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Introduction

These are notes for the course MAT9580, Algebraic Topology III, in the spring
term of 2021. The emphasis will be on the theory and applications of spectral
sequences. Some of the key articles are:

[Ser51] Serre: “Homologie singuliere des espaces fibrés. Applications”
[Ada58] Adams: “On the structure and applications of the Steenrod algebra”
[Boa99] Boardman: “Conditionally convergent spectral sequences”

Book-length sources for this material include the following:

[CE56] Cartan and Eilenberg: “Homological algebra”
HW60| Hilton and Wylie: “Homology theory: An introduction to algebraic topol-
y gy Yy g

b))

ogy
[Bou63| Bourgin: “Modern algebraic topology”
IML63| MacLane: “Homology”
[Spa66] Spanier: “Algebraic topology”
[GZ67] Gabriel and Zisman: “Calculus of fractions and homotopy theory”
[May67] May: “Simplicial objects in algebraic topology”
IMT68] Mosher and Tangora: “Cohomology operations and applications in homo-
topy theory”
[AdaT72] Adams: “Algebraic topology—a student’s guide”
[MS74] Milnor and Stasheff: “Characteristic classes”
[Swi75] Switzer: “Algebraic topology—homotopy and homology”
[Whi78] Whitehead: “Elements of homotopy theory”
[BT82| Bott and Tu: “Differential forms in algebraic topology”
[McCB85] McCleary: “User’s guide to spectral sequences”
[Rav86|] Ravenel: “Complex cobordism and stable homotopy groups of spheres”
[DP97] Dodson and Parker: “A user’s guide to algebraic topology”
[Boa99| Sato: “Algebraic topology: an intuitive approach”
[DKO1] Davis and Kirk: “Lecture notes in algebraic topology”
[Hat] Hatcher: “Spectral sequences”
[Bru] Bruner: “An Adams spectral sequence primer”
[MP12] May and Ponto: “More concise algebraic topology”
[Shal4] Shastri: “Basic algebraic topology”
The author is most familiar with the books [CE56|, [ML63|, [Spa66|, [MT68|,
[MS74], [Swi75|, [Whi78|, [McC85| and |[Rav86]. Most of these sources cover
the Serre spectral sequence, while the Adams spectral sequence is discussed in [SwiT5],
[McCB85|, [Rav86] and [Bru]. None of these make use of the modern categories
of spectra, so one aim of these notes is use orthogonal spectra as models for stable
homotopy theory, and to benefit from these when treating the behavior of products
and other operations in the Adams spectral sequence.






CHAPTER 1

Spectral Sequences

We start with the abstract definition of a spectral sequence. It involves the
same concepts as the definition of a chain complex and its homology, but involves
multiple indices. In the next section we discuss in what sense a spectral sequence can
calculate, or converge to, a given abutment. Thereafter we consider some relatively
simple examples, which may help the reader get accustomed to the different roles
of the various indices, and the meaning of convergence.

1.1. Homological spectral sequences

DEFINITION 1.1.1. A bigraded abelian group A = A, . is a doubly-indexed
sequence
A*,* = (As,t)s,t
of abelian groups, where s and ¢ range over the integers. We say that A, is the
group in bidegree (s,t). A morphism f: A — B of bigraded abelian groups is a
sequence of group homomorphisms

fs,t: As,t — Bs,t
for all s,t € Z. More generally, a morphism f: A — B of bidegree (u,v) is a
sequence of group homomorphisms
fs,t: As,t — Bs+u,t+v

for all s,t € Z. The composite of f followed by a morphism g: B — C of bidegree
(u’,v") is a morphism gf: A — C of bidegree (u+ u/,v + v’). To emphasize that a
morphism has bidegree (0,0) we may say that it is degree-preserving.

DEFINITION 1.1.2. Let E = F, , be a bigraded abelian group, and let r be an
integer. A differential d: E — E of bidegree (u,v) is a morphism of bidegree (u,v)
such that dd = 0. More explicitly, for each pair s,t € Z we have a homomorphism

ds,t: Es,t — Es+u,t+’u
and the composite
ds—u,t—v ds,t
Esfu,tfv — Es,t — Es+u,t+v
is the zero homomorphism. Let the kernel ker(d) = ker(d).. be the bigraded
abelian group
ker(d)s, = ker(ds ;)

and let the image im(d) = im(d), ; be the bigraded abelian group
im(d)&t = im(ds_%t_v) .

Then
im(d)s C ker(d)ss C Esy
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for all s,t € Z. We call ker(d) and im(d) the d-cycles and d-boundaries in E,
respectively. The homology of (E,d) is the bigraded abelian group

ker(d)

im(d)

H(E,d) =

given in bidegree (s,t) by the subquotient
ker(d)s ¢ ker(ds.+)
H,(E,d) = - == :
) = Dy I(dam )

of Es ;. We write [z] € H(E,d) for the homology class of a d-cycle z € ker(d).

DEFINITION 1.1.3. A homological spectral sequence (E”,d"),>1 is a sequence of
bigraded abelian groups E” = E! , and differentials

d:E"— E"
of bidegree (—r,r — 1), together with isomorphisms
H(E",d") = E™!
for all integers r > 1.

REMARK 1.1.4. We call E” and d" the E"-term and d"-differential of the
spectral sequence, respectively. In each bidegree (s, t) we refer to s as the filtration
degree, t as the complementary degree, and s + t as the total degree. Each d"-
differential sends classes in total degree s + ¢ to classes in total degree (s — r) +
(t4+r—1) =s+1¢—1, hence reduces the total degree by 1. We do not introduce
notation for the isomorphisms H(E",d") = E"+1, but they are part of the structure
of the spectral sequence. More generally, an EP-spectral sequence (E",d"),>, is a
sequence of bigraded abelian groups and differentials, as above, but indexed on the
integers r > p. Usually p=1or p = 2.

REMARK 1.1.5. We usually visualize a bigraded group A, . as being spread out
over the (s,t)-plane, with A, located in the position with horizontal coordinate s
and vertical coordinate ¢t. We visualize the component d;;: Es; — Esyy 40 of a
differential d of bidegree (u,v) as an arrow from position (s, t) to position (s4u,t+
v). When d is a homological d"-differential, this arrow points to the left and up,
from position (s,t) to position (s —r,t +r —1).

° ° ° ° °

t+r—1 ° E;LntJrril ° ° °
k

t . ° ° ET, °

. ° ° ° °

t/s s—r s
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If di 4(z) = y we say that x supports a d"-differential, and that y is hit (or “killed”)
by a d"-differential. The classes that support a nonzero d"-differential are not
present at the E™T!-term, and the classes that are hit by a d"-differential are set
equal to zero at the E"T'-term. Informally, the classes that support differentials,
or are hit by differentials, do not “survive” to the next term.

REMARK 1.1.6. Some authors refer to the E"-term as the E"-page. If we
think of the index r as measuring procession through a number of stages, then the
transition from E” to its subquotient E"t!, by passage to homology with respect
to d”, can be viewed as turning one page over to reveal the next.

(E*,dY): DO AR PO PP S

dt dt dt d!

REMARK 1.1.7. The most common spectral sequences are bigraded, as in the
definition above. Often one grading comes from a filtration and the other comes
from a degree shift present in a long exact sequence. However, there are also cases
where the complementary degree ¢ is not present, or appears with the opposite sign,
or is itself a multigrading. The key feature of a homological spectral sequence is
that the d"-differential reduces the filtration degree from s to s — r.

DEFINITION 1.1.8. Let (E,d) and ("E,’d) be bigraded abelian groups with
differentials of bidegree (u,v). A morphism ¢: (E,d) — ('E,’d) is a morphism
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¢: E —'E that commutes with the differentials, in the sense that the diagram

¢s,t
By ——————'Es

ds,tJ J/d&t
Dstu,t+v

Esiuipo ——"Espuito
commutes for all bidegrees (s,t). There is then an induced morphism
¢.: H(E,d) — H('E,'d)
given by ¢.[x] = [¢(z)] for each d-cycle x in E.

DEFINITION 1.1.9. Let E = (E",d"),>1 and 'E = ("E",’d"),>1 be spectral
sequences. A morphism ¢: E — 'E of spectral sequences is a sequence of morphisms

¢7': (-E‘T'7 d'!) — (IET, /dT’)
of differential bigraded abelian groups, such that the diagram

H(E",d") —2 H(E" ")

Lo

ET+1 /ET+1
commutes for each r > 1.

REMARK 1.1.10. Sheaves, sheaf cohomology and spectral sequences were in-
vented by Jean Leray while a prisoner of war around 1943, with the first published
references being the notes [Ler46al and |[Ler46b|. For amap f: X — Y of spaces,
Leray constructed (what we now call) a sheaf of graded abelian groups over Y,
and obtained (what we now call) a spectral sequence with initial term given by the
cohomology of Y with coeflicients in this sheaf, converging to the cohomology of X.
The current algebraic formalism, where the E"*!-term is expressed as the homol-
ogy of a d"-differential acting on the E"-term, is due to Jean-Louis Koszul [Kos47].
Similar structures were implicitly present in the 1946 PhD thesis of Roger C. Lyn-
don [Lyn48]. The name “suite spectrale” is due to Jean—Pierre Serre [Ser51],
merging the names “anneau spectral” of [Ler50| and “suite de Leray—Koszul”. See
the articles by John McCleary [McC99| and Haynes Miller [Mil00] for more on
the history of spectral sequences.

1.2. Bounded convergence

To each spectral sequence (E",d") we will associate a limiting bigraded abelian
group E> = E,, called the E*°-term. The general definition requires some details
that we will discuss later in Definition [2.3.3] so for now we will instead describe
some special cases for which the F°°-term can be read off from the E"-terms for

finite 7.

DEFINITION 1.2.1. A spectral sequence (E",d") collapses at the E?-term if
d" =0 for all » > ¢. It stabilizes in each bidegree if for each bidegree (s,t) there is
a q(s,t) such that both dg ,: EL, — E{_ ., qanddiy,., ..1: B, .0 — EL,
are zero for all r > q(s, t). '
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Setting q(s,t) = ¢, we see that a spectral sequence that collapses at the F4-term
also stabilizes in each bidegree. The latter condition is strictly weaker.

LEMMA 1.2.2. If (E",d") collapses at the E%-term, then E™ =2 H(E",d") =
E™t for all v > q, so that there are isomorphisms
EIx=pitte. ... pr=
for all v > q. More generally, if (E™,d") stabilizes in each bidegree, then for each
bidegree (s,t) there are isomorphisms
~ +1 ~ T o~
Eg,t:Eg,t :""Es,t:---
forallr > qg=q(s,t).
PrOOF. If d" = 0 then ker(d") = E" and im(d") = 0, so H(E",d") = E"/0 &
E". By the assumption that (E",d") is a spectral sequence, this is isomorphic to
Ertl,
In the general case, for each (s,t) and 7 > q(s,t) we have ker(d"),; = E{, and
im(d")s: =0,s0 H(E",d")s+ = E{,/0 = Ef,, and this is isomorphic to Egtl O
In other words, if all the d"-differentials for r > ¢ mapping into or out of a
given bidegree (s, t) are trivial, then the groups EY, remain the same for all 7 > q.
Here ¢ = q(s,t) may vary with (s, ).
LeEMMA 1.2.3. If (E",d") collapses at the E%-term, then E> = E9 is isomor-
phic to the common value of E” for r > q. More generally, if (E",d") stabilizes in

each bidegree, then for each bidegree (s,t) there are isomorphisms ESG = E¢, for
all sufficiently large 7.

We will also see that a morphism ¢: E — 'E of spectral sequences induces a
limiting homomorphism ¢>: E* — 'E°°, with components ¢3%: EgG — 'EZ5.

LEMMA 1.24. If (E",d") and ("E",’d") both collapse at the E9-term, then
@>®: E® — 'E* corresponds to ¢": E" — 'E" for each v > q. More generally, if
(E",d") and ("E",'d") stabilize in each bidegree, then ¢35 ESG — "EZG corresponds,
for each bidegree (s,t), to ¢, ,: EL, —"EL, for all sufficiently large r.

We postpone the proofs of these two lemmas until we give the general definition
of the EF°°-term. In the meantime, their conclusions can be taken to characterize
E°° and ¢*°, in the cases at hand.

Henri Cartan [Car48]| clarified the distinction between a filtered group and its
associated graded group, as defined below.

DEFINITION 1.2.5. An increasing filtration (FsG)s of an abelian group G is a
sequence of subgroups

- CFs_.GCF,GC---CG
where s € Z. For each filtration degree s there is a short exact sequence
F,G
Fs 1G
that expresses the abelian group F;G as an extension of the filtration quotient

F,G/Fs_1G by the preceding group F;_1G. ((ETC: Do we also refer to FsG/F,_,.G
as a filtration (sub-)quotient?)) The graded abelian group

(FsG/Fs_1G)s

(1.1) 0— Fy_1G — F,.G — —0
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is often called the associated graded of the filtration (FsG)s. ((ETC: Maybe intro-
duce notation for the associated graded.))

We say that the filtration is bounded if there are integers a and b such that
F,_1G =0 and F,G = G, in which case the sequence is determined by the finitely
many terms

0=F,  GCF,GC---CF,1GC FLG=G,
extended by identities on both sides.

REMARK 1.2.6. If we have inductively determined F_1G, and know the fil-
tration quotient FyxG/Fs_1G, then the next term FyG is partially determined by
the short exact sequence . There can be several non-isomorphic abelian group
extensions with the same subgroup and quotient group, and the task of determining
which of these is realized by F,G is known as the extension problem in filtration s.
If the filtration is bounded, then this inductive argument involves finitely many
extension problems, starting with s = a¢ and ending with s = b. We will return in
Theorem and later ((ETC: where?)) to extension problems for discrete (=
bounded below) and unbounded filtrations, respectively.

When studying bigraded spectral sequences we must consider filtrations of
graded abelian groups.

DEFINITION 1.2.7. An increasing filtration of a graded abelian group G, =
(Gn)n, where n € Z, is a sequence of graded subgroups

- CF,1G. C F,G, C---CG,
where s € Z. We call s the filtration degree and n the total degree. For each s there
is a short exact sequence
F.G.,
Fs 1Gy
that expresses the graded abelian group F;G as an extension of the filtration quo-

tient FsG./Fs_1G. by the preceding graded group Fs_1G,. This consists of an
extension

0— F;_1G, — F,G, — —0

FSGTL
Fs—l Gn
in each total degree n. In this case, the associated graded of the filtration is
bigraded, either by (s,n) or by (s,t) = (s,n — s).

The filtration of G, is bounded if there are integers a and b such that F, G, =
0 and F,G, = G,. More generally, it is degreewise bounded if for each total degree n
there are integers a = a(n) and b = b(n) such that F,_1G, = 0 and F,G,, = G,,.
In these cases the filtration in total degree n is determined by finitely many terms,
extended by identities in both directions.

0— F,_1G,, — F.G,, — —0

We can now express in what sense a spectral sequence may calculate a given
graded abelian group.

DEFINITION 1.2.8. Let (E} ,,d") be a spectral sequence and let (FyG.)s be
a filtration of a graded abelian group G,.. Suppose that the spectral sequence
stabilizes in each bidegree, and that the filtration is degreewise bounded. Then we

say that the spectral sequence converges to G, written

E:,* = G,
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if there are isomorphisms

F.G,
B> 2T
’ Fs— 1 Gs+t

in all bidegrees (s,t). The choice of filtration of G,, and of the isomorphisms
displayed above, are implicitly part of the convergence assertion. We call G, the
abutment of the spectral sequence. To emphasize the filtration degree s, and the
relation between the complementary degree and the total degree, we may write

Il

E;,t :>S Gs+t .

((ETC: Does the term “abutment” assume convergence?))

When the filtration is degreewise bounded, we may also say that the spectral
sequence converges strongly to G.. ((ETC: Later we will consider filtrations that
are not degreewise bounded, and define weak convergence, convergence and strong
convergence, respectively. Terminology from Cartan—Eilenberg.))

REMARK 1.2.9. When Ef , = G., the strategy for using the spectral sequence
(B ., d")r>p to calculate G is the following: We assume that the initial term
Ef,* can somehow be calculated. Furthermore, for each r > p we assume that
the differentials d” can be calculated, so that we can inductively obtain E:;Cl as
H(E",d")sx, for each r > p. Under the hypothesis that the spectral sequence
stabilizes in each bidegree, we can let EJ5 = E¢, for r > q(s,t) sufficiently large.
By convergence, these are also the groups FyG,,/Fs_1G,, for n = s+t. Consider one
total degree n. Assuming that the filtration is degreewise bounded, we know that
F;G,, = 0 for s < a(n) sufficiently small. For each s > a(n) we must inductively
solve an extension problem to determine FiG,, from F;_1G, and EZ,_ . Once
s = b(n) is sufficiently large, this recovers FyG,, = G,,, which is the total degree n
component of the abutment of the spectral sequence.

DEFINITION 1.2.10. Let G and ‘G be abelian groups, filtered by (FsG)s and
(Fy'G)s, respectively. A homomorphism ¢: G — 'G is filtration-preserving if
Y(FsG) C Fy'G for each s. Let ¢s: FsG — FJ'G be the restriction of 4, and
let ¥s: F,G/F; 1G — F,/G/F,_1'G be the induced homomorphism between the
filtration quotients. ((ETC: We may also write 15 1 for 15.)) We obtain a vertical
map of short exact sequences

F.G
1.2 0—— F,_1G F.G 0
(1.2) 1 .G
'(l}s—l 1/15 wﬁl
F'G
0—— F,_{'G FS'G s 0
! F,_1G

for each s. If G, and 'G, are filtered graded abelian groups, and ¢: G, — 'G, is a
degree-preserving morphism, then the same definitions apply.

DErFINITION 1.2.11. Let (E] ,,d") and ("Ef,,’d") be spectral sequences con-
verging to G, and 'G,, respectively. Let ¢: E — 'E be a morphism of bigraded
spectral sequences, and let ¥: G, — 'G, be a morphism of filtered graded abelian

groups. Then we say that the spectral sequence morphism ¢ converges to the
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filtration-preserving morphism 1 if the diagram

~  FG,
1.3 EY, —— ————~
( ) * Fs_lG*

S,
e

~ FJ/G
/E.OO — S *
o Foy'Gs

commutes for each s.

REMARK 1.2.12. If we have resolved the extension problems for spectral se-
quences (E",d") and ("E",’d") converging to G = G, and 'G = 'G,, respectively,
and there is a morphism ¢: F — 'E converging to ¥: G — 'G, then we can in-
ductively attempt to determine t from ¢°°. Assuming that we have determined
Ys_1, we obtain ¢, from ¢%° via the commutative diagram . It then remains to
identify 1, from diagram . In general there can be several different homomor-
phisms F,G — F,’G that make the diagram commute. Any two possible choices of
1 differ by a composite of the form

F,G ¢
FG— —=— 4 F_,/G— F,/G,
F,_1G !

where f is any homomorphism. Having determined ), for all finite s, we can then
pass to a colimit to obtain .

((ETC: Discuss examples of filtration shifts, later.))

REMARK 1.2.13. In diagram (T.2), if ¢s_; and 1, are isomorphisms, then so
is ¢,. In Theorem [2.4.5) ((ETC: and later)) we use this to give conditions which
ensure that ¢¥: G — 'G is an isomorphism.

1.3. Long exact sequences as spectral sequences

The associated long exact sequence in homology

s Hon (X, A) 5 HL(A) =5 Ho(X) =L Ho (X, A) 25 Hy 1 (A) = ..

of a pair (X, A) lets us analyze the homology of X in terms of the homology of A
and the relative homology of (X, A). This requires determining the connecting
homomorphisms 9,, calculating their kernels and cokernels, and synthesizing the
result from the extension

0 — cok(Op41) — Hn(X) — ker(9,) — 0.

Spectral sequences provide a framework for a similar analysis and synthesis, when
the pair A C X is generalized to a longer sequence

C Xy CX,C--CX

of subspaces of X . In this section we spell out how the study of H,(X) in terms of
the long exact sequence above can be expressed in terms of the spectral sequence
formalism.
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Let (X, A) be a pair of spaces. We will specify an associated spectral sequence
(E",d")p>1. First, let E' = E} | be given by

By, = Hi(X,A) ifs=1,
0 otherwise.

Next, let d*: Esl’t — E;q,t be given by
d%,t = 614,_152 H1+t(X, A) — Ht(A)

for s = 1, and d}, = 0 otherwise. We can depict the (E',d")-term in the (s,t)-
plane, with horizontal coordinate s and vertical coordinate ¢, as on the left hand
side below.

3 t dl t

t | Hy(A)+ Hip(X, A) t | El, < El,
32 di 1

1| Hi(A) «— H3(X, A) 1 | By - E}y

dl
0 Elo« B},
e

t/s 0 1

0 | Ho(A) <2 Hy(X, A)

t/s 0 1

In the abstract notation, these correspond to the groups and homomorphisms on
the right hand side above. The columns with s < 0 or s > 1 consist of trivial
groups, so we have a two-column spectral sequence. To simplify drawing these
diagrams let us assume that Hy(X, A) = 0, so that the rows with ¢ < 0 also consist
of trivial groups, even if this is not strictly necessary for the argument. In this
case the E'-term is concentrated in the first quadrant in the (s,t)-plane, and we
speak of a first quadrant homological spectral sequence. Clearly d'd' = 0, since
didi Bl — El |, maps from a trivial group, or to a trivial group, or
both, for each pair (s,t), so (E',d') is a bigraded abelian group with differential
of bidegree (—1,0).

The E?-term of this spectral sequence must be given by the homology groups
E2, = H(E',d")s;. The d'-cycles are

H(A) for s =0,
ker(d)s s = < ker(dy4,) for s =1,

0 otherwise,

and the d'-boundaries are

m(d), , = im(014¢) for s =.O7
0 otherwise.
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Hence
cok(O14¢) for s =0,
Eit = < ker(014¢) for s =1,
0 otherwise.

We depict this in the (s,t)-plane, as on the left hand side below, with Eit in the
position where we had E}, earlier.

t cok(D14¢)  ker(dy14+) t E3, E%,
1 COk(ag) ker(ag) 1 Eg 1 E% 1
0 cok(01) ker(0;) 0 B2, EZ,
_ .
t/s 0 1 t/s 0 1

These groups have the names given on the right hand side above, in the spectral
sequence notation. Since the E2-term consists of subquotients of the E'-term, it
remains concentrated in the first quadrant, under our assumption that Ho(X, A)
vanishes.

All components d2 ,: EZ, — E? ,,,, of the d*-differential must be zero, be-
2
S5
and the target E§_27t+1 is trivial. Hence we must have d? = 0, and then d?d? = 0
is obvious. It follows that H(E? d?) & E?, since ker(d?) = E? and im(d?) = 0,
so that E3 = E2?. In the same way it follows that d” = 0 for all r > 2, and that
E™ = E? for all » > 2. In other words, the spectral sequence collapses at the
E2-term. The limiting term is thus E> = E?, with components

cause the source EZ, can only be nonzero for 0 < s <1, in which case s —2 < 0

cok(014¢) for s =0,
ker(014¢) fors=1,
0 otherwise.

1%

B

S)

The picture of the E*°-term in the (s,t)-plane is identical to that of the E?-term,
except that the group labeled E? is now labeled Eg5.

We have now specified a spectral sequence (E",d") with E*-term given in terms
of H,(A) and H,(X, A). To make sense of the assertion that this spectral sequence
converges to G, = H,(X), we must also specify a filtration of H,(X). This is done
by setting

0 for s < 0,
FsH,(X) = qim(i: H,(A) —» H,(X)) fors=0,
H,(X) for s > 1.
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Then
0=F 1H.(X) C FoH.(X) C F1H.(X) = H.(X)
is a bounded filtration of the graded abelian group H,.(X). The claim that the
spectral sequence (E] ,,d") converges to H.(X), denoted
By = Hope(X),
is the assertion that there are isomorphisms
FsHs+t (X)
Fs—1H5+t (X)

for all (s,t). Both sides are trivial if s < 0 or s > 1, hence are obviously isomorphic.
When s = 0, the assertion is that

Il

00
Est

cok(r,) = MO H(A) = (X))

for each t. When s = 1, the assertion is that

Hy4(X)
Hl’l(l H1+t(A) — H1+t(X))
for each t. Both of these follow from the part

ker(31+t) =

G114 14+ O14¢ it
Hi o (A) 25 Hy (X)) 25 By (X, A) 258 Hy(A) =5 Hy(X)

of the long exact sequence in homology for the pair (X, A), in view of the isomor-
phisms

Hy(A) _ Hi(4)
im(911¢)  ker(iy)

COk(alth) = = im(it)

and
Hy (X)) Hi(X)
ker(jiye)  im(in4e)

What remains to be done, in order to determine H,(X), is to resolve the
extension problems, i.e., to find FyH.(X) and F1H,.(X) = H.(X). The initial step
is easy, since convergence in bidegree (s,t) = (0,n) tells us that

FoH,(X) =im(i: H,(A) — H, (X)) = Eg, = cok(014n) -
The next, and final, step is to determine F; H,,(X) = H,(X) from the extension
H,(X)
FoH,(X)

1

ker(014+) = im(j1+¢)

0— FyH,(X) — H,(X) — —0.

By convergence in bidegree (s,t) = (1,n — 1)
Hy(X)

FoH,(X)

Hence, this extension is nothing but the short exact sequence

0 — cok(O14n) — H,(X) — ker(9,) — 0,

= ker(9,) .

which we recalled at the beginning of this section. The role of the spectral is thus
to calculate cok(014,) and ker(9,,), and convergence tells us that we have this short
exact sequence, while the actual resolution of this extension problem is in a sense
external to the spectral sequence.
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Nonetheless, we can often visualize the extension problem in the same coordi-

nate system as the spectral sequence, by placing these short exact sequences along
lines of constant total degree. In the (s,t)-plane, this amounts to lines of slope —1.

~, R

t COk(alth) ker(alth) t E(())’Ot E(lj,?f
/\J
Hy(X) Hy(X)
it 4
t—1 cok(@t)\ ker(0;) t—1 | EgS_, B
1 cok(09) ker(0) 1 Eg E
~ N
Hy(X) Hi(X)
4 Ny
0 Hy(X) ker(01) 0 B, B,
t/s 0 1 t/s 0 1

If we draw the filtration and the filtration quotients as follows

0— FoHp(X) —— H,(X)

|

FOHn(X) Hn(X)/FOHn(X)a

then we can imagine the upper row as being placed along the line s 4+t = n, with
F,H,(X) in bidegree (s,t) = (s,n — s), and with the quotients in the lower row
appearing as the F*°-term in the same bidegree. Note that in a homological spectral
sequence, the differentials map to the left, while the inclusions in the filtration map
to the right.

To summarize, this section has spelled out what we have in mind when we say
that there is a convergent spectral sequence

Ef, = Hsi(X)

with
H,(A) for s =0,
Ey, =< Hip4(X,A) fors=1,
0 otherwise.

Sometimes we might add detail, such as saying that the d!-differential is given by
di y = 0144 Hi4(X, A) — Hy(A), or that the convergence is with respect to the
filtration with FyH,(X) = im(i: H,(4) —» H,(X)) and F1 H,(X) = H,(X).

