) v

(b) If (a) is true then the element & € E22]+ @sHD)=2% sotisfies dr(a;) = b;
where r = 2971 — 1 — dim(a;). O
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The converse of 1.5.29(a) is proved by Mahowald [4] 7.11.

Now we will describe the connection of the EHP spectral sequence with the
Segal conjecture. For simplicity we will limit our remarks to the 2-primary case,
although everything we say has an odd primary analog. As remarked above, the
stable EHP spectral sequence (1.5.12) can be modified so as to converge to the
stable homotopy of a stunted projective space. Let RP; = RP*/RP;_; for j > 0;
i.e., RPJ is the infinite-dimensional stunted projective space whose first cell is in
dimension j. It is easily seen to be the Thom spectrum of the j-fold Whitney sum
of the canonical line bundle over RP>. This bundle can be defined stably for
j <0, so we get Thom spectra RP; having one cell in each dimension > j for any
integer j.

1.5.30. PROPOSITION. For each j € Z there is a spectral sequence converging
to m.(RP;) with

gk _ Th-nt1(8°) ifn—1>
! 0 ifn—1<j
and d.: EF" — EF-L7=T . For j = 1 this is the stable EHP spectral sequence of
1.5.12. If j < 1 this spectral sequence maps to the stable EHP spectral sequence, the
. . . k,n
map being an isomorphism on E"" forn > 2. (I

The Segal conjecture for Z/(2), first proved by Lin [1], has the following con-
sequence.

1.5.31. THEOREM. For each j < O there is a map S™' — RP; such that the
map S™! — RP_ = l'glRPj is a homotopy equivalent after 2-adic completion
of the source (the target is already 2-adically complete since RP; is for j odd).
Consequently the inverse limit over j of the spectral sequences of 1.5.30 converges to
the 2-component of w.(S™Y). We will call this limit spectral sequence the superstable
EHP spectral sequence. O

Nothing like this is stated in Lin [1] even though it is an easy consequence of
his results. A proof and some generalizations are given in Ravenel [4]. Notice that
H.(RP_) # @1 H.,(RP;); this is a spectacular example of the failure of homology
to commute with inverse limits. Theorem 1.5.31 was first conjectured by Mahowald
and was discussed by Adams [14].

Now consider the spectrum RPy. It is the Thom spectrum of the trivial bundle
and is therefore SY VR P;. Hence for each j < 0 there is a map RP; — S° which is
nontrivial in mod (2) homology. The cofiber of this map for j = —1 can be shown to
be R, the cofiber of the map RP; — S° of Kahn and Priddy [2]. The Kahn-—Priddy
theorem says this map is surjective in homotopy in positive dimensions. Using these
facts we get

1.5.32. THEOREM. In the spectral sequence of 1.5.30 for j <0,

(a) no element in E%F supports a nontrivial differential;

(b) no element in EX* is the target of a nontrivial differential;

(c) every element of EY" = m,1(S°) that is divisible by 2 is the target of a
nontrivial di and every element of Eg’k for k > —1 is the target of some d, for
r>2; and

(d) every element in E}* = m,(S°) not of order 2 supports a nontrivial dy and
every element of E21k supports a nontrivial d, for some r > 2. [
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PROOF. Parts (a) and (b) follow from the existence of maps S~! — RP; — S°,
(c) follows from the Kahn—Priddy theorem, and (d) follows from the fact that the
map I'&nRPj — SO is trivial. O

Now the spectral sequence converges to 7. (S™1), yet 1.5.32(c) indicates that the
map S~! — RP_,, induces a trivial map of E-terms, except for E_ "0, where it
is the projection of Z onto Z/(2). [Here we are using a suitably indexed, collapsing
AHSS for 7, (S~1).] This raises the following question: what element in EX~" (for
some n > 0) corresponds to a given element z € 71, (S~1)? The determination of n is
equivalent to finding the smallest n such that the composite S¥ & S—1 - RP_,_;
is nontrivial. The Kahn—Priddy theorem tells us this composite is trivial for n = 0
if k> 0or k= —1 and z is divisible by 2; and the Segal conjecture (via 1.5.31)
says the map is nontrivial for some n > 0. Now consider the cofiber sequence
S—"=1 5 RP_,_; — RP_,. The map from S* to RP_,, is trivial by assumption
so we get a map from S* to S~!17" defined modulo some indeterminacy. Hence
r € Tp11(SP) gives us a coset M(z) C Trt14+0(SY) which does not contain zero.
We call M(z) the Mahowald invariant of x, and note that n, as well as the coset,
depends on z. The invariant can be computed in some cases and appears to be
very interesting. For example, we have

1.5.33. THEOREM. Let 1 be a generator of mo(S®). Then for each j > 0, M (271)
contains a;, a preimage in m.(S°) of the aj € m.(J) of 1.5.23. O

A similar result holds for odd primes. In 1.5.31 we replace the RP; by Thom
spectra of certain bundles over BY,, and M (p’1) > a;j for a;, as in 1.5.19. We also
have

1.5.34. CONJECTURE. M (0;) contains 641 for 6; as in 1.5.29. O

1.5.35. CONJECTURE. Whenever the Greek letter elements (1.3.17) a§-n) and
oz;nﬂ) exist in homotopy, a§n+1) € M(a§.n)). O

One can mimic the definition of the Mahowald invariant in terms of the Adams
spectral sequence or Adams—Novikov Es-terms and in the latter case prove an
analog of these conjectures. At p = 2 one can show (in homotopy) that M (a1) 3 g,
M(az) > as, and M(a3) > a3 = 03. This suggests using the iterated Mahowald
invariant to define (up to indeterminacy) Greek letter elements in homotopy, and

that 0; is a special case (namely ozgj 1) of this definition.






CHAPTER 2

Setting up the Adams Spectral Sequence

In this chapter we introduce the spectral sequence that will be our main object
of study. We do not intend to give a definitive account of the underlying theory, but
merely to make the rest of the book intelligible. Nearly all of this material is due
to Adams. The classical Adams spectral sequence [i.e., the one based on ordinary
mod (p) cohomology| was first introduced in Adams [3] and a most enjoyable expo-
sition of it can be found in Adams [7]. In Section 1 we give a fairly self-contained
account of it, referring to Adams [4] only for standard facts about Moore spectra
and inverse limits. We include a detailed discussion of how one extracts differentials
from an exact couple and a proof of convergence.

In Section 2 we describe the Adams spectral sequence based on a generalized
homology theory E, satisfying certain assumptions (2.2.5). We rely heavily on
Adams [4], referring to it for the more difficult proofs. The E,-Adams resolutions
(2.2.1) and spectral sequences (2.2.4) are defined, the Fa-term is identified, and the
convergence question is settled (2.2.3). We do not give the spectral sequence in its
full generality; we are only concerned with computing 7, (Y), not [X, Y] for spectra
X and Y. Most of the relevant algebraic theory, i.e., the study of Hopf algebroids,
is developed in Appendix 1.

In Section 3 we study the pairing of Adams spectral sequences induced by a
map a: X' A X" — X and the connecting homomorphism associated with a cofi-
bration realizing a short exact sequence in F-homology. Our smash product result
implies that for a ring spectrum the Adams spectral sequence is one of differential
algebras. To our knowledge these are the first published proofs of these results in
such generality.

Throughout this chapter and the rest of the book we assume a working knowl-
edge of spectra and the stable homotopy category as described, for example, in the
first few sections of Adams [4].

1. The Classical Adams Spectral Sequence

In this section we will set up the Adams spectral sequence based on ordinary
mod (p) cohomology for the homotopy groups of a spectrum X. Unless otherwise
stated all homology and cohomology groups will have coefficients in Z/(p) for a
prime number p, and X will be a connective spectrum such that H*(X) (but not
necessarily X itself) has finite type.

Recall that H*(X) is a module over the mod (p) Steenrod algebra A, to be
described explicitly in the next chapter. Our object is to prove

2.1.1. THEOREM (Adams [3]). Let X be a spectrum as above. There is a spectral
sequence

EX*(X) with d,.: ESt — Estritr=1

41
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such that

(a) Es' = Ext}{ (H*(X), Z/(p)).

(b) if X is of finite type, E5¥ is the bigraded group associated with a certain
filtration of 7.(X) ® Zy,, where Z,, denotes the ring of p-adic integers. O

Let E = HZ/(p), the mod (p) Eilenberg-Mac Lane spectrum. We recall some
of its elementary properties.

2.1.2. PROPOSITION.

(a) Ho(X) =m(EANX).

(b) H*(X) = [X, E].

(¢c) H*(E) = A.

(d) If K is a locally finite wedge of suspensions of E, i.e., a generalized
mod (p) Filenberg—Mac Lane spectrum, then m.(K) is a graded Z/(p)-vector space
with one generator for each wedge summand of K. More precisely, m.(K) =
Hom a(H* (K), Z/(p)).

(e) A map from X to K is equivalent to a locally finite collection of elements
in H*(X) in the appropriate dimensions. Conversely, any locally finite collection
of elements in H*(X) determines a map to such a K.

(f) If a locally finite collection of elements in H*(X) generate it as an A-module,
then the corresponding map f: X — K induces a surjection in cohomology.

(g) ENX is a wedge of suspensions of E with one wedge summand for each
Z/(p) generator of H*(X). H*(EANX)=A® H*(X) and the map f: X - EANX
(obtained by smashing X with the map S° — E) induces the A-module structure
map AR H*(X) — H*(X) in cohomology. In particular H*(F') is a surjection. O

The idea behind the Adams spectral sequence is to use maps such as those of
(f) or (g) and our knowledge of 7, (K) or m, (EAX) to get information about 7, (X).
We enlist the aid of homological algebra to make the necessary calculations.

More specifically, we have

2.1.3. DEFINITION. A mod (p) Adams resolution (Xs,gs) for X is a diagram

9o g1 g2

X = Xo X1 X2
lfo ifl lfz
Ky Ki K

where each K, is a wedge of suspensions of E, H*(fs) is onto and Xsy1 is the

fiber of fs. O

Proposition 2.1.2(f) and (g) enable us to construct such resolutions for any X,
e.g., by setting Ky = F A X,. Since H*(fs) is onto we have short exact sequences
0+ H*(X;) « H"(Ks) « H* (XX11) < 0.

We can splice these together to obtain a long exact sequence
(2.1.4) 0« H*(X) + H*(Ko) + H*(ZK,) « H*(X*K3) « - .

Since the maps are A-module homomorphisms and each H*(Kj) is free over A,
2.1.4 is a free A-resolution of H*(X).

Unfortunately, the relation of . (K) to 7. (X) is not as simple as that between
the corresponding cohomology groups. Life would be very simple if we knew 7. (fs)
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was onto, but in general it is not. We have instead long exact sequences

(2.1.5) o (Xoo) =20 7o) 2V 1 (k)
A

I

Dsx

arising from the fibrations

Xop1 25 X, 5 K.,
If we regard 7.(X;) and m,(K,) for all s as bigraded abelian groups D; and Ej,
respectively [i.e., D}* = m;_((X,) and E}* = 1, (K,)] then 2.1.5 becomes

(2.1.6) D —2 D

A2

. N | st
i1 =m—s(gs): Dj — Dy,

J1= 7'rtfs(fsy D?t - Ef’t7

where

and
ki =054 EYY — DITHL

The exactness of 2.1.5 translates to ker i1 = im kq, ker j; = im i1, and ker k; = im j;.
A diagram such as 2.1.6 is known as an exact couple. It is standard homological
algebra that an exact couple leads one to a spectral sequence; accounts of this
theory can be found in Cartan and Eilenberg [1, Section XV.7], Mac Lane [1,
Section XI.5], and Hilton and Stammbach [1, Chapter 8] as well as Massey [2].

Brieﬂy, d1 = jlk‘12 Ef’t — Ef—H’t has (d1)2 = j1k‘1j1k‘1 =0 so (El,dl) is a
complex and we define Ey = H(E7,d;). We get another exact couple, called the
derived couple,

(2.1.7) Dy —" - D,
N,/

where D‘;’t = ilDf’t, i9 is induced by iy, j2(i1d) = jid for d € Dy, and ka(e) = k1 (e)
for e € kerd, C F;. Since 2.1.7 is also an exact couple (this is provable by a diagram
chase), we can take its derived couple, and iterating the procedure gives a sequence

of exact couples
D, — D,
E,

where D, 11 = 4D, d. = j.ky, and F,11 = H(FE,,d,). The sequences of complexes
{(E,d,)} constitutes a spectral sequence. A close examination of the indices will
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reveal that d,.: B3t — ESTH=1 Tt follows that for s < r, the image of d,. in E2*
is trivial so E:L is a subgroup of E%! hence we can define

EY = () B

r>S8

This group will be identified (2.1.12) in certain cases with a subquotient of 7;_(X),
namely, im m;—s(Xs)/im m;—s(Xs41). The subgroups im 7, (X;) = F*m.(X) form a
decreasing filtration of m,(X) and E, is the associated bigraded group.

2.1.8. DEFINITION. The mod (p) Adams spectral sequence for X is the spectral
sequence associated to the exact couple 2.1.6. ]

We will verify that d,.: B3t — ESTHT7=1 by chasing diagram 2.1.9, where we
write 7, (X,) and 7, (K,) instead of Dy and E;, with u =t — s.
(2.1.9)

Tu(fs+2) Os+2,u Tu—1(fs+3)
> T (Xsy2) s Tu(Kst2) s Tu—1(Xs13) e Tu—1(Ksy3) >

mu(gs+1) Tu—1(gs+2)
o (fs41) Os+1,u Tu—1(fs+2)
- 7Tu(X3+1) — 7"'u(l(s+1) I 7Tu—1(X3+2) - T‘-u—l(Ks+2) -
7"u(98) 7Tufl(gerl)
Tu(fs) Os,u Tu—1(fs+1)
(X)) U (R e e (Ken) ) 1 (R ) >

The long exact sequences 2.1.5 are embedded in this diagram; each consists of a
vertical step 7. (g«) followed by horizontal steps 7, (fi) and O, and so on. We have
B = 7 (K,) and d5' = (mu_1(fs41))(8s.0). We have E5' = kerd"/imds ™",
Suppose an element in ES’t is represented by = € m,(K;). We will now explain
how ds[z] (where [z] is the class represented by x) is defined. x is a d; cycle, i.e.,
diz = 0, so exactness in 2.1.4 implies that 05 .o = (Ty+1(gs+1))(y) for some y €
Tu—1(Xsy2). Then (my_1(fss2))(y) is a dy cycle which represents do[z] € EyT>' 1
If dyfz] = O then [z] represents an element in E5"* which we also denote by [z].
To define d3[x] it can be shown that y can be chosen so that y = (my—1(gs+2)) (V')
for some y' € m,_1(Xs43) and that (mu—1(fs+3))(y’) is a di cycle representing
a dy cycle which represents an element in E**3!2 which we define to be ds[z].
These assertions may be verified by drawing another diagram which is related to
the derived couple 2.1.7 in the same way that 2.1.9 is related to the original exact
couple 2.1.6. The higher differentials are defined in a similar fashion. In practice,
even the calculation of ds is a delicate business.