REMARK 1.3.1. If (X, A, zg) is a pair of based spaces, the long exact sequence
in homotopy

o (A, 30) — (X, 20) —L T (X, A, 20) 2 a1 (A, 30) — ...
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can also, usually, be viewed as a spectral sequence converging to m, (X, x¢), with

(A, x0) for s =0,
Esl,t = m(X, A z9) fors=1,
0 otherwise.

To ensure that this is a bigraded abelian group, and that 7. (X, z) is a filtered
graded abelian group, we may assume that X and A are 0-connected with abelian
fundamental groups. This then implies that 71 (X, A, zg) inherits an abelian group
structure from 71(X,zp). ((ETC: Without these hypotheses one has a fringed
spectral sequence, considered principally by Bousfield and Kan.))

1.4. Two linked long exact sequences

We now consider the case of a triple (X, K, A) of spaces, with A ¢ K C X.
This leads to the following diagram of (spaces and) pairs of spaces

(X, K)
to which we can associate the long exact sequences
s Ho(A) 4 H(K) 4 B (K, A) Y8 =, (A)
s Ho(A) X H (X)) 8 B (X, A) P Hy (A

o Ho(K) 25 H (X)) 25 1, (X K) 255 Hy (K —
and
s H (K, A) S (X, A) T (X K) PSS H, (KL A)
The last connecting homomorphism can be factored as the composite

Ox.xc.n = jic aOx.xc: Ho(X, K) 25 H,_ (K) 223 H,_,(K, A).
We would like to calculate H,(X), supposing that we know the homologies H,(A),
H,(K,A) and H.(X, K) of the “minimal” pairs along the diagonal in the diagram
above. These involve pairs that are closer together than H,.(K), H.(X,A) and
H,.(X), and may therefore be easier to determine.

Using only exact sequences, the calculation might be done in two steps, in
two different ways. On one hand, we might first calculate H,(K) from H,(A) and
H,.(K,A), and then calculate H,(X) from H,.(K) and H.(X,K). On the other
hand, we might first calculate H.(X, A) from H,.(K, A) and H.(X, K), and then
calculate H,(X) from H,(A) and H.(X, A). Either approach involves passing to
subquotients, resolving extensions, passing to subquotients again, and resolving
extensions again. Instead, we will express the calculation in terms of a single
spectral sequence, where all of the passages to subquotients is performed first, in a
symmetric manner, and only thereafter are the extension problems resolved.
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Here is the basic result that we will prove.

PROPOSITION 1.4.1. Let (X, K, A) be a triple of spaces. There is a convergent
spectral sequence

E;t s Hs+t(X)
with

Hi(A) for s =0,
Hip(K,A) fors=1,
Hy i (X, K) fors=2,
0 otherwise.

1 _
Es,t -

The d*-differentials are given by the connecting homomorphisms

Or,a: Hip (K, A) — Hi(A) fors =1,
diy = Ox.xat Howt (X, K) — Hipy (K, A)  for s =2,
0 otherwise.

The abutment is filtered by

0 for s <0,
im(ix a: Hy(A) - Hp(X)) fors=0,
im(ix g: Ho(K) = Hy(X)) fors=1,
H,(X) for s > 2.

F,H,(X) =

PRrOOF. Note that the description of the E'-term and the d'-differential only
depend on two of the long exact sequences listed above, namely the ones associated
to the pairs (K, A) and (X, K). We can wrap each of these up into an exact triangle,
and the two exact triangles are then linked together at a common vertex, given by

iK, A X, K

(1.4) Ho(A) 2 q (k) — 2 1 (X)

X IS
~ . ~ .
~ JKA N Jx . K
Ok,a > ~ aXJ(\ ~

Here the dashed arrows denote homomorphisms of degree —1, sending H, (K, A)
to H,_1(A) and H,(X,K) to H,_1(K), respectively. The E'-term is then given
by H.(A) and the groups in the lower row, while the d'-differentials are given by
Ok, 4 and the composite jx 40x, i, all of which are visible in this diagram.

The filtration on the abutment is also visible in this diagram, being given by
the image of the composite ix gix 4 for s = 0, the image of ix i for s =1, and
by H,.(X) itself for s = 2.
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As before, we can depict the (E!, d!)-term in the (s, t)-plane, as in the following
diagram.

Ok X, K
t+1 Hyr(A) 52 H (K, A) 52 (XK
oK 0x,K,A
t H; (A) (; Ht+1(K A) — Ht+2(X K)
Ok, A 0x,K,A
1 Hy(A) <250 (K, A) <225 (X K
Ok, A Ox,K,A
0 Ho(A) «——— Hi(K, A) «——— Hz(X, K)
t/s 0 1 2

The columns with s < 0 or s > 2 consist of trivial groups. In abstract notation,
this appears as below.

dl st4+1 d2 t+1
tJrl EO 41 ¢ El Jg+1 ¢ EQ g4+1
d} d}
1 1,t 1 2,t 1
t EO,t El,t Ez,t
d! dl
1 1,1 1 2,1 1
1 Eo,1 E1,1 E2,1
d} d}
1 1,0 1 2,0 1
0 Eo,o E1,o Ez,o
t/s 0 1 2

Again, let us assume that Ho(K, A), Ho(X, K) and H;(X, K) vanish, so that the
rows with ¢t < 0 are trivial and the spectral sequence is concentrated in the first
quadrant. The proposition still holds without this assumption, but there may then
be nonzero groups in bidegrees (1, —1), (2, —2) and (2, —1), respectively.

The condition that df,d},,, = 0 needs only be verified for s = 1, when it
asserts that the composite

OX K, Ok,
O a0x k.4 Hop1 (X, K) 25" H, (K, A) =% H,_1(A)
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is zero. This follows from the factorization Ox x4 = jx, 40x Kk and the fact that
Ok, ajk,4a = 0, both of which are visible in the diagram with two linked exact
triangles.

By the defining property of a spectral sequence, the E%-term must now be
given by the homology of the E'-term with respect to these d!-differentials. The
d'-cycles are

H(A) for s =0,

ker(d!)s ; = ker(Ox a: Hi4¢(K, A) — H(A)) for s =1,
’ ker(Ox x4t Hoyt(X, K) = Hi14(K, A)) for s =2,

0 otherwise.

The d'-boundaries are

im(Ok,a: Hi4e(K, A) — Hi(A)) for s =0,
im(d")s; = < im(Ox x.a: Hort(X, K) — Hy (K, A)) fors=1,
0 otherwise.

Hence the E?-term satisfies

cok(Or,a: Hi1+ (K, A) — H(A)) for s =0,

ker(8K7A: H1+t(K, A) — Ht(A))

- for s =1,
E?, = im(Ox x4 Hopt(X, K) = Hi4(K, A))

ker(Ox k.4 Haye(X, K) = Hi4(K, A)) for s =2,

0 otherwise,

and we may assume that this isomorphism is the identity.

We must now specify the d?-differentials in the spectral sequence. They can
only be nonzero when mapping from bidegree (s,t) with s = 2, since for other
values of s the source or target (or both) is a trivial group. The interesting case is
therefore

d;t: E;,t = ker(0x i, 4)t+2 — cok(Ix A)t41 = E&t-ﬁ-l
of bidegree (—2,1). Here ker(Ox k., 4)i+2 C Hiy2(X, K) while cok(Ok, 4)i41 is a
quotient of Hyyq(A).
Since Ox k,4 = jKk,A0x, K, the restriction of Ox i defines a homomorphism
Ox it ker(dx k. a)ere — ker(jr a)ier = im(ig a)is1
where im(ig, 4)i+1 C Hyq1(K). Furthermore, ik 4 induces an isomorphism

Hy1(A)

— R im(ik )i -
ker(ix, A)e+1 ( )+

EK7A5 COk(aKA)H_l =

We then define

2 =1 3
d2,t = ZK,AaXﬁK
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to be dx x followed by the inverse of ix 4:

ik ..
(1.5) cok(Ok, 4)t+1 % im(ig, )1

,\m
d3

ker(dx, i, 4)t42
In terms of diagram (1.4)), we calculate d%’t(x) for a class
MAS E22,t = kef(aX,K,A)t+2 C Hi12(X,K)

by applying Ox x to get an element Ox k() € ker(jx,a)iv1 = im(ix a)i41 C
H;,1(K), writing this in the form

Ox k(z) =ik A(y)

for an element y € Hy,1(A), and setting d3 ,(x) = [y] to be the homology class of y
in the quotient EF; ; = cok(dx, )41 of Hyy1(A). Any two choices y and ' with
the same image under ik 4 differ by an element in ker(ix 4) = im(dk, 4), hence
define the same class [y] = [y'] in cok(Ox, 4)-

The (E?,d?)-term has the following shape.

t+1 COk(aK’A)H,l EitJrl ker(@X,K,A)t%
3.
t cok(Ok,4)t E%, ker(Ox,x,4)1+2
N
dj
1 cok(Ok,a)1 Eil ker(Ox,kx,4)1
30
0 Cok(aK)A)O EiO ker(@X,K,A)g

t/s 0 1 2
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where each subquotient E7 ; = ker(9x,a)14¢/im(0x,k,a)14¢ of Ef ; = Hi (K, A)
is unaffected by the d?-differentials. In generic notation, this appears as below.

/

d%,t+1
2 2 2
t+1 E§ 141 Ef i1 E3 141
d2
2.t
2 2 2
t E5+ E7, E3,

3¢ 1

2,1

ﬁ /

1 Eg, B, E3,
d3 o
0 Eg Ef, B3,
t/s 0 1 2

It is clear that d2d® = 0, and that d” = 0 for r > 3, since for each of these
homomorphisms the source or target, or both, must be a trivial group. Hence
the spectral sequence collapses at the E3-term, which equals the E”-term for each
3 <r < oo, and has the following form.

t+1 cok(dg’t) ker(Ok 4)t+2/im(Ox k.4 )t+2 ker(dg,tﬂ)
t COk(d%,t_l) ker(aK7A)t+1/im(aX,K7A)t+1 ker(d%t)
1 cok(d3 o) ker(Or, )2/ im(0x K, 4)2 ker(d3 ;)
0 COk(a}gA)o keI‘(aK7A)1/im(8X,K7A)1 ker(d%o)
t/s 0 1 2

We shall make these entries more explicit in a moment, and connect them to the
subquotients of the filtration of H.(X) given in the statement of the proposition.
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First, let us exhibit the generic notation for the components of this E°°-term.

t+1 Egit BTG B3
t E§S Eloft ESS
1 EF ETS E35
0 ESY ETS E3%

t/s 0 1 2

Recall that
FoH,(X) =1im(ix a)n
FlHn(X) = lm(ZX’K)n
RhH,(X)=H,(X),
so that
0C FoH.(X) C FiH.(X) C FoH.(X) = H.(X)

is a bounded filtration of H,(X). The following three lemmas will therefore com-
plete the proof of the proposition. ([

LEMMA 1.4.2. There is a preferred isomorphism
Eg, = FoHu(X).
PRrOOF. Recall diagram . The cokernel
Eg, = Ej = cok(d3,,_1)
maps isomorphically by ix 4 to the cokernel

im(iKA)n _ im(iK7A)n _ im(iK,A)n
im(aX,K)n im(iK’A)n n im(@X’K)n im(iK,A)n N ker(z’X’K)n ’

which maps isomorphically by ix x to

iX7K(iH1(Z.K7A))n = im(iX7A)n = FoHn(X) .

LEMMA 1.4.3. There is a preferred isomorphism

g o FUHA(X)
Lr=1™ B H,(X) "
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PROOF. The quotient group
ker(Ox, A)n im(jxa)n im(ix,a)n
im(dx,k,4)n  M(jrA0x k)n  Jr,alker(ix,x))n
receives an isomorphism induced by jx, 4 from
Hy(K) _ H(K)
ker(jrc a)n + ker(ix i )n  im(ig a)n + ker(ix x)n
and this group maps isomorphically under ix x to
iX,K(Hn(K)) _ FlHn(X)
ixx(m(ixa))n  FoHn(X)'

00 _ 2 —
El,n—l - El,n—l -

O
LEMMA 1.4.4. There is a preferred isomorphism
o o Hn(X)
22T R H,(X)
PROOF. The subgroup
B3, = B3, = ker(d3 ;) = ker(x i )i42 = ker(dx i) era = im(jx i )i+2
of H, (X, K) receives an isomorphism induced by jx, x from
H,(X) H,(X) H,(X)
ker(ix g)n  imlix.i)n  FiHn(X)
O

REMARK 1.4.5. The d?-differentials in this three-column spectral sequence were
not fully determined by the statement of the proposition. For instance, we could
have reversed the sign of some of the d2-differentials and obtained a slightly different
spectral sequence, with the same (E!, d!)-term and filtered abutment. In order to
be clear about which spectral sequence one has in mind one must therefore be more
specific about how the spectral sequence arises, beyond just giving the initial term.
In many cases this complete precision is not necessary, but one should be aware of
the issue.

REMARK 1.4.6. Another way to depict the two exact triangles in (|1.4) is the
following pair of long exact sequences, each shown as a “staircase” shape.

o= Hy 1 (K, A) — Hy(A)

|

.— H, 1 (X, K) — Hy(K) — H,(K,A) — H,_1(A)
) —

J |

Hp(X) — Hy(X,K) — Hy_1(K) — Hy_y (K, A) — ...

|

Hn—l(X) %H,L_l(X,K) — ...



CHAPTER 2

Exact Couples

Almost every spectral sequences arises from a generalization of diagram
to the case where there are infinitely many long exact sequences that are chained
together at common vertices. This algebraic structure is called an exact couple, and
was introduced by William Massey [Mas52|, [Mas53]. We prefer to display exact
couples in an unrolled form, as in Michael Boardman’s paper [Boa99, (0.1)].

2.1. Unrolled exact couples

DEFINITION 2.1.1. An unrolled exact couple (A, E) = (As, Es; as, Bs,Vs)s 1s a
diagram of the form

Qg1 (o8 Qs41
As—? As—l As As+1 E—
Bs—1 Bs Bst1
Vs Vs+1
Es—l Es Es+1 )

in which each triangle forms a long exact sequence

e Ay XA P B A

Here each A; and Ey is a graded abelian group, and ag, 85 and 7, are graded
morphisms of graded abelian groups.

REMARK 2.1.2. In the long circulated preprint form of Boardman’s paper, this
structure was called an unraveled exact couple. Frequently, a; and s preserve the
total degree, and v, reduces the total degree by 1, so that we have a long exact
sequence of abelian groups

s BS s
c (Asm)n 2 (A)n =2 (B 25 (As—1)n-1 — -
for each s. If we set Asy = (As)syt and Egy = (Es)sq¢, with ¢ a complementary
degree, this appears as follows

Qg Bs Vs
= Agppn D A — By — A —

so that each a; has (s,t)-bidegree (1,—1), each 8, has bidegree (0,0), and each ~;
has bidegree (—1,0).

DEFINITION 2.1.3. A morphism of exact couples ¢: (A, E) — ("A,’E) consists
of degree-preserving homomorphisms ¢s: A, — ‘A, and ¢5: Es — 'E, for s € Z,
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making each diagram

Asfl As Es AS,1
¢¢1J ¢5l ¢él ¢<1l
/Asfl — /As - /Es ik /Asfl

commute.
EXAMPLE 2.1.4. A filtration of a space X is a sequence of subspaces
e C X1 CXs Tl

where s € Z. The (unrolled) exact couple in homology associated to such a filtration
(Xs)s is the chain of exact triangles

Qg Qst1

o Ho (X)) —5 H (X)) — = HL(X,) Ho(Xot1) — ...

N * ®
~ 5571 ~ ﬁs ~ ﬁerl
'Ys—l\ ~ 'Ys\ ~ 'Ys+1\ ~
~

~ ~

H*(Xs—laXs—Q) H*(X57Xs—1) H*(Xs+17Xs)

with

Ay = H,(X,)
E, = H,

(XsaXs—l)

and oy = ix, x. 1, Bs = Jx..Xs 1> Vs = Ox. X,_,, S0 that

o Ho(Xam1) 25 Ho(Xs) 25 Ho(Xs, Xom1) 25 Ho o1 (Xoo1) — ...

is the long exact sequence in homology of the pair (X, Xs_1). The solid arrows o
and [ preserve the total grading, while the dashed arrows 7 have total degree —1.

EXAMPLE 2.1.5. Let p be a prime. There is an (unrolled) exact couple (4, F)
with A, =7, E; = Z/p and a: Z — Z given by multiplication by p, for each s € Z.
The morphisms fs: Z — 7Z/p are the canonical surjections, while each ~y, is zero.
The whole diagram

p Z p N Z p Z p Z p
S K X
AN AN AN
0N 0 0
AN AN AN
Z[p Z[p Z[p

is concentrated in total degree 0. Let Z, = lim,, Z/p™ denote the p-adic integers.
There is a second exact couple with the same groups Fj,, given by the diagram

p p
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EXAMPLE 2.1.6. Let (X;)s and (Ys)s be filtrations of the spaces X and Y,
respectively. A map ¢: X — Y is filtration-preserving if ¢(X;) C Y; for each s.
Such a map induces a morphism ¢ of exact couples, given by the homomorphisms

but Ho(X,) — H.(Y,)
(bs : H*(stxs—l) — H*(Y:w}/s—l)

induced by the evident restrictions of ¢.

REMARK 2.1.7. In Massey’s paper, the exact triangles are rolled up further, by

setting
A=A, and E=PE..

An exact couple is then a diagram

A—25 A

RN

E

that is exact at each point, meaning that im(«a) = ker(8), im(8) = ker(y) and
im(y) = ker(a). Boardman’s unrolled presentation has the advantage that it vi-
sually emphasizes the filtration degree s. As a matter of notation, Massey writes
(A,C; f,g,h), Saunders MacLane [ML63, Ch. XI, (5.1)] and George Whitehead
[Whi78| §XII1.2] write (D, E}; 1, j,0), and Boardman writes (A, E; 1, j, k), where we
write (A, E;a, 8,7).

REMARK 2.1.8. Exact couples can also be fully unrolled in the plane, so that
each long exact sequence appears as a staircase in the following whole-plane dia-
gram.

Ys—1 Bs—2 Ys—2 Bs—3
By 0o ——As 00— FEg 90— Ag 3140 —— B340 — ...
Qg1 Qs—2
Vs Bs—1 Ys—1 Bs—2
B —— A1 — B 1 —— Asopp1 —— Es o1 —
Qg Qs—1
Ys+1 Bs Vs Bs—1
—— FEe1 > Ag 1 Eg, As 1 —— Eg 10— ...
As+1 Qs
Vs+2 Bs+1 Ys+1 Bs

= Faop 1 —— Asp1o1 —— Esp1po1 —— Asio1 —— B ——

s+2 s+1

[e3% 87

Ys+3 Bs+2 Ys+2 Bs+1
> Eoygp0—Agpor o —— FEgpop o ——Agiip o —— Esp100— ...
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See |Spa66)} §9.1.6], [Whi78)| Fig. 13.1]. In most cases the groups A, ; for varying ¢
play a similar role, but appear in many places in this diagram. The same issue
applies for the groups F,; for varying ¢t.

2.2. The spectral sequence associated to an exact couple

Given an exact couple, we can construct a spectral sequence.

THEOREM 2.2.1. Let (As, Es; a5, Bs,7s)s be an exact couple. Then there is a
spectral sequence (E,d"),>1 with
El=E,
and
d; = Bs—17s: E; — E;—l
for all s € Z. If as and Bs have total degree 0 and ~ys has total degree —1, then
d;,t: E;,t — E;;r,t+r71
has bidegree (—r,r + 1), where EL ; = (EL)s4t is a subquotient of E} , = (Eg)sit.
The E'-term of the spectral sequence is thus visible in the lower row of the

unrolled exact couple, with each d'-differential being given by the composite of two
homomorphisms.

dt d}
1 s st ol
Es 1 Es+1
Be 1’Ys ﬁ ’Y<+1
s+1

To construct the E"-term of the spectral sequence, we consider the following part
of the unrolled exact couple.

r—1 r—1
[e] X (e
As—r As—l - As As—i—r—l
S
N
N lﬁs
N
E,

Here a"~! denotes the composite of (r — 1) instances of the maps as, for s in a
suitable range.

DEFINITION 2.2.2. For r > 1 and s € Z let
Zr =~ im(a" T Ay, — Ay )
be the r-th cycle group, and let
B! =3, ker(ar_lz As = Agir_1)

be the r-th boundary group, both in filtration s. Here Z] is the preimage under
vs: By — As_1 of the image of a"~1: A, — A4, while B” is the image under
Bs: As — E, of the kernel of ™~ 1: Ay — Ag,,_1. These are both graded subgroups
of Eg, with components Z{ , and By, contained in E,; = = (Es)s+t-
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LEMMA 2.2.3. There are inclusions
0=Blc.---cBrcB'™'c---Cim(B,)
=ker(v,)c Zittczlc---cZ = E,.

ProOOF. The inclusions of ker(v;) and the cycle groups follow from the inclu-
sions

0Cim(a™: Ag_,_1 — A,_q) Cim(a" 1 Ay, — Ay_1).
The preimage Z! of im(a’) = A,_; is the whole of E;. The inclusions of boundary
groups and im(f3;) follow from the inclusions
ker(ar_l: Ag = Asyro1) Cker(a”: As = Agyr) C As.
The image B} of ker(a®) = 0 is trivial. For each finite r > 1 we have
B! C im(fs) = ker(vys) C Z7
by exactness at Fj. O

DEFINITION 2.2.4. For r > 1 and s € Z let
Eg =7;/B;

and Ef, = Z{ /B, so that E" = EY , is the E"-term of the spectral sequence. In
particular, E! = E,/0 = E,.

REMARK 2.2.5. As r increases, each E"-term is a successively smaller subquo-
tient of the E'-term, since the cycle groups Z” decrease and the boundary groups
BY increase in size. Each term E? thus gives an upper bound for the subsequent
terms B with 7 > ¢. If E{, = 0 for (s,t) in some region of the (s,t)-plane, then
Ef, = 0forall r > g and (s,t) in this region. In other words, if a term of a spectral
sequence is concentrated in some region, such as the first quadrant, then so is the
remainder of the spectral sequence.

In order to have a spectral sequence, we must identify E"t! as the homology
of E" with respect to a d"-differential. To define the d"-differential, we use the
following part of the unrolled exact couple.

Qs p a™ 1 ag

Asfrfl —_— Asfr ’ Asfl As

s lﬁw \ lﬁs

Es—r ES

DEFINITION 2.2.6. For each z € Z] C E; in the r-th cycle group we write
[x] € ET for its equivalence class modulo the r-th boundary group. Let the d"-
differential
d.: El — E._,
be defined by
dy: [z] — [Bs—r(y)]
where y € A,_, is chosen to satisfy vs(z) = a”"~!(y). In particular, d} = Bs_17s.

LEMMA 2.2.7. d} is well defined.
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PROOF. Since z € Z" we have () € im(a"1: A;_, — As_1), so there exists
ay € A, with " (y) = vs(x). The image Bs_,(y) then lies in im(8,_,.) C Z7_,,
hence defines a class [Bs—.(y)] in ET_,.

Another choice of iy € Ay, with a"~1(y’) = v,(x) differs from y by a class
Yy —y€ker(a"t: A,_, — A, 1), hence Bs_,(y') differs from S,_,(y) by a class

Bsr(y —y) € Bs_rker(a" " A, — A,_1) = B’

This means that [Bs—r(y)] = [Bs—r(¥')] as elements of ET_, .

Any other choice of 2’ € Z7 representing the same class [2'] = [z] in E” differs
from x by an element 2’ —x € BJ. Since B} C ker(v;), it follows that vs(z") = vs(z),
so z and z’ lead to the same choices for y and the same value of [3;5_,(y)]. O

To discuss d"-cycles in filtration s we use the diagram above, while for d"-
boundaries in filtration s we can use the following variant.

g a1 Qspr
Asfl As As+r71 *+> Aer'r
Nt Sy
Es Es+7"
LEMMA 2.2.8.

ker(d")s = ker(d’) = Z:*'/B"
im(d"), = im(dL,.,) = B/ BL

Hence d"d"” = 0 and the projection ZT™ — ker(d~) induces an isomorphism ET+1 =
H(E",d")s.

PrOOF. The displayed identities compare subgroups of E} = Z7 /BI.

First, let © € Z7, choose y € A,_, with a""1(y) = vs(z), and suppose that
[z] € ker(d7). This means that 3s_,.(y) € B’_,, so there exists a ¢/ € ker(a""!) C
Ag_p with s (y) = Bs—r(v'). Then y —y" € ker(Bs—,) = im(as—,) equals as_,.(2)
for some 2 € A;_,_1, and a"(2) =" L(y—v) =" Hy) —a""Hy) = ys(x) -0 =
7vs(x), which proves that z € Z7*1. Hence ker(d?) C Z7+!/Br.

Conversely, if z € Z7t1 then we can write v5(z) = a”(2) = a"~*(y) for some
z € As—r—1 and y = a,_r(2) € im(as—,) = ker(Bs—). Then Bs_.(y) = 0, so d},
maps [z] to [0], and [z] € ker(d”). Hence Z"T1/B" C ker(d").

Next, let © € ZI,,, choose y € A, with " (y) = vs4r(2), and consider
[Bs(y)} € im(ngrr)' Then ar(y) = aSJrTO‘T_l(y) = aS+T’YS+T(x) = 0’ SOy €
ker(a”: Ay — Asyr) and Bs(y) € BT Hence im(d.,,) C Bt /Br.

Conversely, if 35(y) € B+l with y € ker(a”), then a"~!(y) € ker(asy,) =
im(ys4r), so we can write o” ! (y) = ys1r(z). Then z € ZI,, and df,, maps [z]
to [8s(y)]. Hence BI/BL C im(dy,,.).

It follows from Bit! C ZI*! that im(d")s C ker(d")s, so did;,, = 0 and

d": E" — E" is a differential of filtration degree —r. The isomorphism

~ ZT+1/BT
Zr+1 Br+1 = s s
S / S Bg+1/B§

shows that BTt =2 H(E" d"),, as claimed. O
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Proor or THEOREM [2.2.1] We specified the E"-terms and d"-differentials
in Definitions 2:2.4] and [2:2.6] and checked the spectral sequence condition in
Lemma 2.2.8

The explicit form of the E!-differential and d'-differential follows easily by
inspection of the definitions.

If a; and Bs have total degree 0 while v, has total degree —1, then d}: E] —
E7_, has total degree —1 and reduces the filtration degree s by r. Hence it must
increase the complementary degree ¢t by (r — 1). O

LEMMA 2.2.9. Fach morphism ¢: (A, E) — ('A,’E) of exact couples induces
a morphism ¢: (E™,d") — ('E",'d") of spectral sequences. Hence the associated
spectral sequence defines a functor

Exact Couples — Spectral Sequences.

PRrOOF. It is straightforward to check that ¢4: Es — 'E, restricts to homo-
morphisms ¢g: ZI —'Z7, ¢ps: BT — 'Bl and ¢,: ET — 'E7 for all r > 1 and s, and
that these commute with the differentials d” and 'd", as well as the isomorphisms
H(E",d") = E™*! and H('E",d") = 'E"+1. O

REMARK 2.2.10. We are following the notation of [Boa99, §0], but translated
into homological indexing. (We will explain cohomological indexing later ((ETC:
where?)).) Beware that the d"-cycles ker(d") are the quotient Z"*1/B" of the
(r + 1)-th cycle group, and the d"-boundaries im(d") are the quotient B"*1/B" of
the (r 4+ 1)-th boundary group, so that there is an offset by one from r to (r + 1)
in the indexing of these bigraded groups.

In [ML63, Ch. XI, (1.4)], our Z" and B" are denoted C"~! and B"~!, re-
spectively. In that notation, the d"~!-cycles are a quotient of C"~! and the d"~!-
boundaries are a quotient of B"~!. Note, however, that Mac Lane uses different
indexing in [ML63| §XI.3].

2.3. The E°°-term of a spectral sequence

In every spectral sequence starting at the El-term, the E"-terms can be ex-
pressed as in Definition in terms of chains of cycle groups and boundary

groups, as in Lemma [2.2.3]

LEMMA 2.3.1. Let (E",d"),>p be an EP-spectral sequence. There are inclusions

0=BYcC---CcBicB!*'c...czittczlc---CcZP =EP
and isomorphisms Z /Z7t1 = B'T /BT such that
E~Z7"/BT
and d}: EY — E7_,. corresponds to the composite
Z7|By = Z7)Z; = BBy, — Z;_,/B;_,

forallr > p and s € Z.

Here 7 and ¢ denote the canonical projection and inclusion, respectively.

PRrROOF. We show this by induction on r > p. Suppose that E] = Z7/B? for
some r and all s. Then the subgroup ker(d")s C E? corresponds to a subgroup of
Z" /B”, which must have the form Z7T!/B” for some Z'*! C Z". Similarly, the
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subgroup im(d")s C ker(d")s corresponds to a subgroup of Z7™/B”  which must
be of the form BT /BT for some BI™t C Z'+1. We have the following inclusions
Brcpittczittcz
and isomorphisms
ker(d")s  Z't'/B"
Er—l—l ’EH Er dr .= S o~ E S §ZT+1 Br+1.
s ( ’ ) 1m(dr)5 B;+1/B: s / s
This completes the inductive step. The d"-differential factors as
™ EY = L
E, — —— —im(d")s—r — E,_,
8 ker(d")s m(d)s-r o
and corresponds to the composition

- ~ Zr Br ~
Z' /BT L zrjzm = 2By — Brt!

/B, — Z{./B,.

r

The composite of the two inner isomorphisms is the required isomorphism from
Z7/Z7+ to BIT! /B, which leads to the asserted expression for d.. O

s—r?

LEMMA 2.3.2. When (E",d") is the E'-spectral sequence associated to an exact
couple (A, E), then the subgroups Z" and B" of E' in Lemma agree with the
subgroups Z" and B" of E in Lemma[2.2.3

PRrOOF. This follows directly from Lemma [2.2.8 (]

DEFINITION 2.3.3. Let (E",d") be an EP-spectral sequence. For each s € Z we
let the infinite cycles
zx =)z

r>p

be the intersection (or limit) of the r-th cycle groups, and we let the infinite bound-
aries

B =] B!
r2p
be the union (or colimit) of the r-th boundary groups. In each case r ranges over
the integers > p. Hence there are inclusions

0c---cB,C---CB*XczZr*Xc---CcZ,C---CE?
for all r > p and s € Z. We define the E°°-term of the spectral sequence to be the
(bi-)graded group
B = (EX), = B2,
with
ES =Z7/BF
for each s € Z.

REMARK 2.3.4. Since E° is a subquotient of E? for each r, we can think of the
earlier terms in the spectral sequence as a shrinking sequence of majorizing bounds
for the E*°-term. ((ETC: In what sense do the E"-terms converge to the E*°-term?
The formation of Z°° as the limit lim,. Z” is not exact, and creates difficulties that
are best managed by also introducing the right derived limit group Rlim, Z".))
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Proor or LEmMA [[.2.3] Fix a bidegree (s,t). If di ;, and di,. ,_,,; are both
zero for all > ¢(s,t) then Z;t/Z;fl =0 and ngl/B;t = 0 by Lemma SO
Zr, = 21" = 7% and Bl, = B{" = B for all r > q(s,t), and ET, = E/ 7

EgS for all v > q(s, 1). O

LEMMA 2.3.5. A morphism ¢: E —'E of spectral sequences induces compatible
morphisms ¢": Z" —'Z" and ¢": B" — 'B" for all v > p, including r = co. This
also defines a morphism ¢>*°: B — 'E>,

ProOOF. By induction on r > p we have vertical maps ¢7, as shown in the
following commutative diagram.

By B+ Z;H Zr
\ ¢rt! \ L \
o oot im(d"), ker(d")y ——— S ET
J |
/Bg /B;+1 IZ§+1 /Z§ ¢1
im('d"), ker('d")s 3 'ET

There are unique dotted maps ¢! making the whole diagram commute, be-
cause the lower parallelograms are pullbacks. Hence the maps BTT! — 'Z7 and
Brtt — im('d")s with equal composites to 'E”T admit a unique common lift to
'BrtL. Likewise, the maps ZTT1 — 'Z" and Z7 ! — ker('d")s with equal compos-
ites to 'E” admit a unique common lift to 'Z7 .

The map ¢°: Z° — 'Z>° is then given by the intersection (= limit) of the
maps YL : ZI = 'Z7 and ¢°: B — 'BX is given by the union (= colimit) of the
maps ¢ : B — 'BI. The induced map of quotient groups is ¢°: E° —'E®°. O

Proor OF LEMMA [L2.4l Fix a bidegree (s,t). If (EL,), and ("EL,), both
stabilize for r > q = q(s,t), then Z*° = ZI', BT = B>, 'Z> ='Z" and 'Bf ='B%®
for » > q, hence ¢, = ¢2° as maps of infinite cycles, infinite boundaries and E>°-
terms. (]

The E*°-term does not depend on where we start indexing the spectral se-
quence.

LEMMA 2.3.6. Let (E",d"),>p be an EP-spectral sequence, let ¢ > p, and let
("E",'d")r>q be the E9-spectral sequence with E™ ='E" and d" ="'d" for r > q.
Then there is a canonical tsomorphism

Exx='p>.
ProoF. The sequence

0='Bic-..c'Brc'B*'c...c'zitt c'zl c...c'Z9="E1
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equals

0=BI/BicC---CBl/BIc B:"'/BIcC...
.cZYYBYc zT/BYC .- C Z1/B! = EY

SO
"2 =(\2:/Bl= 2Bt
'B?—LTJBZ/BENB?/BE
and T N
’E;’ON%NE;O.

O

REMARK 2.3.7. The only slightly tricky step here is the commutation of quo-
tients (which are colimits) and intersections (which are limits), giving the isomor-
phism

we () 20/BE = (\(Z5/BY).
((ETC: Under what hypotheses does this hold in an abelian category?))

The following result allows us to make deductions about a morphism between
two spectral sequences, even if we are not able to calculate all of their differentials.

PROPOSITION 2.3.8. Let ¢: (E",d")y>p — ('E",'d")r>p be a morphism of EP-
spectral sequences. Suppose that there is a ¢ < oo such that

o

. — li
¢q' Eg,* — Efﬂ{*
is an isomorphism. Then
T. T = 1
(b . E*,* — E*,*
s an isomorphism for all r > q, including r = oo.

PROOF. Ignoring the E"-terms for r < ¢, we may assume that p = ¢ and
that ¢P: EP — 'EP is an isomorphism. It then follows for each r > p, by induc-
tion, that ¢": E" — 'E", ¢": ker(d") — ker('d") and ¢": im(d") — im('d") are
isomorphisms, in view of the commutative diagrams

JoaAy

~

drl J -
ET N
—'E

and

H(E",d") =2 H('E","d")

J, ¢T+1 l

ET+1 /Er+1 .
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Since ker(d") = Z™*1/B" and im(d") = B"*1/B" with 0 = B C ZP = EP, and
likewise for 'd", it follows that

AN
¢": B = 'B"
are isomorphisms for all » > p. Passing to intersections and unions, we deduce that
P 2% =57
¢>: B® =5 'B®

are isomorphisms, which implies that ¢>*°: E*° — 'E°° is an isomorphism, as
claimed. 0

REMARK 2.3.9. This proposition shows that if ¢: (4, F) — ('A,’E) is a mor-
phism of exact couples such that ¢: £ — 'E is an isomorphism, then the induced
morphism of E'-spectral sequences ¢: (E",d") — ('E",’d") is an isomorphism.
This may well happen even if ¢: A — 'A is not an isomorphism, so different exact
couples may give rise to the same spectral sequence. ((ETC: Forward reference to
examples.))

((ETC: One can weaken the hypothesis that ¢{, is an isomorphism to allow
q to vary with s and ¢, but subject to further compatibility conditions. How can
these conditions be formulated?))

2.4. Discrete and exhaustive convergence
We now generalize Definition by weakening the bounded above condition.

DEFINITION 2.4.1. A filtration (FsG.)s of a graded abelian group G, is ex-
haustive if

It is discrete if there is an integer a such that F,_1G, = 0, and it is degreewise
discrete if for each total degree n there is an integer a = a(n) such that F,_1G,, = 0.

REMARK 2.4.2. We might say “bounded below” in place of “discrete”, but this
may become confusing when we also discuss decreasing filtrations. The terminology
“degreewise discrete” is suggested by thinking of the subgroups FsG,, for s € Z as
forming a neighborhood basis of the origin for a linear topology on G,,. The cosets
x + FsG,, for s € Z then form a neighborhood basis around xz. The resulting
topology is discrete if and only if FsG,, = 0 for some s. ((ETC: This is related to,
but not equal to, the condition on a filtered chain complex called “regularity” in
[CE56|, §XV.4].)) Later, we shall define “Hausdorff” and “complete” filtrations, in
such a way that the algebraic terminology matches that from point set topology.

DEFINITION 2.4.3. Let (EY ,,d"), be a spectral sequence and let (F;G)s be a
filtration of a graded abelian group G.. Suppose that the filtration is exhaustive
and degreewise discrete. Then we say that the spectral sequence converges to Gy,

written
E:,* = G,
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if there are isomorphisms
EOO E@Gs+t
s,t
F871G5+t

1%

for all (s,t).

REMARK 2.4.4. The following isomorphism result is often used in conjunction
with Proposition to show that a map of spectral sequences can be used to
establish an isomorphism G, = 'G,, even if we do not know enough about the
differentials d” and 'd" in these spectral sequences to actually calculate their abut-
ments.

THEOREM 2.4.5. Let ¢: (E",d"),>p — ('E",'d"),>p be a morphism of EP-
spectral sequences, converging to a morphism : G, — 'G, of filtered graded abelian
groups. Suppose that each filtration is degreewise discrete and exhaustive, and sup-
pose that

¢ BX, —'EX,

is an isomorphism. Then

is an isomorphism.

PROOF. Fix a total degree n. We prove for each s, by induction, that
7/151 Fan — E@lGn

is an isomorphism. The assumption that the filtrations (F5G.)s and (Fs'Gy)s are
degreewise discrete ensures that the (ungraded) filtrations (FsG,)s and (Fs'Gp)s
are discrete, so that there is an integer a with F, 1G, = 0 and F,_1'G,, = 0.
Hence 1,1 is trivially an isomorphism. Consider the vertical map of short exact
sequences

F.G
0—— Fs1G,, —— FsG, 2z >0
! E9—1G7L
1/1571 '(l)s wsl
E@lGn
0——F, /G, —— F,/G, Yen 0.

We may assume, by induction starting with s = a, that ¥s_; is an isomorphism.
Furthermore, by convergence, the commutative diagram
> e

E ~ Es,nfs

s,n—s o~

f{ F

Fan Vs Fs/Gn
stlGn stllGn

and the assumption that ¢ is an isomorphism, we know that 1, is an isomor-
phism. It then follows (by a very special case of the snake lemma) that v, is an
isomorphism.
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To complete the proof we use that both filtrations are exhaustive to pass to
unions over s and conclude that

)i Gy = JFGy — | JF/ G =G,

S

is an isomorphism. O

2.5. Discrete convergence for exact couples

We return to the setting of the spectral sequence (E”, d") associated to an exact
couple (A, F), where we assume that each a; preserves the total degree. We will
show that if the sequence of graded abelian groups

(2.1) e Ay B A 2 AT A
is (degreewise) discrete, then the spectral sequence converges (strongly) to the
colimit

A = colim Ag

of this sequence. In a later section ((ETC: where?)) we will discuss what happens
when the sequence is not discrete.

DEFINITION 2.5.1. The sequence (2.1) is discrete if there is an integer a such
that A; = 0 for all s < a. More generally, it is degreewise discrete if for each total
degree n there is an integer a(n) such that (As), = 0 for all s < a(n).

DEFINITION 2.5.2. The colimit Ay, = colimg Ag of the sequence (2.1)) is the
initial graded abelian group that receives compatible structure morphisms

1g: Ag — Ao

for each s € Z. Explicitly,

Aso = @ A/ (~)
where ~ identifies © € A,_; with a,(z) € Ag, for all s.

REMARK 2.5.3. Hatcher [Hat02, p. 243] writes “direct limit” for what we call
directed colimits, of which the sequential colimit formed here is a special case.
See Mac Lane’s book [ML71} Ch. III] for the categorical context behind algebraic
colimits and limits. By “compatible” we mean that isas = i5_1 for each s. By
“initial” we mean that for any other graded abelian group B with compatible
homomorphisms js: Ay — B there exists a unique homomorphism j: A,, — B such
that js = jis for each s. This characterizes A, with the structure morphisms i,
up to unique isomorphism.
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LEMMA 2.5.4. FEach element y € Ay, is of the form y = is(x) for some s € Z
and x € Ag. An element x € As maps to zero in A, meaning that is(x) =0, only
if there is some u > 0 with iy -+ asy1(x) =0 0 Agqy.

Proor. ((ETC)) O
LEMMA 2.5.5. There is a short exact sequence

0 Pa =SPA " A — 0,

where 1 denotes the identity map and
a: (:Es)s — (as(xsfl))-s
for each sequence (xs)s with only finitely many nonzero terms.

PROOF. In view of the explicit formula for A,, = colimgz A5, we only need to
argue that 1 — « is injective. Let = (z4)s € @S A, and choose a such that z;, =0
for all s < a. If (1 —«)(z) = 0 then x5 = as(zs_1) for all s. It follows by induction
on s, starting with s = a, that z; = 0 for all s. Hence z = 0. O

DEFINITION 2.5.6. For s € Z let
FsAy =im(is: As = Aso) -
This defines an increasing filtration
o CFs1A CFsAo C--- C Ay
of graded abelian groups.

LEMMA 2.5.7. The filtration of Ao, = colimg Ag by FsAoo = im(is: As — Aoo)
is exhaustive.

PrOOF. Each y € A has the form y = is(z) for some © € Ay, and then
y € FyAy. Hence |J, FsAs = Ans. |

LEMMA 2.5.8. Consider an exact couple (A, E) such that the sequence (2.1) is
degreewise discrete. Then

7 = ker(v;s)

for each s, and the filtration (FsAw)s is degreewise discrete.

PROOF. We always have ker(v;) C Z°. If x € Z° then a € Z7 for each r,
so vs(z) € Ay_q lies in the image of o™~ !: A,_, — A,_; for each r. Let n be
the total degree of vs(z). By assumption there is an a(n) such that (As_,), =0
whenever s —r < a(n). It follows that the image of (As_;)n in (As—1)y is trivial
for all sufficiently large r, which means that v(x) = 0. Hence = € ker(vys).

If (As), = 0 for all s < a(n) then (FsAx ), = 0 for s < a(n), so the filtration

is degreewise discrete whenever the sequence is. O

LEMMA 2.5.9. Let (A, E) be any exact couple, and set As, = colimg A;. Then
B = Bsker(is: As = Ax)

for each s.
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PROOF. It is elementary that BZ° equals

UB: = JBker(a" ™' Ay = Agppn) = Bs | Jker(a" s Ay = Agip),

which equals
Bsker(is: A — Ax)

by Lemma since x € A, maps to zero under some o”~! if and only if it maps
to zero under i,. O

LEMMA 2.5.10. Let (A, E) be any exact couple, and filter As, = colimg A, by
F.As =im(is: As = Aso). There is a preferred isomorphism
ker(vs) o FsAsx

Bsker(is: As & Aso)  Fs_14c
for each s € 7.

PROOF.
ker () _ im(fs)
Boker(is: Ay — Aso)  Bsker(iy: Ay — Ay)
receives an isomorphism induced by S5 from
A, As

ker(B,) + ker(is: Ay — Aoo)  im(cvs) + ker(is: Ay — Aog)
which maps isomorphically by i to

im(ig: As = Axo) im(is: Ay = As) FiAs

1s im(as) im(is,lz AS,1 — Aoo) stleo '
O
PROPOSITION 2.5.11. Let (A, E) be an exact couple with associated spectral
sequence (E™,d") and E>®-term (ES°)s. Let Ao, = colimg Ay be filtered by Fs Ay =
im(is: As = Ax).
(1) There is always a preferred injective homomorphism
FsAo ¢
— —— B
stleo s

which is an isomorphism if Z3° = ker(,).
(2) In particular, if each as preserves total degree and the sequence

e Ag g 2 AL
is degreewise discrete, then ( is an isomorphism and the spectral sequence
El =, Ax
converges.

PROOF. This summarizes the previous four lemmas, keeping in mind that we
always have the inclusion ker(ys) C Z2°. O

For filtrations that are discrete, the notions of weak convergence, convergence
and strong convergence coincide. We may therefore replace “convergence” with
“strong convergence” in the definition and proposition above.
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EXAMPLE 2.5.12. For the first exact couple in Example[2.1.5] the colimit Ay, =
Z[1/p] is exhaustively filtered by FsA = p~*Z C Z[1/p]. For the second exact
couple, A, = Zp[1/p] = Qp equals the group of p-adic (rational) numbers. It is
exhaustively filtered by FsAs, = p~°Z, C Z,[1/p]. Neither of these filtrations are
discrete. However, the second is “Hausdorft” and “complete”, in a sense we will
discuss in Chapter [§ In both cases the associated spectral sequence collapses at
the E'-term, since the connecting homomorphisms v, are all zero.

2.6. Derived exact couples

((ETC: Massey’s alternative approach to the spectral sequence associated to
an exact couple, given iteratively by deriving the exact couple.))



CHAPTER 3

Filtrations

We now consider how filtered chain complexes and filtered spaces give rise to
exact couples, with associated spectral sequences.

3.1. Filtered chain complexes

DEFINITION 3.1.1. An increasing filtration (F5C,)s = (FsCy,0)s of a chain
complex C, = (Cy,0) is a sequence of subcomplexes

- C (Fs-1Cy,0) C (FsCy,0) C --- C (Cy, D).
For each s € Z there is a short exact sequence of chain complexes
F,C,
— 0.
stlc*
We refer to the grading of C, = (C,)n, and of each subcomplex F,C, = (FsCp)n,

as the total degree, while s is the filtration degree. We say that the filtration is
ezhaustive if

(3.1) 0= F,_,C, -5 F,0, L

JF.c.=c..
S
It is degreewise discrete if for each degree n there is an integer a = a(n) such that
F, 1C, =0.
DEFINITION 3.1.2. The exact couple (As, Fs; as, Bs,Ys)s associated to a filtered
chain complex (FsC.)s is the diagram

Qsi1

S H(Fyo1C) —2 H(F,C,)

‘i\
S~ Bs
Y S o J{

H,(F,C./Fs_1C.) e
where

(As)w = H (F,C.)

(Es)s = Ho(FoCo/Fo 1 C.)

with as and 85 induced by ¢ and j, and 75 equal to the connecting homomorphism
associated to the short exact sequence (3.1)).

More explicitly, the bigrading is given by
As,t = Hert(FsC*)
Es,t = Hs-i—t(FsC*/Fs—lC*) 5

so that «; has bidegree (1, —1), 85 has bidegree (0,0) and 5 has bidegree (—1,0).
Thus oy and B, preserve the total degree n = s + ¢, while ~s reduces it by 1.
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DEFINITION 3.1.3. Given a filtration (F;C,)s of Cy = (Cy, 9), let
F,H,(C,) = im(H,.(F,C,) = H,(C.))
for each s.

Note the two different roles played by the notation “Fy” in this definition. On
the left hand side it refers to the filtration of the abutment H,.(C.), while on the
right hand side it refers to the filtration of the chain complex (Cy, ).

LEMMA 3.1.4. If (FsC.)s exhausts Cy, then the canonical morphism
Ase = colim H.(F,C.) =5 H,.(C))
is an tsomorphism, which restricts to isomorphisms
FoAs = F,H.(C.)
for all s. If (FsCy)s is degreewise discrete, then the sequence
e A E Ay

is degreewise discrete.

PROOF. The first claims follow from the well-known isomorphism

colsim H,.(FC,) =, H*(colsim F.C.).

If F,_1C, = 0 for some n and a = a(n), then F;C,, =0 and H,(F;C,) = (4s), =0
for all s < a, which implies the last claim. O

LEMMA 3.1.5. Each morphism v: (FsCy)s — (Fs'Cy)s of filtered chain com-
plexes induces a morphism ¢: (A, E) — (A,'E) of exact couples. Hence the asso-
ciated exact couple defines a functor

Filtered Chain Complexes — Ezact Couples.
PROOF. ¢: Ay, —'As and ¢: E, — 'E, are induced by the chain maps
ve: F,C, — F,/C,
- F,C. FJ/C.
VR0 FoC
by passage to homology. O

ProrosITION 3.1.6. Let C, = (C,0) be a chain complex with a filtration
(FsCy)s = (FsCy,0)s that is exhaustive and degreewise discrete. The associated
spectral sequence has E'-term

E,,=H,(F,C./F,_1C.)
and d*-differential d : Esl* — Eslfl’* the composite

d; = 5571%1 H*(FSC*/stlc*) — H*fl(stlc*) — H*fl(stlc*/F572C*) 3

which equals the connecting homomorphism associated to the short exact sequence

0= F,_1C,/Fy_2C\ — F,C,/Fs_5C, —2 F,C,/Fs_1C\ — 0

of chain complexes. The spectral sequence converges to H,(C,), with the filtration
given by
F.H.(C,) =im(H,.(Fs;Cy) = H.(C.)) .
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PROOF. The spectral sequence is the one associated in Theorem [2.2.1] to the
exact couple of Definition The (strong) convergence follows from Lemma
and Proposition [2.5.11 (]

COROLLARY 3.1.7. Let C, and’C, be chain complexes, with filtrations (FsCl)s
and (Fs'Cy)s that are exhaustive and degreewise discrete. Let v: C. — 'Cy be a
filtration-preserving map of filtered chain complexes, and suppose that the induced
map

¢T‘: ET’ _) /ET’ ,
of E"-terms of the associated homology spectral sequences, is an isomorphism for
somer =q. Then

e Hyo(Cy) — H.('CY)

is an tsomorphism.

3.2. Filtered spaces

Recall Example 2.1.4] The following terminology from Neil Strickland’s note
[Str}, Def. 3.4] may not be standard, but is useful.

DEFINITION 3.2.1. A space X is strongly filtered by a sequence of subspaces
e C X1 CXs e X
if for each compact subset K C X there is an s with K C Xj.

LEMMA 3.2.2. If X is strongly filtered by (Xs)s, then the singular chain complex
(C«(X),0) is exhaustively filtered by the subcomplezes

s CCu(Xso1) CCu(Xy) C - CCu(X).
If Xu—1 = 0 for some a, then the filtration (C.(Xs))s is discrete.

PROOF. The only thing to prove is that each singular simplex o: A" — X,
viewed as an element of C,,(X), lies in the image from some C,,(X;). Since the
image o(A™) C X is compact, this follows from the assumption that the filtration
is strong. ([l

In this situation, concerning singular complexes of topological spaces, there are
no examples where (C, (X)) is degreewise discrete but not (uniformly) discrete.
The two- and three-column spectral sequences from Sections and are now
special cases of the following result.

PROPOSITION 3.2.3. If X is strongly filtered by (Xs)s, then the associated ho-

mology spectral sequence
E;, =, H.(X)
has E'-term
El, =Ho (X, Xo1)

and the differential d} equals the connecting homomorphism in the long exact se-
quence of the triple (X, Xs_1, Xs_2). If Xa—1 =0, then E} =0 for all s < a, and
the spectral sequence converges to H.(X) with the filtration

F.H,.(X) =im(H.(Xs) > H.(X)).
Proor. Combine Proposition with Lemma |3.2.2 O



40 3. FILTRATIONS

REMARK 3.2.4. The convergence statement tells us that there is an exhaustive
filtration

0=Fy 1Hp(X)C++ CFy_1Hp(X) C FyHp(X)C -+ C Hy(X)

in each total degree n, with filtration quotients determined by the E°°-term, through
isomorphisms
e o B ()
ST By 1 Hy(X)

for all s. Hence the components of E7°, in bidegrees (s,n—s), on a line of slope —1,
give the associated graded of this exhaustive filtration. By induction on s, starting
at s = a, we can thus attempt to determine FH,,(X) as an extension of Eg5, _, by
Fs;_1H,(X). The union of these groups, over all s, then gives us H,(X).

((ETC: Draw a generic chart for this?))
Many strongly filtered spaces are of the following form.

LEMMA 3.2.5 ([Ste67, Lem. 9.3)). Let X be filtered by an exhaustive sequence
of T1 subspaces

e C X1 CXs e C X

such that Xs_1 is closed in X, for each s, and suppose that X has the weak (=
colimit) topology. Then X is strongly filtered by these (Xs)s.

Proor. We have X = US X, since the filtration is exhaustive. To be a T}
space is equivalent to asking that each singleton subset is closed. This is satisfied
by all (weak) Hausdorff spaces. The weak topology on X is defined so that a subset
A C X is closed in X if and only if AN X, is closed in X for each s.

Following Steenrod, we argue that if K C X is compact, then K C X, for
some s. If not, we can choose a point x5 € K N (X — X;) for each s. Let

Ap={zs|s>m}CKN((X—-X,,),

so that
o DAn_1DALD ...

is a collection of subsets of K, such that each finite subcollection has nonempty
intersection A,,, N+ N Ay, = Ay (with m = max{m,...,my}), but the whole
collection satisfies (N, Am = 0. If we show that each A,, is closed in K, then
this contradicts the finite intersection property of compact spaces, and proves that
K C X, for some s. To see that each A,, is closed, note that each intersection
Ap N Xs C{xm,...,xs—1} is finite, hence is closed in X since this is a T} space.
By the definition of the weak topology this proves that A,, is closed in X, hence
also in the subspace K. ([

The cellular complex (CEW(X),d) calculating the homology of a CW com-
plex X is a very special case of this spectral sequence. Other notations for the cel-
lular complex are I',(X), as in [Whi78| §11.2], or W, (X). Let us write HSW (X) =
H,(CEW(X),d) for the cellular homology groups. The usual argument for why cel-
lular homology is isomorphic to singular homology [Whi78, Thm. 11.2.19], [Hat02,
Thm. 2.35], is contained within our more elaborate algebraic work, as we can now
spell out.
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PROPOSITION 3.2.6. Let X be a CW complex, with skeleton filtration
@:X(_l) C "'CX(S_I) CX(S) c---C X.

The associated homology spectral sequence has (Et,d') = (C¢W(X),d), concen-
trated on the line t = 0. Hence

5 HEW(X) fort=0,
Es,t =

~]o otherwise,
and the spectral sequence collapses at E*> = E>. The filtration of H,(X) satisfies

0 for s <mn,

F.H,(X) = {HSW(X) for s >n.
Hence HCW (X) =2 H.(X).