Before identifying F%: we need to define the homotopy inverse limit of spectra.

2.1.10. DEFINITION. Given a sequence of spectra and maps

X0£X1£X2<£X3<‘"°,
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Li_Xi, is the fiber of the map

whose ith component is the difference between the projection p;: [[X; — X; and
the composite

HXj Pi+1 Xi+1 fit1 X,. 0

For the existence of products in the stable category see 3.13 of Adams [4].
This lim is not a categorical inverse limit (Mac Lane [1, Section III.4] because a
compatible collection of maps to the X;, does not give a unique map to @XZ For
this reason some authors (e.g., Bousfield and Kan [1]) denote it instead by holim.
The same can be said of the direct limit, which can be defined as the cofiber of the
appropriate self-map of the coproduct of the spectra in question. However this 1£1
has most of the properties one would like, such as the following.

2.1.11. LEMMA. Given spectra X; j fori,7 > 0 and maps f: X; ; — X;—1; and
g: X;; — X, j—1 such that fg is homotopic to gf,

i in Xo; = i in X
[ 7 J 7

PrRoOOF. We have for each i a cofibre sequence
@X@j — HXi’j — HXi’j'
J J J

Next we need to know that products preserve cofiber sequences. For this fact,
recall that the product of spectra [[Y;, is defined via Brown’s representability the-
orem (Adams [4], Theorem 3.12) as the spectrum representing the functor [[[—, Y;].
Hence the statement follows from the fact that a product (although not the inverse
limit) of exact sequences is again exact.

Hence we get the following homotopy commutative diagram in which both rows
and columns are cofiber sequences.

fmm X, —— [ X,y —— [ X,
i g i J i

[T X —— 1T Xy —— 1111 X
g L) i J

[[him X j ——= 111 Xiy ——I111 Xi;
iy i g i g

Everything in sight is determined by the two self-maps of [], Hj X;; and the
homotopy that makes them commute. Since the product is categorical we have

[L 11, Xi; = I1; 11, Xi,;- 1t follows that [, lim X; j = lim_ [L; Xi,; because they
are each the fiber of the same map.

Similarly
[Tlim Xy = 1im [T X0
jot L
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so one gets an equivalent diagram with l'glj l'gli X ; in the upper left corner. [

Now we will show that for suitable X, E%! is a certain subquotient of m, (X).

2.1.12. LEMMA. Let X be a spectrum with an Adams resolution (Xs,gs) such
that lim X, = pt. Then E%! is the subquotient imm,(Xs)/imm,(Xs11) of mu(X)
and (imm,(X) = 0.

PROOF. For the triviality of the intersection we have @W*(XS) = 0 since
@Xs = pt. Let G5 = m.(Xs) and

G, if s>t
im Gy < Gy ift > s

We have injections G%, — G%~! and surjections Gt — G%_,, so m, G =, G’ and

t
s—1»

lim G§ = G;. We are trying to show lim G{ = 0. lim, G§ maps onto lim G{_, so
Jm lim G maps onto m G But im Jim Gf =lim lim G{=lim Gy =0.

For the identification of ES!, let 0 # [z] € ES!.

First we show 0,,(r) = 0. Since d.[z] = 0, Js4(z) can be lifted to
Tyu—1(Xstrt1) for each r. It follows that Os.(z) € iml'meu_l(XSM) = 0, so
Osu(x) = 0.

Hence we have x = m,(fs)(y) for y € m,(X;). It suffices to show that y has
a nontrivial image in m,(X). If not, let r be the largest integer such that y has
a nontrivial image z € m,(Xs—r41). Then z = 05—y (w) for w € m,(K,_,) and
d[w] = [z], contradicting the nontriviality of [z]. O

Now we prove 2.1.1(a), the identification of the Fs-term.
By 2.1.2(d), " = Hom 4 (H'"*(K,),Z/(p)). Hence applying Hom(—, Z/(p))
to 2.1.4 gives a complex

s s
EN S BN S EY

The cohomology of this complex is by definition the indicated Ext group. It is
straightforward to identify the coboundary § with the d; in the spectral sequence
and 2.1.1(a) follows.

2.1.13. COROLLARY. If f: X — Y induces an isomorphism in mod (p) ho-
mology then it induces an isomorphism (from Eo onward) in the mod (p) Adams
spectral sequence. (I

2.1.14. DEFINITION. Let G be an abelian group and X a spectrum. Then
XG = X A SG, where SG is the Moore spectrum associated with G (Adams [4,
p.200]. Let X = XZ, (the p-aidc completion of X ), where Z,, is the p-adic integers,
and X™ = XZ/(p™). O

2.1.15. LEMMA. (a) The map X — X induces an isomorphism of mod (p)
Adams spectral sequences.

(b) m(X) = 1 (X) @ Zy,.

(c) X = ]'ngm, if © has finite type.

PrROOF. For (a) it suffices by 2.1.11 to show that the map induces an isomor-

phism in mod (p) homology. For this see Adams [4], proposition 6.7, which also
shows (b).
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Part (c) does not follow immediately from the fact that SZ, = lim SZ /(™)
because inverse limits do not in general commute with smash products. Indeed our
assertion would be false for X = SQ, but we are assuming that X has finite type.

By 2.1.10 there is a cofibration

Sz, — [[52/™) = ][ 5Z/(™).
so it suffices to show that

xn][sz/m) ~[[X2/™).
This is a special case (with X = E and R = Z) of Theorem 15.2 of Adams [4]. O

2.1.16. LEMMA. If X is a connective spectrum with each m;(X) a finite p-group,
then for any mod (p) Adams resolution (Xs,gs) of X, @XS = pt.

ProoF. Construct a diagram
X =Xj« X+ X5+ -
(not an Adams resolution) by letting X, ; be the fiber in
X=X, = K,

where the right-hand map corresponds [2.1.2(e)] to a basis for the bottom cohomol-
ogy group of X,. Then the finiteness of 7;(X) implies that for each 4, m;(X.) =0
for large s. Moreover, m, (X, ;) — m.(X]) is monomorphic so lngé = pt.

Now if (X, gs) is an Adams resolution, the triviality of g5 in cohomology enables
us to construct compatible maps Xy — X.. It follows that the map Jm 7, (Xs) —
(X)) is trivial. Each X also satisfies the hypotheses of the lemma, so we conclude
that lim . (Xs) has trivial image in each m,(X;) and is therefore trivial. Since

7;(X) is finite for all ¢ and s, @1 T (Xs) = 0 so lim X = pt. O

We are now ready to prove 2.1.1(b), i.e., to identify the E-term. By 2.1.15(a)
it suffices to replace X by X. Note that since SZ,\NSZ/(p™) =8SZ/(p™), X™ =
X™. 1t follows that given a mod (p) Adams resolution (X,,g,) for X, smashing
with SZ, and SZ/(p™) gives resolutions (X5, §s) and (X™,g™) for X and X™,
respectively. Moreover, X™ satisfies 2.1.16 so l'gls X7 = pt. Applying 2.1.15(c) to
each X, we get )?3 = I'an X", so

o
— 15 3 m
= h%n%le by 2.1.11
= pt.
Hence the result follows from 2.1.12. O

2.1.17. REMARK. The E,, term only gives us a series of subquotients of
7+(X) ® Zy, not the group itself. After computing E., one may have to use other
methods to solve the extension problem and recover the group.

We close this section with some examples.
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2.1.18. EXAMPLE. Let X = HZ, the integral Eilenberg—-Mac Lane spectrum.
The fundamental cohomology class gives a map f: X — E with H*(f) surjective.
The fiber of f is also X, the inclusion map ¢g: X — X having degree p. Hence
we get an Adams resolution (2.1.3) with X; = X and K; = F for all s, the map
X =X, = Xg = X, having degree p*. We have then

st _ JZ/(p) ift=s
E) = i
0 if t # s.
There is no room for nontrivial differentials so the spectral sequence collapses,
ie, Exc = E1. We have E%* = Z/(p) = immo(Xs)/immo(Xs4+1). In this case
X = HZ,, the Eilenberg-Mac Lane spectrum for Z,.

2.1.19. EXAMPLE. Let X = HZ/(p') with i > 1. Tt is known that H*(X) =
H*(Y)®XH*(Y) as A-modules, where Y = HZ. This splitting arises from the two
right-hand maps in the cofiber sequence

Y=Y - XYY,

where the left-hand map has degree p’. Since the E»-term of the Adams spectral
sequence depends only on H*(X) as an A-module, the former will enjoy a similar
splitting. In the previous example we effectively showed that

Z/(p) ift=s

Ext}'(H*(Y),Z/(p)) = {0 if t # s.

It follows that in the spectral sequence for X we have

g5t Z/(p) ift—s=0orl
2 0 otherwise

In order to give the correct answer we must have E5! =0if t —s =1 and E$f =0
if £ = s for all but 7 values of s. Multiplicative properties of the spectral sequence
to be discussed in Section 3 imply that the only way we can arrive at a suitable F,
term is to have d; : Ef’sﬂ — Ef“’sﬂ- nontrivial for all s > 0. A similar conclusion
can be drawn by chasing the relevant diagrams.

2.1.20. EXAMPLE. Let X be the fiber in X — S° — HZ, where the right-hand
map is the fundamental integral cohomology class on SY. Smashing the above
fibration with X we get

XAX 2 x % xAHZ

It is known that the integral homology of X has exponent p, so X A HZ is a wedge
of E and H*(fy) is surjective. Similar statements hold after smashing with X any
number of times, so we get an Adams resolution (2.1.3) with K; = X; A HZ and
X, = X+ the (s + 1)-fold smash product of X with itself, i.e., one of the form

X~—XNX~—XNXNX ~— -

l | |

X NHZ XANXNHZ XANXNXANHZ.

Since X is (2p — 4)-connected Xy, is ((s + 1)(2p — 3) — 1)-connected, so Jim X, is
contractible.
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2. The Adams Spectral Sequence Based on a Generalized Homology
Theory

In this section we will define a spectral sequence similar to that of 2.1.1 (the
classical Adams spectral sequence) in which the mod (p) Eilenberg—Mac Lane spec-
trum is replaced by some more general spectrum F. The main example we have in
mind is of course £ = BP, the Brown—Peterson spectrum, to be defined in 4.1.12.
The basic reference for this material is Adams [4] (especially Section 15, which
includes the requisite preliminaries on the stable homotopy category.

Our spectral sequence should have the two essential properties of the classi-
cal one: it converges to m(X) localized or completed at p and its Es-term is a
functor of E*(X) (the generalized cohomology of X) as a module over the algebra
of cohomology operations E*(FE); i.e., the Es-term should be computable in some
homological way, as in 2.1.1. Experience has shown that with regard to the second
property we should dualize and consider instead F,(X) (the generalized homology
of X) as a comodule over E,(F) (sometimes referred to as the coalgebra of coop-
erations). In the classical case, i.e., when E = HZ/(p), E.(E) is the dual Steenrod
algebra A,.

Theorem 2.1.1(a) can be reformulated as Eo = Exta, (Z/(p), H.(X)) using
the definition of Ext in the category of comodules given in A1.2.3. In the case
FE = BP substantial technical problems can be avoided by using homology instead
of cohomology. Further discussion of this point can be found in Adams [6, pp.
51-55].

Let us assume for the moment that we have known enough about E and E,(F)
to say that E.(X) is a comodule over E,(E) and we have a suitable definition of
Extpg, (5)(E«(SY), E.(X)), which we abbreviate as Ext(E,(X)). Then we might
proceed as follows.

2.2.1. DEFINITION. An E,-Adams resolution for X is a diagram

g0 g1

X:XO X1 X2
fol fll le
Ky Ky Ky

such that for all s > 0 the following conditions hold.
(a) Xst1 is the fiber of fs.
(b) EAX; is a retract of EANK, i.e., there is a map hy: EANKs — ENX, such
that hs(E A fs) is an identity map of EAX. particular E.(fs) is a monomorphism.
(c) K is a retract of E N K.
(d)
T (Ks) ift=0
0 ift > 0.

Ext""(F,(K,)) = { O
As we will see below, conditions (b) and (c) are necessary to insure that the

spectral sequence is natural, while (d) is needed to give the desired Ea-term. As

before it is convenient to consider a spectrum with the following properties.

2.2.2. DEFINITION. An E-completion X of X is a spectrum such that
(a) There is a map X — X inducing an isomorphism in E.-homology.
(b) X has an E.-Adams resolution {X,} with Jim X = pt. O
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This is not necessarily the same as the X of 2.1.14, which will be denoted in
this section by X, (2.2.12). Of course, the existence of such a spectrum (2.2.13) is
not obvious and we will not give a proof here. Assuming it, we can state the main
result of this section.

2.2.3. THEOREM (Adams [4]). An E,.-Adams resolution for X (2.2.1) leads to
a natural spectral sequence EX*(X) with d,: E$t — ESTTHT=1 gych that

(a) Ey' = Ext(F.(X)).

(b) EX is the bigraded group associated with a certain filtration of w*()?), in

other words, the spectral sequence converges to the latter. (This filtration will be
described in 2.2.14.)

2.2.4. DEFINITION. The spectral sequence of 2.2.3 is the Adams spectral se-
quence for X based on E-homology. O

2.2.5. AsSSUMPTION. We now list the assumptions on E which will enable us to
define Ext and X.
(a) F is a commutative associative ring spectrum.
(b) E is connective, i.e., m.(FE) =0 for r < 0.

(¢) The map ps: 7o(E) @79 (E) — 7o (E) induced by the multiplication p: E A
FE — FE is an isomorphism.

(d) E is flat, i.e., E.(E) is flat as a left module over 7, (E).

(e) Let 8: Z — mo(E) be the unique ring homomorphism, and let R C Q be
the largest subring to which 6 extends. Then H,.(E; R) is finitely generated over R
for all r.

2.2.6. PROPOSITION. HZ/(p) and BP satisfy 2.2.5(a)—(e) O

The flatness condition 2.2.5(d) is only necessary for identifying E3* as an Ext.
Without it one still has a spectral sequence with the specified convergence prop-
erties. Some well-known spectra which satisfy the remaining conditions are HZ,
bo, bu, and MSU. In these cases E A F is not a wedge of suspensions of E as it
is when E = HZ/(p), BP, or MU. HZ N HZ is known to be a certain wedge of
suspensions of HZ/(p) and HZ, bo A bo is described by Milgram [1], bu A bu by
Adams [4], Section 17, and MSU A M SU by Pengelley [1].