PrROOF. The CW complex X is strongly filtered by its skeleta. By definition,
Esl,t = Hs1y (X(S)v X(Sil)) equals

CEW(X) = Z{n-cells of X}

when ¢ = 0, and is trivial when ¢ # 0. Likewise, d} ; = s when ¢t = 0 and is zero
otherwise.

o}

01 Os—1 s+1

0 | csW(x) & T e (X)) & oW (X)L

S

t/s 0 s—1 s

Hence E?, = H(CEW(X),0) = HYW (X) equals the cellular homology of X when
t = 0, and is trivial otherwise. Each d"-differential for » > 2 increases ¢, hence must
be zero, so E2 = E*. In each total degree n there is only one nonzero group of the
form EJ° namely £ = Eg’o = HSW(X). The short exact sequences

s,n—s?

0— Fs_1H,(X)— F,H,(X)— EX,_.,—0

s,n—s

for s < n simplify to
0—-0— F;H,(X)—0—0

and imply that F, H,(X) = 0 for s < n by induction on s. The short exact sequence
sequence for s = n simplifies to an isomorphism

0—0— F,H,(X) — HSW(X) - 0.
Thereafter, for s > n they simplify to isomorphisms
0— HSW(X) =5 F,H,(X) — 0 0.
Hence F H,(X) = HSW (X) for s > n. O
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3.3. The Atiyah—Hirzebruch spectral sequence

Let G be an abelian group. Singular homology with coefficients in G is an
example of a homology theory, sometimes referred to as “ordinary” homology. Since
ca. 1960 many other “generalized” or “extraordinary” homology theories have come
to play important roles in algebraic topology. The following definition is close to
the axiomatization by Samuel Eilenberg and Norman Steenrod from [ES52| §I.3],
but omits their dimension axiom and adds John Milnor’s additivity axiom [Mil62].

DEFINITION 3.3.1. A (generalized) homology theory M on the category of CW
pairs is a functor assigning to each CW pair (X, A) a graded abelian group

M (X, A) = (M (X, A))n s
and a natural transformation
0: M(X,A) — M,._1(A)
of degree —1, such that
(1) Exactness: the sequence
oo ML(A) 2 Mo(X) 25 Mu(X,A) -2 My (A) — ...

is long exact.
(2) Homotopy invariance: if f ~ g: (X, A) — (Y, B) are homotopic, then

fs = g
(3) Excision: if X = AU B is a union of subcomplexes, then the inclusion
induces an isomorphism

M,(B,ANB) = M,(X, A).
(4) Additivity: the canonical map

P r.(x.) = M(]] Xa)

is an isomorphism.

DEFINITION 3.3.2. The coefficient groups of a homology theory M is the graded
abelian group
M, = (M, (point)),, .
We say that M, is bounded below if there is an a such that M,, = 0 for all n < a.
We say that M, is bounded above if there is a b such that M, = 0 for all n > b.

ExXAMPLE 3.3.3. Let GG be an abelian group. The coefficient groups of ordinary
homology with coefficients in G, i.e., the homology theory HG given by

HGW(X) = Ho (X5 G)

for all n, equals G in degree 0 and 0 in all other degrees. This is the content of the
Eilenberg—Steenrod dimension axiom.

LEMMA 3.3.4. For any homology theory M there are isomorphisms
M,(D*®,0D?%) = Mq+t(ss) = M,
foralls>0,te€Z.

PRrOOF. This is clear for s = 0, and follows by induction for s > 1. ]
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REMARK 3.3.5. For any graded abelian group G, there is a generalized homol-
ogy theory with M, (X) =D, ,_, Hi(X;G;), but it carries more-or-less the same
information as ordinary homology. Other important examples of (co-)homology the-
ories include the topological K-theories KO*(X) and K*(X) = KU*(X) defined
by Michael Atiyah and Friedrich Hirzebruch [AH59], following Alexander Grothen-
dick [BS58], and the bordism theories N, (X) = MO, (X) and Q.(X) = MSO.(X)
defined by Atiyah [Ati6la, building on the work of René Thom |Tho54]. By con-
struction, these involve vector bundles over X and closed manifolds mapping to X,
respectively, rather than simplices in X, and often turn out to emphasize differ-
ent information than the ordinary homology of X. We will later ((ETC: where?))
present generalized (co-)homology theories by the objects, called spectra, of a sta-
ble (homotopy) category, and analyze the coefficient groups (and rings) of some of
these homology theories.

DEFINITION 3.3.6. Let X be a CW complex exhaustively filtered by subcom-
plexes
e CXg1CXsC--C X
and let M be a homology theory. The associated exact couple is the diagram

i Mo (Xsey) —s Mo (X)) —— ..
e S~ lj*
M:(XsaXs—l)
with
(As)w = M (X5)
(Es) = My(Xs, Xs—1).
LEMMA 3.3.7 ([Mil62} Lem. 1]). The canonical homomorphism
colim M. (X,) =5 M (X)
is an isomorphism.
PROOF. There is a homotopy cofiber sequence
VS X, =3/ Sp X, — 24T
where ¥, Y = X(Y,), and T ~ X is the mapping telescope of (Xy)s. In view of

Lemma the associated long exact sequence in reduced M-homology breaks up
into short exact sequences

0 — P M.(X,) =3 P M.(X,) — M(T) >0

that exhibit M, (T) as colims M. (X5). O

PROPOSITION 3.3.8. Let (X;)s and M, be as in Deﬁnition. The associated
spectral sequence has
Esl,t = Moy (X5, Xs1)

and d;t s equal to the composite

Ms+t(XsaXs—l) i> Ms+t—1(Xs—1) ];> Ms+t—l(Xs—1aXs—2) .
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If X,—1 = 0 for some a, then the spectral sequence converges to M,(X) with the
filtration

FM,(X) =im(M,(Xs) = M.(X)).
Proor. This follows from Proposition [2.5.11 (]

When X is equipped with its skeleton filtration, we can make the E'- and
E2-term explicit.

PROPOSITION 3.3.9. Let X be a CW complez filtered by its skeleta
P=xDcXOc...c x6Dcx®c...cx,
and let M be a homology theory. The associated spectral sequence
E{ . =5 M.(X)
has (E*,d")-term given by the cellular complex (CEW (X; M), ), with
By, = COW(X: My) = Hy(X©, XY,y
and d;t equal to the connecting homomorphism
Os: HS(X(S),X(S_l);Mt) — Hs_l(X(S—1)7x(s—2);Mt)
for homology with coefficients in the group M;. Hence
E.Szt = HCW(X M) = Hs(X;Mt)

is given by the cellular (or singular) homology of X in degree s, with coefficients
m Mt'

d,_ 3 9,
t| COW(X; M) & LT OOW (X M) 2 0OW (X M) e

0 | CSW(x; M) &8 OO (X My) & COW (X M) T

t/s 0 s—1 s

PrROOF. To identify the E'-term we use the excision and additivity isomor-
phisms

E;,t — MS_H(X(s) X (s— 1)) ~ M t(H(DS7aDS)) o @M5+t(D‘g,aD8) 7

o

where a indexes the s-cells of X. By Lemma the right hand side is isomorphic
to

@Mt W (X; M,).

The degree formula for the connectlng homomorphism 0, implies that d;’t corre-
sponds to the cellular boundary homomorphism

Ds: CEW(X; M) — CEW (X My).
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Granting this, we can pass to homology to deduce that

E?, =~ H W (X;M,).

s,t T

By Proposition and its evident analogue for homology with coefficients, we
know that this cellular homology is isomorphic to singular homology with coeffi-
cients in M;. O

DEFINITION 3.3.10. The spectral sequence
E?,t = Hy(X; Mt) s Ms+t(X)
is called the Atiyah—Hirzebruch spectral sequence of X for the homology theory M.

This spectral sequence can be defined for general spaces X by CW approxima-
tion. It is then natural in the homology theory M and in the space X.

COROLLARY 3.3.11. If 0: M — N is a morphism of homology theories that
induces an isomorphism of coefficient groups, then 6.: M.(X) = N.(X) for any
CW complex X.

PROOF. The natural transformation ¢ induces an isomorphism C¢W (X; M,) =
CEW(X; N,) of Atiyah-Hirzebruch E'-terms, which implies the result by Proposi-
tion [2.3.8] and Theorem [2.4.5] O

COROLLARY 3.3.12. If f: X — Y induces an isomorphism f.: H. (X) ~H.(Y)
in integral homology, then it induces an isomorphism f.: M.(X) = M.(Y) for any
generalized homology theory M.

ProOF. The map f induces an isomorphism
H.(X; M,) = H,(Y;M,)

of Atiyah-Hirzebruch E2-terms, which implies the result by Proposition and
Theorem 2.4.5] O

The FEilenberg—Steenrod uniqueness theorem [ES52, Thm. IT1.10.1] also follows
easily from this formalism. ((ETC: Also discuss compatibility of connecting homo-
morphisms?))

THEOREM 3.3.13. Let G be an abelian group and let M be a homology theory
with coefficient groups My = G and My = 0 for t # 0. Then M is naturally
isomorphic to HG, so that

M (X) = Hy(X5G)
for all n.

PrOOF. The Atiyah-Hirzebruch spectral sequence of X for M has E?-term

= _{HS(X;G) for t = 0,
~]o

s,t .
otherwise.

s

Since this is concentrated on the line ¢ = 0, the d"-differentials for » > 2 must
vanish, so that E? = E* is concentrated on the line ¢ = 0. Since E; is the only
group in total degree n, the extension problems are very easy, and we conclude that
M, (X) = ExSy = Hy(X;G) for each n. O
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According to Whitehead [Whi78| p. 604] the existence of the spectral sequence
in Definition [3.3.10| was folklore by 1955, but Atiyah and Hirzebruch |[AH61] were
the first to make significant use of it, in the case of topological K-theory.

ExaMPLE 3.3.14. Complex K-theory is a (co-)homology theory K = KU with
coefficient groups

0 for n odd.

If H,(X) is concentrated in even degrees, it follows that the F2-term of the Atiyah—
Hirzebruch spectral sequence

E?, = Hy(X; KUp) = KUy 4(X)

KU, = {Z for n even,

is concentrated in even total degrees s+t. Since each d"-differential reduces the total
degree by one, they must all vanish, so the Atiyah—Hirzebruch spectral sequence
collapses at the E?-term. If, furthermore, H,(X) is free in each degree, then there
exists a (non-canonical) sum formula

KU.(X)= @ HJ(X),

s=n mod 2

since each extension
0— Fs_1KU,(X) — FsKU,(X) — Hy(X; KUp—5) = 0
satisfies Hy(X; KU, _s) = Hy(X) for n — s even and Hy(X; KU, _5) =0 for n — s
odd. This applies, for instance, when X = CP°.
3.4. Mapping cones and telescopes

((ETC: Also consider sequences of chain complexes or spaces, using mapping
cones to form relative homology. Compare with mapping telescopes to discuss
convergence. ) )

3.5. Cartan—Eilenberg systems

The exact couple associated to a filtration of chain complexes, or of spaces, is
part of a larger web of exact sequences, which we call a Cartan-FEilenberg system.
This structure was introduced in [CE56, §XV.7], and will be our formalism of
choice when we construct products in spectral sequences in Chapter

DEFINITION 3.5.1. A (homological) finite Cartan—Eilenberg system (H,,n,d)
consists of graded abelian groups

for all integers ¢ < j, structure homomorphisms preserving degree
n: Hi(i,j) — H.(i',7")

for all integers ¢ < j and ¢’ < j’ with 4 <4’ and j < j/, and connecting homomor-
phisms reducing degree by 1

9: H.(j,k) — Hu_1(i, )

for all integers ¢ < j < k. These must satisfy:
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(1) Functoriality: n: H.(i,7) — H.(i,j) equals the identity, and
nomn: H*<7/?.7) - H*(i/uj/) - H*(i”aj”)
equals n: H,(i,7) — H.(i",j") for all integers ¢ < j, i’ < j' and i" < j”
with i <4 <i” and j < 5/ < j".
(2) Naturality: The diagrams

H.(j,k) —%— H._1(i,j)

nl ln
. o .-
H*(jlvkl) %H**l(zlvjl)
commute, for all integers i < 7 < kand 7' < j' < k' with¢ <4, j < 7§

and k < k'.
(3) Exactness: The sequence

Y LG ) S HLGk) < HL (G k) -2 He 1 (65) < .
is exact, for all integers ¢ < j < k.

DEFINITION 3.5.2. By an eztended integer we mean an element of
{00} UZ U {oo},

linearly ordered with —oo minimal and co maximal.

An extended Cartan—FEilenberg system (H,,n,0) is defined as a finite Cartan—
Eilenberg system, except that all references to “integers” are replaced with “ex-
tended integers”, and subject to the following additional condition.

(4) Colimit: For each extended integer ¢ the canonical homomorphism
colim H, (4, j) = H., (i,00)
J
is an isomorphism.
EXAMPLE 3.5.3. Let (FsC,)s be an increasing filtration of a chain complex C..
We obtain a finite Cartan—FEilenberg system by setting
H.(i,j) = H.(F;C,/F;Cy)
for integers i < j, letting n: H.(i,j) — H.(i',j’) be induced by the chain map
F,C./F;Cy — FyC./FyCy, and setting 0: H.(j, k) — H._1(4,7) equal to the
connecting homomorphism associated to the short exact sequence

of chain complexes.

Suppose also that the filtration exhausts Cy. Letting F_Cy, = 0 and F,,C, =
C,, the same expressions then define an extended Cartan—Eilenberg system. In
particular H,(—o0,s) = H,(FsC.) and H,(—o00,00) = H,(C,).

EXAMPLE 3.5.4. Let (Xs)s be an increasing filtration of a space X. We obtain
a finite Cartan—FEilenberg system by setting

H.(i,j) = Ho (X5, X5)

for integers ¢ < j, letting n: H.(i,5) — H.(i',j’) be induced by the inclusion
(X, X;) = (X7, Xyr), and setting 0: H.(j,k) — H._1(i,j) equal to the connecting
homomorphism in the long exact homology sequence for the triple (X, X;, X;).
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Suppose also that X is strongly filtered. Letting X_o, = () and X, = X, the
same expressions then define an extended Cartan—Eilenberg system. In particular
H,.(—o00,s) = H.(X;) and H.(—00,00) = H.(X).

REMARK 3.5.5. It follows from exactness that H,.(j,j) = 0 for each j. We can
visualize a finite Cartan—Eilenberg system as a triangular diagram with H, (4, j) in
“matrix” position (4,7) (going i steps down and j steps to the right), and with a
connecting homomorphism 9: H,(j, k) — H.(i,j) for each rectangle with corners

at (4,7), (i, k), (j,j) and (j, k).

0——...

An extended Cartan—FEilenberg system is then augmented with a top row (for i =
—0o0) and a right hand column (for j = c0). The colimit condition specifies the
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right hand column in terms of the remainder of the diagram.

—00 ce.— Hy(—00,j) —>...— H,(—00,k) —— ... —— H,(—00,00)
J K\\\
AN ~
N ~
<~ ... -
0" T~
| L
i 04>H*(i7g)t\ R H (i, k) ~~— H,(i,00)
\\:\\\\w\\ TN o
\\ N \\\\\ \\
3\\ AN i k] \\\\\\
0
0
J k 00

((ETC: Define a morphism ¢: H, — ’'H, of (finite or extended) Cartan—
Eilenberg systems.))

EXAMPLE 3.5.6. The exact couples in Example arise from Cartan—FEilenberg
systems. Let H.(—o00,j) = p™9Z C Z[1/p] = H.(—00,00), and set H.(i,j) =
pIZ/p~Z for i < j. Then H,(i,j) = Z/p" .

—00 pZ Z p'Z Z[1/p]
1 0 Z[p Z/p o Z[1/p]/pZ
0 0 Z[p Z[1/p|/Z
1 0 Z[1/p|/p~Z
-1 0 1 o0

For the second example, replace Z with Z, everywhere. The finite parts of these
Cartan—Eilenberg systems are isomorphic, since p™/Z/p™"Z = p~I7Z,/p~ " Z,.
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There are two exact couples associated to any extended Cartan—FEilenberg sys-
tem, generating the same spectral sequence. We concentrate on the one given by
the top row and the superdiagonal.

DEFINITION 3.5.7. The (top) exact couple (As, Es)s associated to an extended
Cartan—Eilenberg system (H,,n,d) is given by the diagram

o — 5 H,(—00,5 — 1) —— H,(—00,8) —— ...

where
(As) = Hi(—00,5)
(Es)x = Hi(s—1,9)

with as and s given by the structure homomorphisms 7, while v, is given by the
connecting homomorphism 0.

The spectral sequence (E",d"),>1 associated to (H,,n,d) is the spectral se-
quence associated to the exact couple (As, Es)s.

LEMMA 3.5.8. Each morphism v: C, — 'C, of filtered chain complexes induces
a morphism ¢: H, — 'H, of extended Cartan—Filenberg systems, and each such
morphism induces a morphism ¢: (A, E) — ("A,’E) of exact couples. Hence the
functor of Lemma[5.1.3 factors as a composite

Filtered Chain Complexes — Cartan—Filenberg Systems — Fxact Couples.

PROPOSITION 3.5.9. In the spectral sequence (E",d"),>1 associated to an ex-
tended Cartan—Filenberg system (H.,n,0) we have

Zr =0 tim(n: He_1(—00,5 — 1) = H,_1(—00,5 — 1))
=ker(0: Hi(s—1,8) = Hi_1(s—r,s — 1))
=im(n: He(s—1,5) = H.(s —1,5))
and
B; =nker(n: H.(—00,s) = H.(—00,5s+1r —1))
=im(0: Hey1(s,s+1r—1) = H.(s —1,8))
=ker(n: Hi(s—1,5) > Hi(s — 1,s+1r—1)),

so that n induces an isomorphism
E? =y im(n: Ho(s—7,8) = Hy(s—1,s+r—1)).
The d"-differential is given by
d;: B, — E._,
[z] — [0(2)]
where z € Hy(s —r,s), x =n(z) € H.(s—1,5) and 9(z) € Hy_1(s —7r — 1,5 —1).
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PROOF. For the r-th cycles,

O Vim(n: He_1(—00,8 — 1) — H,_1(—00,5 — 1))
=0 ker(n: He_1(—00,8 —1) = H,_1(s — 71,5 — 1))
=ker(0: Hi(s—1,8) > Hi_1(s —r,s — 1))

by exactness and naturality.

H, 1(—00,8 — 1) —— H,_1(—00,s — 1)

For the r-th boundaries,

nker(n: Hi(—o00,8) = H.(—00,s+ 1 —1))
=nim(0: Hey1(s,s+1r—1) = H.(—00,3s))
=im(0: Hey1(s,s +7r—1) = H. (s —1,9))

for the same reasons.

H,(—00,s) —— H,(—00,s + 1 —1)

0 H.ii1(s,s+r—1)

Considering the composition 1" o’ (where the primes only serve to keep the
two homomorphisms apart),

0 Hos—1,8) " H.(s—1,s+r—1)—5 H,(s— 1,00)
\
0 H.i1(s,s+1r—1)

the isomorphism
' Ha(s —1,5)/ ker(5") = im(n")
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restricts to the asserted isomorphism
E{ = Z{/B{ = im(n')/ ker(n’ );> m(n” on').
Note that we already know that Bl = ker(n”) C im(n’) = ZI, so that im(n’) N
ker(n”) = ker(n").
If 2 =n(z) € Z, C Hi(s—1,5) WitthH( 7, s), then d(z) = n(y) €
H,_1(—00,s — 1) with y = 9(z) € Hu_1(—0 r), by naturahty Hence n(y) =
0(z) € Hi—1(s —r—1,s — 1), also by naturahty. Thus d;([z]) = [n(y)] = [0(2)].

Ho 1(—00,8 — 1) —— H._1(—00,5 — 1)

|

H, 1(s—r—1,s—1)

REMARK 3.5.10. The formulas for Z7, B} and dJ in the proposition above show
that only the finite part of a Cartan—FEilenberg system is needed in order to define
the associated spectral sequence, with E! = H,(s—1,s). The groups H,(—oo0, s) are
not needed in order to construct the spectral sequence. However, they do play a role
in the description of the target group, hence also for the questions of convergence.
((ETC: Technically speaking, we have not shown that the formulas give a spectral
sequence, since the argument for this used the terms (Ay)s of the exact couple.))

LEMMA 3.5.11. The colimit
G, = H,(—00,00) X colsim H,(—00,s)
is ezhaustively filtered by
F,G, =1im(n: H(—00,s) = H,(—00,0)).

LEMMA 3.5.12. Consider an extended Cartan—Filenberg system (Hy,n,0) such
that the sequence
n

.~ H,(—00,5s — 1) = H,(—00,5) — ...
is degreewise discrete. Then
ZX =ker(0: Ho(s—1,8) = He_1(—00,8 — 1))
=1im(n: Hy(—00,8) = Hi(s —1,5))
and the filtration (FsG.)s is degreewise discrete.
Proor. If H,_1(—00,j) =0for j < a =a(n — 1) then
ker(0: Hy,(s—1,8) = Hy_1(—00,5s—1)) =ker(0: Hy,(s—1,s) = Hp_1(s—r,s—1))

for all s —r < a, ie., for all > s — a, so (Z5°), equals this common value of
(Z)n- 0
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LEMMA 3.5.13. Let (Hy,n,0) be any extended Cartan—Filenberg system. Then
B =im(0: Hey1(s,00) = Hi(s —1,9))
=ker(n: H.(s—1,s) = H.(s — 1,00)).
Proor. The union B° = colim, B equals
co}qimker(n: H.(s—1,8) = H.(s—1,s4+r—1)) 2 ker(n: H.(s—1,8) = H.(s—1,00))
since H, (s —1,00) = colim, H,(s — 1,s + 7 —1). O

LEMMA 3.5.14. Let (H.,n,0) be any extended Cartan—Eilenberg system. There
s a preferred isomorphism

im(n: Hy(—o00,s) = Hy(s—1,8)) _ FsG,

ker(n: H.(s —1,8) = Hy(s —1,00))  Fs_1G,

for each s € 7.

PROPOSITION 3.5.15. Let (H.,n,0) be an extended Cartan—Eilenberg system,
with associated spectral sequence (E™,d") and filtered target G = H,(—00, 00).
(1) There is always a preferred injective homomorphism
FsG. ¢

— B2
stlG* S,k )

which is an isomorphism if Z° = im(n: H.(—o00,s) = H.(s —1,s)).
(2) In particular, if the sequence

oo L Hy(—00,5 — 1) =5 Hy(—00,5) —= ...

is degreewise discrete, then ( is an isomorphism and the spectral sequence
E; . =5 G,

CONVETYES.






CHAPTER 4

The Serre Spectral Sequence

4.1. Maps, fiber bundles and fibrations

Leray |Ler46a), [Ler46b| was led to spectral sequences by studying the relation
between H*(B) and H*(F), where p: F — B is a given map. To outline the main
features we use the modern language of sheaf theory, as it was reworked by Cartan
in his 1951 seminar. For each open U C B let Ey = p~1(U) be the part of E
above B. In each degree ¢ the association

U ZY(U) = H'(Ey)

is a contravariant functor from the category of open subsets of B, partially ordered
by inclusions, to the category of abelian groups, i.e., an abelian presheaf on B. It
is not a sheaf, because

Ht(EUUv) — Ht(EU) D Ht(Ev)

is not generally injective, but it can be sheafified. For each point b € B let F}, =
p~1(b) be the fiber at b. The stalk of this presheaf (and the associated sheaf .#?)
at this point is the colimit

colim H'(Ey),

beU

which canonically maps to H*(F}), and for “nice” p: E — B this map is an iso-
morphism. There results a cohomologically indexed Leray spectral sequence

Ey" = H*(B; J‘t):> HT(E),
where the Fs-term is given in terms of sheaf cohomology.

To stay within the realm of topological spaces and their (co-)homology, one
would like to replace sheaf cohomology with ordinary cohomology of the base
space B, and to replace the coefficient sheaf with the ordinary cohomology of the
fiber F},. Some hypothesis on the map p: £ — B will be needed in order to control
how the fiber varies with b.

When p: E — B is a fiber bundle with fiber F', so that B is covered by open
subsets U for which there are homeomorphisms hy making the diagram

UxF—"" Ey

~

commute, this problem was considered by Guy Hirsch [Hir47), [Hir48| and by

Tatsuji Kudo [Kud50], [Kud52]. Here Kudo adapted Leray’s algebraic framework
to the case where the base space B is a simplicial complex with skeleton filtration

@ZB(*DCB(O)C...cB(S*I)CB(S)C...CB.
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He filtered the total space E by the preimages E, = p~(B(*)), so that
)=E,CEyCc---CFEs1CE;C---CE.
Kudo thus obtained a convergent homological spectral sequence
By = Hot(Es, Es1) = Hoo(E).
For each s-simplex o C B there is a homeomorphism of pairs
he: (0 X Fy,d0 x Fy) — (p~4(0),p~ 1 (90))

where Fj, = p~1(b) for a chosen point b € do. By excision and the Kiinneth theorem,
this induces isomorphisms

E Gt = Hs+t EwEs 1 @Hs+t 71 U 71(80))
= @Hs+t o x Fy,00 x Fy) = @Hs(av do) @ Hy(Fy),

where o ranges over the s-simplices in B. When the fiber bundle admits a connected
structure group G, e.g. if B is 1-connected, then there are preferred isomorphisms
Hy(F}) = Hy(F), so that the E'-term can be identified with

@H 0,00) @ Hy(F @Ht +(B; Hy(F)),

i.e., the simplicial s-chains of B with coefficients in H;(F'). Moreover, Kudo verified
that the d!'-differential

dl : Hert(EsaEsfl) — Hs+t71(EsflaEsf2)

s,t
corresponds to the simplicial boundary homomorphism

Os: Ag(B; Hiy(F)) — As—1(B; Hy(F))
under these identifications. Hence the spectral sequence E2-term satisfies
E2, = H(B; Hi(F)).

Since simplicial and singular homology agree for simplicial complexes, this estab-
lishes a spectral sequence of the form

Eit = Hs(B; Hy(F)) =5 Hs14(E) ,

converging to the homology of the total space. Kudo also discusses the case of non-
connected structure group G, which is relevant for non-simply connected bases B,
and which leads to an E2-term expressed in terms of Steenrod’s (co-)homology with
local coefficients [Ste43|, [Hat02, §3.H].

There are many geometrically interesting examples of such fiber bundles, arising
from the theory of Lie groups and their homogeneous spaces. However, to analyze
the (co-)homology of Eilenberg-MacLane spaces, Jean—Pierre Serre [Ser51] was led
to consider the more general situation of the path—loop fibration p: PX — X, with
fiber X, which is not a fiber bundle. However, this map has the homotopy lifting
property with respect to arbitrary source spaces, hence is a fibration p: £ — B in
the sense of Witold Hurewicz [Hur55|. Serre recognized that this lifting property
allowed him to construct a spectral sequence of the same form

Es,t = HS(BaHt(F)) s HS_;,_t(E)
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as before, by filtering a version of the singular chain complex (C.(E),d). This
filtration is different from the one used by Kudo, and does not assume that B
has a skeletal filtration. To make this work, Serre uses singular cubes in place of
singular simplices. Moreover, for this argument the map p: £ — B would only
need to satisfy the homotopy lifting condition with respect to maps from compact
polyhedra (or finite CW complexes), and this larger class of maps is now known as
Serre fibrations. Furthermore, Serre showed that the cup product in cohomology
is compatible with the differentials in the cohomological version of his spectral
sequence, leading to a ring spectral sequence in the sense of the “anneau spectral”
of Leray. This is a key feature needed to make precise calculations with spectral
sequences, which we will return to later ((ETC: where?)).

DEFINITION 4.1.1. A map p: E — B is a Hurewicz fibration if it has the
homotopy lifting property with respect to each space T'. In other words, for each
commutative square of solid arrows

T —F

IxT——B

there exists a dotted arrow making both trianges commute. The map p: £ — B is
a Serre fibration if it has the homotopy lifting property with respect to the n-disk
D™ for each n > 0.

Each fiber bundle over a paracompact (e.g., metric) base space is a Hurewicz
fibration [Hur55| §4], and each Hurewicz fibration is a Serre fibration. Pullback
preserves fiber bundles, Hurewicz fibrations and Serre fibrations.

For a Hurewicz fibration p: E — B with contractible base space, the inclusion
Fy C E of any fiber F, = p~!(b) is a homotopy equivalence. Let p: E — B be a
Hurewicz fibration over a general base. For any path 5: I — B from £(0) = by to
B(1) = by, the pullback f*p: B*E — I is a Hurewicz fibration over a contractible
base, so the inclusions

Fyy — B*E < F,
are homotopy equivalences. This defines a homotopy equivalence e: Fy, ~ Fp,, up
to homotopy. Let /3 be another path from by to b;. A path homotopy h: I xI — B
from 8 to ’B leads to another Hurewicz fibration over a contractible base, so that
all of the inclusions
fE

/B*E
are homotopy equivalences. It follows that the composite equivalence e: Fp, =~
B*E ~ Fy, is homotopic to the composite equivalence ‘e: F,, ~ 'f*E ~ Fp,.
Passing to homology, a choice of § gives well-defined isomorphisms e, : H;(Fp,) =
H;(B*E) = Hy(Fp,) for all t, and homotopic paths 8 and ' give the same composite
isomorphism e, : Hy(Fy,) = Hy(Fp,). If B is 1-connected, with base point by, this
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gives canonical isomorphisms H;(F') & Hy(Fp) for each b € B. In general, it gives a
local coefficient system 4 (F) on B, i.e., a functor from the fundamental groupoid
of B to abelian groups. If B is 0-connected, with fundamental group 7 = m (B, by),
then this structure can equivalently be encoded as an action of 7 on H(F') for
F=F,.

The equivalent inclusions of fibers can be made compatible, for varying b € B,
as follows. For brevity, we write (B, A) x F for (B x F, A x F). ((ETC: This will
be generalized by the convolution product of filtrations, later.))

PROPOSITION 4.1.2 (|Spa66, 7], [Whi78, Cor. 1.7.27]). Any Hurewicz fibration
p: E — B over a contractible base space B is fiber homotopy trivial, meaning that
there are maps f: BxXx F — FE and g: E — B x F and homotopies gf ~ 1 and
fg ~ 1, all four of which commute with the projections p1: B x F' — B and
p: E — B. In particular, for any A C B with Ex = p~'(A) there is a homotopy
equivalence of pairs
f:(B,A) x F = (E,E,).

We refer to the cited sources for the proof.

4.2. Homology of fiber sequences
Consider a Hurewicz fibration p: F — B, with B a CW complex. Let
B, =p ' (BY)
be the preimage of the s-skeleton of the base B. The total space F is then strongly
filtered by the sequence
0)=F ,CFyCc---CE,.CE,C---CFE,

since for any compact K C E there is an s with p(K) C B®) and then K C E,.
By [Whi78| Thm. 1.7.14] each inclusion F,_; C Ej is a (closed) cofibration.

DEFINITION 4.2.1. The (homological) Serre spectral sequence of p: E — B is
the spectral sequence
E;,(p) = Hey1(Bs, Es 1) = Hoyi(E)
associated to the filtration (Ey)s.
By Proposition the d'-differential equals the connecting homomorphism
dgy = (0s)s+t: Hopi(Bsy Es 1) — Hyyp1(Es 1, Es o)

of the triple (Es, Es_1, Es_2). The E'l-term is concentrated in the right half-plane
(s > 0), and the spectral sequence converges to H,(E) with the filtration

F,H.(E) = im(H.(E,) — H.(E)).

We shall see in Proposition that this is a first quadrant spectral sequence, so
that (FsH,.(X))s is degreewise bounded.

REMARK 4.2.2. This construction is closer to that of Kudo [Kud50] than
that of Serre [Ser51|, but the E*-terms will be isomorphic. Serre also established
multiplicative properties for the cohomology version of his spectral sequence, which
led him to stronger conclusions than those that follow from the additive structure.
The name “Serre spectral sequence” thus reflects the extra versatility and power
achieved by Serre’s approach.



4.2. HOMOLOGY OF FIBER SEQUENCES 59

Since B is the disjoint union of its path components, there is a corresponding
sum decomposition of E, and we can assume that B is 0-connected without signif-
icant loss of generality. We can then also assume that B is 0-reduced, in the sense
that it only has a single O-cell, given by the base point by € B. The 0-th filtration
Ey = p~1(B©) is then equal to the fiber

F=p~!(bo)
of p: E — B at the base point. We write
F—FE->B

to refer to this context. ((ETC: Beware the double usage of E for total space and
spectral sequence terms, and the double usage of F for fiber and various filtrations.))

PROPOSITION 4.2.3 ([Whi78, Thm. XII1.4.6]). There are natural isomorphisms
Hoye(Es, Es—1) = CSW(B%%?(F)%

where 4G (F) denotes the local coefficient system on B given by Hy(F},) atb € B. If
B is 1-connected, then this equals the usual cellular s-chains CEW (B; Hy(F)) with
coefficients in the abelian group Hi(F).

PROOF. Let o run over the s-cells of B, so that we have a pushout square
[, 0D — 11 Da
‘| E
BG-1) _____, B(s)
with attaching maps ¢ = [[, ¢ and characteristic maps ® = [[, ®,. Form the

pullbacks of p: E — B along the evident maps to B, to obtain another pushout
((ETC: check)) square

I, ¢t ——11,2LE

|l

E, 1, —FE;.

By additivity and excision we obtain isomorphisms
@HS-H (b*E ¢ E s+t Hq) E H(b = s+t(EsaEs—1)'

Proposmon 2| applies to the pullback
p: ®LE — D?,
Let dy € OD$, C D3 be a base point, let b, = ¢ (dp), and let F,, = p~1(b,) be the
fiber above this point. There is then a fiber homotopy equivalence
D? x F, —» ®1E

over D?, which restricts to the identity over dy. In particular, there is a homotopy
equivalence of pairs

(D5, 0D3) x Fy, — (2B, ¢4, E)

and isomorphisms

Hoi(D5,0D3) x Fy,) — Hyy(OLE, ¢LE) .
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By the Kiinneth theorem, the homology cross product induces an isomorphism
H,(D3,0D3) @ Hy(Fy,,) — Ho((D3,0D3) x F,)
Taken together, we have isomorphisms
@H (D2,0D3) @ Hi(Fy,) = Hyyt(Es, Es_1)
for all s and t. By definition, the left hand side is CSW (B; 24 (F)). If B is 1-

connected, then the canonical isomorphisms H:(Fp,) = H:(F) identify the direct
sum above with

CCY(B; Hy(F EBH D3,0D%) @ Hy(F).

PROPOSITION 4.2.4 ([Whi78, Thm. XII1.4.8]). The square

1

Hs+t(E57 Esfl) #> Hs+t71(E5717 E572)

% F

COW (B; A4(F)) —2—s OO (B; A4(F))
commautes.

PROOF SKETCH. Let « and § index the s- and (s — 1)-cells of B, with char-
acteristic maps ®, and Wg, respectively. We have fiber homotopy equivalences
O3 E ~ D5 x Fy, over D and ViE ~ D5~ x F,, over D}~ 1.

In the cellular complex for B, the boundary 0; has components

Hy(D:,0D%) 2 H(B®), B=1)
O H,_(BEY)
N ffs,l(B(s_l)/B(S_Q))
-1
Y, H,_\(Dy /oDy,
where we use the isomorphisms

O @H (D$,0D%) —» Hy(B® Bt~

U @ﬁs,l(pgfl/apg*) = H,_(BG~D/B6=2)
B
This component can also be factored as

H,(D:,0D%)

= Hoa(Dy ' /oD5™),
where B C BG=1 s the complement of ¥y (int Dg_l).
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We must identify the corresponding composite
Hy1t((D3,0D3) X Fy,) =% Hopo(Es, Esy)
2 Hovo1(Bo)
L Hypy 1(By1/Es )

vl _ o
" Heo(D5 /0D A By,

where now
O: (P Hort((D5,0D5) x Fy,) — Hyyi(Es, Eoy)
«

U: P Heprr (D5 /0D AN Fyyi) — Horr1(Boo1/Eos).
B
This can also be factored as

H,  ((D2,0D%) x Fy,) Hop1(0D2 x Fy.)

H (sl)

Hs+t71(E571/Eé\)

- le‘ e

1
Hypy 1 (D /ODS™ A Fyyy),

where Ej = p~'(Bj) C Es_1. Tt thus suffices to verify that the following diagram
commutes

uzxﬁ

~ W71Q¢a®e ~
H,_1(0D3) ® Hy(Fy,) ———— H,_1(D§ /0D ™) @ Hy(Fy,)

J XJ:

~ L4da
Hypi1(0DS x Fy,) _ Yo e | Hypy 1 (D5 /ODS A Fyy).

For this, which takes some effort, we refer to [Whi78| §XIII.5]. O

THEOREM 4.2.5. The Serre spectral sequence
E;,t(p) = Hy1t(E)
for F — E % B has E2-term
EZ,(p) = Hy(B; A(F)).
If B is 1-connected, this simplifies to
EZ,(p) = Hy(B; Hy(F)).
PROOF. This follows from (E} ,,d") = (CEW (B; H#.(F)),d) by passage to ho-
mology. O

REMARK 4.2.6. In the context of the Serre spectral sequence, the filtration
degree s and complementary degree t are also referred to as the base degree and
fiber degree, respectively. This makes sense, since the E2-term in bidegree (s,t) is
given in terms of Hy(B), suitably interpreted, and H(F). The total degree s+t then
refers both to the total algebraic degree, and to the grading of the homology H,(E)
of the total space.
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In view of the universal coefficient exact sequence
0 — Hy(B) ® H(F) — Hs(B; Hi(F)) — Tor(Hs—1(B), H(F)) = 0

this achieves the aim of obtaining a spectral sequence that connects the ordinary
homology groups H,(F), H.(E) and H,(B) in one whole.

REMARK 4.2.7. There are also relative versions of the Serre spectral sequence.
If A C B is a subcomplex, then we can filter E by p~*(A U B®)) and obtain a
spectral sequence

E2, = Hy(B,A; #4(F)) =5 Hot(E, E)

where E4 = p~1(A). If p’: E' C E — B is a subfibration with fibers F’, then we
can filter (E, E') by (p~*(B®™), (p')~*(B®))) and obtain a spectral sequence

By = Hy(B; A(F, F')) = Hops (B, E).
When (E 4, E’) is an excisive pair we can combine the previous two cases, as in
EZ, = Hy(B, A; #4(F, F')) = Ho1+(E,EAUE'),
where E4 N E' = E/, = (p/)1(A).

((ETC: Relax the condition that B be a CW complex, by comparison with a
CW approximation.))

4.3. The Wang and Gysin sequences

Hsien-Chung Wang |[Wan49| studied fiber bundles with base space a sphere,
obtaining a long exact sequence as in the following theorem, which follows in greater
generality from the Serre spectral sequence.

THEOREM 4.3.1. Let
F-5eEB

be a (Hurewicz) fiber sequence, with B ~ S™ a 1-connected CW complex. There is
a long exact sequence

o= Hyi1(F) =25 Hy(F) =5 Ho(B) - Hy_o(F) -2 Hy 1(F) — ...
ProoF. Clearly u > 2. By the universal coefficient theorem,

H(F) forse{0,u},

H,(B; H;(F)) =
( «(F)) {O otherwise.

This shows that the E?-term of the Serre spectral sequence for F — E — B is
concentrated in the two columns s = 0 and s = u. For degree reasons d” = 0 except
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for r = u, so E? = E*,

(\
t+u71 Ht+u_1(F) 0 Ht+u_1(F)
dv
t Hy(F) O\Ht(F)
(\
v
u—1 Hufl(F) 0 Hufl(F)
N
0 Ho(F) 0 Ho(F)
t/s 0 u

At this stage we have differentials
Qi Hi(F) = By y — Egypy1 = Hipuo1 (F)
leading to an E“"!-term with
cok(dy ;1) for s =0,
E;‘fl = ker(d;j’t) for s

0 otherwise.

u,

Since d" = 0 for all » > u, the spectral sequence collapses at this term, so that
E;‘f{l = Eg5 in all bidegrees. By the convergence of the spectral sequence, we have
isomorphisms

F.H,(F) = Eg,
for 0 < s < u, a short exact sequence

0— Fy_1Hy(E) — F,H,(E) — EX

U,N—u

— 0,
and identities
F.H,(E)=H,(F)

for s > u. In other words, we have a short exact sequence

) 5 Ho(E) - ker(d®,,_,) — 0.

u,n—u

0 — cok(dy,

u,n—u+1

Writing out the definition of the cokernel and kernel gives the exact sequence
Hyoir (F) S5 H(F) — Ho(E) — Hy_o(F) 25 H,_(F),
as claimed. O

REMARK 4.3.2. For B = §*, and more generally for fibrations over a suspension
B = XW, the Wang sequence can be established without spectral sequences, using
the Mayer—Vietoris sequence for the covering of E by p~1(C, W) and p~*(C_W),
where YW = C4 W Uy C_W is a union of two cones. See [Whi78, §VII.1].
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Several years earlier, Werner Gysin |Gys42| studied fiber bundles with fiber
a sphere, obtaining the equivalent of a long exact sequence as in the following
theorem. This also follows in greater generality from the Serre spectral sequence.
To avoid a discussion of local coefficients or orientability, we restrict to the case
where B is 1-connected.

THEOREM 4.3.3. Let _
F-5F-%B
be a (Hurewicz) fiber sequence, with H.(F) = H,(S") and B a 1-connected CW
complex. There is a long exact sequence

oo Hy1(B) -2 Hy_o(B) 25 Ho(BE) 25 Hy(B) -2 Hyoy1(B) — ...
((ETC: We call p the Gysin homomorphism.))
PROOF. We assume v > 1. By the universal coefficient theorem

Ho(B: H(F)) = Hy(B) forte{0,v},
SV ~]o otherwise.

This shows that the E%-term of the Serre spectral sequence for F — E — B is
concentrated in the two rows ¢ = 0 and ¢ = v. For degree reasons d” = 0 except for
r=v+1, so E? = EvtL,

v | Hy(B) H,_o_1(B) H, o(B)

0 0 0 0 0 0
g+ Jqvtt PR
0 Ho(B) Hs_y_1(B) o H,.1(B) H¢B) H1(B)
t/s 0 s—v—1 v+1 s s+1

At this stage we have differentials
dvht Hy(B) = EJ{' — EUY) 2 H,_y_1(B)

s—v—1,v

leading to an EV2-term with

ker(d;’:gl) for t =0,
B = qcok(dyy,) fort=ov,
0 otherwise.

Since d” = 0 for all » > v + 1, the spectral sequence collapses at this term, so that
Efo = E75 in all bidegrees. By the convergence of the spectral sequence, we have
F,H,(F) =0 for s <n — v, isomorphisms
E;}{n(ﬂn gélzzivw
for n — v < s < n, and a short exact sequence
0— F, 1H,(E) — H,(E) — E;fo — 0.
In other words, we have a short exact sequence

0 — cok(dit] o) 2 Hn(E) 25 ker(dy}') — 0.
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Writing out the definition of the cokernel and kernel gives the exact sequence
H,1(B) % H,_,(B) 25 H,(E) 25 H,(B) % H,_, 1(B),
as claimed. 0

REMARK 4.3.4. The Gysin sequence can be established without spectral se-
quences, using the Thom isomorphism. Let

Mp=({IxFE)UgB
be the mapping cylinder of p: E — B, so that p factors as the inclusion E =
{1} x E C Mp followed by the homotopy equivalence
q: Mp = B.

When E = S(£) is the unit sphere bundle in a Euclidean R**!-bundle E(¢) — B,
the mapping cylinder can be identified with the unit disc bundle Mp = D(§), so
that (Mp, E) = (D(£),S(€)). When B is 1-connected (or the spherical fibration is
orientable) there is a Thom isomorphism

&: H,(Mp,E) —> Hy,_y_1(B)
given by the cap product U N (—) with a Thom class
Ue H (Mp,E).

In the fiber bundle case, U is characterized by the property that for each b € B the
restriction

ir: HYY(Mp, E) — H*YY(CF,, ) = H*(F,) = Z
maps U to a generator. Here Fy, = p~1(b) is the fiber in E over b, and C'F, = ¢~ *(b)
is the fiber in Mp, which is identified with the cone on F},. In the Euclidean bundle
case, F, = SV is the unit sphere and CFy =2 DVt! is the unit disc in the fiber of
E(¢) — B over b. Substituting H.(Mp) = H.(B) and H,(Mp,E) =2 H,_,_1(B)
in the long exact homology sequence
-oo = Hy11(Mp) — Hpyr(Mp, E) — H,(FE) — H,(Mp) — H,(Mp,E) — ...
of the pair (Mp, E) then gives the Gysin sequence. See [MS74] or [Whi78| §VIL5].

The following examples show that Serre spectral sequences can sometimes be
used “in reverse” to calculate H,(F) when H,(F) and H.(B) are known, or to
calculate H,(B) when H,(F) and H.(F) are known. This is most feasible when
H,(F) is as simple as possible, such as when E is contractible.

DEFINITION 4.3.5. Let I = [0, 1]. The path—loop fibration of a based space (X, )
is the fiber sequence
0x % rPx s x,

where PX is the path space of based maps £: (I,0) — (X, z¢) and p is the Hurewicz
fibration with p(§) = £(1). The fiber QX is the loop space of X.

LEMMA 4.3.6. The path space PX is contractible.

PROOF. We deform each path £: s +— £(s) to the constant path s — ¢ via the
paths s +— &(st) for 0 < ¢ < 1. O



66 4. THE SERRE SPECTRAL SEQUENCE

PROPOSITION 4.3.7. For uw > 2 and n > 0 there are isomorphisms

Z form=0 modu-—1,
0 otherwise.

H,(QS") = {

PROOF. Since H,(PS") = Z is concentrated in degree 0, the Wang sequence
oo Hyo 1 (S™) =5 H,(QSY) 225 H, (PSY) — Hp_y(SY) — . ..
breaks up into isomorphisms
Hp_us1(28") =5 H,(Q85").

Since H,,(Q25%) is 0 for n < 0 and Z for n = 0, the proposition follows by induction
on n. The differential pattern in the two-column Serre spectral sequence is shown
below, with H,(S") on the s-axis and H,.(Q25") on the t-axis.

3(u—1) Z 0 0
0 0 0 0
qv
2(u—1) Z 0 0 Z
0 0 0 0
av
u—1

t/s 0 u
(]

REMARK 4.3.8. More precise work shows that 25" is equivalent to the James
construction J(S*71), see [Hat02, §3.2, §4.J]. The loop composition induces a
Pontryagin product in H,(Q25%), and

H.(Q5") = Z[¢]

is the polynomial algebra on &, with |¢| = u — 1. In other words, ¢* generates
Hy(y—1)(028") for each k& > 0, and the remaining homology groups are trivial.
Suppose that u is odd. Then it follows by dualization that the cup product in
cohomology satisfies

H*(QS5") 2 T'(x)
with |z] = u — 1 even. Here

[(z) = Z{w(z) | k = 0}
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is the divided power algebra on x, with the multiplication
Yi(®@) v () = (4, ) vits (@)

where (¢,7) = (i 4+ j)!/i!j! denotes the binomial coefficient. Moreover, vo(z) = 1,
~v1(z) = and |y, (x)| = k|z|. The terminology comes from the algebra embedding

I'(z) C Qlz]
sending vx(x) to the divided k-th power z* /k!.

REMARK 4.3.9. The quasi-inverse process to looping a space, X — QX is
called delooping. Not every space admits a delooping, and some spaces admit
multiple inequivalent deloopings, but for (almost all) topological groups G there is
a well-defined space BG with a homotopy equivalence G ~ QBG. This delooping
BG of G is called its classifying space.

DEFINITION 4.3.10. Let G be a topological group. A map p: P — B is a
principal G-bundle if G acts from the right on P and B admits a cover by open
subsets U such that there are G-equivariant homeomorphisms U x G =2 p~1(U)
that commute with the projections to U. In particular G acts freely on P, and
P/G = B. A principal G-bundle p: EG — BG is universal if EG is contractible.
In this case the base space BG is called a classifying space for G.

A universal G-bundle classifies principal G-bundles in the following sense.
((ETC: Reference to Steenrod’s book [Ste51]? Is Dold’s numerability needed for a
good universal property?))

ProrosiTiON 4.3.11. Let p: EG — BG be a universal G-bundle, and let
p: P — B be a principal G—bunAdle with B a CW complex. Then there exists a
map f: B— BG and a G-map f: P — EG such that the square

P%EG

”J lp
B—' . BG

commutes, and any two such pairs (f, f) are homotopic. Pullback along f defines
a bijection

f*: [B, BG] —» Bung(B)
between the homotopy classes of maps f: B — BG and the isomorphism classes of
principal G-bundles p: P — B.

EXAMPLE 4.3.12. Let G = U(1) = S(C) be the circle group, viewed as the
complex numbers of unit length. It acts freely on EG = S = S(C*), viewed
as the unit sphere in C*°, and the orbit space BG = EG/G = CP* is infinite
complex projective space. The fiber bundle

St — g Ly cp>

is, in particular, a (Hurewicz) fibration. As is well known, the homology of H,(CP)
is easily read off from a minimal cell structure on CP*°, but the following proposi-
tion shows how this can be deduced from the Gysin sequence.
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PROPOSITION 4.3.13. For n > 0 there are isomorphisms

H, (CP>) = Z forn=0 mod 2,
" " 10 otherwise.

PROOF. Since H,(S%°) = Z is concentrated in degree 0, the Gysin sequence
o Hy oy (CP®) — H,(S%) 25 H, (CP®) -4 H,,_5(CP>®) — ...
breaks up into isomorphisms
H,(CP*®) =5 H,_,(CP*>).

Since H,,(CP) is 0 for n < 0 and Z for n = 0, the proposition follows by induction
on n. The differential pattern in the two-row Serre spectral sequence is shown below,
with H,(S!) on the t-axis and H,(CP>) on the s-axis.

1 Z 0 Z 0 / 0
0 / 0 Y/ 0 / 0
t/s 0 1 2 3 4 5

REMARK 4.3.14. For compact Lie groups G, a universal G-bundle p: EG — BG
can be constructed geometrically using Stiefel manifolds. Milnor [Mil56] gave a
construction of a universal G-bundle for general topological groups G, subject to
some point-set topological restrictions. Building on work of James Milgram [Mil67]
and Norman Steenrod [Ste67], [Ste68|, Michael McCord gave the following func-
torial construction, which we will also make use of in our discussion of orthogonal
Eilenberg—MacLane spectra.

DEFINITION 4.3.15 ([McC69, §5]). For a monoid G and a pointed set (X, )
let B(G,X) be the set of functions u: X — G with u(zg) = e and u(z) # e only
for finitely many points x € X. We view u as a finite set of points in X with labels
in G. For each n > 0 let B,(G,X) C B(G,X) be the subset consisting of the u
such that u(z) # e for at most n points x € X.

DEFINITION 4.3.16 ([McC69| Def. 9.5]). Let G be a topological monoid, and
consider I = [0, 1] based at 0. Let A,, C I"™ be the set of n-tuples 0 < #; < t3 <
--- <t, <1, and let the surjection

Un: Ap x G" — B, (G, 1)
send (t1,...,tn,g1,.--,9n) to the function u: I — G given by u(t) = g, - gp if
ta—1 <tq=1t=1p < tpyr1. Give B, (G, I) the quotient topology from A, x G™, and
give B(G,I) the weak (= colimit) topology from the B, (G,I).
Let q: I — I/{0,1} = S be the quotient map, and give B(G, S') the quotient
topology induced by the map
p=B(G,q): B(G,I) — B(G,S").

((ETC: Compare this with the geometric realization of the simplicial bar con-
struction.))
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THEOREM 4.3.17 ([McC69, Thm. 9.17]). Let G be a topological group, such
that the inclusion {e} C G is a (Hurewicz) cofibration. Then
p: EG = B(G,I) — B(G,S") = BG
s a universal G-bundle.

DEFINITION 4.3.18. Let G be a topological group with classifying space BG,
and let A be an abelian group. A class ¢ € H (BG; A) is called a characteristic
class for principal G-bundles. To each principal G-bundle p: P — B classified by
amap f: B — BG we associate the cohomology class

c(p: P — B) = c(f) = f*(c) € H'(B; A),
which varies naturally with p: P — B under pullback.

REMARK 4.3.19. The standard reference for characteristic classes is the book by
Milnor and Stasheff [MS74]. The key examples are the Euler class e € H*(BSO(k)),
the Stiefel-Whitney classes w; € H'(BO;Fs), the Chern classes ¢; € H*(BU), and
the Pontryagin classes p; € H*(BO). Here O = |J, O(k) and U = |J, U(k) are
the infinite orthogonal and unitary groups, respectively. These define natural co-
homology classes e € H¥(B) for each oriented R*-bundle E — B, w; € H(B;F,)
and p; € H*(B) for each R¥-bundle E — B, and ¢; € H?(B) for each C*-bundle

E — B. The latter three are stable, i.e., do not change if we add a trivial bundle
to E.

REMARK 4.3.20. The abelian groups
H{"(G) = Hy(BG)
H;,(G) = H*(BG)
only depend on the topological group G, and are known as the s-th group homology

and group cohomology of G, respectively. When G is discrete, these admit the
algebraic descriptions

HP(G) = To%) (2, 7)
H;p(G) = EXt%[G] (Z) Z) )
where Z[G|] denotes the integral group ring of G.

4.4. Edge homomorphisms and the transgression

We continue in the situation
F--E2%B
with p a Hurewicz fibration, B a 0-reduced CW complex based at the 0-cell by,
and F = p~!(by) the fiber above that point. The inclusion i of the fiber and
the projection p to the base induce homomorphisms i,: H.(F) — H.(F) and
ps: Ho(E) — H.(B), called the edge homomorphisms of the Serre spectral se-

quence. They can be factored through the components of the E*°-term that lie on
the vertical and horizontal edges, respectively, of the first quadrant.

PROPOSITION 4.4.1. The edge homomorphism i,: H,(F) — H,(E) factors as
the surjection

H,(F) = Eé,n — Eg,
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followed by the inclusion
EgS, = FoH,(E) —— H,(E).

PROOF. We have F' = Ey, since B is 0-reduced, so i, factors as the canonical
surjection H,(F) — FoH,(FE) followed by the inclusion FyH,(F) C H,(E). The
first isomorphism follows from H, (F) = Hy,(Ey) = C§W (B; #,(F)) = Ej,,. By
convergence, the second isomorphism follows from EgS, = FoH,(E)/F_1H,(E),
since F_1 H,(F) is trivial. O

n
n—1
1
0 ENio
t/s 0 1 2 n+1

((ETC: Strictly speaking, d*> and the later differentials land in quotient groups of
Ejn = Hu(F).))