We now turn to the definition of Ext. It follows from our assumptions 2.2.5
that E.(E) is a ring which is flat as a left 7, (F) module. Moreover, E,(E) is a
7« (E) bimodule, the right and left module structures being induced by the maps

E=S"AE—-EAE and E=EAS°— ENAE,

respectively. In the case E = HZ/(p) these two module structures are identical,
but not when £ = BP. Following Adams [4], Section 12, let u: E A E be the
multiplication on E and consider the map

(EANE)A(EAX) LS EAEAKX.

2.2.7. LEMMA. The above map induces an isomorphism
E.(E) @r, () Ex(X) = m.(ENENX).

PROOF. The result is trivial for X = S™. It follows for X finite by induction
on the number of cells using the 5-lemma, and for arbitrary X by passing to direct
limits. (]
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Now the map
EAX=EASAX S EANEANX

induces
V: Bu(X) = m(EAENX) = Eu(E) @r, (p) Eu(X).
In particular, if X = F we get
A: Ei(E) = Ex(E) @) Eu(E).

Thus FE,.(F) is a coalgebra over 7,(F) as well as an algebra, and F,(X) is a co-
module over E,(F). One would like to say that E,(F), like the dual Steenrod
algebra, is a commutative Hopf algebra, but that would be incorrect since one
uses the bimodule structure in the tensor product E.(E) ®,, (p) E«(E) (ie., the
product is with respect to the right module structure on the first factor and the
left module structure on the second). In addition to the coproduct A and algebra
structure, it has a right and left unit ng,n.: 7.(E) — E.(E) corresponding to the
two module structures, a counit €: E,(E) — m.(F) induced by yu: EAE — E, and
a conjugation c: F.(F) — E.(F) induced by interchange the factors in F A E.

2.2.8. PROPOSITION. With the above structure maps (7«(E), E.(E)) is a Hopf
algebroid (Al.1.1), and E-homology is a functor to the category of left E.(E)
-comodules (A1.1.2), which is abelian (A1.1.3). O

The problem of computing the relevant Ext groups is discussed in Appendix 1,
where an explicit complex (the cobar complex A1.2.11) for doing so is given. This
complex can be realized geometrically by the canonical E,-Adams resolution defined
below.

2.2.9. LEMMA. Let K, = E N Xg, and let X541 be the fiber of fs: Xs — K.
Then the resulting diagram (2.2.1) is an E.-Adams resolution for X.

PROOF. Since F is a ring spectrum it is a retract of EAFE, so EA X, is a retract
of EANKy, = ENEAX, and 2.2.1(b) is satisfied. EA X is an E-module spectrum
so 2.2.1(c) is satisfied. For 2.2.1(d) we have E.(K,) = E.(E) @, (g) E«(Xs) by
2.2.7 and Ext(E,(K;)) has the desired properties by A1.2.1 and Al1.2.4. O

2.2.10. DEFINITION. The canonical E,-Adams resolution for X is the one given
by 2.2.9.

Note that if F is not a ring spectrum then the above f; need not induce a
monomorphism in E-homology, in which case the above would not be an Adams
resolution.

Note also that the canonical resolution for X can be obtained by smashing X
with the canonical resolution for S°.

2.2.11. PROPOSITION. The Fj-term of the Adams spectral sequence associated
with the resolution of 2.2.9 is the cobar complex C*(E.(X)) (A1.2.11). O

Next we describe an E-completion X (2.2.2). First we need some more termi-
nology.

2.2.12. DEFINITION. X,y = XZ(;,, where Z,) denotes the integers localized at
p, and X, = XZ), (see 2.1.14).
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2.2.13. THEOREM. If X is connective and E satisfies 2.2.5(a)—(e) then an E-
completion (2.2.2) of X is given by

XQ ifm(E)=Q
Xp) i mo(E) = L)
X  ifm(E)=1Z O
X, if mo(E) =2Z/(p) and 7, (X)
is finitely generated for all n.

<)
Il

These are not the only possible values of 7o (F), but the others will not concern
us. A proof is given by Adams [4], Theorem 14.6 and Section 15. We will sketch
a proof using the additional hypothesis that 71 (E) = 0, which is true in all of the
cases we will consider in this book.

For simplicity assume that my(X) is the first nonzero homotopy group. Then
in the cases where m(E) is a subring of Q we have 771()/(: AE®) =0 fori<s,so
by setting )A(S =XAE® we get @Xs = pt.

The remaining case, mo(F) = Z/(p) can be handled by an argument similar to
that of the classical case. We show XZ/(p™) is its own E-completion by modifying
the proof of 2.1.16 appropriately. Then X, can be shown to be E-complete just as
in the proof of 2.1.1(b) (following 2.1.16).

Now we are ready to prove 2.2.3(a). As in Section 1 the diagram 2.2.1 leads to
an exact couple which gives the desired spectral sequence. To identify the Fo-term,
observe that 2.2.1(a) implies that each fibration in the resolution gives a short (as
opposed to long) exact sequence in E-homology. These splice together to give a
long exact sequence replacing 2.1.3,

0— E.(X) = E(Ky) > E(E2Kq) = -+

Condition 2.2.1(c) implies that the Es-term of the spectral sequence is the coho-
mology of the complex

Ext?(F.(Ky)) — Ext®(E.(SK})) — -+ .

By A1.2.4 this is Ext(E.(X)).

For 2.2.3(b) we know that the map X — X induces a spectral sequence isomor-
phism since it induces an F-homology isomorphism. We also know that l&n X s = pt,
so we can identify EZ¥ as in 2.1.12.

We still need to show that the spectral sequence is natural and independent
(from FE5 onward) of the choice of resolution. The former implies the latter as
the identity map on X induces a map between any two resolutions and standard
homological arguments show that such a map induces an isomorphism in FEs and
hence in E, for r > 2. The canonical resolution is clearly natural so it suffices to
show that any other resolution admits maps to and from the canonical one.

We do this in stages as follows. Let {fs: X5 — K} be an arbitrary resolution
and let RY be the canonical one. Let R™ = {f: X" — K"} be defined by X" = X,
and K = K,, for s <n and K} = EA X[; for s > n. Then R* is the arbitrary
resolution and we construct maps R? ++ R™ by constructing maps R" < R"t!,
for which it suffices to construct maps between K, and E A X, compatible with the
map from X,. By 2.2.1(b) and (c), K5 and E A X, are both retracts of EA Kg, so
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we have a commutative diagram

Xy —— K,

LI

EAX,—>EANK, —>EAX,

)

K,

in which the horizontal and vertical composite maps are identities. It follows that
the diagonal maps are the ones we want.

The Adams spectral sequence of 2.2.3 is useful for computing 7.(X), i.e.,
[SY, X]. With additional assumptions on E one can generalize to a spectral se-
quence for computing [W, X]. This is done in Adams [4] for the case when E,.(W)
is projective over 7, (E). We omit this material as we have no need for it.

Now we describe the filtration of 2.2.3(b), which will be referred to as the
E.-Adams filtration on W*()?)

2.2.14. FILTRATION THEOREM. The filtration on w*()?) of 2.2.3(b) is as fol-
lows. A map f: S™ — X has filtration > s if f can be factored into s maps each of
which becomes trivial after smashing the target with E.

~

PROOF. We have seen above that F*7m,(X) = imm,(Xs). We will use the
canonical resolution (2.2.10). Let E be the fiber of the unit map S° — E. Then
Xy = EG) A X, where E®) is the s-fold smash product of E. Xipy1 =2 Xi > X4,NE
is a fiber sequence so each such composition is trivial and a map S™ — X which
lifts to X, clearly satisfies the stated condition. It remains to show the converse,
i.e., that if a map f: S™ — X factors as

St Y, Iy, I LYy =X,
where each composite Y; iy Y,_1 — Y,_1 A E is trivial, then it lifts to X;. We
argue by induction on i. Suppose Y;_; — X lifts to X;_; (a trivial statement for
i = 1). Since Y; maps trivially to Y;_1 A E, it does so to X;_; A E and therefore
lifts to X;. ([l

3. The Smash Product Pairing and the Generalized Connecting
Homomorphism

In this section we derive two properties of the Adams spectral sequence which
will prove usefull in the sequel. The first concerns the structure induced by a map
(2.3.1) a: X'NX" = X,

e.g., the multiplication on a ring spectrum. The second concerns a generalized
connecting homomorphism arising from a cofiber sequence
(2.3.2) whxsyhsw

when E,(h) = 0. Both of these results are folk theorems long known to experts in
the field but to our knowledge never before published in full generality. The first
property in the classical case was proved in Adams [3], while a weaker form of the
second property was proved by Johnson, Miller, Wilson, and Zahler [1].
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Throughout this section the assumptions 2.2.5 on E will apply. However, the
flatness condition [2.2.5(d)] is only necessary for statements explicitly involving Ext,
i.e., 2.3.3(e) and 2.3.4(a). For each spectrum X let EF*(X) be the Adams spectral
sequence for X based on E-homology (2.2.3). Our first result is

2.3.3. THEOREM. Let 2 < r < oco. Then the map a above induces a natural

pairing
EFN(X) @ B (X7) = B (X)

such that

(a) fora’ € ESV(X'), a” € E$ UV (X"),

dy(d',d") = d.(a)a" + (=1)" =¥ d'd,(a");

(b) the pairing on E,.i1, is induced by that on E,;

(c) the pairing on Eo, corresponds to a,: 7. (X') @ m (X)) — me(X);

(d) if X' = X" = X and E.(): E«(X) ® E.(X) — E.(X) is commutative
or associative, then so is the pairing [modulo the usual sign conventions, i.e.,
da’ = (_1)(t’—s’)(t”—s”)a//a/];

(e) for r =2 the pairing is the external cup product (A1.2.13)

Ext(E.(X")) @ Ext(E(X")) = Ext(E.(X") @r, () B« (X))

composed with the map in Ext induced by the composition of canonical maps

E(X") @ (p) Bo(X") = Eo (X' AN X") 25 B (X).

In particular, by setting X' = S° and X" = X we find that the spectral sequence
for X is a module (in the appropriate sense) over that for the sphere S°. O

The second result is

2.3.4. THEOREM. Let E.(h) =0 in 2.3.2. Then for 2 <r < oo there are maps
§p: E3*(Y) — ESTL5(W) such that
(a) 02 is the connecting homomorphism associated with the short exact sequence
0— E. (W)= E.(X) = E(Y) =0,

(b) 6,d, = d,-6, and 6,41 induced by I,

(¢) o ts a filtered form of the map m.(h).

The connecting homomorphism in Ext can be described as the Yoneda product

(Hilton and Stammbach [1, p. 155] with the element ofExt};*(E)(E* (Y), E.(W))
corresponding to the short exact sequence

0— E.(W)— E.(X)— E,(Y)—=0.
Similarly, given a sequence of maps
Xo & wx, L w2x, - s wX,,
with E.(f;) =0 one gets maps
5 B (Xo) = BT (X,)

commuting with differentials where 0o can be identified as the Yoneda product with
the appropriate element in

Extiy(p.) (Ex(Xo), Ex(Xn)). 0
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If one generalizes the spectral sequence to source spectra other than the sphere
one is led to a pairing induced by composition of maps. This has been studied
by Moss [1], where it is assumed that one has Adams resolutions satisfying much
stronger conditions than 2.2.1. In the spectral sequence for the sphere it can be
shown that the composition and smash product pairings coincide, but we will not
need this fact.

To prove 2.3.3 we will use the canonical resolutions (2.2.9) for X', X” and
X. Recall that these can be obtained by smashing the respective spectra with the
canonical resolution for S°. Let K s4r be the cofiber in

(235) E(S+T) — E(S) — Ks,s+r7
where F is the fiber of SY — E.

These spectra have the following properties.

2.3.6. LEMMA.
(a) There are canonical fibrations

Ks+i,s+i+j — Ks,s+i+j — Ks,s+i-

(b) By (X) = mu(X A Kg 541)-

Let Z5*(X), BS*(X) C E7"(X) be the images of mo(X A K s+0) and (X A
YUK r11.s), respectively. Then ES*(X) = Z5*(X)/B2*(X) and d, is induced
by the map

X A KS73+7~ — XA ZK3+T7S+2T.
(¢) a induces map X, ANX, — Xsy1 (where these are the spectra in the canonical

resolutions) compatible with the maps g., gy, and gs1+ of 2.2.1.
(d) The map

Kssiy1 NKigr1 — Kogt sye+1,
given by the equivalence
Kyny1=EANE™
and the multiplication on E, lifts to maps
Ky oir NKppir — Koqp stt4r

for r > 1 such that the following diagram commutes
Kosirii NKpprri1 —— Kot srt1rt1
Ks,s+r A Kt,t+r I Ks+t,s+t+r

where the vertical maps come from (a).
(e) The following diagram commutes

Ks,s+7“ A Kt,t+r I (EKS+1",S+2T A Kt,t+r) \ (Ks,s+r A EKt—i—'r‘,t-i—Qr)
Ks+t,s+t+r I EI(s—&-t-‘,-r,s—i—t—i—27‘

where the vertical maps are those of (d) and the horizontal maps come from (a), the
maps to and from the wedge being the sums of the maps to and from the summands.
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PROOF. Part (a) is elementary. For (b) we refer the reader to Cartan and
Eilenberg [1], Section XV.7, where a spectral sequence is derived from a set of
abelian groups H(p, q) satisfying certain axioms. Their H(p,q) in this case is our
7+ (Kp,q), and (a) guarantees that these groups have the appropriate properties. For
(c) we use the fact that X’ = X' AE®), X/ = X" NE®W  and X, = X A EGH),

For (d) we can assume the maps EG+TD 5 F () are all inclusions with K o4r =
E®) /EGTT), Hence we have

Kosir AKiyyr = EGANEWD J(ECH AEO UE® AEE)
and this maps naturally to
E(s+t)/F(s+t+r) _ Ks+t,s+t+r-

For (e) if E¢+?1) — EG+1) - F() are inclusions then so is Kgypsiar —
Ks,s+2r so we have Ks,s+r = Ks,5+2r/Ks+r,s+2'r and Kt,tJrr = Kt,t+2r/Kt+r,t+2r~
With this in mind we get a commutative diagram

Ks,s+r A Kt+r,t+2r U Ks+r,s+2r A Kt,tJrr

Ks+t+r,s+t+27‘

Ks,s+2r N Kt,t+27‘ Ks+t,s+t+2r

K sir NKigir Koyt syttr

z([(s,s-"—r A Kt+r,t+27‘ U Ks+r,s+2r N Kt,t-ﬁ-r) —— ZKS+t+T7S+t+2T

where the horizontal maps come from (d) and the upper vertical maps are inclusions.
The lower left-hand map factors through the wedge giving the desired diagram. [

We are now ready to prove 2.3.3. In light of 2.3.6(b), the pairing is induced by
the maps of 2.3.6(d). Part 2.3.3(a) then follows from 2.3.6(e) as the differential on
E*(X)QE*(X") is induced by the top map of 2.3.6(e). Part 2.3.3(b) follows from
the commutative diagram in 2.3.6(d). Part 2.3.3(c) follows from the compatibility
of the maps in 2.3.6(c) and (d).