REMARK 4.4.2. Every differential df,, lands in a trival group, so Ej,, con-
sists of infinite cycles. However, there may be differentials dy ,,_, ., landing in
bidegree (0,n), for 1 <r <mn+1, and their cokernels give a sequence of surjections

E},, EZ, e Egit Eyl?=Eg,.
If B is 1-connected, then E%n = 0, the first surjection above is the identity, and
H,(F) = Eg’n.
Suppose hereafter that F' is 0-connected.
PROPOSITION 4.4.3. The edge homomorphism p.: H,(E) — H,(B) factors as
the surjection
H,(E) — EX,
followed by the inclusion
Exy——E} = H,(B).
ProoOF. The surjection
H,(E) = F,H,(E) — F,,H,(E)/F,,—1H,(E) = E5,
is given by convergence. For r > 2, every d"-differential landing in bidegree (n,0)

comes from a trivial group, hence is zero. However, there may be nonzero differen-
tials d), o for 2 < r <n, and their kernels give a sequence of inclusions

Exy=Et' CEl,C---CEL,.
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Since F is 0-connected, the coefficient system #4(F) = Z is constant, so E? ; =
Ho(B; #4(F)) = Hy (B).

To see that the composite i, (E) — E;% — Hy(B) equals p., use naturality
of Serre spectral sequences with respect to the map from p: £ — B to 1: B — B.

((ETC: More detail?)) O
n—1 Eg .1

t/s 0 n—2 n

((ETC: Strictly speaking, d® and later differentials are defined on subgroups of
E} o = Hn(B).)
These results, and the following definition, were discussed in [Ser51} §IL.7].

DEFINITION 4.4.4. Let ¢q: (E,F) — (B,by) denote the map of pairs induced
by p, and suppose n > 1. The additive relation

9q-": Hy(B,by) <2 H,(E,F) -2 H,_(F),
sending = = ¢.(y) to the class of d(y), defines a homomorphism
Tn: im(qs) — Hp—1(F)/0ker(q.)

called the homology transgression. The elements of im(g,), on which 7,, are defined,
are said to be transgressive.

PROPOSITION 4.4.5. The transgression T, corresponds to the differential
dypot Eno— Egn_q

under isomorphisms Ey ( = 1im(q.) and Eg,, = H, 1(F)/0ker(q.).

PROOF. A relative version of Proposion[d.4.3|factors g, : H,(E, F) — H, (B, bo)
as a surjection H,(E, F') — E} , followed by an inclusion E} , C H,(B,bg). This
gives the isomorphism im(g.) = E}} 5, and shows that ker(q.) = ker(H,(E,F) —
H,(E,E,_1)) = im(H,(E,_1,F) — H,(E,F)). Hence dker(q,) is the image of
0: Hy(Ep-1,F) — Hy,_1(F), and H,,_1(F)/0ker(q.) is the coimage of H,,_1(F) —
Hn—l(En—l)-
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Consider the following commutative diagram.

Lo |

The inclusion F' = Ey C E,_; induces the map from the first to the third row, and
the second row consists of the images of this vertical map. On the left hand side
this follows by rewriting the definition of Z! ; = 9~ im(Hp—1(F) = Hp—1(En_1))
as ker(H,(E,,En,_1) > Hy,—1(E,w-1,F)) = im(H,(En, F) — H,(E,, E,-1)). For
the middle and right hand sides it follows by consideration of the relative fibration
q: (E,F) — (B, by) and the restricted fibration E,_; — B™1 respectively. Di-
agram chases then confirm that Z7 , — Ej) o is the canonical surjection, and that
the induced homomorphism E , — Ef,,_; equals the d"-differential. ]

We can now deduce Serre’s (finite length) exact homology sequence for a fibra-
tion. To avoid a discussion of local coefficients or orientability, we restrict to the
case where B is 1-connected.

THEOREM 4.4.6 ([Ser51| Prop. I11.5]). Let FF — E — B be a Hurewicz fibra-
tion, with B a 1-connected CW complex and F a 0-connected space. Suppose that
Hy(B) =0 for 0 < s <wu and that Hi(F) =0 for 0 <t <wv. Then there is an exact
sequence

Hyyo1(F) RN Hyyo 1(E) 2 Hyyo 1(B) Tutegt
T HLF) S H(B) T H(B) s Hy ()
5 Hy(B) T Hi(F) -5 Hi(E) 0.

PrOOF. By hypothesis, and the universal coeflicient theorem, the Serre spec-
tral sequence

Es,t = HS(BaHt(F)) s HS_;,_t(E)
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is concentrated in the region where s € {0,u,u+1,...} and t € {0,v,v+1,...}.

ut+v—1

t/s 0 u n

Hence the only (nonzero) differentials originating in total degree n = s+t < u+v
are the transgressions 7,: H,(B) = E o — Ey,,_; = H,—1(F). The first possible
differential from total degree u +wv is di; ,: By, — Eg 4,1 = Hupo—1(F), where
E, is a quotient of E. , = H,(B; H,(F)). It follows that in total degrees s+t <

u + v the E°°-term is given by

Z for (s,t) = (0,0),

ker(r,) fors=mn>2andt=0,
cok(r,) fors=0andt=n—-1>1,

0 otherwise.

oo
Es,t -

In total degree 1 <n < u + v — 1 we therefore have
FyH,(E)="---=F,_1H,(E) = cok(T,+1)
and a short exact sequence
0— F,_1H,(E) — H,(E) — ker(r,,) = 0.

This gives an exact sequence

Hn-‘rl(B) TTL_JF% Hn(F) l—*> Hn(E) & Hn(B) l> Hn—l(F)
for each n < u+ v —2. When n = u + v — 1 the target of 7,41 is a quotient of
H,(F), but i, nonetheless maps H,(F') onto its cokernel. Splicing these together
we obtain Serre’s exact sequence. ([l

Serre’s sequence agrees with the long exact homology sequence of the pair (E, F),
in the stated range of degrees. The following reformulation is dual to a form of the
homotopy excision theorem cf. [Hat02] Prop. 4.28].

PROPOSITION 4.4.7. Let FF — E — B be a Hurewicz fibration, with B a 1-
connected CW complex and F a 0-connected space. Suppose that Hs(B) = 0 for
0 < s<wu and that H(F) =0 for 0 <t <wv. Then

q«: Hy(E,F) — H, (B, bo)

is an isomorphism for n < u+v — 1 and is surjective for n = u + v.
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PROOF. There is a relative Serre spectral sequence
Eg,t = Hy(B,bo; H(F)) =5 Hst(E, F)

obtained by omitting the edge s = 0. The differential in lowest possible total degree
is
1 1
dvrt EZI’U—FI,O ’ Eiitl )

so when n < u + v the edge homomorphism
¢« Hy(E, F) — E7% = Hyu(B)
is an isomorphism for n < u + v and a surjection when n = u + v. (I
COROLLARY 4.4.8. Ifi.: H,(F) — H,(E) is an isomorphism for n < k and
surjective for n = k, then Hy(B) =0 for 0 < s < k.

PROOF. We apply the proposition with v = 1. By the long exact homology
sequence for (E, F) we have H,(E,F) = 0 for n < k. Hence, if Hs(B) = 0 for
0<s<wuthen 0=H,(E,F)= H,(B) as long as u < k. By induction on w it
follows that Hs(B) =0 for 0 < s < k. O

We can also compare Serre’s sequence with the long exact homology sequence
of the pair (Mp, E), where Mp ~ B is the mapping cylinder of p: E — B. See
Hall [Hal65| or Clapp [Cla81]| for the fact that ¢g: Mp — B is a Hurewicz fibration.
((ETC: Maybe a relative kind of fibration is needed.))

ProOPOSITION 4.4.9. Let F — E — B be a Hurewicz fibration, with B a 1-
connected CW complex and F a 0-connected space. Suppose that Hs(B) = 0 for
0<s<uand that H(F)=0 for 0 <t <wv. Then

H,_1(F) = H,(CF,F) - H,(Mp, E)
is an isomorphism for n < u+ v and is surjective for n = u + v.
PROOF. There is a relative Serre spectral sequence
Bie = Hy(B; HCF. F)) = Hotu(Mp, E)

obtained by omitting the edge ¢ = 0 and increasing the fiber degrees by 1. The
differential in lowest possible total degree is

d*: By i1 — Eguge
so when n < u 4+ v the edge homomorphism
i: Hy(CF,F) — Eg, = H,(Mp, E)
is an isomorphism for n < u + v and a surjection for n = u + v. O

COROLLARY 4.4.10. If p.: H,(E) — H,(B) is an isomorphism for n < k and
surjective for n =k, then H(F) =0 for 0 <t < k.

PrOOF. We apply the proposition with v = 2. By the long exact homology
sequence for (Mp, E), and the equivalence Mp ~ B, we have H,(Mp,E) = 0
for n < k. Hence, if H(F) = 0 for 0 < t < v then H,(F) & H,41(CF,F) &
Hy,1(Mp, E) vanishes as long as v + 1 < k. By induction on v it follows that
Hy(F)=0for0<t<k. O
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4.5. Theorems of Hurewicz and Freudenthal

We can deduce absolute and relative Hurewicz theorems, as well as Freuden-
thal’s suspension theorem, from Serre’s exact sequence. Spectral sequences thus
give an alternative approach to these results, as opposed to the homotopy exci-
sion theorem with its geometric proof, which was used to deduce these results
in [Hat02, §4.2].

DEFINITION 4.5.1. Let s,, € H,(S™) be a chosen generator, and let X be any
based space. The (absolute) Hurewicz homomorphism

B T (X) — H,(X)
is given by
[f1—= felsn)
The elements in the image of h,, are said to be spherical.

Let d,q1 € Hy,y 1 (D™, S™) be a chosen generator, and let (X, A) be any pair
of based spaces. The relative Hurewicz homomorphism

hn+12 7Tn+1(X, A) — Hn+1(X, A)

is given by
[f]— fuldnia).

REMARK 4.5.2. With a specified suspension isomorphism
o: Hy(X) 2 Hp 1 (2X)

we can demand that S"*1 = ¥S™ and o(s,,) = s,,41. Then h,, and h,, 1 are com-
patible with Freudenthal’s suspension E: 7, (X ) — m,+1(XX) and the isomorphism
above. We can also demand that

d: Hyy (D™ 8™) — H,(S™)

maps d,11 to s,, in which case the relative h,, 1 and the absolute h,, are compatible
with the connecting homomorphisms 9: 7,41(X, A) = m,(4) and 9: H,11(X, A) —
H,(A).

First, we have the absolute Hurewicz theorem for 1-connected CW complexes.
We refer to [Hat02, Thm. 4.32] for a Hurewicz theorem for general spaces.

THEOREM 4.5.3. Let X be an (n—1)-connected CW complex, withn > 2. Then

o~

Bt T (X) — Hp(X)
is an isomorphism.

PROOF. We prove this by induction on n. By a theorem of Milnor [Mil59,
Cor. 3], X has the homotopy type of a (n —2)-connected CW complex, so we may
inductively assume that h,_1: m,—1(QX) — H,_1(QX) is an isomorphism. To
start the induction, for n = 2, we appeal to Poincaré’s result [Hat02, Thm. 2A.1]
that hy: m (QX) — H1(QX) is an isomorphism, where 71 (QX) = m3(X) is already
abelian.

Consider the homotopy fiber sequence

OX — PX — X
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and the associated commutative diagram

Tn1(QX) 22— 1, (PX, 0X) —2 5 7, (X)

~ o

S

Hy o1 (QX) +2— H,(PX,QX) —"— H,(X) .

The isomorphisms in the upper row follow from the long exact homotopy sequences
of a pair and of a fibration, together with the fact that PX is contractible. The
isomorphism in the lower row follows from the long exact homology sequence of the
pair (PX,QX), and the fact just mentioned. By our inductive hypothesis, the left
hand homomorphism h,,_; is an isomorphism.

n—1 |H,1(QX) 0 0 Hy(X;H, (X))

0 0 " 0 0
0 Z 0 0 H,(X)
t/s 0 n

By the Serre spectral sequence, or the exact sequence deduced from it, the homo-
morphism ¢, : H,(PX,QX) — H,(X) is an isomorphism, since n <n+(n—1)—1
for n > 2. Hence h,,: m,(X) = H,(X) is an isomorphism. O

COROLLARY 4.5.4. If X is a 1-connected CW complex with H,,(X) = 0 for
0 <m <n then X is (n — 1)-connected.

ProoFr. For m < n, suppose we have proved that X is (m—1)-connected. Then
hm: T (X) = Hpp(X) is an isomorphism, so the assumption that H,,,(X) = 0
implies that 7,,(X) = 0. Hence X is m-connected. Continue inductively, until
m=mn—1. ([

Second, we have a relative Hurewicz theorem for maps of 1-connected CW
complexes. We refer to [Hat02, Thm. 4.37] for a relative Hurewicz theorem for
0-connected spaces.

DEFINITION 4.5.5. A map f: X — Y of O-connected spaces is n-connected
if fo: mm(X) — mp(Y) is an isomorphism for m < n and surjective for m =
n. Replacing f by the inclusion X C M f into the mapping cylinder of f, and
considering the long exact homotopy sequence

o (X)) = T (M) — (M £, X) -5 w1 (X) = ..

of the pair (M f, X), we see that f is n-connected if and only if 7, (M f, X) = 0 for
each m < n.
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DEFINITION 4.5.6. For any map f: X — Y let p: Ef = X xy Y — Y be
the associated path space fibration. There is a homotopy equivalence X — Ef,
compatible with the two maps to Y. The fiber p~!(y9) = Ff = X xy PY of this
fibration is the homotopy fiber of f at yo € Y. The Serre spectral sequence

E?,t = H,(Y; Hy(Ff)) =s Hopt(Ef)
for
Ff—FEf- %y
can be rewritten in the form
B2, = Hy(Y; Hi(Ff)) = Hert(X),
in which case we think of it as being associated to the homotopy fiber sequence
Ff—x 1y,
Milnor [Mil59, Thm. 3] proved that if X and Y are homotopy equivalent to CW

complexes, then so is F'f.

THEOREM 4.5.7. Let f: X = Y be a map of 1-connected CW complexes, and
suppose that (M f,X) =0 for m < n, where Mf ~Y is the mapping cylinder
of f. Then

hoi1: Tngr(Mf, X) — Hy, iy (Mf, X)

is an isomorphism.

PROOF. There is only something to prove for n > 1. Using a path space
fibration we may replace f: X — Y with a homotopy equivalent Hurewicz fibration
p: E — B, with B a CW complex. Its fiber F' = p~1(by) is then the homotopy
fiber of f, and m,,(Mp, E) = 0 for m < n. In the commutative diagram

o)

70 (F) 2 041 (CF, F) —— 11 (Mp, E)

hnl hn,+1l J(hn+1

H,(F) ¢-2— Hy11(CF, F) —=— H, 1 (Mp, E)

R

IR

the upper row consists of isomorphisms, because F' is equivalent to the homotopy
fiber of the inclusion E C Mp. Likewise, my—1(F) & 7 (Mp, E) = 0 for m < n,
so F is (n — 1)-connected. If n = 1, then m(F) is a quotient of ma(B), since
m1(E) =0, so m1(F) is abelian. The absolute Hurewicz theorem for F' thus tells us
that the left hand h,, is an isomorphism. The lower row consists of isomorphisms
by Proposition 4.4.9} applied to F' - F — B with v = 2 and v = n. Hence the
right hand h,4; is an isomorphism. [

COROLLARY 4.5.8. Let f: X — Y be a map of 1-connected CW complexes, and
suppose that fi: Hp(X) — Hp(Y) is an isomorphism for m < n and surjective for
m =mn. Then f.: mp(X) = (YY) is an isomorphism for m < n and surjective
form=mn.

PROOF. An equivalent statement is the following: Let f: X — Y be a map of
1-connected CW complexes, and suppose that H,,(M f, X) = 0 for m < n. Then
Tm (M f, X) =0 for m <n.
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For m < n, suppose we have proved that f is (m — 1)-connected. Then
hop: T (M f, X) — H,, (M f,X) is an isomorphism by Theorem so the as-
sumption that H,,(Mf,X) = 0 implies that 7, (M f, X) = 0. Hence f is m-
connected. Continue inductively, until m = n. ([l

Third, we turn to Freudenthal’s suspension homomorphism
E:mp(X) — m1(BX).

DEFINITION 4.5.9. We define the cone and suspension of a based space X to
be CX =TAX and XX = S' A X 2 CX/X = I/0I A X, respectively. We write
[t, x] for the image of (t,x) € I x X under the quotent map to CX or CX/X = ¥X.

LEMMA 4.5.10. Let n: X — QXX map x to the loop s — [s,z], and let
7: CX — PXX map [t,x] to the path s — [st,x]. Then the diagram

X cX XX
| oL
9))'¢ PYX 52X
commutes.
PrOOF. Direct from the definitions. O

PROPOSITION 4.5.11. Let X be a (k — 1)-connected CW complex. Then
N Ho(X) = H,(QEX)
is an isomorphism for n < 2k — 1.

PROOF. There is only something to prove for £ > 1. By the previous lemma
we have a commutative diagram

Hp(X) ¢ Hy 1 (CX, X) —— H, 1 (5X)

H,(Q5X) ¢—2— H, 1 (PEX,Q5X) — Hyy1 (5X).

Note that XX is k-connected and QXX is (k — 1)-connected, so ¢, in the lower row
is an isomorphism for n + 1 < 2k by Proposition O

This gives a proof of Freudenthal’s suspension theorem, cf. [Hat02, Cor. 4.24].

THEOREM 4.5.12. Let X be a (k — 1)-connected CW complex. Then n: X —
QXX is (2k — 1)-connected, meaning that

Nt T (X) — 71, (QXX)

and
E:m(X) — 1 (BX)

are isomorphisms for n < 2k — 1 and surjective for n = 2k — 1.
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PROOF. When k =1 we use that X and 23X are 0-connected, so that in the
commutative diagram

(X)) — 1 (Q8X)

hll ulhl

Hy (X) —— H,(Q5X)

the vertical maps are the abelianization homomorphisms, which is surjective for X
and an isomorphism for QXX since m (2XX) = 79(XX) is commutative. The
lower homomorphism 7, is an isomorphism by the proposition above, hence the
upper homomorphism 7, is surjective.

For k£ > 2 we use that X is 1-connected to deduce that XX is 2-connected
and QXX is 1-connected. Hence Corollary and Proposition [£.5.11] imply that
n: X — QY X is (2k—1)-connected. The suspension homomorphism E corresponds
to 1. under the isomorphism 7,41 (XX) & 7, (QXX). O

4.6. Finite generation and finiteness
((ETC: Discuss some results from [Ser51, Ch. V].))

DEFINITION 4.6.1. An abelian group G is finitely generated if there exists a
surjective homomorphism
78— G
for some finite k. In this case,
GEZL ®Z/m1 D DL/ms

is isomorphic to a finite direct sum of cyclic groups, i.e., groups of the form Z or
Z/m, where m > 2. Here r is the dimension of G ® Q as a Q-vector space, which
we call the rank of the group G.

DEFINITION 4.6.2. A space X has homology of finite type if each group H,,(X)
is finitely generated.

A 1-connected space X has homotopy of finite type if each homotopy group
7 (X) is finitely generated. In this case we also say that X has finite type.

((ETC: What should homotopy of finite type mean for spaces with nontrivial
fundamental group? With multiple path components?))

We will show that a 1-connected space has homology of finite type if and only
if it has (homotopy of) finite type. This applies, for instance, to X = S™ for n > 2.
The following is a special case of [Whi78, Thm. XIII.7.11].

THEOREM 4.6.3. Let F — E — B be a Hurewicz fibration, with B a 1-connected
CW complex and F a 0-connected space. If two of the following conditions hold,
then so does the third.

(1) Hi(F) is finitely generated for each t.
(2) H,(E) is finitely generated for each n.
(3) Hs(B) is finitely generated for each s.

PROOF. There are three cases, which we treat in sequence.

(1) If F and B have homology of finite type, then each group
E?, = HyB;H,_s(F))

s,n—s
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is finitely generated, by the universal coefficient theorem. Hence so is each subquo-
tient

s,n—s
It follows by induction on s > 0 that each F;H, (E) is finitely generated. When
s = n, this equals H,(E).
(2) If F and E have homology of finite type, then we must show that B has
homology of finite type. Let n > 2 and assume by induction that Hs(B) is finitely
generated for s < n. Then

B, = Hy(B; Hy(F))

is finitely generated for each s <n and ¢, hence so is each subquotient EY; in this
region. Since H,(F) is finitely generated, so is its quotient

En 0 - n(E)/Fn—lHn(E) .

We prove by descending induction on 7 that EJ, , is finitely generated. This is clear

for r = n + 1, since E;‘:gl = E%. Suppose that E:;'E is finitely generated, where
r > 2. We have an exact sequence

O—>ET+1—>E7"0—>E

n—r,r—1"

Here Ej,_, . is one of the subquotients we have argued must be finitely gen-
erated, hence its subgroup im(dj, ) is also finitely generated. We have assumed

inductively that E;?Bl is finitely generated, so this extension proves that £y , is
finitely generated. Hence

E; o = Hu(B; Ho(F)) = Hu(B)

is finitely generated, as we wanted to prove.

(3) If £ and B have homology of finite type, then we must prove that F has
homology of finite type. Let n > 1 and assume by induction that H;(F') is finitely
generated for ¢ < n. Then

B2, = Hy(B; Hy(F))
is finitely generated for each s and ¢ < n, hence so is each subquotient EY; in this
region. Since H, (E) is finitely generated, so is its subgroup

Eg, = FoH,(E).

We prove by descending induction on r that Eg , is finitely generated. This is clear
for r = n + 2, since E""'2 Eg5,. Suppose that ES';I is finitely generated, where
r > 2. We have an exact sequence

v
r Ay i1

r r+1
rn—r+1 n,0 En,O — 0.

Here E7,,_, ., is one of the subquotients we have argued must be finitely generated,
hence its quotient group im(dj., _, ;) must also be finitely generated. We have

assumed inductively that E;"’B is finitely generated, so this extension proves that
E}, o is finitely generated. Hence

B2 o = Ho(B: Hy(F)) = Hy(F)

is finitely generated, as we wanted to prove. O
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THEOREM 4.6.4. Let F — E — B be a Hurewicz fibration, with B a 1-connected
CW complex and F a 0-connected space. If two of the following conditions hold,
then so does the third.

(1) Hy(F) is finite for each t.
(2) H,(E) is finite for each n.
(3) Hy(B) is finite for each s.

SKETCH PROOF. In the proof of Theorem [4.6.3|replace “finitely generated” by
“finite”, making allowance for the fact that Ho(X) = Z for each of the spaces in
question. 0

((ETC: Serre classes.))

DEFINITION 4.6.5. Let G be a discrete group, and n > 0. An FEilenberg—
MacLane space of type (G,n) is a CW complex K(G,n) such that

G fori=mn,

0 otherwise.

m K(G,n) = {

When viewed as a discrete space, the group G is of type (G, 0).

Eilenberg-MacLane spaces of type (G, 1) can be constructed by giving a pre-
sentation of G in terms of generators and relations, and building a 0-reduced CW
complex X with one 1-cell for each generator and one 2-cell realizing each relation,
so that 1 (X) = G. One then attaches k-cells for k£ > 3 to kill the higher homotopy
groups.

For n > 2 and G abelian an Eilenberg—MacLane space of type (G,n) can be
constructed from a presentation of G by building an (n—1)-reduced CW complex X
with one n-cell for each generator and one (n + 1)-cell for each relation, so that
mn(X) = Hp(X) =2 G. One then attaches k-cells for k > n + 2 to kill the higher
homotopy groups.

It follows by an obstruction theory argument that any two Eilenberg—MacLane
spaces of the same type (G, n) are homotopy equivalent, by a map that induces the
identity G = G on m,. Hence there is an equivalence

K(G,n—-1)~QK(G,n)
whenever K(G,n) is defined, and there are homotopy fiber sequences
G — PK(G,1) 2 K(G,1)
for any group G, and
K(G,n—1) — PK(G,n) 2+ K(G,n)
for any abelian group G and n > 1. In particular, for any universal G-bundle
G — EG 2 BG ~ K(G,1)

the classifying space BG is an Eilenberg-MacLane space of type (G, 1). As noted
in Remark its (co-)homology groups are the group (co-)homology groups
of G, which admit a purely algebraic description in terms of Tor and Ext over the
ring Z[G].

PROPOSITION 4.6.6. Let G be a finitely generated abelian group. Then each
homology group
Hi(BG) = Hi(K(G, 1))
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is finitely generated. If G is finite, then each reduced homology group ﬁi(BG) 18
finite.

PrOOF. We can write G as a finite product
G=ZX- - XLXCpy x...CHn,
of cyclic groups, and there is then a homotopy equivalence
BG ~BZ x -+ x BZ x BCyp,, X -+ X BCp,, ,

since both sides are Eilenberg—MacLane spaces of type (G,1). Here BZ ~ S! has
the homotopy type of the circle, and BC,, ~ S*°/C,, has the homotopy type of
an infinite lens space, i.e., the orbit space for the free action by C,, C U(1) on the
contractible space S = S(C>). Both S and S*/C,, admit CW structures with
finitely many cells in each dimension, cf. [Hat02, Ex. 2.43], hence have homology
of finite type. More precisely,

H(51) = {Z for i € '{0,1},
0 otherwise,
and
Y/ for i = 0,
H;(BCy,) =< Z/m fori>1 odd,
0 otherwise.

By the Kiinneth theorem (or Serre spectral sequence for the product fibration), it
follows that the finite product BG has homology of finite type. If G is finite, so
that r = 0, it also follows that the reduced homology groups of BG are finite. [

We can now prove two corollaries from [Ser51} §VI.2].

PROPOSITION 4.6.7. Let G be a finitely generated abelian group, and let n > 1.

Then each homology group
Hi(K(G,n))

is finitely generated.

PROOF. This was proved in the previous proposition for n = 1. The casesn > 2
follow by induction, by Theorem applied to the homotopy fiber sequence

K(G,n—1) — PK(G,n) 2+ K(G,n),

where we know that F' ~ K(G,n — 1) and E = PK(G,n) ~ % have homology of
finite type, while B = K(G,n) is 1-connected. O

PROPOSITION 4.6.8. Let G be a finite abelian group, and let n > 1. Then each
reduced homology group
H;(K(G,n))
18 finite.

PROOF. In the previous proof, replace “finitely generated” by “finite” and
replace the reference to Theorem [4.6.3) with Theorem [4.6.4] a

Recall how Postnikov sections and Whitehead covers can be constructed by the
method of killing homotopy groups.
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LEMMA 4.6.9. Let X be a 0-connected CW complez, and let n > 0. There is a
homotopy fiber sequence
TonX — X 2 7, X

where

Pat T (X) — T (T<n X)
is an isomorphism for m < mn and 7, (1<, X) =0 for m > n. Equivalently,

it T (TonX) — T (X)
is an isomorphism for m > n and (7>, X) =0 for m < n.

Proor. We inductively obtain 7<, X from X by attaching (k 4+ 1)-cells to kill
7 of the previous stage, for each k > n+ 1. If X was (n — 1)-connected, the result
is a K(G,n) with G = 7,(X). We let 75, X be the homotopy fiber of the map
p: X = 7<p X. ([l

DEFINITION 4.6.10. We call 7<, X = T« +1X the n-th Postnikov section of X,
and refer to 75, X = 7>,41X as the n-connected cover of X.

REMARK 4.6.11. There are equivalences
T<n(TonX) > K(mp(X),n) =~ 75 (T<nX)

obtained by passing to the n-th Postnikov section and the (n — 1)-connected cover,
in either order.

THEOREM 4.6.12. Let X be a 1-connected space. Then X has homology of finite
type if and only if it has (homotopy of) finite type.

PROOF. We may assume that X is a CW complex, and prove the two implica-
tions in order.

(1) Suppose that X is 1-connected with homology of finite type. Let n > 2
and suppose, by induction, that the (n — 1)-connected cover 7>, X has homology
of finite type. Then

T (X) = 1 (T30 X) = Hy (750, X)
is finitely generated, so K (,(X),n) has homology of finite type. By Theorem [4.6.3]
applied to the homotopy fiber sequence

TonX — Ton X — K(m,(X),n)

it follows that 7., X has homology of finite type, completing the inductive step. In
the course of the proof, we also showed that m,(X) is finitely generated, for each
n > 2, so X has (homotopy of) finite type.

(2) Suppose that X is 1-connected (with homotopy) of finite type. Let n > 2
and consider the map p: X — 7<, X to the n-th Postnikov section. It induces an
isomorphism on 7, for m < n, and a surjection for m = n + 1, hence is (n 4+ 1)-
connected. By the relative Hurewicz theorem m it follows that p.: H,(X) —
H,, (1<, X) is an isomorphism. It therefore suffices to prove that 7<,, X has homology
of finite type. This follows by a finite induction from Theorem [4.6.3] applied to the
homotopy fiber sequences

K(mm(X),m) — 1< X — 7 X,
since each space K (,,(X), m) has homology of finite type by Propositionm |
COROLLARY 4.6.13. FEach group m;(S™) is finitely generated.
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THEOREM 4.6.14. Let X be a 1-connected space. Then H,(X) is finite for
each n if and only if 7, (X) is finite for each n.

PrOOF. In the proof of Theorem[.6.12] replace “finitely generated” by “finite”
and replace the reference to Theorem with Theorem O

Using the multiplicative structure in the cohomology Serre spectral sequence,
we will make the following calculation. See Corollary

THEOREM 4.6.15 (Serre). Let n > 1 be odd. Then

Q forie{0,n},

0 otherwise.

Hi(K(Zan>;Q) = {

Granting this, we can make the following deductions.

COROLLARY 4.6.16. Let n > 1 be odd, and let f: S™ — K(Z,n) represent a
generator of w,K(Z,n) =2 7Z. Then

(1) Ho(K(Z,n))=Z

(2) Hi(K(Z, ))—0f07"0<z<n

(3) fo: Ho(S™) = Hp(K(Z,n)) is an isomorphism.
(4) H;(K(Z,n)) is finite for each i > n.

PROOF. Cases (1), (2) and (3) follow from the Hurewicz theorem. Case (4)
follows from Theorems [4.6.12] and [£.6.15] since a finitely generated abelian group
of rank 0 is finite. O

THEOREM 4.6.17 (|[Ser51}, Prop. V.3]). Letn > 1 be odd. Then m;(S™) is finite
for each i > n.

PrROOF. The case n = 1 is well known, so we assume n > 3. Replace the map
f: 8™ — K(Z,n) by an equivalent Hurewicz fibration p: E — B with fiber F.
There is then a homotopy fiber sequence

F—s" L Kk@,n),

where F' = 7-,5™ is the n-connected cover of S™. In particular, FIt(F) = 0 for
t<n.
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v H,(F)
n+1
0
0
0
0 Z
t/s 0 n

We claim that H;(F) is finite for each ¢ > n. If this is not the case, there is a
minimal v > n such that H,(F) is infinite. Consider the Serre spectral sequence

E2, = Hy(K(Z,n); Hi(F)) =5 He4(S™)

with E&v >~ H,(F). By assumption, each group Ef,t is finite for ¢t < v, except when
(s,t) = (0,0) or (n,0). Each differential

T . oor I
row—r+1- Er,vfrJrl — EO,U

therefore maps from a finite group. It follows by a finite induction that Eg<, is
infinite. Since this group maps injectively to H,(S™) = 0, we have a contradiction.

By Theorem [4.6.14] it follows that m,(F) is finite for each ¢ > n. The conclusion
then follows from the isomorphisms 7 (F) = m;(S™), valid for this range of values
of t. |

THEOREM 4.6.18 (|Ser51,, Cor. V.2]). Let n > 2 be even. Then m;(S™) is finite
for each i > n, except for i =2n — 1, and mwa,—1(S™) is the direct sum of Z and a
finite group.

In other words, 7o, —1(S™) is finitely generated of rank 1.

PROOF. The Puppe sequence for f: S™ — K(Z,n) extends to the left, to define
a homotopy fiber sequence

K(Z,n-1)— F — S™,

where F' = 7,5 is the n-connected cover of S™. The associated Serre spectral
sequence

EZ, = H,(S"; Hi(K(Z,n — 1)) =, He4(F)

is concentrated in the two columns s € {0,n}. The entries with ¢ € {0,n — 1} are
isomorphic to Z, the entries with 0 < ¢ < n — 1 are trivial, and the entries with
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t > n are finite.

t/s 0 n
Since the abutment is n-connected, the differential
dyo: Hn(S") — Hp 1 (K(Z,n — 1))

is an isomorphism. Hence the E*-term is Z in bidegrees (0,0) and (n,n — 1), finite
in bidegrees (0,t) and (n,t) for t > n, and trivial otherwise. It follows that H;(F’)
is finite for each ¢ > n, except for i = 2n — 1, and Ha,—1(F') the direct sum of Z
and a finite group.

By the universal coefficient theorem, H?"~!(F) is the direct sum of Z and a
finite group. Using the Eilenberg—MacLane representability theorem for cohomol-
ogy, see Theorem there is a map f': F — K(Z,2n — 1) representing an
element of infinite order in H2"~!(F), so that

fli Hop1(F) — Hop 1 (K(Z,2n — 1)) 2 Z

has finite kernel and cokernel. (We may arrange that the cokernel is trivial.) Note
that 2n — 1 is odd, so Corollary |4.6.16| applies to H.(K(Z,2n — 1)).
Let F’ be the homotopy fiber of f’, so that we have a homotopy fiber sequence

F—F S k@zom—1).

Note that F’ is at least n-connected.
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n+1
0
0
0 Z
t/s 0 2n —1

We claim that H(F") is finite for each ¢ > n. If this is not the case, there is a
minimal v > n such that H,(F’) is infinite. Consider the Serre spectral sequence

EZ, = H(K(Z,2n — 1); Hy(F')) =5 Hoy(F)
with Ej, = H,(F'). Each differential
77:,11—7"+1: E:,v—r—i-l - Eg,v

maps from a finite group, except if v = 2n — 2 and r = 2n — 1. In the exceptional
case, the subgroup ESS ;o of E3, | = Hyp_1(K(Z,2n — 1)) equals the image
of the edge homomorphism f], which has finite index, so also d%Z:},o must have
finite image. It follows that the quotient EgS, of EF, = H,(F’) must be infinite.
Since EgS, is isomorphic to the image of H,(F') — H,(F), which is contained in
the kernel of H,(F) — H,(K(Z,2n —1)), this contradicts the calculation of H,(F)
and the fact that f/ has finite kernel.

By Theorem it follows that m,(F’) is finite for each ¢ > n. This implies
that m;(F) is finite for each ¢ > n, except for t = 2n — 1, and that mo,_1(F)

is the direct sum of Z and a finite group. The conclusion then follows from the
isomorphism 7 (F') & m(S™), valid for ¢ > n. O






CHAPTER 5

Multiplicative Spectral Sequences

The cohomology groups of a space X come equipped with a cup product, de-
rived from the diagonal map A: X — X x X, which make H*(X) a graded com-
mutative ring. The corresponding “coring” structure in H,(X) is less familiar, and
requires flatness hypotheses to be dealt with in purely algebraic terms. We will see
that some spectral sequences converging to H*(X) respect the cup product struc-
ture in a suitable manner, and this turns out to be a powerful calculational tool.
In particular, this ring structure is what Leray referred to when calling the objects
he studied “anneau spectral”, or “spectral rings”.

Since the first examples of spectral sequences with multiplicative structure arise
from cohomology, we first discuss cohomologically graded spectral sequences. This
amounts to the usual convention of writing a graded abelian group G, as a cograded
abelian group G*, where G®* = G_,. If (C,,0) is a chain complex then (C*,4d) is
the cochain complex with §: C® — C**! given by 9: C_, — C_,_;. The r-th
term of a spectral sequence will therefore be written in cohomological notation as
Eyt=E", .

Thereafter we discuss pairings of spectral sequences, and ring spectral se-
quences. These can be seen to arise from pairings of exact couples, but a more
useful formalism is a richer structure called a Cartan—Eilenberg system. Each
Cartan—Eilenberg system gives rise to an exact couple and a spectral sequence,
and a pairing of Cartan—Eilenberg systems gives rise to a pairing of (exact couples
and) spectral sequences.

This applies, in particular, to the cohomological Serre spectral sequence of a
fibration F' — E — B, and the resulting ring structure implies a close relationship
between the graded commutative cohomology rings H*(F), H*(E) and H*(B).
((ETC: Make applications.))

When we come to the Adams spectral sequence, we will also see that a pairing
of spectra gives rise to a pairing of Adams spectral sequences, so that for a ring
spectrum representing a multiplicative cohomology theory, the Adams spectral se-
quence can converge to the graded coeflicient ring of that cohomology theory.

5.1. Cohomological grading

DEFINITION 5.1.1. A cohomologically bigraded abelian group A** is a doubly-
indexed sequence
AR = (As7t)s,t
of abelian groups, where s,¢t € Z. A morphism f: A** — B** of (cohomological)
bidegree (u,v) is a sequence of homomorphisms
fs,t: As,t N Bs+u,t+v .

A morphism d: E** — E** is a differential if dd = 0.
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DEFINITION 5.1.2. Let p € Z. A cohomological E,,-spectral sequence (E,,dy)r>p
is a sequence of bigraded abelian groups F, = E** and differentials

d.: EV* — EX*
of bidegree (r,1 — r), together with isomorphisms

H(E,,d.) 2 E.;
of bigraded abelian groups, for all » > p.

[ ] [ ] [ ] [ ] [ ]
t ° Eﬁ’t ° ° °
\
t—r+1 ° . ° Estri-r+l .
[ ] [ ] [ ] [ ] [ ]
t/s s s+r

We call E, the E,.-term and d,. the d,-differential. In Eﬁ’t we call s the filtration
degree, t the complementary degree and s + t the total degree. (We could say
“codegree”, but this gets cumbersome.) Note that

ds,t, Es,t — Es+r,t—r+1
T ° T T
increases the filtration degree by r and increases the total degree by 1. Hence

ker(ds")

im(di—r,t-i-r—l)

H5Y(E,,d,) =
is the cohomology at the center of the diagram
e R ) S |
B —  E}F S BT
Each homological spectral sequence (E",d"),>, can be viewed as a cohomolog-
ical spectral sequence (E,,d;),>p with

B3t =E"

—s,—1
and
d?t = Cs,ft
for all 7 > p and s,t € Z. Note that the sign of r is not reversed. Conversely, each
cohomological spectral sequence can be viewed as a homological spectral sequence.
A morphism ¢: E — 'E of cohomological E,-spectral sequences is a sequence
of degree-preserving morphisms

¢r: Er — /Er

for each r > p, such that ¢,.d, = 'd,¢,, and such that the induced morphism
¢r: H(E,,d.) = H('E,,'d,) corresponds to ¢,41: E,y1 — "E,qq.
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DEFINITION 5.1.3. A cohomological unrolled exact couple (A, E) = (A%, E®),
is a diagram of the form

ds—1 QXs+1

Asfl As s As+1 As+2
Pa—1 Vs—1 Bs Vs
Esfl Es Es+1 ,

in which each triangle forms a long exact sequence

R LN N e T

Here each A® and E? is a cohomologically graded abelian group, and a,, 85 and s
are graded morphisms of graded abelian groups.

((ETC: It might be better to write o® in place of a;, but we also want to write
a" 1 for the iterated map, which could then be confusing.))

Each (homological) exact couple (As, Es)s can be viewed as a cohomological
exact couple (A®, E®)s with A* = A_; and E® = E_;, and vice versa. The following
diagram sits inside the cohomological unrolled exact couple.

A57T+1 ! AS *s Aerl a7t Aerr
ﬁ{ /
Es

DEFINITION 5.1.4. For r > 1 and s € Z let
75 =~ tim(a Tt ASTT o ASTY)
BE = B, ker(a” 1 A5 — ASTTTL)
be the r-th cocycle and coboundary groups in filtration s. Let Z3 = (). Z; and
B3, =, B, and let
B} = 7:/B;
for all 1 < r < co. There are inclusions
0=BjC---CcB;C---CBS Cker(ys)CZ, C---CZC---CZ]i=FE",
a differential
ds: ES —s E5TT
[2] — [Bs+r (¥)]

where v4(z) = a""*(y), and isomorphisms H*(E,,d,) = E:_,. This defines the
spectral sequence associated to the exact couple.

DEFINITION 5.1.5. We give

A~ = colim A°®
S

the decreasing filtration
AT D D FSAT D PRt o
with
FPA™ =im(A° — A™).
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DEFINITION 5.1.6. We say that the exact couple (A%, E®) is degrecwise discrete
if each o, : A5t — A° preserves the total degree, and for each n there is an integer
b(n) such that (A°)" = 0 for s > b(n). ((ETC: This is where “bounded below”
could get confusing.))

PROPOSITION 5.1.7. (1) There is an injective homomorphism
FsA—
Sy
which is an isomorphism if Z5, = ker(s).
(2) If the exact couple is degreewise discrete, then  is an isomorphism and the
spectral sequence

¢

— B

Ei,t s (A—oo)s+t
CONVETGES.

DEFINITION 5.1.8. A decreasing filtration of a cochain complex C* = (C*,J)
is a sequence of subcomplexes

C*>---DFC*DOFTCr ...,

We refer to the grading n of C* = (C™),, and F*C* = (F*C™),, as the total degree,
and to s as the filtration degree. We set n = s + t, where t is the complementary
degree. For each s there is a short exact sequence of cochain complexes

FeC*

0— oy — o — Ferige —=0.

We call (F*C*/F*TIC*) s = (F*C™/F**1C"),, the associated (bi-)graded abelian
group of the filtration. The filtration is exhaustive if

o= oo

It is degreewise discrete if for each n there is a finite b = b(n) such that F**1C™ = 0.
DEFINITION 5.1.9. The exact couple associated to a filtered cochain complex

(F°C*)s is the diagram

e H¥(FSC*) 2 H*(FsH10%) — ...

/#
—
ﬁ{ -

H* (FSC* /Ferlc*)
where
(Es)* _ H*(FSC*/Fs-l-lC*) )
Here a; and (s preserve the total degree n, while 7, increases it by 1. The bigrading
is given by
As,t — HSH(FSC*)
E®Y = HSP (FPC* [ F3HC).
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The associated spectral sequence has
Byt = H P (FeC [T CT),
and
df’t = Bst17s: Ef’t — Ef"'l’t

equals the connecting homomorphism in the long exact cohomology sequence asso-
ciated to the extension

0 — FTIC* JFPsT20* — FSC* /F*T20* — FSC*JF*T1C* =0
of cochain complexes.

DEFINITION 5.1.10. Given a filtration (F*C*), of a cochain complex C* =
(C*,0), let
FH*(C*) =im(H*(F°C*) = H*(C")).
This defines a decreasing filtration
D FSH*(C*) ») Fs+1H*(C*) oL
of the graded abelian group H*(C*).

DEFINITION 5.1.11. Let (F*G*), be a decreasing filtration of a graded abelian
group G* = (G™),,. Suppose that the filtration is exhaustive and degreewise dis-
crete. A cohomological spectral sequence (E,,d,),>p converges to G*, written

s,t s+t
B =, G,

if there are isomorphisms
Es,t o FsGs+t
o T pstlgstt
for all (s,t).

PROPOSITION 5.1.12. If (F*C*), exhausts C* = (C*,0) and is degreewise dis-
crete, then the spectral sequence

Byt = BRI P00 =, H(CY)
converges to H*(C*) with the decreasing filtration (F*H*(C*))s.

5.2. Cohomology of spaces

Given a sequence of spaces

Y —...—Y. 1 L>Ys—>—>
it is a nontrivial hypothesis on the maps f; that the induced diagram
C(Y)— ... =5 Ci(Ys—1) — Cu(Yy) — ... —

consists of surjective homomorphisms. This would, however, suffice to ensure that
the dual diagram

CH(Y) D D C*(Yay) D CH(Y) D ...

defines a decreasing filtration of C*(Y'), when suitably indexed. A more convenient
framework is given by working with relative cochain complexes.
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DEFINITION 5.2.1. Let
e CXs1 CXs e C X

be an increasing filtration of a space X. The singular cochain complex C*(X) then
has the decreasing filtration

C*'(X)D---DC"(X, Xs1) DC*(X, Xs) D ...
with

FC*(X) = C*(X, Xs_1)
FC (X)) _ .
W*(X) _— C (XSﬂXSfl) .

If X,—1 = 0 for some a, then C*(X) = C*(X, X,—1) and the filtration is exhaustive.
If X, = X for some b then C*(X, X;,) = 0 and the filtration is (degreewise) discrete.

REMARK 5.2.2. Note the index shift in the definition of F*C*(X), which gives
the convenient form

0—-C*"(X,X,) — C"(X,Xs1) — C" (X5, X5-1) = 0

for the short exact sequence defining the associated graded of the filtration. The
hypothesis that C™(X, Xs_1) vanishes for sufficiently large s (possibly depend-
ing on n) is often not realistic. However, recall from Proposition that for
convergence we only need that the exact couple is degreewise discrete, i.e., that
H™(X,Xs_1) =0 for s sufficiently large, and this is satisfied in many cases.

PROPOSITION 5.2.3. Let (X;)s be a filtration of X. There is a cohomological
spectral sequence

EYY = HSTY(X,, X, 1) =, HTY(X)

with dy : Ef’t — Ef+1’t equal to the connecting homomorphism in the long exvact
cohomology sequence of the triple (Xsy1, Xs, Xs—1)-

If Xo—1 =10 for some a, and H"(X, Xs_1) = 0 for all s > b(n), for some b(n)
depending on n, then the spectral sequence converges to H¥t(X), with the filtration

FoH*(X) = im(H*(X, Xs_1) — H*(X)) = ker(H*(X) — H*(X,_1)).

Proor. This is the spectral sequence associated to the exact couple associated
to the decreasing filtration of C*(X) given by F*C*(X) = C*(X,Xs-1). The
additional hypotheses ensure that the exact couple is discrete and that F*A~>° =
A~ is exhaustively filtered. The second expression for F* H*(X) is clear from the
long exact cohomology sequence of (X, X_1). O
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¢ | H(A) 2L B(X, A)

1| BHY(4) 25 H2(X, A)

0 | HA) 2 (X, A)

t/s 0 1
For a pair of spaces (X, A), we can view the long exact cohomology sequence
o HMX,A) — HY(X) — H™(A) 25 HPH(X,A) —

as a cohomological two-column spectral sequence, with

Ht(A) for s =0,
EYY = HYH(X,A) fors=1,
0 otherwise,

and
di* =o' H'(A) — H''(X, A).

This corresponds to the bounded filtration with X_; = ), Xy = 4 and X; = X.
The (E1,d;)-term is shown above. This leads to the following Fy = FEoo-term.

t ker(6t)  cok(8?)

1 ker(6')  cok(dt)

0 ker(6°)  cok(&?)

t/s 0 1
The groups EZ*~° give the associated graded of the decreasing filtration

H*(X)=F°H"(X)> F'H"(X) >0,
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with F*H"(X) = im(H"(X,A) — H"(X)) = ker(H"(X) — H"(A)). Hence
FIH™(X) =~ EL""! and there is a short exact sequence
0— F'H"(X) — H"(X) — E%" —0.
This is the same extension as that obtained from the long exact cohomology se-
quence, namely
0 — cok(6" ™) — H"(X) — ker(6") — 0.

Note that in the cohomological spectral sequence the differentials map from the left
to the right, while the filtration inclusions F*™1H"™(X) C F*H™(X) map from the
right to the left, when we view them as placed in total degree n, with filtration
quotients identified with the components of the E..-term.

PROPOSITION 5.2.4. Let X be a CW complex, equipped with the skeleton filtra-
tion. The associated cohomology spectral sequence
Ei?,t _ HS-‘,—t(x(s), X(S—l)) :>s H5+t(X)

has (E1,dy)-term equal to the cellular cocomplexr (Céy (X),0), and Ez-term equal
to the cellular cohomology H .y (X), both of which are concentrated on the line t =
0. It collapses at Ey = Eo,, and converges to H*(X). Hence H}y, (X) = H*(X).

PrOOF. The d;-differential equals the connecting homomorphism in the long
exact cohomology sequence of the triple (XD, X() X (=) by naturality with
respect to the vertical map

0——C*" (X, X®)) —— (X, X6 D) — s (X&), X6-D) — 0

| | I

0—— CH(X6HD) X6y s or(X 6D XDy 5 or(X6), X6y —0

of short exact sequences of cochain complexes. Convergence follows from X (—1) = ()
and H™(X, X~V = 0 for all s > n, which we can deduce from H, (X, X~Y) =0
for s > n using the universal coefficient theorem. O

DEFINITION 5.2.5. A (generalized) cohomology theory M on the category of
CW pairs is a contravariant functor assigning to each CW pair (X, A) a graded
abelian group

M*(X,A) = (M"(X,A),,
and a natural transformation
§: M*(A) — M*T1(X, A)
of degree +1, such that
(1) Exactness: the sequence

o MAX,A) D M) D M A) S METHX A)
is long exact.

(2) Homotopy invariance: if f ~ g: (X, A) — (Y, B) are homotopic, then
[r=yg.

(3) Excision: if X = AU B is a union of subcomplexes, then the inclusion
induces an isomorphism

M*(X,A) = M*(B,AN B).
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(4) Additivity: the canonical map

M ([T Xa) = J] M7 (X0)

[e3%

is an isomorphism.

The coefficient groups of a cohomology theory M is the (cohomologically)
graded abelian group
M* = (M"™(point)),, .
There are isomorphisms
MS—H'(DS,8D8) o~ Ms+t(ss) ~ Mt

forall s >0,t € Z.
Let X be a CW complex. Applying M* to the triples (X, X (), X(5=1) we
obtain the exact couple

(5.1) e MF(X, XD (X X)) ——

o
BSJ //{YS

M*(x(S)jX(S—l))
with
ASE = M, X D)
Bt = M (X, XOD) 2 Oy (X M),
where d5: Ef" — EST corresponds to
6% Oy (X; MY — CELL(X; MY).
Hence
Ey' = Hiyw (X; M') = HY(X; MY).
Since X(=1 = (§, the map
M*(X) = A% =5 A=
is an isomorphism, and M*(X) is exhaustively filtered by the graded subgroups
FSM*(X) = im(M*(X, X V) = M*(X)) = ker(M*(X) — M* (X)),
DEFINITION 5.2.6. The spectral sequence
Eyt = H(X; M') =, M*T(X)

associated to the exact couple (5.1)) is the Atiyah—Hirzebruch spectral sequence for X
and the cohomology theory M.

For now we only prove convergence when X is a finite-dimensional CW com-
plex or M* is bounded below, postponing the general case until we have discussed
sequential limits and derived limits.

PROPOSITION 5.2.7. If X is finite-dimensional, then the filtration (F*M*(X))s
is bounded and the Atiyah—Hirzebruch spectral sequence converges to M*(X).

PROOF. By hypothesis, there is a b such that X = X®. For all s > b we
then have A° = M*(X,X6~Y) = 0 and F*A~>° = 0. This spectral sequence is
concentrated in the columns 0 < s < b. [l
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PROPOSITION 5.2.8. If M* is bounded below, then the filtration (F*M*(X))s
is degreewise bounded and the Atiyah—Hirzebruch spectral sequence converges to

M*(X).

PRrROOF. By hypothesis, there is an integer a such that M™ = 0 for all n < a.
Then M™(D*,0D®) = 0 for all s > n —a. Fix an n, and let b > n —a. Then
MM X X)) =0and M* (X, X®) =0 forall s >b. Let Y = X/X® 50
that Y(®) = X(S)/X(b). There is a homotopy cofiber sequence

VEy® = \/sv® 5,7
s>b s>b

where T~ Y is the mapping telescope of (Y(*)),s;. The associated long exact
sequence in reduced M-cohomology has the form

o [Tty s iy — [[ 8 ®

s>b s>b
which proves that M”( ) = (X,X(b)) = 0. For all s > n — a we then have
(A%)" = M™(X, X)) = 0 and (F*A~>°)" = 0. This spectral sequence is con-
centrated in the region s > 0 nd t > a. O

We get an Eilenberg—Steenrod uniqueness theorem for cohomology. ((ETC: Also
discuss compatibility of connecting homomorphisms?))

THEOREM 5.2.9. Let G be an abelian group and let M be a cohomology theory
with coefficient groups M° = G and M* = 0 for t # 0. Then M is naturally
isomorphic to HG, so that

M™"X)= H"(X;G)
for all n.

PROOF. The coefficients M* are bounded below (and above). The Atiyah—
Hirzebruch spectral sequence of X for M has F»-term

gt H*(X;G) fort=0,

2 0 otherwise.
Since this is concentrated on the line t = 0, the d,-differentials for r > 2 must
vanish, so that Fy = F, is concentrated on the line ¢ = 0. Since EQO’O is the only

group in total degree n, the extension problems are very easy, and we conclude that
M"(X) = EX’ =~ H"(X;G) for each n. O

((Alternatively, one can consider the exact couple with A% = M*(X (=) and
convergence to the limit A = lim; A®. This is less convenient for pairings.))

5.3. Cohomological Serre spectral sequence

DEFINITION 5.3.1. Let p: E — B be a Hurewicz fibration, with B a CW
complex. Let E, = p~'(B®™). The (cohomological) Serre spectral sequence of
p: E — B is the spectral sequence

EYt(p) = H"Y(E,y, B, 1) = H*"(E)
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associated to the exact couple
o —— H*(E,By_) +—— I;I*(E,Es) — .
ml ///ﬁ/
H*(Es, Es—1)
with A5t = H5t(E, Es_1) and B>t = H5"'(E,, Es_1).
PROPOSITION 5.3.2 ([Whi78| XIIL.4.6*]). There are natural isomorphisms
HYN(Ey, Es—1) = Coyy (B A (F))

where 4 (F) denotes the local coefficient system on B given by H'(F,) at b € B,
with Fy, = p~1(b). If B is 1-connected, with base point by, then this equals the
cellular s-cochains Ciyy, (B; HY(F)) with coefficients in the abelian group H'(F),
with F = p~1(by).

SKETCH PROOF. We use the notation from the homological case, Proposi-
tion By excision and additivity we have isomorphisms

HME By) = H ([ oL B [[onE) = [[ BT (®LE, 6LE) .