Assuming 2.3.3(e), (d) is proved as follows. The pairing on Ext is functorial, so
if E,(X) has a product which is associative or commutative, so will E3*(X). Now
suppose inductively that the product on EX*(X) has the desired property. Since
the product on E, ;1 is induced by that on E, the inductive step follows.

It remains then to prove 2.3.3(e). We have E. (X' A K o41) = D*(E(X"))
(A1.2.11) and similarly for X", so our pairing is induced by a map

E (X'NK,41) Or, (E) E (X" NKi41) = Eo(X AN Kgit 54t41)s

i.e., by a pairing of resolutions. Hence the pairing on E5 coincides with the specified
algebraic pairing by the uniqueness of the latter (A1.2.14).
We prove 2.3.4 by reducing it to the following special case.
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2.3.7. LEMMA. Theorem 2.3.4 holds when X is such that Ext®(FE.(X)) =0 for
5> 0 and 7.(X) = Ext’(E.(X)). O

PROOF OF 2.3.4. Let W’ be the fiber of the composite

whx s xR

Since Yfh is trivial, h lifts to a map h': Y — XW’. Now consider the cofiber
sequence

WS XAE-SIW = SW.

Lemma 2.3.7 applies here and gives maps
52 ES*(SW') — ESTLH(BW).
Composing this with the maps induced by h’ gives the desired result. [

PROOF OF 2.3.7. Disregarding the notation used in the above proof, let W' =
LY, X' =Y 'YAE,and Y =Y A E. Then we have a commutative diagram
in which both rows and columns are cofiber sequences

X w w’

L

XVYAE)=<—X<—X'

|

YANE Y Y’

Each row is the beginning of an Adams resolution (possibly noncanonical for W and
X) which we continue using the canonical resolutions (2.2.9) for W/, X', and Y.
Thus we get a commutative diagram

(2.3.8) WeW-<—WAE~— W AE® < ...

R

X<~ X'« X'ANE=~——X'ANE® ...

o

Y<~—Y <Y AE Y'ANE®@ < ...

in which each column is a cofiber sequence. The map Y — SW' induces maps
8y ES*(Y) — ESTL* (W) which clearly satisfy 2.3.4(a) and (b), so we need only to
verify that do is the connecting homomorphism. The resolutions displayed in 2.3.8
make this verification easy because they yield a short exact sequence of E-terms
which is additively (though not differentially) split. For s = 0 we have

EYY (W) =m(X), EY*(X)=m(X V(Y AR)),
EV*(Y)=m. (Y AE), E™(W)=m.(YAE),
Ell*(X) =m(YAEAE) and Ell*(Y) =m.(SY AEAE),
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so the relevant diagram for the connecting homomorphism is

b
X—XVYANE)=—=YAE

o |

YAE<——=YAEANE ——>YYAEMNE

where a and b are splitting maps. The connecting homomorphism is induced by

adb, which is the identity on Y A F, which also induces ds.
For s > 0 we have

ES* (W) = m(2°7'Y AEAECTY),
ESH(X) = 1 (27 AE@ AEGCTY),
and
EYN(Y) = m(2Y AEAEW),
so the relevant diagram is

E——ENE=———=FAE

i | |

SEANE==YEANEANE—>Y?EAE?
and again the connecting homomorphism is induced by
Y NE N E®.

the identity on
O



CHAPTER 3

The Classical Adams Spectral Sequence

In Section 1 we make some simple calculations with the Adams spectral se-
quence which will be useful later. In particular, we use it to compute 7,(MU)
(3.1.5), which will be needed in the next chapter. The computations are described
in some detail in order to acquaint the reader with the methods involved.

In Sections 2 and 3 we describe the two best methods of computing the Adams
spectral sequence for the sphere, i.e., the May spectral sequence and the lambda
algebra. In both cases a table is given showing the result in low dimensions (3.2.9
and 3.3.10). Far more extensive charts are given in Tangora [1, 4]. The main table
in the former is reproduced in Appendix 3.

In Section 4 we survey some general properties of the Adams spectral sequence.
We give Ey" for s < 3 (3.4.1 and 3.4.2) and then say what is known about dif-
ferentials on these elements (3.4.3 and 3.4.4). Then we outline the proof of the
Adams vanishing and periodicity theorems (3.4.5 and 3.4.6). For p = 2 they say
that E! vanishes roughly for 0 < t — s < 2s and has a very regular structure for
t — s < bs. The F-term in this region is given in 3.4.16. An elementary proof of
the nontriviality of most of these elements is given in 3.4.21.

In Section 5 we survey some other past and current research and suggest further
reading.

1. The Steenrod Algebra and Some Easy Calculations

In this section we begin calculating with the classical mod (p) Adams spectral
sequence of 2.1.1. We start by describing the dual Steenrod algebra A,, referring
the reader to Milnor [2] or Steenrod and Epstein [1] for the proof. Throughout
this book, P(z) will denote a polynomial algebra (over a field which will be clear
from the context) on one or more generators x, and E(x) will denote the exterior
algebra on same.

3.1.1. THEOREM (Milnor [2]). A, is a graded commutative, noncocommutative
Hopf algebra.

(a) For p =2, A, = P(&,&,...) as an algebra where |&,| = 2" — 1. The
coproduct A: A, — A, @ A, is given by A&y, = qcicn 2" @&, where & = 1.

(b) Forp > 2, A, = P(&1,&,...) ® E(10,71,...) as an algebra, where |&,| =
2(p™ — 1), and |1,| = 2p™ — 1. The coproduct A: A, — A, ® A, is given by
AL, = Zogign fﬁl_l ® &i, where §o =1 and A1, =7, ® 1 + Zogign 551_2 & ;.

(¢) For each prime p, there is a unit n: Z/(p) — A, a counit £: A, — Z/(p)
(both of which are isomorphisms in dimension 0), and a conjugation (canonical
antiautomorphism) c: A, — A, which is an algebra map given recursively by c(&o) =

1, Zogign zl_ic(&) =0 forn>0 and 7, + Zogign §£I_ic(n~) =0 forn>0. A,

59
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will denote kere; i.e., A, is isomorphic to A, in positive dimensions, and is trivial
in dimension 0. ([

A, is a commutative Hopf algebra and hence a Hopf algebroid. The homological
properties of such objects are discussed in Appendix 1.

We will consider the classical Adams spectral sequence formulated in terms
of homology (2.2.3) rather than cohomology (2.1.1). The most obvious way of
computing the Fs-term is to use the cobar complex. The following description of
it is a special case of 2.2.10 and A1.2.11.

3.1.2. PROPOSITION. The Es-term for the classical Adams spectral sequence for
7.(X) is the cohomology of the cobar complex C) (H.(X)) defined by

Ci,(Ho(X)) =A@ ® A, © Hu(X)

(with s tensor factors of A.). Fora; € A, andx € H,(X), the element a,®- - - a,@x
will be denoted by |ai|as|---|as]lx. The coboundary operator dy: C% (H. (X)) —

Cj‘":l(H* (X)) is given by

dlay| - Jage = [Lar| - agJe + Y (=1)[ar] -+ |aialajla} |aisa| - - as)e
=1
+ (=1 aa |- asl2"]2”,

where Aa; = a;, @ o and Y(z) =2’ @ 2" € A, @ H.(X). [A priori this expression
lies in A%t @ H.(X). The diligent reader can verify that it actually lies in
A%t @ H,(X).] |

This Es-term will be abbreviated by Ext(H.(X)).

Whenever possible we will omit the subscript A..

The following result will be helpful in solving group extension problems in the
Adams spectral sequence. For p > 2 let ay € Exth’i(Z/(pLZ/(p)) be the class
represented by [79] € C(Z/(p)). The analogous element for p = 2 is represented by
[61] and is denoted by ag, hi,9, or ho.

3.1.3. LEMMA.

(a) For s >0, Ext®*(H,(S°)) is generated by aj.

(b) If x € Ext(H.(X)) is a permanent cycle in the Adams spectral sequence
represented by o € (X)), then apx is a permanent cycle represented by pa. [The
pairing Ext(H,(S°)) ® Ext(H.(X)) — Ext(H.(X)) is given by 2.3.3.] O

ProOOF. Part (a) follows from inspection of C*(Z/(p)); there are no other el-
ements in the indicated bidegrees. For (b) the naturality of the smash product
pairing (2.3.3) reduces the problem to the case z = 1 € Ext(H.(SY)), where it
follows from the fact that mo(S°) = Z. O

The cobar complex is so large that one wants to avoid using it directly at all
costs. In this section we will consider four spectra (MO, MU, bo, and bu) in which
the change-of-rings isomorphism of A1.1.18 can be used to great advantage. The
most important of these for our purposes is MU, so we treat it first. The others are
not used in the sequel. Much of this material is covered in chapter 20 of Switzer [1].

The computation of 7.(MU) is due independently to Milnor [4] and Novikov
[2, 3]. For the definition and basic properties of MU, including the following
lemma, we refer the reader to Milnor [4] or Stong [1] or to Section 4.1.
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3.1.4. LEMMA.

(a) H.(MU;Z) = Z[by,bs,...], where b; € Hy;.

(b) Let H/(p) denote the mod (p) FEilenberg—Mac Lane spectrum for a prime p
and let u: MU — H/(p) be the Thom class, i.e., the generator of H*(MU;Z/(p)).
Then H,(u) is an algebra map and its image in H,(H/(p)) = A, is P(£2,£3,...)
forp=2 and P(&,&,...) for p> 2. O

The main result concerning MU is the following.

3.1.5. THEOREM (Milnor [4], Novikov [2, 3]).

(a) T(MU) = Z]x1, 22, ...] with x; € me;(MU).

(b) Let h: m.(MU) = H,(MU;Z) be the Hurewicz map. Then modulo decom-
posables in H,(MU;Z),

h(z:) —pb; if i = p¥ — 1 for some prime p .
€Xr;) =
—b; otherwise.

We will prove this in essentially the same way that Milnor and Novikov did.
After some preliminaries on the Steenrod algebra we will use the change-of-rings
isomorphisms A1.1.18 and A1.3.13 to compute the Es-term (3.1.10). It will follow
easily that the spectral sequence collapses; i.e., it has no nontrivial differentials.

To compute the Ea-term we need to know H,(MU;Z/(p)) as an A.-comodule
algebra. Since it is concentrated in even dimensions, the following result is useful.

3.1.6. LEMMA. Let M be a left A.-comodule which is concentrated in even
dimensions. Then M is a comodule over P, C A, defined as follows. For p > 2,
P, = P(&1,&,...) and forp =2, P, = P(£2,£2,...).

ProoOF. For m € M, let ¥(m) = ¥m' @m”. Then each m’ € A, must be even-
dimensional and by coassociativity its coproduct expansion must consist entirely of
even-dimensional factors, which means it must lie in P,. ([

3.1.7. LEMMA. As a left A.-comodule, H.(MU) = P. ® C, where
C = P(uj,ug,...) with dimwu; = 2i and i is any positive integer not of the form
k
p* —1.

PrOOF. H,(MU;Z/(P)) is a P.-comodule algebra by 3.1.4 and 3.1.6. It maps
onto Py by 3.1.4(b), so by A1.1.18 it is P, ® C, where C = Z/(p) Op, H.(MU). An
easy counting argument shows that C' must have the indicated form. (]

3.1.8. LEMMA. Let M be a comodule algebra over A, having the form P, ® N
for some A,-comodule algebra N. Then

Exta. (Z/(p), M) = Extp(Z/(p), N)

where

E(&,&,...) forp=2

E:A*®P* Z/(p):{E(7—077—17"') fO?”p>2'

In particular,

Exta, (Z/(p), H.(MU)) = Extr(Z/(p), Z/(p)) © C.
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PROOF. The statement about H,(MU) follows from the general one by 3.1.7.
For the latter we claim that M = A, Og N. We have A, = P, ® E as vector spaces
and hence as F-comodules by A1.1.20, so

A, Og N=P, FOg N=P, N =M,
and the result follows from A1.3.13. O

Hence we have reduced the problem of computing the Adams FEs-term for MU
to that of computing Extg(Z/(p),Z/(p)). This is quite easy since E is dual to an
exterior algebra of finite type.

3.1.9. LEMMA. Let T be a commutative, graded connected Hopf algebra of finite
type over a field K which is an exterior algebra on primitive generators x1,xs,. ..,
each having odd degree if K has characteristic other than 2 (e.g., let T' = E). Then

EXtF(K, K) = P(yl, Y2, ... ),
where y; € Extb%l is represented by [2] in Cp(K) (the cobar complex of A1.2.11).

Proor. Let T'; C T' be the exterior algebra on x;. Then an injective I';-
resolution of K is given by

0—>K—>Fii>l“i—>l‘i—>---

where d(z;) = 1 and d(1) = 0 applying Homr, (K, ) gives a complex with trivial
boundary operator and shows Extr, (K, K) = P(Y;). Tensoring all the R; together
gives an injective I'-resolution of K and the result follows from the Kunneth theo-
rem. (]

Combining the last three lemmas gives

3.1.10. COROLLARY.
Exta.(Z/(p), H.(MU)) = C ® P(ag, a1,...),

where C' is as in 3.1.7 and a; € Ext!2' =1 s represented by [1;] for p > 2 and [§;]
forp=2in Cy, (H.(MU)). O

Thus we have computed the Fs-term of the classical Adams spectral sequence
for m.(MU). Since it is generated by even-dimensional classes, i.e., elements in F3 ot
with ¢ — s even, there can be no nontrivial differentials, i.e., Fy = F.

The group extension problems are solved by 3.1.3; i.e., all multiples of af are
represented in 7,(MU) by multiples of p°. It follows that m.(MU) ® Z, is as
claimed for each p; i.e., 3.1.5(a) is true locally. Since m;(MU) is finitely generated
for each 7, we can conclude that it is a free abelian group of the appropriate rank.

To get at the global ring structure note that the mod (p) indecomposable quo-
tient in dimension 2i, Qm.(MU) ® Z/(p) is Z/(p) for each i > 0, so
Q27 (MU) = Z. Pick a generator x; in each even dimension and let R =
Z[r1,x9,...]. The map R — m,(MU) gives an isomorphism after tensoring with
Zy) for each prime p, so it is isomorphism globally.

To study the Hurewicz map

h: m.(MU) - H.(MU;Z),

recall H,(X;Z) = n.(X A H), where H is the integral Eilenberg-Mac Lane spec-
trum. We will prove 3.1.5(b) by determining the map of Adams spectral sequences
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induced by i: MU — MU A H. We will assume p > 2, leaving the obvious changes
for p = 2 to the reader. The following result on H,(H) is standard.

3.1.11. LEMMA. The mod (p) homology of the integer Eilenberg—-Mac Lane spec-
trum

H,(H)=P.® E(71,T2,...)

as an A, comodule, where T; denotes the conjugate 7;, i.e., its image under the
conjugation c. O

Hence we have
H.(H) = A Op(r,) Z/(p)

and an argument similar to that of 3.1.8 shows

(3.1.12) Exta, (Z/(p), Ho (X N H)) = Extpg-,)(Z/(p), H«(X)).

In the case X = MU the comodule structure is trivial, so by 3.1.11,
Exta, (Z/(p), H.(MU AN H)) = H,(MU) ® P(ag).

To determine the map of Ext groups induced by i, we consider three cobar com-
plexes, Ca, (H.(MU)), Cg(C), and Cg(,,)(H.(MU)). The cohomologies of the
first two are both Exta, (Z/(p), H.(MU)), by 3.1.2 and 3.1.8, respectively, while
that of the third is Exta, (Z/(p), H. (MU A H)) by 3.1.12. There are maps from
Ca,(H.(MU)) to each of the other two.

The class A,, € Ext}é{fpn_l(Z/(p),H*(MU)) is represented by [7,] € Cr(C).

The element — )" [7;] 271 € Cy,(H,(MU)) [using the decomposition of H,.(MU)
given by 3.1.7] is a cycle which maps to [7,,] and therefore it also represents a,,. Its
image in Cr () (H.(MU)) is [10)&n, so we have i,(a,) = ao&,. Since &, € H,(MU)
is a generator it is congruent modulo decomposables to a nonzero scalar multiple
of byn_1, while u; (3.1.9) can be chosen to be congruent to b;. It follows that the
x; € Moi(MU) can be chosen to satisfy 3.1.5(b).

We now turn to the other spectra in our list, MO, bu, and bo. The Adams
spectral sequence was not used originally to compute the homotopy of these spectra,
but we feel these calculations are instructive examples. In each case we will quote
without proof a standard theorem on the spectrum’s homology as an A,-comodule
and proceed from there.

For similar treatments of M SO, MSU, and MSp see, respectively, Pengel-
ley [2], Pengelley [1], and Kochman [1].

To following result on MO was first proved by Thom [1]. Proofs can also be
found in Liulevicius [1] and Stong [1, p. 95].

3.1.13. THEOREM. For p = 2, H,(MO) = A, ® N, where N is a polynomial
algebra with one generator in each degree not of the form 2F — 1. For p > 2,

H.(MO) =0. (]
It follows immediately that
N ifs=0
3.1.14 Ext% (Z/(2), H,(MO)) =
(3.1.14) xt3, (2/(2). H.(MO)) {0 oo

the spectral sequence collapses and 7.(MO) = N.
For bu we have
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3.1.15. THEOREM (Adams [8]).
H,(u)= P =M

0<i<p—1
where
M =P, ® E(T2,73,...) forp>2
M =P, ® E(&,&4,-..) forp=2
where & for a € A, is the conjugate (). O

Using 3.1.8 we get
Exta. (Z/(p), M) = Extp(Z/(p), E(72,7s,...))

(again we assume for convenience that p > 2) and by an easy calculation A1.3.13
gives

EXtE(Z/(p)7 E(TQa T3y )) = EXtE(TD,n)(Z/(p)a Z/(p)) = P(a()a al)
by 3.1.11, so we have

3.1.16. THEOREM.

Exta, (Z/(p), Hi(bu)) = 6_9 »% P(ag, a1)

i=0
where ag € Ext! and a; € Ext»?~ 1, O
As in the MU case the spectral sequence collapses because the Fs-term is
concentrated in even dimensions. The extensions can be handled in the same way,
so we recover the fact that
Z ifi>0andiseven
m(bu) = .
0 otherwise.

The bo spectrum is of interest only at the prime 2 because at odd primes it is
a summand of bu (see Adams [8]). For p = 2 we have

3.1.17. THEOREM (Stong [2]). For p = 2, H,(bo) = P(&},£3,€3,€4,...) where
& = c(&). O
Let A(1). = A./(&4,62,&3,€&4,...). We leave it as an exercise for the reader to
show that A(1), is dual to the subalgebra A(1) of A generated by Sq' and Sq?,
and that
H,(bo) = A Daqy, Z/(2),
so by A1.3.13,

(3.1.18) Ext . (Z/(2), H.(bo)) = Extan). (Z/(2), Z/(2)).

A(1) is not an exterior algebra, so 3.1.9 does not apply. We have to use the
Cartan—Eilenberg spectral sequence A1.3.15. The reader can verify that the follow-
ing is an extension (A1.1.15)

(3.1.19) ® — A1), — E(&),

where ® = P(&1)/(€1). @ is isomorphic as a coalgebra to an exterior algebra on
elements corresponding to & and &2, so by 3.1.9

Exts(Z2/(2),Z/(2)) = P(h1o, h11)
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and

Ext g, (Z/(2), Z/(2)) = P(ha),

where h; ; is represented by [5_3]] in the appropriate cobar complex. Since P(hgg) has
only one basis element in each degree, the coaction of ® on it is trivial, so by A1.3.15
we have a Cartan-Eilenberg spectral sequence converging to Ext 4(1), (Z/(2),Z/(2))
with

(3.1.20) Es = P(h1o, h11, hao)
where hy; € Ezl’0 and hog € Eg’l. We claim
(3.1.21) da(h2o) = hioh11.

This follows from the fact that
(&) =& @ &
in Caq1y,(Z/(2)). Tt follows that
(3.1.22) E3 = P(u, hio, h11)/(hiohi1)
where u € Eg’2 corresponds to h3,. Next we claim
(3.1.23) ds(u) = h3,.
We have in Cx(1),(Z/(2)),
A& ®&E) =L +6H R ®E.
In this 5 this gives
d2h3y = hioh11hao + haohiohi =0

since F is commutative. However, the cobar complex is not commutative and when
we add correcting terms to & ® & in the hope of getting a cycle, we get instead

d&eE+6RGHL+ELERE) =R,
which implies 3.1.23. It follows that
(3.1.24) Ey = P(h1o, ha1, v, w)/(hiohi1, h31, v* 4+ higw, vhit),

where v € Ey? and w € E2’4 correspond to high3, and hj, respectively.

Finally, we claim that F,; = E; inspection of F, shows that there cannot be
any higher differentials because there is no E* for r > 4 which is nontrivial and
for which E3+™t="*+1 is also nontrivial. There is also no room for any nontrivial
extensions in the multiplicative structure. Thus we have proved

3.1.25. THEOREM. The Es-term for the mod (2) Adams spectral sequence for
7. (bo),
Exta, (Z/(2), He(bo)) = Extan).(Z/(2),Z/(2))
18
P(h1o, ha1,v,w)/(h1oha1, b3y, v + higw, vhiy),
where

hio € Ext™, hy € Ext"?, v e Ext®”, and w e Ext™'?. O



66 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE
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This E»-term is displayed in the accompanying figure. A vertical arrow over
an element indicates that hiyx is also present and nontrivial for all s > 0.

Now we claim that this Adams spectral sequence also collapses, i.e., Fy =
E. Inspection shows that the only possible nontrivial differential is d,(w™hi1) =
u}”h’fo+ ". However, bo is a ring spectrum so by 2.3.3 the differentials are derivations
and we cannot have d,.(hy1) = h;g‘l because it contradicts the relation highi1 = 0.
The extension problem is solved by 3.1.3, giving

3.1.26. THEOREM (Bott [1]).
m.(bo) = Z[n, a, B]/(2n,n°, ne, &® — 4P)
withn € m1, o € wy, B € ms, i.e., fori >0
Z ifi=0 mod4
mi(bo) =4 7Z/2 ifi=1or2 mod8 O
0 otherwise.

For future reference we will compute Ext,1)(Z/(2), M) for M = A(0). =
E(&) and M =Y = P(&)/(£1). Topologically these are the Adams Eo-terms for
the mod (2)-Moore spectrum smashed with bo and bu, respectively. We use the
Cartan—Eilenberg spectral sequence as above and our Es-term is

Exte(Z/(2), Extpg,)(Z/(2), M)).
An easy calculation shows that

Ey = P(hi1,ha) for M = A(0).
and

Ey = P(hyy) for M =Y.

In the latter case the Cartan—Eilenberg spectral sequence collapses. In the former
case the differentials are not derivations since A(0), is not a comodule algebra.
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From 3.1.23 we get d3(h3,) = h3;, so
Es = By = P(w) ® {1, h11, hiy, hao, haohi1, haohiy }.

This Ext is not an algebra but it is a module over Ext 41, (Z/(2),Z/(2)). We will

show that there is a nontrivial extension in this structure, namely highog = h%l.

We do this by computing in the cobar complex C4(1), (A(0).). There the class hog

is represented by [€2] 4 [€2]€1, s0 hiohag is represented by [€1|€2]+[€1|€2]&1. The sum

of this and [£7|¢7] (which represents h3 ;) is the coboundary of [£1&a] 4 [€F + &2)&1.
From these considerations we get

3.1.27. THEOREM. As a module over Ext 1y, (Z/(2),Z/(2)) (3.1.25) we have

(a) Extac),,(Z/(2),A(0).) is generated by 1 € Ext® and hgo € Ext'?® with
th 1= 0, h10h20 = h?l . 1, v-1l= 0, and ’Uhg() =0.

(b) Extacy, (Z(2),Y) is generated by {hby: 0 < i < 3} with hyghly = hi1hby =
vhby = 0. O

We will also need an odd primary analog of 3.1.27(a). A(1) = E(m,71) ®
P(&)/(&)) is the dual to the subalgebra of A generated by the Bockstein 3 and the
Steenrod reduced power P!. Instead of generalizing the extension 3.1.19 we use

P(0), — A(0), — E(1).,

where P(0). = P(&)/(&]) and E(1). = E(19,71). The Cartan-Eilenberg spectral
sequence Fs-term is therefore

Exty0). (2/(p), Exteq). (Z/(p), A(0).)),
where A(0). = E(7p). An easy calculation gives

3.1.28. THEOREM. Forp > 2

Exta@). (Z/(p), A(0)+) = E(ho) @ P(a1,bo),

where ho € Ext™?, a; € Ext™ | and by € Ext*?? are represented by [£1], [&1]70 +

(1], and 320 ;o) P (P [EHEP T, respectively. O

2. The May Spectral Sequence

In this section we discuss a method for computing the classical Adams Es-term,
Exta,(Z/(p),Z/(p)), which we will refer to simply as Ext. For the reader hoping
to understand the classical Adams spectral sequence we offer two pieces of advice.
First, do as many explicit calculations as possible yourself. Seeing someone else do
it is no substitute for the insight gained by firsthand experience. The computations
sketched below should be reproduced in detail and, if possible, extended by the
reader. Second, the E>-term and the various patterns within it should be examined
and analyzed from as many viewpoints as possible. For this reason we will describe
several methods for computing Ext. For reasons to be given in Section 4.4, we will
limit our attention here to the prime 2.

The most successful method for computing Ext through a range of dimensions
is the spectral sequence of May [1]. Unfortunately, crucial parts of this material
have never been published. The general method for computing Ext over a Hopf
algebra is described in May [2], and the computation of the differentials in the May
spectral sequence for the Steenrod algebra through dimension 70 is described by
Tangora [1]. A revised account of the May Fs-term is given in May [4].
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In our language May’s approach is to filter A, by copowers of the unit coideal
(A1.3.10) and to study the resulting spectral sequence. Its Ea-term is the Ext over
the associated graded Hopf algebra E°A.. The structure of this Hopf algebra is as
follows.

3.2.1. THEOREM (May [1]). (a) Forp =2,
E°A, =FE(&;:i>0,j>0)
with coproduct
A&ig) = D &ikjrk ® &k,
0<k<i

where & j =1 and & ; € EY A, is the projection of §i2j.

(b) Forp > 2,

E°A, =E(r;:i>0)@T(&,,:1>0,5>0)
with coproduct given by
A&ig)= D Gimkjrk ® &k
0<k<i
and
AF)=mi®@1+ Y &gk Ok,
0<k<i

where T'( ) denotes the truncated polynomial algebra of height p on the indicated
generators, T; € E?_HA* is the projection of 7, € A, and & ; € E?A; is the
projection of ffj ) O

May actually filters the Steenrod algebra A rather than its dual, and proves
that the associated bigraded Hopf algebra FyA is primitively generated, which is
dual to the statement that each primitive in EOA; is a generator. A theorem of
Milnor and Moore [3] says that every graded primitively generated Hopf algebra
is isomorphic to the universal enveloping algebra of a restricted Lie algebra. For

p =2 let x;; € EyA be the primitive dual to & ;. These form the basis of a Lie
algebra under commutation, i.e.,
[Tij> Thym] = TijThm — ThymTi,j = OjTim — 0] Tk j

where 5; is the Kronecker d. A restriction in a graded Lie algebra L is an en-
domorphism ¢ which increases the grading by a factor of p. In the case at hand
this restriction is trivial. The universal enveloping algebra V(L) of a restricted Lie
algebra L (often referred to as the restricted enveloping algebra) is the associative
algebra generated by the elements of L subject to the relations zy — yx = [z, y] and
aP = &(x) for x,y € L.

May [1] constructs an efficient complex (i.e., one which is much smaller than
the cobar complex) for computing Ext over such Hopf algebras. In particular, he
proves

3.2.2. THEOREM (May [1]). For p =2, Extypo'y (Z/(2),2/(2)) (the third grad-
ing being the May filtration) is the cohomology of the complex
Ve ZP(hiJ‘I 1>0, 72> 0)
with d(hi ;) = Y cpes Prjhi—kktj, where hy; € YL (2 -1 corresponds to & ; €
As. (]
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Our h; ; is written Rf by May [1] and Rj; by Tangora [1], but as h;; (in a
slightly different context) by Adams [3]. Notice that in C*(Z/(2)) one has d[§i2j] =
Y 0<k<il ,%:] |§,§j], which corresponds to the formula for d(h; ;) above. The theorem
asserts that E0C*(Z/(2)) is chain homotopy equivalent to the polynomial algebra
on the [&; ;]. We will see below (3.2.7) that C*(Z/(2)) itself does not enjoy the
analogous property and that the May differentials are a measure of its failure to do
SO.

From 3.2.2 May derives a spectral sequence of the following form.

3.2.3. THEOREM (May [1]). There is a spectral sequence converging to

Exty (2/(2),Z/(2))
with E7** = V*** and d,: ESb" — Esthbutl-r,

PROOF OF 3.2.2 AND 3.2.3. The spectral sequence is a reindexed form of that
of A1.3.9, so 3.2.3 follows from 3.2.2. We will show that the same spectral, sequence
can be obtained more easily by using a different increasing filtration of A,. An in-
creasing filtration is defined by setting |¢2'| = 2i — 1. Then it follows easily that
this E°A, has the same algebra structure as in 3.2.1 but with each &;.; primitive.
Hence E°A, is dual to an exterior algebra and its Ext is V*** (suitably reindexed)
by 3.1.9. A1.3.9 gives us a spectral sequence associated to this filtration. In partic-
ular, it will have dq(h; ;) = D hg jhi—k j+& as in 3.2.2. Since all of the h; ; have odd
filtration degree, all of the nontrivial differentials must have odd index. It follows
that this spectral sequence can be reindexed in such a way that each ds,._1 gets
converted to a d, and the resulting spectral sequence is that of 3.2.3. O

For p > 2 the spectral sequence obtained by this method is not equivalent
to May’s but is perhaps more convenient as the latter has an Ej-term which is
nonassociative. In the May filtration one has |r;,_1| = |7 J| = 4. If we instead set

|Tic1] = |§f1| = 2i — 1, then the resulting E°A, has the same algebra structure
(up to indexing) as that of 3.2.1(b), but all of the generators are primitive. Hence
it is dual to a product of exterior algebras and truncated polynomial algebras of
height p. To compute its Ext we need, in addition to 3.1.11, the following result.

3.2.4. LEMMA. Let ' = T'(z) with dimz = 2n and x primitive. Then
Extr(Z/(p),Z/(p)) = E(h) @ P(b),

where
h € Ext' s represented in Cr(Z/(p)) by [z]

1/p\: ;0 s
Ext? § = P, O
b e Ext® by (Z)[xbn ]

0<i<p p

and

The proof is a routine calculation and is left to the reader.

To describe the resulting spectral sequence we have

3.2.5. THEOREM. For p > 2 the dual Steenrod algebra (3.1.1) A, can be given
an increasing filtration with |7,_1| = |§fj| =2i—1 fori—1, j > 0. The associated
bigraded Hopf algebra ECA, is primitively generated with the algebra structure of
3.2.1(b). In the associated spectral sequence (A1.3.9)

E* =E(hij:i>0, j>0)@P(b;:i>0, j>0)®Plag: i >0),
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where
hi, € BRAP P21
bi; € E1212(Pi71)p1+j,p(2i71)7
and
a; € 17]11’2’)1._1’2"‘*‘1

(hi,j and a; correspond respectively to ffj and ;). One has d,: EStY — ps—htu=r
and if x € B then d,(zy) = d,(x)y + (—1)""*2d,(y). d1 is given by

dl(hi7j) = — Z hk,jhi—k,k+j7

0<k<i
dl(ai) = — Z akhiflakv
0<k<i
di(b; ;) = 0. ([l

In May’s spectral sequence for p > 2, indexed as in 3.2.3, the Fj-term has
the same additive structure (up to indexing) as 3.2.5 and di is the same on the
generators, but it is a derivation with respect to a different multiplication, which
is unfortunately nonassociative.

We will illustrate this nonassociativity with a simple example for p = 3.

3.2.6. EXAMPLE. In the spectral sequence of 3.2.5 the class highog corresponds
to a nontrivial permanent cycle which we call gg. Clearly h19go=0 in E.,, but
for p = 3 it could be a nonzero multiple of h11b1g in Ext. The filtration of higgo
and hi1b1g are 5 and 4, respectively. Using Massey products (Al.4), one can show
that this extension in the multiplicative structure actually occurs in the following
way. Up to nonzero scalar multiplication we have by = (hig, hi0, h10) and go =
(h10, h10, h11) (there is no indeterminacy), so

hiogo = hio{h10, h1o, h11)
= (h10, h1o, h10)h11
= bioha1-
Now in the May filtration, both higgp and b1gh11 have weight 4, so this relation
must occur in Eq, i.e., we must have
0 # hiogo = h1o(h10g0) # (h10h10)g0 =0,

so the multiplication is nonassociative.

To see a case where this nonassociativity affects the behavior of May’s d;,
consider the element highaghsg. It is a d cycle in 3.2.5. In E5 the Massey product
<h10, h11, h12> is defined and represented by i(h10h21 + hzohlg) = :tdl (hg()). Hence

in Ext we have
0 = go(hi0, h11, h12)
= (goh1o, P11, h12)
= (h11b10, h11, h12)
= £bio(h11, h11, hi2).

The last bracket is represented by +hi1ho1, which is a permanent cycle g;. This
implies (A1.4.12) da(hiohaohso) = £b1191. In May’s grading this differential is a dj .
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Now we return to the prime 2.

3.2.7. EXAMPLE. The computation leading to 3.1.25, the Adams FEs-term for
bo, can be done with the May spectral sequence. One filters A(1), (see 3.1.18) and
gets the sub-Hopf algebra of E°A, generated by &1, &11, and &g. The complex
analogous to 3.2.2 is P(hyo, h11, hoo) with d(hog) = hi1phi1. Hence the May Fs-term
is the Cartan—Eilenberg FE3-term (3.1.22) suitably reindexed, and the ds of 3.1.23
corresponds to a May ds.

We will illustrate the May spectral sequence for the mod (2) Steenrod algebra
through the range t — s < 13. This range is small enough to be manageable, large
enough to display some nontrivial phenomena, and is convenient because no May
differentials originate at t — s = 14. May [1, 4] was able to describe his Ea-term
(including ds) through a very large range, t —s < 164 (for ¢t —s < 80 this description
can be found in Tangora [1]). In our small range the Es-term is as follows.

3.2.8. LEMMA. In the ranget—s < 13 the Eo-term for the May spectral sequence
(3.2.3) has generators

1,271
hj = hlyj S E2 s
b — b2 E2,2J'+1(2i—1),2i
2 5

)

and

27 = haohay + hi1hso € E3™*

with relations

hijhjq1 =0,
habag = hoz7,
and
h21'7 = hobgl. O

This list of generators is complete through dimension 37 if one adds =16 and
T34, obtained from z7 by adding 1 and 2 to the second component of each index.
However, there are many more relations in this larger range.

The Es-term in this range is illustrated in FiG. 3.2.9. Each dot represents an
additive generator. If two dots are joined by a vertical line then the top element is
ho times the lower element; if they are joined by a line of slope s then the right-
hand element is hy times the left-hand element. Vertical and diagonal arrows mean
that the element has linearly independent products with all powers of hy and hq,
respectively.

3.2.10. LEMMA. The differentials in 3.2.3 in this range are given by

(a) dy(hj) =0 for allr,

(b) da(ba ) = h2hyyz+ b,
(c) da(x7) = hoh27

Ed) (bBO) = h1b21 + hgbzo, and

) da(b3y) = hihs.

PRrROOF. In each case we make the relevant calculation in the cobar complex
Ca.(Z/(2)) of 3.1.2. For (a), [¢7'] is a cycle. For (b) we have

d([e2]€2] + [E716162] + [E267161]) = [€TIERIER] + [EL1€al€n]-
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13 13

—

12 12

11 11

10

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13

t—s5——
FIGURE 3.2.9. The May FEs-term for p=2 and t — s < 13

For (c) we have

d([(& + &G+ [(& + & + &8 + DG + (416 83) = [&&tEr.

For (d) we use the relation z2 = h?bsp + bagba1 (Which follows from the definition
of the elements in question); the right-hand term must be a cycle in F5 and we can
use this fact along with (b) to calculate da(bsg).

Part (e) follows from the fact that hijhs = 0 in Ext, for which three different
proofs will be given below. These are by direct calculation in the A-algebra (Sec-
tion 3.3), by application of a Steenrod squaring operation to the relation hohy = 0,
and by the Adams vanishing theorem (3.4.5). (]

It follows by inspection that no other differentials can occur in this range. Since
no May differentials originate in dimension 14 we get

3.2.11. THEOREM. ExtsA’i (Z/(2),Z(2)) for t —s < 13 and s < 7 is generated
as a vector space by the elements listed in the accompanying table. (There are no



2. THE MAY SPECTRAL SEQUENCE 73

generators for t —s = 12 and 13, and the only generators in this range with s > 7
are powers of hg.)

In the table coy corresponds to hixr, while Px corresponds to b%70$, There are
relations h3 = h3ha, h3 = h?h3, and Ph3 = Ph3h? = h3Phs. (]

Phy




74 3. THE CLASSICAL ADAMS SPECTRAL SEQUENCE

Inspecting this table one sees that there are no differentials in the Adams
spectral sequence in this range, and all of the group extensions are solved by 3.1.3
and we get

3.2.12. COROLLARY. For n < 13 the 2-component of m,(SY) are given by the
following table.

n 0 1 2 3 415 6 7 8 9 10 11 12|13

™ (S°)|Z(2)|Z/(2)[Z/(2)|Z/(8)[0]0]Z/(2)|Z/(16) [ (Z/(2))*[(Z/(2))*|Z/(2)[Z/(8)[ 0 [ 0

In general the computation of higher May differentials is greatly simplified
by the use of algebraic Steenrod operations (see Section A1.5). For details see
Nakamura [1].

Now we will use the May spectral sequence to compute Ext 42, (Z/(2), A(0).),

2n+2*1

where A(n), = P(&1,&,...,&n+1)/(& ) is dual to the subalgebra A(n) C A
generated by Sq', Sq?,...,S¢*" . We filter A(2), just as we filter A,. The resulting
May El—term is P(hll,hlg,hgo,hgl,hgo) with dl(hl,i) =0= dl(hgo), dl(hgl) =
hllhlg, and dl(hgo) = h20h12. This giVGS

(3213) E2 = P(bgl, 630) ® ((P(hll, hgo) ® E(x7)) &b {hlm 1> 0}),

where by = h3,, bzo = h3,, and x7 = hi1h3o + haoho1. The dy’s are trivial except
for

(3.2.14) dg(h%o) - h?p d2(b21) = hil’>2’ and dg(bgo) = h11b21.

Since A(0). is not a comodule algebra, this is not a spectral sequence of algebras,
but there is a suitable pairing with the May spectral sequence of 3.2.3.

Finding the resulting Fs-term requires a little more ingenuity. In the first
place we can factor out P(b3,), i.e., B2 = FE2/(b3,) @ P(b3,) as complexes. We
denote Eo/(b3,) by E2 and give it an increasing filtration as a differential algebra
by letting Fy = P(hll,hgo) ® E(Qj7) S5 {h112 7> O} and letting boy,b30 € Fy. The
cohomology of the subcomplex Fj is essentially determined by 3.1.27(a), which
gives Ext 41, (Z/(2), A(0)+). Let B denote this object suitably regraded for the
present purpose. Then we have

(3.2.15) H*(Fy) = B® E(x7) ® {hty: i > 0}.

For k > 0 we have Fy,/Fj,_y = {bk;, b5 b30} @ Fp with dao (b5 'bsg) = b5 hay. Tts
cohomology is essentially determined by 3.1.27(b), which describes
Exta(1).(Z/(2),Y). Let C denote this object suitably regraded, i.e., C'= P(hap).
Then we have for £ > 0

(3.2.16) H*(F/Fp_1) = C{b5,} @ E(X7) @ {b5 hiy, baobiT'hiy: i > 0}.

This filtration leads to a spectral sequence converging to F5 in which the only

nontrivial differential sends
b12€1b§0h§2 to kbgflbgohgg

fore = 0,1, k > 0 and ¢ > 1. This is illustrated in F1G. 3.2.17(a), where a square
indicates a copy of B and a large circle indicates a copy of C'. Arrows pointing to the
left indicate further multiplication by hi2, and diagonal lines indicate differentials.
Now by; supports a copy of C' and a differential. This leads to a copy of C' in
E3 supported by hagbe; shown in 3.2.17(b). There is a nontrivial multiplicative

extension hogh)12b30 = @x7bo; which we indicate by a copy of C in place of hi2bsg
in (b). Fig. 3.2.17(b) also shows the relation hq1b3; = h3,bs0.

=]
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The differentials in E3 are generated by dz(b3,) = hi2b3; and are shown in
3.2.17(c). The resulting Fy = F is shown in 3.2.17(d), where the symbol in place
of b3, indicates a copy of B with the first element missing.

3. The Lambda Algebra

In this section we describe the lambda algebra of Bousfield et al. [2] at the
prime 2 and the algorithm suggested by it for computing Ext. For more details,
including references, see Tangora [2, 3] and Richter [1] . For most of this material
we are indebted to private conversations with E. B. Curtis. It is closely related to
that of Section 1.5.

The lambda algebra A is an associative differential bigraded algebra whose co-
homology, like that of the cobar complex, is Ext. It is much smaller than the cobar
complex; it is probably the smallest such algebra generated by elements of coho-
mological degree one with cohomology isomorphic to Ext. Its greatest attraction,
which will not be exploited here, is that it contains for each n > 0 a subcomplex
A(n) whose cohomology is the Fs-term of a spectral sequence converging to the
2-component of the unstable homotopy groups of S™. In other words A(n) is the
FE1-term of an unstable Adams spectral sequence.

More precisely, A is a bigraded Z/(2)-algebra with generators A, € Abn+!
(n > 0) and relations

n—j—1 .
(331) /\i/\2i+1+n = Z < j ))\i+n—j/\2i+1+j for ,n > 0
7>0

with differential
n_ i
(3.3.2) dna) =Y ( ‘ J)An_jAj_l.
=N
Note that d behaves formally like left multiplication by A_;.
3.3.3. DEFINITION. A monomial A\ij, i, -+ Ni, € A is admissible if 29, > ip41

for 1 <r <s. A(n) C A is the subcomplex spanned by the admissible monomials
with i1 < n.

The following is an easy consequence of 3.3.1 and 3.3.2.

3.3.4. PROPOSITION.
(a) The admissible monomials constitute an additive basis for A.
(b) There are short exact sequences of complexes

0—A(n) - An+1) - E"A(2n+1) — 0. O
The significant property of A is the following.

3.3.5. THEOREM (Bousfield et al. [2]). (a) H(A) = Exta,(Z/(2),Z/(2)), the
classical Adams FEo-term for the sphere.

(b) H(A(n)) is the Es-term of a spectral sequence converging to m.(S™).

(¢c) The long exact sequence in cohomology (3.3.6) given by 3.3.4(b) corresponds
to the EHP sequence, i.e., to the long exact sequence of homotopy groups of the
fiber sequence (at the prime 2)

S = Q8" 5 QS (see 1.5.1). O
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The spectral sequence of (b) is the unstable Adams spectral sequence. The long
exact sequence in (c) above is

(3.3.6) — H'(A(n)) & HY (A(n+ 1)) & H=1=""1(A(2n + 1))
Ly H TV (A(n)) — |

The letters E', H, and P stand respectively for suspension (Finhingung in German),
Hopf invariant, and Whitehead product. The map H is obtained by dropping the
first factor of each monomial. This sequence leads to an inductive method for
calculating H**(A(n)) which we will refer to as the Curtis algorithm.

Calculations with this algorithm up to ¢ = 51 (which means up to t — s =
33) are recorded in an unpublished table prepared by G.W.Whitehead. Recently,
Tangora [4] has programmed a computer to find H**(A) at p = 2 for ¢t < 48 and
p = 3fort < 99. Some related machine calculations are described by Wellington [1].

For the Curtis algorithm, note that the long exact sequences of 3.3.6 for all n
constitute an exact couple (see Section 2.1) which leads to the following spectral
sequence, similar to that of 1.5.7.

3.3.7. PROPOSITION (Algebraic EHP spectral sequence).
(a) There is a trigraded spectral sequence converging to H®'(A) with

Ef,t,n _ Hs—l,t—n(A(2n _ 1)) for s >0

and

otn _ Z/(2) fort=n=0
! 0 otherwise,

and d,: EStn — Estltn=r,
(b) For eachm > 0 there is a similar spectral sequence converging to H**(A(m))
with
gt _ {as above forn <m .
o=

0 for n > m.

The EHP sequence in homotopy leads to a similar spectral sequence converging
to stable homotopy filtered by sphere of origin which is described in Section 1.5.

At first glance the spectral sequence of 3.3.7 appears to be circular in that the
E;-term consists of the same groups one is trying to compute. However, for n > 1
the groups in E"*™ are from the (t — s —n 4 1)-stem, which is known by induction
on t —s. Hence 3.3.7(b) for odd values of m can be used to compute the E;-terms.
For n = 1, we need to know H*(A(1)) at the outset, but it is easy to compute.
A(1) is generated simply by the powers of Ay and it has trivial differential. This
corresponds to the homotopy of S*.

Hence the EHP spectral sequence has the following properties,

3.3.8. LEMMA. In the spectral sequence of 3.3.7(a),

(a) B"™ =0 fort —s <n — 1 (vanishing line);

(b) ESY™ = Z/(2) fort —s =n—1 and all s > 0 and if in addition n — 1
is even and positive, dy: ES""™ — ESTHEL s nontrivial for all s > 0 (diagonal
groups);

(c) Byt = H*=Lt="(A) fort — s < 3n (stable zone); and

(d) ESYY =0 fort > s.
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PROOF. The groups in (a) vanish because they come from negative stems in
A(2n —1). The groups in (b) are in the 0-stem of A(2n — 1) and correspond to
)\n_l)\g_l € A. If n — 1 is even and positive, 3.3.2 gives

A1y = An_2)y mod A(n — 2),

which means d; behaves as claimed. The groups in (c) are independent of n by
3.3.6. The groups in (d) are in A(1) in positive stems. O

The above result leaves undecided the fate of the generators of EY" ™" for
n — 1 odd, which correspond to the A,,_1. We use 3.3.2 to compute the differentials
on these elements. (See Tangora [2] for some helpful advice on dealing with these
binomial coefficients.) We find that if n is a power of 2, A,_1 is a cycle, and if
n=k-2/ for odd k > 1 then

d(An—1) = Ap_1-2iA0i_1 mod A(n —1— Qj)-

This equation remains valid after multiplying on the right by any cycle in A,
so we get

3.3.9. PROPOSITION. In the spectral sequence of 3.3.7(a) every element in
E‘f’t’w is a permanent cycle. For n = k27 for k > 1 odd, then every element
n Eﬁ!t’kzj is a d.-cycle for r < 27 and

0,k-27 —1,k27 1,k-29—1,(k—1)27
dys : ESFZ 1R, ) (k=1)

is nontrivial, the target corresponding to Aoj_1 under the isomorphism of 3.3.7.
The cycle Agi_1 corresponds to h; € Extb? (]

Before proceeding any further it is convenient to streamline the notation. In-
stead of A, A, - -+ \;, we simply write i1¢2 .. .15, e.g., we write 411 instead of AgA; A;.
If an integer > 10 occurs we underline all of it but the first digit, thereby removing
the ambiguity; e.g., A15A3A15 is written as 15315. Sums of monomials are written
as sums of integers, e.g., d(9) = 71 + 53 means d(Ag) = A7A1 + AsA3; and we write
¢ for zero, e.g., d(15) = ¢ means d(A15) = 0.

We now study the EHP spectral sequence [3.3.7(a)] for ¢t — s < 14. Tt is known
that no differentials or unexpected extensions occur in this range in any of the un-
stable Adams spectral sequences, so we are effectively computing the 2-component
of mp4x(S™) for k < 13 and all n.

For t —s = 0 we have E*' = Z/(2) for all s > 0 and E"®" = 0 for n > 1. For
t —s =1 we have Ey>® = Z/(2), corresponding to A; or hy, while E5' 5" =0
for all other s and n. From this and 3.3.8(c) we get EZ" 2" = Z/(2) generated by
An—11 for all n > 2, while Ef’t’t_s = 0 for all other s, t. The element 11 cannot
be hit by a differential because 3 is a cycle, so it survives to a generator of the
2-stem, and it gives generators of Ef mtdn (corresponding to elements with Hopf
invariant 11) for n > 2, while Ef’“tis*l = 0 for all other s and ¢.

This brings us to t — s = 3. In addition to the diagonal groups given
by 3.3.8(b) we have E7®® generated by 21 and E;"®? generated by 111, with no
other generators in this stem. These two elements are easily seen to be nontrivial
permanent cycles, so H5*T3(A) has three generators; 3, 21, and 111. Using 3.3.1
one sees that they are connected by left multiplication by 0 (i.e., by Ag).

s,5+3,4
El
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Thus for t — s < 3 we have produced the same value of Ext as given by the
May spectral sequence in 3.2.11. The relation hZhy = h$ corresponds to the rela-
tion 003 = 111 in A, the latter being easier to derive. It is also true that 300 is
cohomologous in A to 111, the difference being the coboundary of 40 + 22. So far
no differentials have occurred other than those of 3.3.8(b).

These and subsequent calculations are indicated in Fic. 3.3.10, which we now
describe. The gradings ¢t — s and n are displayed; we find this more illuminating
than the usual practice of displaying t — s and s. All elements in the spectral
sequence in the indicated range are displayed except the infinite towers along the
diagonal described in 3.3.8(b). Each element (except the diagonal generators) is
referred to by listing the leading term of its Hopf invariant with respect to the left
lexicographic ordering; e.g., the cycle 4111 4 221 4 1123 is listed in the fifth row as
111. An important feature of the Curtis algorithm is that it suffices to record the
leading term of each element. We will illustrate this principle with some examples.
For more discussion see Tangora [3]. The arrows in the figure indicate differentials
in the spectral sequence. Nontrivial cycles in A for 0 < ¢t — s < 14 are listed at the
bottom. We do not list them for t—s = 14 because the table does not indicate which
cycles in the 14th column are hit by differentials coming from the 15th column.

3.3.11. EXAMPLE. Suppose we are given the leading term 4111 of the cycle
above. We can find the other terms as follows. Using 3.3.1 and 3.3.2 we find
d(4111) = 21111. Refering to Fig. 3.3.10 we find 1111 is hit by the differential from
221, so we add 2221 to 4111 and find that d(4111 4+ 2221) = 11121. The figure
shows that 121 is killed by 23, so we add 1123 to our expression and find that
d(4111 4 2221 + 1123) = ¢ i.e., we have found all of the terms in the cycle.

Now suppose the figure has been completed for ¢t — s < k. We wish to fill in the
column ¢ — s = k. The box for n =1 is trivial by 3.3.8(d) and the boxes for n > 3
can be filled in on the basis of previous calculations. (See 3.3.12.) The elements in
the box for n = 2 will come from the cycles in the box forn =3, t—s=k—1, and
the elements in the box for n = 2, t — s = k — 1 which are not hit by d;’s. Hence
before we can fill in the box for b = 2, t — s = k, we must find the d;’s originating
in the box for n = 3. The procedure for computing differentials will be described
below. Once the column ¢t — s = k has been filled in, one computes the differentials
for successively larger values of n.

The above method is adequate for the limited range we will consider, but for
more extensive calculations it has a drawback. One could work very hard to show
that some element is a cycle only to find at the next stage that it is hit by an easily
computed differential. In order to avoid such redundant work one should work by
induction on ¢, then on s and then on n; i.e., one should compute differentials
originating in E$%" only after one has done so for all Eﬁ/’t/’”/ with ¢/ < ¢, with
! =tand s < s, and with s’ = s, ¢ = t, and n’ < n. This triple induction is
awkward to display on a sheet of paper but easy to write into a computer program.
On the other hand Tangora [4, last paragraph starting on page 48] used downward
rather than upward induction on s because given knowledge of what happens at
all lower values of ¢, the last group needed for the (¢t — s)-stem is the one with the
largest value of s possible under the vanishing line, the unstable analog of 3.4.5.
There are advantages to both approaches.

The procedure for finding differentials in the EHP spectral sequence (3.3.7)
is the following. We start with some sequence « in the (n + 1)th row. Suppose
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2n—1[nfo[1]2]3 4[5 [ 6 [ 7 [8] 9 10 11 12 13 14
1 1]
124111 [1124111
3 |9 111 24111 |11233, 224111 2124111 (21124111
0 21\211 2111 1233 (2233 \21233 211233\
M1 11 (AU R TN 233 i N \[2333 N \
2233 1124111
24111 224111
5 |3 111 1233 433 44111 324111
11 21’X 233 333\ 124111 3233 31233
* 11 (A [3 131 (311 |33 [4111 A N\ [11233,8 | 353 3333
4111 24111 124111 1124111
7 |4 111 511 \\233 1233 ‘\ 11233& 224111
0 |1 21 61 611 6111& 2233 44111
* A A1l |3 33 N 53\ &33 433 N\ 533
111 411 \ 241 1124111
9 |5 21 511 2%3 1233 2233
3 33 \61 53 711 433
* |1 11 ol rd 71 333 73
4111 24111
1 |6 111 511 \ 233 1233
0 21 33 61 53 333
*N 1 11 3N A 7N
\111 \ 4111
21 511 233
1347 11 3\ 33 61 53
* |1 A 7
111 4111
0 21 511
1518 \ 1 \|11 3 \ 33 61
* A\ NN A 7
JANARIE \
17 9 21
* \|1 11 3 33
\ \ \111
19 |10 0 21
*\ 1 11 3N
\ 111 \
21 |11 21 \
* 1 11y 3
0 111
23 |12 \ 21
* I 11y 3
25 |13 * 1 11
0
27 |14 *\ )
29 [15 "
Nontrivial [1 [11|111 33 |4111]233[1233 (1241111124111
permanent 21 511 |53 (24111 224111
cycles 3 61 333 44111
7

FIGURE 3.3.10. The EHP spectral sequence (3.3.7) for t — s < 14
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inductively that some correcting terms have already been added to A,c, in the
manner about to be described, to give an expression z. We use 3.3.1 and 3.3.2 to
find the leading term 414y ...454;1 of d(z). If d(z) = 0, then our « is a permanent
cycle in the spectral sequence. If not, then beginning with © = 0 we look in the
table for the sequence is_y4+19s—ut2---is41 in the (is—, + 1)th row until we find
one that is hit by a differential from some sequence § in the (m + 1)th row or until
u = s — 1. In the former event we add A;, ... \;, , ,AmB to x and repeat the
process. The coboundary of the new expression will have a smaller leading term
since we have added a correcting term to cancel out the original leading coboundary
term.

If we get up to u = s — 1 without finding a target of a differential, then it
follows that our original o supports a d,,—;, whose target is g - 9541.

It is not necessary to add all of the correcting terms to x to show that our a
is a permanent cycle. The figure will provide a finite list of possible targets for the
differential in question. As soon as the leading term of d(z) is smaller (in the left
lexicographic ordeninng) than any of these candidates then we are done.

In practice it may happen that one of the sequences ¢s_,+1 - %541 in the
(is—y + 1)th row supports a nontrivial differential. This would be a contradiction
indicating the presence of an error, which should be found and corrected before
proceeding further. Inductive calculations of this sort have the advantage that
mistakes usually reveal themselves by producing contradictions a few stems later.
Thus one can be fairly certain that a calculation through some range that is free
of contradictions is also correct through most of that range. In publishing such
computations it is prudent to compute a little beyond the stated range to ensure
the accuracy of one’s results.

We now describe some sample calculations in 3.2.11.

3.3.12. EXAMPLE. FILLING IN THE TABLE. Consider the boxes with
t—s—(n—1)=28.

To fill them in we need to know the 8-stem of H(A(2n — 1)). For convenience the
values of 2n — 1 are listed at the extreme left. The first element in the 8-stem is
233, which originates on S® and hence appears in all boxes for n > 2. Next we have
the elements 53, 521, and 5111 originating on S%. The latter two are trivial on S7
and so do not appear in any of our boxes, while 53 appears in all boxes with n > 4.
The element 611 is born on S7 and dies on S° and hence appears only in the box
for n = 4. Similarly, 71 appears only in the box for n = 5.

3.3.13. EXAMPLE. COMPUTING DIFFERENTIALS We will compute the differen-
tials originating in the box for t — s = 11, n = 11. To begin we have d(101) =
(90 + 72 + 63 + 54)1 = 721 4+ 631 + 541. The table shows that 721 is hit by 83 and
we find

d(83) = (70 4 61 + 43)3 = 721 + 433.
Hence
d(101 + 83) = 631 + 541 + 433.

The figure shows that 31 is hit by 5 so we compute
d(65) = 631 + (50 4 32)5 = 631 + 541,

so
d(101 + 83 4 65) = 433,
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which is the desired result.
Even in this limited range one can see the beginnings of several systematic
phenomena worth commenting on.

3.3.14. REMARK. JAMES PERIODICITY. (Compare 1.5.18.) In a neighborhood
of the diagonal one sees a certain in the differentials in addition to that of 3.3.9. For
example, the leading term of d(A, A1) is Ap—2AM A1 if n =00r 1 mod (4) and n > 4,
giving a periodic family of ds’s in the spectral sequence. The differential computed
in 3.3.13 can be shown to recur every 8 stems; add any positive multiple of 8 to the
first integer in each sequence appearing in the calculation and the equation remains
valid modulo terms which will not affect the outcome.

More generally, one can show that A(n) is isomorphic to

272 A(n 4 2™) /A(2™)

through some range depending on n and m, and a general result on the periodicity
of differentials follows. It can be shown that H*(A(n + k)/A(n)) is isomorphic
in the stable zone [3.3.8(c)] to the Ext for H*(RP"**~1/RP"~1) and that this
periodicity of differentials corresponds to James periodicity. The latter is the fact
that the stable homotopy type of RP"¥/RP™ depends (up to suspension) only on
the congruence class of n modulo a suitable power of 2. For more on this subject
see Mahowald [1, 2, 3, 4].

3.3.15. REMARK. THE ADAMS VANISHING LINE. Define a collection of admis-
sible sequences (3.3.3) a; for i > 0 as follows.

a; = 1, ag = 11, az = 111, a4 = 4111,
as = 24111, ag = 124111, ay = 1124111, ag = 41124111, etc.

That is, for i > 1

(1,a;—1) fori=2,3 mod (4)
a; =< (2,a;—1) fori=1 mod (4)
(4,a,—1) fori=0 mod (4)

It can be shown that all of these are nontrivial permanent cycles in the EHP spectral
sequence and that they correspond to the elements on the Adams vanishing line
(3.4.5). Note that H(a;+1) = a;. All of these elements have order 2 (i.e., are
killed by Ag multiplication) and half of them, the a; for i = 3 and 0 mod (4), are
divisible by 2. The ay4;3 are divisible by 4 but not by 8; the sequences obtained are
(2, a4i+2) and (4, aq;+1) except for i = 1, when the latter sequence is 3. These little
towers correspond to cyclic summands of order 8 in 7§, 5 (see 5.3.7). The a4; are
the tops of longer towers whose length depends on i. The sequences in the tower
are obtained in a similar manner; i.e., sequences are contracted by adding the first
two integers; e.g., in the 7-stem we have 4111, 511, 61, and 7. Whenever i is a
power of 2 the tower goes all the way down to filtration 1; i.e., it has 44 elements, of
which the bottom one is 8; — 1. The table of Tangora [1] shows that the towers in
the 23-, 29-, and 55-stems have length 6, while that in the 47-stem has length 12.
Presumably this result generalizes in a straightforward manner. These towers are
also discussed in 3.4.21 and following 4.4.47.
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3.3.16. REMARK. d;’s. It follows from 3.3.9 that all d;’s originate in rows with
n odd and that they can be computed by left multiplication by Ag. In particular,
the towers discussed in the above remark will appear repeatedly in the F;-term and
be almost completely cancelled by d;’s, as one can see in Fig. 3.3.10. The elements
cancelled by d;’s do not appear in any H*(A(2n — 1)), so if one is not interested
in H*(A(2n)) they can be ignored. This indicates that a lot of repetition could
be avoided if one had an algorithm for computing the spectral sequence starting
from FE, instead of Ej.

3.3.17. REMARK. S2. As indicated in 3.3.5, A gives unstable as well as stable
Ext groups. From a figure such as 3.3.11 one can extract unstable Adams Fs-terms
for each sphere. For the reader’s amusement we do this for S2 for t — s < 28 in
Fic. 3.3.18. One can show that if we remove the infinite tower in the O-stem,
what remains is isomorphic above a certain line of slope % to the stable Ext for the
mod (2) Moore spectrum. This is no accident but part of a general phenomenon
described by Mahowald [3].

It is only necessary to label a few of the elements in F1G. 3.3.18 because most
of them are part of certain patterns which we now describe. There are clusters of six
elements known as lightning flashes, the first of which consists of 1, 11, 111, 21, 211,
2111. Vertical and diagonal lines as usual represent right multiplication by Ag and
A1, i.e., by hg and hg respectively. This point is somewhat delicate. For example
the element with in the 9-stem with filtration 4 has leading term (according to
3.3.10) 1233, not 2331. However these elements are cohomologous, their difference
being the coboundary of 235.

If the first element of a lightning flash is x, the others are 1z, 11z, 2z, 21z, and
211z. In the clusters containing 23577 and 233577, the first elements are missing,
but the others behave as if the first ones were 4577 and 43577, respectively. For
example, the generator of ES’SO is 24577. In these two cases the sequences 1 and
11z are not admissible, but since 14 = 23 by 3.3.1, we get the indicated values
for 1x.

Ifz € E; " is the first element of a lightning flash, there is another one beginning
with Px € E§+4’t+12. The sequence for Pz is obtained from that for x by adding 1
to the last integer and then adjoining 4111 on the right, e.g., P(233) = 2344111.
This operator P can be iterated any number of times, is related to Bott periodicity,
and will be discussed more in the next section.

There are other configurations which we will call rays begining with 245333
and 235733. Successive elements in a ray are obtained by left multiplication by As.
This operation is related to complex Bott periodicity.

In the range of this figure the only elements in positive stems not part of
a ray or lightning flash are 23333 and 2335733. This indicates that the Curtis
algorithm would be much faster if it could be modified in some way to incorporate
this structure.

Finally, the figure includes Tangora’s labels for the stable images of certain
elements. This unstable Adams spectral sequence for 7.(S%) is known to have
nontrivial dy’s originating on 245333, 222245333, and 2222245333, and d3’s on
2235733 and 22235733. Related to these are some exotic additive and multiplicative
extensions: the homotopy element corresponding to Phidy = 243344111 is twice
any representative of hohog = 235733 and 7 (the generator of the 1-stem) times a
representative of 2245333. Hence the permanent cycles 2245333, 24334111, 235733,
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22245333, 224334111, and the missing element 35733 in some sense constitute an
exotic lightning flash.

4. Some General Properties of Ext

In this section we abbreviate Exta (Z/(p),Z/(p)) by Ext. First we describe
Ext® for small values of s. Then we comment on the status of its generators in
homotopy. Next we give a vanishing line, i.e., a function f(s) such that Ext®' =0
for 0 <t —s < f(s). Then we give some results describing Ext®" for t near f(s).

3.4.1. THEOREM. Forp =2

(a) Ext’ = Z/(2) generated by 1 € Ext®°.

(b) Ext! is spanned by {h;: i > 0} with h; € Ext"2" represented by [¢2'].
(c) (Adams [12]) Ext? is spanned by {h;h;: 0 <i < j, j#i+1}.

(d) (Wang [1]) Ext® is spanned by hihjhy,, subject to the relations

hihj = hjhi,  hin, =0 hihl ;=0 hihio=hi
along with the elements

¢i = (hi1, hiy b7 o) € Ext™!2 .

3.4.2. THEOREM. Forp > 2

(a) Ext’ = Z/(p) generated by 1 € Ext™°.

(b) Ext! is spanned by ag and {h;: i > 0} where ag € Ext™ is represented by
[70] and h; € Ext"%" is represented by [55’1]

(c) (Liulevicius [2]) Ext? is spanned by {h;h;: 0 <i < j—1}, a3, {agh;: i > 0},
{gi:i >0}, {ki: i >0}, {b;: i >0}, and lphg, where

9i = (his hishiga) € Ext®>CHOP 0 k= (B iy hipy) € Ext®@rrta,
bi = (hi, hiy. .. hy) € Ext2e' " (with p factors h;),

and
Hohg = <h0, ho, CLO> € EXt2’1+2q . [l

Ext® for p > 2 has recently been computed by Aikawa [1].

The behavior of the elements in Ext! in the Adams spectral sequence is de-
scribed in Theorems 1.2.11-1.2.14.

We know that most of the elements in Ext? cannot be permanent cycles, i.e.,

3.4.3. THEOREM. (a) (Mahowald and Tangora [8]). With the exceptions hoha,
hohs, and hohy the only elements in Ext? for p = 2 which can possibly be permanent
cycles are h? and hih;.

(b) (Miller, Ravenel, and Wilson [1]). For p > 2 the only elements in Ext?
which can be permanent cycles are a%, Ilgho, ko, hoh;, and b;. O

Part (b) was proved by showing that the elements in question are the only ones
with preimages in the Adams—Novikov Fs-term. A similar proof for p = 2 is possible
using the computation of Shimomura [1]. The list in Mahowald and Tangora [8]
includes hohs and hshg; the latter is known not to come from the Adams—Novikov
spectral sequence and the former is known to support a differential.

The cases hoh; and b;, for p > 3 and hih; for p = 2 are now settled.
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3.4.4. THEOREM. (a) (Browder [1]). Forp =2 h3 is a permanent cycle iff there
is a framed manifold of dimension 2771 — 2 with Kervaire invariant one. Such are
known to exist for j < 5. For more discussion see 1.5.29 and 1.5.35.

(b) (Mahowald [6]). For p=2 hih; is a permanent cycle for all j > 3.

(c) (Ravenel [7]). Forp >3 and i > 1, b; is not a permanent cycle. (At p=3
by is not permanent but by is; by is permanent for all odd primes.)

(d) (R.L. Cohen [3]). Forp > 2 hob; is a permanent cycle corresponding to an
element of order p for all i > 0. (]

The proof of (c¢) will be given in Section 6.4.
Now we describe a vanishing line. The main result is

3.4.5. VANISHING THEOREM (Adams [17]). (a) For p = 2 Ext®' = 0 for
0<t—s< f(s), where f(s) =2s—c ande =1 for s =0,1 mod (4), e =2 for
s=2ande =3 for s =3.

(b) (May [6]). Forp>2Ext® =0 for0<t—s<sq—e, wheres=1ifs#0
mod (p) ande =2 if s =0. O

Hence in the usual picture of the Adams spectral sequence, where the x and y
coordinates are t — s and s, the Fs-term vanishes above a certain line of slope 1/¢
(e.g., % for p = 2). Below this line there are certain periodicity operators II,, which
raise the bigrading so as to move elements in a direction parallel to the vanishing
line. In a certain region these operators induce isomorphisms.

3.4.6. PERIODICITY THEOREM (Adams [17], May [6]).

(a) Forp=2 and n > 1 Ext®" ~ Exts 2" 32 for

0 <t—s<min(g(s) +2"2 h(s)),

where g(s) =2s —4—7 withT =2 ifs=0,1 mod (4), 7=14fs=3,and 7=0
if s =2, and h(s) is defined by the following table:
s 1128 4 S51 6| 7|8 >9

h(s) | 1| 1] 7| 10] 17| 22|25 32| 5s -7
(b) For p> 2 and n > 0 Ext®! ~ Ext>tP"s+@+D/p" g5,
0 <t—s<min(g(s) +p"q, h(s)),

where g(s) = qs —2p — 1 and h(s) =0 for s =1 and h(s) = (p*> —p — 1)s — 7 with
T=2p>—2p+1 forevens>1andT=p>+p—2 for odd s > 1. O

These two theorems are also discussed in Adams [7].

For p = 2 these isomorphisms are induced by Massey products (A1.4) sending x
to (z, h%nH, hu2). For n =1 this operator is denoted in Tangora [1] and elsewhere
in this book by P. The elements x are such that h%nﬂz is above the vanishing line
of 3.4.5, so the Massey product is always defined. The indeterminacy of the product
has the form xy + hy,102 with y € Ext® 32" and 2 € Ext® 127427y

n+2
group containing y is just below the vanishing line and we will see below that
it is always trivial. The group containing z is above the vanishing line so the
indeterminacy is zero.

Hence the theorem says that any group close enough to the vanishing line [i.e.,
satisfying ¢t — s < 2”72 + g(s)] and above a certain line with slope L[t — s < h(s)]
is acted on isomorphically by the periodicity operator. In Adams [17] this line
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had slope % It is known that % is the best possible slope, but the intercept could
probably be improved by pushing the same methods further. The odd primary case
is due entirely to May [6]. We are grateful to him for permission to include this
unpublished material here.

Hence for p = 2 Ext®" has a fairly regular structure in the wedge-shaped region
described roughly by 2s < t — s < 5s. Some of this (partially below the line of
slope 1 given above) is described by Mahowald and Tangora [14] and an attempt
to describe the entire structure for p = 2 is made by Mahowald [13].

However, this structure is of limited interest because we know that almost all
of it is wiped out by differentials. All that is left in the E.-term are certain few
elements near the vanishing line related to the J-homomorphism (1.1.12). We will
not formulate a precise statement or proof of this fact, but offer the following expla-
nation. In the language of Section 1.4, the periodicity operators II,, in the Adams
spectral sequence correspond to vi-periodicity in the Adams—Novikov spectral se-
quence. More precisely, II,, corresponds to multiplication by vfn. The behavior
of the vi-periodic part of the Adams—Novikov spectral sequence is analyzed com-
pletely in Section 5.3. The wvi-periodic part of the Adams—Novikov F..-term must
correspond to the portion of the Adams spectral sequence F.-term lying above
(for p = 2) a suitable line of slope % Once the Adams—Novikov spectral sequence
calculation has been made it is not difficult to identify the corresponding elements
in the Adams spectral sequence. The elements in the Adams—Novikov spectral se-
quence all have low filtrations, so it is easy to establish that they cannot be hit by
differentials. The elements in the Adams spectral sequence are up near the vanish-
ing line so it is easy to show that they cannot support a nontrivial differential. We
list these elements in 3.4.16 and in 3.4.21 give an easy direct proof (i.e., one that
does not use BP-theory or K-theory) that most (all for p > 2) of them cannot be
hit by differentials.

The proof of 3.4.5 involves the comodule M given by the short exact sequence

(3.4.7) 0—Z/(p) = Ax Oa). Z/(p) = M — 0,

where A(0), = E(r) for p > 2 and E(&) for p = 2. M is the homology of the
cofiber of the map from S° to H, the integral Eilenberg-Mac Lane spectrum. The
FEs-term for H was computed in 2.1.18 and it gives us the tower in the O-stem.
Hence the connecting homomorphism of 3.4.7 gives an isomorphism

(3.4.8) Ext’, "'(Z/(p), M) ~ Ext™'
fort —s>0.

We will consider the subalgebras A(n) C A generated by {Sq*, Sq¢?,...,S¢*"}
for p = 2 and {B,P',PP,..., PP"'} for p > 2. Their duals A(n), ar