By fiber homotopy triviality of ®* E — D? we have isomorphisms
H*(D;,,0D;) ® H'(Fy,) = H (D3, 0D;) x Fy,) = H " (OB, ¢, E) .
Fixing an isomorphism

(5.2) Céaw (B; 24 HH (DS,0D%) @ H'(Fy,)

we obtain the stated Ej-term. O

PROPOSITION 5.3.3. (A®)" = H"(E,E;_1) =0 for s >n and (A°)" = H"(E)
for s <0, so the exact couple (A%, E®), is degreewise bounded, and the Serre spectral
sequence is concentrated in the first quadrant and converges to H*(E).

SKETCH PROOF. Since #*(F) is trivial for ¢ < 0 we have H"(Es, Es_1) = 0
for s > n, which implies that H"(E,, Es_1) = 0 for all u > s > n. A mapping
telescope argument then shows that H"(E, Fs_1) = 0, as claimed. O

PROPOSITION 5.3.4 ([Whi78 XIII.4.8*]). The diagram

s,t

d
Hs+t(Esa Esfl) % Hs+t+1(Es+1a Es)

ﬂ J:

s 6° s
Co (B; A (F)) —— C&ly (B; A1 (F))
commutes.

REMARK 5.3.5. Whitehead states this with (—1)°d° in place of ¢°. To give a
correct statement one must make the sign conventions more precise than we have
done above. Working with cubes instead of discs, let us fix generators

v € H(I,dI) and g, € HY(I,0I)
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such that (g1,71) = 1. Using the cross products
Ho(I°,0I°) @ H,(I*,0I%) = Hyy o (I51%, 0°FY)
HS(I°,0I°) @ H(I%, 0I%) = HsTu(15tv, o15+t)
we can define generators

Vs =1 X - Xy € Hg(I?,0I°)
gs =91 X - x g1 € H(I?,0I")

such that vs X vy = Ys4u and gs X gy = gs+v. In view of the graded commutation
rule

(9s X Gus Vs X Yu) = (=1)""(gs, Vs ) {Gus Yu)
it follows that

(gs,7s) = (_1)5(5—1)/2 _ {+1 for s=0,1 mod 4,

—1 for s=2,3 mod 4.
It therefore seems best to specify (5.2)) so that a sequence

(gsia ® fa)a € HHS 13,013) @ HY (Fy,)

is identified with the cellular cochain
Yo F— (=1)* T2 [ € Coyy (B AH(F))

where 750 € Hy(I5,015) C CEW(B). It seems that Whitehead [Whi78| p. 630]
instead specifies this isomorphism without the sign (71)5(5*1)/2, mapping s, to
fa, which leads to the extra sign (—1)° in the proposition above.

THEOREM 5.3.6. The Serre spectral sequence
E3'(p) = H*(E)
for F — E % B has Es-term
By (p) = H*(B; A" (F)) .
If B is 1-connected, this simplifies to
Ey'(p) = H*(B; H'(F)).

We suppose that B is 0-reduced, with i: F' — E the inclusion of the fiber of
p: E — B over the base point by € B.

PROPOSITION 5.3.7. The edge homomorphism i*: H*(E) — H"™(F) factors as
the surjection

H™(E) — E%"

followed by the inclusion

EO" s E)" = H™(F).
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n HY(F) 2 Bbn

n—1
0 EM°
t/s 0 1 2 n+1

We also suppose that F' is 0-connected.

PROPOSITION 5.3.8. The edge homomorphism p*: H"(B) — H"(E) factors as
the surjection

H"(B) = Ey° ——» E0

followed by the inclusion

E0 »—— HY(E).

t/s 0 n—2 n
DEFINITION 5.3.9. The additive relation
(q*)"'6: H"Y(F) -5 H"(E, F) <~ H"(B, by),
sending x with §(z) = ¢*(y) to the class of y, defines a homomorphism
7 6 Vim(¢*) — H™(B,bo)/ker(q*)

called the cohomology transgression. The elements of ~!im(g*), on which 7 are
defined, are said to be transgressive.

PROPOSITION 5.3.10. The transgression ™" corresponds to the differential
0,n—1. F0,n—1 0
" Byt — B

under isomorphisms E9"~1 2= §=Vim(q*) and E™° = H™(B,by)/ ker(q*).



102 5. MULTIPLICATIVE SPECTRAL SEQUENCES

THEOREM 5.3.11. Let F — E — B be a Hurewicz fibration, with B a 1-
connected CW complex and F a 0-connected space. Suppose that H*(B) = 0 for
0 < s <wu and that H'(F) =0 for 0 <t < wv. Then there is an exact sequence

1 o TP p”
0—-H(E)— H (F)— H°(B) — ...
S mr) D g ) 2 B E) S mr ) T

utv—1

LT gube-(gy P gute-t(g) U gute-l(py

u+v—1 | H"""YF) 0 0

t/s 0 u n

5.4. Pairings of spectral sequences

Suppose that B is 1-connected, or that #*(F) = H*(F) is a constant coeffi-
cient system. The cup products for B and F' induce a pairing

H*(B;H'(F)) ® H"(B; H'(F)) — H**"(B; H"""(F)).
Its relationship via the Serre spectral sequence
Ey" = H(B; H*(F)) = H*(E)
to the cup product
U: H"(E) @ H™(E) — H""™(E)
can be expressed in terms of a pairing of spectral sequences
Est @ EWv —y Etutty

making (E**), a ring spectral sequence. Such a pairing reduces the problem of
calculating the d,-differentials in E* to finding their values on classes that generate
E** under this product, i.e., the ring indecomposables. This is often a significant
reduction compared to the task of finding the values on classes that generate E*
as a bigraded abelian group.

We formulate the following definition for a pairing of two spectral sequences to
a third, but often all three of these are the same spectral sequence.
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DEFINITION 5.4.1. Let (E,,dy)r>p, (Er,'d;)r>p and ("E,,"d;)r>p be (coho-
mologically indexed) E,-spectral sequences. A pairing of spectral sequences
wr: (En"E) — B,
is a sequence of pairings
e 'EXFQTEN — ERF
for r > p, taking 'E3t @ "E%? to ESTwIHY for all (s,t) and (u,v), such that
(1) the Leibniz rule

dr(pr(z ® y)) = pr (e (2) @ y) + (1) pr(z ® "dr (1))
holds (in Estutrite=—rtl) for all x € 'E3t and y € "E*", and
(2) the induced pairing
H(p): HUE,'d) @ H("Ey,"dy) — H(Ey.dy)
(2] @ [y] — [ (z @ y)]

corresponds to pry1: 'Eri1 @ "E.11 — E,.;; under the isomorphisms
H(E,,'d,) = "'Eys1, H"E,,"d,) 2" Eys1 and H(E,,dy) = Eyp1.

REMARK 5.4.2. The tensor product 'E**®"” E** of two bigraded abelian groups
is itself bigraded, with the group

@ @ /Eﬁ’t ® //E:f’v
st+u=o t+v=T1
in bidegree (o, 7). We thus assume that u, preserves this bigrading.

The second condition implies that p, determines 1, so a pairing of E,-
spectral sequences is specified by the initial pairing y,. However, not every pairing
of bigraded abelian groups will satisfy the Leibniz rule, and inductively induce
pairings of later F,.-terms that also satisfy the Leibniz rule, so being part of a
pairing (u,)r>p of spectral sequences is a significant additional hypothesis on .

REMARK 5.4.3. Writing z - y for u,.-(z ®y), |x| = s+t for the total degree of z,
and omitting primes, the Leibniz rule takes the form

de(v-y) =d.-(z) -y + (_l)lm‘f ~dr(y) -

In diagrammatic form the diagonal composite

"dr®1
! IS, * 11w,k T ! s+r,* 1 o, *
Er ® Er Er ® Er
Hor
18"d, Estux Hr
\‘
Hr

/E;f’* ® //E;:L-f—’[‘,* Ef+u+T7*

equals the sum of the two peripheral composites, under the assumption that we
define 'd, ® 1 and 1 ® "d, so that

(d-@l)(z@y)="d()y

(1e"d)(z®y) = (-1)"z©"d(y).
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This is in line with the general convention that

(fegey) =) f@) @),

for bigraded homomorphisms f and g, and bigraded elements x and y, where |g|
denotes the total degree of ¢g. In the case at hand, |1| = 0 while |"d,| = 1. Note
that this convention requires access to the internal grading of each object 'E%, " EY
and BT, or at least to the action by (—1)! on an element of internal degree t.

REMARK 5.4.4. The sum D, = 'd, ® 1 + 1 ® "d, defines a differential on
'Er @ " E,, of bidegree (r,1 —r). This does not in general make

(,Er & ”Erv DT)T’Z;D
a spectral sequence, because the cross product
/Er+1 ® HET+1 = (/E'r; /dr) ® H(//Era Hdr) 4 H(/Er Y //Era DT)

is not in general an isomorphism. However, in situations where this is an isomor-
phism, a spectral sequence pairing p,.: ('E,.,"” E,) — E, is the same as a spectral
sequence morphism p,: 'E. ® "E,. — E,. This happens if Tor('E,,”E,) = 0 for
each r, e.g. if each 'E,. or " E,. is torsion-free.

REMARK 5.4.5. A pairing
l,l/T‘: (/EIT‘,//EIT‘) _> ET'
of homologically indexed spectral sequences is defined in the same way, via the
identification E, = E;*"'. The signs (-1)*"" = (=1)l*l = (=1)7*~" in the
Leibniz rule then match up, independently of whether we view z as an element in
the cohomological or the homological spectral sequence.

DEFINITION 5.4.6. A ring spectral sequence is a spectral sequence (E,,d,)r>p
equipped with a unital and associative pairing

wr: (B, E.) — E,..

Here unitality means that there is an infinite cycle 1 € Eg,o (with image 1 € E29)
such that u.(1®z) =z = pu,(x ® 1) for all x € E,., while associativity means that
the diagram

E:.(’* ® E:’* ® E* 5 Pr® E* * ® E:’*

1®HTJ, lur

* ok *, % Hr * ok
Err@E» — M

commutes, for each r > p. It is commutative if the diagram

E’;if * E* * E* * E:,*
E* *

commutes for each r > p, where
(e ®y) = (-1 o
for z € ES' and y € EMV.
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REMARK 5.4.7. Writing « - y for u,.(z ® y), the unitality, associativity and
commutativity conditions ask that

lz=z=2-1
(z-y)-z=z-(y-2)
vy = (—D)lly . 5
where |x| = s+t and |y| = u + v denote the total degrees of x and y. Note that in

the commutative case the Leibniz rule expressions for d,.(z-y) and d,.((—1)!*I¥ly.2)
are equal.

DEFINITION 5.4.8. Let '¢,: 'E, —'E,, "¢,: "E, —"E, and ¢,: E, — E, be
morphisms of spectral sequences, and let p,: ('E,,"E,) = E, and fi,: ('E,.,"E,) —
E, be pairings. Then the morphisms are compatible with the pairings if each
diagram

Hr
IE:,* ®/1E:,* E:’*

’¢7-®”¢7-l lm

[ nEES 11 Tk, % Hr MESEY
ErQ"EM —— E
commutes, for r > p. A ring morphism

¢r: (Erydra//fr) — (/ET’/dT’IMT)

of ring spectral sequences is a morphism ¢,.: E,. — 'E,. of spectral sequences that
is compatible with the pairings p, and ‘., and which satisfies ¢, (1) = 1.

DEFINITION 5.4.9. Let (E,,d., ity )r>p be a ring spectral sequence. A left mod-
ule spectral sequence over it is a spectral sequence (”E,,”d,) with a unital and
associative pairing

A: (BB — "B,

A right module spectral sequence is a spectral sequence ('E,.,’d,) with a unital and
associative pairing
pr: (B E) — 'E,.

Suppose that (E,, d;, ftr)r>p is commutative. An algebra spectral sequence over
it is a ring spectral sequence ('E,., d,,’ i, )r>p with a ring morphism n,: E, — 'E,
such that E, is central in 'E,.. This means that the diagram

T
E:,* ® /E:’* /E:’* ® E:’*
"77‘®1J( l1®7]7~
! I % 1 Tk, 1 %, % ! I, ®
E’!‘ Y lgr7 lyr7 ® E’!‘
IIJ/T /,U‘r
1 Tk, %

EY

commutes, for each r > p. If ‘i, is commutative, then 7, is automatically central.

DEFINITION 5.4.10. Let A** be a bigraded ring. We can view it as a ring
spectral sequence with E* = A**, for each r > p, with all differentials zero.
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A left A**-module spectral sequence is then a spectral sequence ("E,,d;)r>p
with each " EX* a left A**-module and each d, a A**-linear homomorphism. This
means that

dr(A-y) = (=)MX-d.(y)
for each A € A** and y € "E**. Here |\| denotes the total degree.

Likewise, a right A**-module spectral sequence is a spectral sequence (E.., d;)r>p
with each 'E** a right A**-module and each d, a A**-linear homomorphism. This
means that

dr(z-A) =d.(x) - A
for each A € A** and z € 'EF*.

A pairing p,: ('E,"E,.) = E, is A**-bilinear if g, (z - A®@y) = pr(z @ X+ )
for all x € 'EX*, A € A*, y € "E»* and r > p. We can then uniquely factor
1 through the tensor product over A**, i.e., over the coequalizer in the following
diagram.

1A,
™
IE:’* ® AF* ® //E:’* e /E:’* ® I/E:’* /E:,* ®A*’* I/E:,*

Pr®1

* %k
EY

REMARK 5.4.11. Usually, A** = A* is concentrated in filtration degree s = 0,
so that the total degree equals the internal grading of A*. This happens for the
Atiyah—Hirzebruch spectral sequence

B} = H*(X; M*) = M*(X)

for a multiplicative cohomology theory M, with A* = M*.

Even more frequently, A* = A is an ungraded ring, concentrated in internal
degree t = 0, hence in bidegree (s,t) = (0,0). This happens for the A-coefficient
cohomology spectral sequence

Ey" = H* (X5, Xs_1;A) = H(X; A)
for a filtered space. In this case, |A\| = 0, so left A-linearity has the usual meaning.

REMARK 5.4.12. The sum D, = 'd, ® 1 + 1 ® "d, defines a differential on
"E. @p~~"E,, of bidegree (r,1 — r). This does not in general make

(/ET QA== ”Era DT)TZP
a spectral sequence, because the cross product
'Er1 ®@pes "Eryy 2 H('E,,'dy) @pv- H("Ey,""d) = H('E, @p+» "Er, Dy)
is not in general an isomorphism. However, in situations where this is an isomor-
phism, a A**-bilinear spectral sequence pairing u,.: ('F,,”E,) — E, is the same
as a spectral sequence morphism p.,.: 'E, @+ "E, — E,.. By the Kiinneth theo-

rem |[ML63, Thm. V.10.1], this is always the case if A** is a bigraded field, e.g. if
A* is a graded field, or A is a field in the usual sense.

DEFINITION 5.4.13. Suppose that A** is (bigraded) commutative. A A**-
algebra spectral sequence is a ring spectral sequence (E,, d, fi,)r>p such that E, is a
A**-algebra, d,.(\-1) = 0 for each A € A**, and the isomorphism E, 1 = H(E,,d,)



5.4. PAIRINGS OF SPECTRAL SEQUENCES 107

is A**-linear, for each r > p. The ring pairing p, then factors uniquely through
the coequalizer structure morphism 7 as a A**-linear morphism

EX* Qpvx EXF — EXT
A pairing of spectral sequences induces a pairing of FE..-terms. Recall the

r-th (co-)cycle groups and r-th (co-)boundary groups from Lemma here in
cohomological indexing.

LEMMA 5.4.14. Let p,: ('E,," E,) = E, be a pairing of E,-spectral sequences.
Then
L " +
pp: By @ "E) — BT
restricts to pairings
ppt 22" 7Y — Z5t
pp: 'BE@"ZM — BETY
i 25 @ " BY — Byt
for all p < r < oo and (s,u), making the following diagram with exact rows com-

mute.

/Bf®/lz’g@lz’f®//3;{, /Z;S®I/Z;L lEﬁ@”E,}f 0

Mp@,upl MPJ J{#r

B;§+u Zf'm E;‘—&-u N

(Ezactness of the upper row follows from right exactness of the tensor product.)

PROOF. The cases p < r < oo are proved by induction on r. The case r =p is
clear, since 'Z5 ='E5 and 'B; = 0, etc. Suppose the results holds for some r > p.
Ifxe’Z: | andye€”Z! | then 'd.([z]) = 0 and "d,([y]) = 0 so

dr([pp(x @ y)]) = dr(pr([2] @ [y]))

= g (' ([2]) ® [y]) + (~1)1 (2] @ "dr([y])) = 0
by the Lelbnlz rule, which implies p,(z ® y) € Z:T}' C Z:**, and this defines
If x G ’BH_1 and y € ”Z »o1 then [z] = 'd.([2]) and "d,([y]) = 0, for some
z G /ZS T

@yl @ ) = dy () © [3])
= pr('de([2]) ® [y]) + (=1)* i ([2] ® " ([y]) = pr (i ([2]) © [1])
by the Leibniz rule, which implies [p,(z ® y)] = pr([] @ [y]) = p-('dr([2]) @ [y]) €
im(d,), so that p,(z ® y) € BSLY, and this defines p,: ‘B, ® "Z% | — BT},
The case x € 'Z:, | and y € “Bﬁ_H is very similar.
The case r = 0o, defining the pairing

fioo: "E5. @ "EY —s ESFU
follows by passage to (co-)limits. If z € 'Z3, C 'Z: and y € "Z% C "Z" then
pp(z®@y) € ZET™ for all r, hence p,(z®@y) € Z53". Ifx € 'BS andy € "ZY% C " Z"

then x € 'B: for some 7, so p,(z ® y) € Bst* C B, The case xz € 'Z5, and
y € "BY is, again, very similar. O
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We also formulate the definition of a pairing of filtrations from two such to a
third, but often all three filtrations are the same.

DEFINITION 5.4.15. Let (F*'G*),, (F*"G*)s and (F*G*)s be (decreasing) fil-
trations of the graded abelian groups 'G*, ”"G* and G*, respectively. A bilinear
pairing

v 'G*"G* — G*
is filtration-preserving if
v(F¥G* @ FY'G*) C Fst G*

for each (s,u). More precisely, this means that v(z ® y) € F*T“G* whenever
z € F¥'G* and y € F*'G*. Let

v FPYGY @ FY'Gr — FSTeGH
be the lift of v, making the diagram

FS/G* ® Fu//G* /G* ® //G*

Fs+uG* G*
commute. (In general, the upper horizontal arrow need not be injective.) There
are then uniquely defined homomorphisms
s FS/G* © Fu//G* . Fs-l—uG*
t st Futlnrs Fstutlrx
making the following diagram with exact rows commute.

(5.3)
F8+11G* ® Fu//G* Fs'G* Fu G
® — L PYGFQ FY'Q Foriigs © Furinge 0
FS/G* ® Fu+1//G*
Ju.§+1,71,®us,u+l v J{VS’“
Fs+uG*
s+u+1 vk N s+u v
F G Fstug e 0

(Exactness of the upper row follows from right exactness of the tensor product.)

DEFINITION 5.4.16. Suppose that 'E,. converges to 'G*, " E,. converges to ""G*
and E,. converges to G*. A spectral sequence pairing p,.: ('E,.,” E,.) — E,. converges
to a filtration-preserving pairing v: 'G* @ "G* — G* if the diagram

FS/G* Fu//G* S Fs+uG*
F5+1/G* ® Fu+1//G* Fs+u+1G*

% Iﬁ

/Ego ® //E(’L)Lo Hoo Eéju

commutes for all (s, u).

REMARK 5.4.17. Suppose that the filtrations of 'G*, ”"G* and G* are exhaustive
and degreewise discrete. Convergence of (u..), to v then lets us recover v: 'G* ®
"G* — G* up to filtration shifts. More explicitly, in total degrees n and m we
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assume that there are integers a/(n) and a”’(m) such that F*'G™ = 0 for s > da/(n)
and F*"'G™ = 0 for u > a”(m). This forms the basis for a descending induction
on (s,u), where we may suppose that

Vs—i—l,u_ Fs+llGn ® Fu//Gm N Fs+u+1Gn+m

Vs,u+1 . Fs/Gn ® Fu+1//Gm N Fs+u+1Gn+m
have been determined. Assuming that we have determined

Lo : /E(.;,)nfs ® //E;gmfu — Ei:u,n«%mfsfu ;
which is identified with

Fs/Gn Fu//Gm Feraner
: Fstlign Fut+lngm . Fstutl@ntm )
we can use diagram (5.3) to determine
Vs,u, FslGn ® Fu//Gm - Feraner

up to some indeterminacy. More precisely, any two possible choices of v** differ
by a composite of the form

—S,U

Fs/Gn Fu//Gm
Ferl/Gn ® Fu+1//Gm
L Fs+u+1Gn+m N Fs+an+m’

where f is any homomorphism. Having determined

Fs/Gn ® F’u.//Gm SN

Fs/gn ® Ful/Gm ﬁ} F‘9+an+m — Gn+m
for all finite s and u, we can then pass to colimits to obtain v: 'G"®"”G™ — G*t™,
since N
colimcolim F¥'G" @ F*'G™ = 'G"®"G™
S u
is an isomorphism, by the commutation of sequential colimits with tensor products.
((ETC: Reference for this algebraic fact?))

((ETC: Convolution product?))

5.5. Pairings of exact couples

Given (cohomological) exact couples ("A,’FE), ("A,”E) and (A, E), and a pair-
ing p: 'E®"E — E, Massey |Masb4l §3, §8] defined conditions that are essen-
tially equivalent to saying that pu = uq is part of a pairing (u,), of the associated
spectral sequences. These conditions are often not easy to check directly, but in
[Mas54]| §7, §9], Massey asserts that they can be verified in the case of a filtered
differential graded ring. In essence, the argument uses that these exact couples arise
from Cartan—Eilenberg systems, and the pairing arises from a pairing of Cartan—
Eilenberg systems. We shall therefore concentrate on this approach to pairings of
spectral sequences.






CHAPTER 6

Cartan—Eilenberg systems

6.1. Cohomological Cartan—Eilenberg systems

Recall from Section [3.5]the definition of a homological Cartan—Eilenberg system
(H,,n,0). Since our main examples of multiplicative spectral sequences are coho-
mologically graded, we now reformulate the definition in these terms, conforming
with [CE56|, §XV.7].

DEFINITION 6.1.1. A (cohomological) finite Cartan—Eilenberg system (H*,n, )
consists of graded abelian groups

H* (i, j)
for all integers ¢ < j, structure morphisms preserving degree
n: H*(i',j') — H"(i,])
for all integers 7 < 7, ¢’ < 7/ with ¢ < ¢’ and j < 5/, and connecting homomorphisms
§: H*(i,7) — H*"' (4, k)
for all integers ¢ < j < k. These must satisfy
(1) Functoriality: n: H*(i,5) — H*(i,j) equals the identity, and
nomn: H(",5") = H*(i',j") = H" (i, )

equals n: H*(i",j") — H*(i,7) for all integers i < j, ¢’ < j’ and i’ < j”
with i < i’ <i and j < §/ < ;.
(2) Naturality: The diagrams

H*(i/’j/)L)H*(j/’k/)
nJ Jn
wre 5 g
H (7”])4>H (]ak)
commutes, for all integers 4 < j < k and i/ < 7/ <k with ¢ <4, j < j§

and k < K'.
(3) Exactness: The sequence

N Gk L B k) < HY(y5) -2 H PG k) L

is exact, for all integers 1 < j < k.
DEFINITION 6.1.2. By an extended integer we mean an element of
{=o0}UZ U {0},

linearly ordered with —oo minimal and oo maximal.
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DEFINITION 6.1.3. An extended Cartan—Eilenberg system (H*,1n,9) is defined
as a finite Cartan—Eilenberg system, except that all references to “integers” are re-
placed with “extended integers”, and subject to the following additional condition.

(4) Colimit: For each extended integer j the canonical homomorphism
colim H* (i, j) — H*(—00, j)
3
is an isomorphism.

EXAMPLE 6.1.4. A homological Cartan—Eilenberg system (H.,,7,0) gives rise
to a cohomological Cartan—Eilenberg system (H*,n,d), and vice versa, by setting

H"™(i,j) = H_n(=j, —1)
for all (extended) integers i < j. The structure homomorphism
n: H'(7, ") — H"(i, j)
equals n: H_,(—j',—i") = H_,(—j,—1i), while the connecting homomorphism
§: H™(i,7) — H" ' (j, k)
equals 0: H_,,(—j,—i) = H_p_1(—k,—7).
ExXAMPLE 6.1.5. Let (F*C*)s; be a decreasing filtration of a cochain com-
plex C*. The associated finite Cartan—Eilenberg system is given by
H*(i,j) = H*(F'C*/FIiC*)
for integers i < j, and n: H*(¢',j') — H*(i,j) is induced by the chain map
Fi'C*/Fi'C* — FiC*/FIC*. The connecting homomorphism associated to the
short exact sequence
0 — FiC*/F*C* — F'C*/F*C* — F'C*JFIC* -0

defines §: H*(i,j) — H**1(j, k). Suppose also that the filtration exhausts C*.
Letting F~°C* = C* and F*°C* = 0, the same expressions define an extended
Cartan—Eilenberg system with H*(s,00) = H*(F*C*) and H*(—00,00) = H*(C*).

EXAMPLE 6.1.6. Let (X;)s be an increasing filtration of a space X, so that
F*C*(X) = C*(X, Xs_1) defines a decreasing filtration of C*(X). The associated
finite Cartan—Eilenberg system is given by

H*(i,j) = H*(F'C*(X)/FC*(X)) = H"(X;-1, Xi1)

for integers ¢ < j, and n: H*(¢',j') — H*(i,j) is induced by the inclusion of
(Xj—17Xi—1) into (Xj’—laXi’—l)- The morphism 0: H*(l,j) — H*+1(j, k) equals
the connecting homomorphism 6: H*(X;_1,X;_1) — H*™'(Xy_1,X;_1) in the
long exact cohomology sequence of the triple (Xp_1,X;_1,X;—1). Suppose also
that X,_1 = 0 for some finite a, so that F*C*(X) = C*(X). Letting X_o = 0
and X,, = X the same expressions define an extended Cartan—Eilenberg system
with H*(s,00) = H*(X, Xs-1) and H*(—00,00) = H*(X).

REMARK 6.1.7. Tt follows from exactness that H*(j,j) = 0 for each j. We can
visualize a cohomological extended Cartan—Eilenberg system as a triangular dia-
gram in the extended (i, j)-plane, with a connecting homomorphism 6: H*(i,j) —
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H**1(j, k) for each rectangle with corners at (i,75), (i,k), (j,7) and (j,k). The
colimit condition specifies the left hand column in terms of the rest of the diagram.

~ H*(—00,00) ¢—— ... 4—— H*(i,00) 4—— ... —— H*(j,00) —— ...
>
///7‘ J
- s/
~ /
— M
- v
—~ , 6
s -7 7 l
k H*(—o0, k) +—— ..%H*(i,k)%...ﬁH*(]’,k)%O
4 -7 -
// /6//‘_////////5/
/i’/’,/ VR
j H*(~00,]) T b e H*(i, ) 0
0
0
—00 i J

As in the homological case there are two exact couples associated to an ex-
tended Cartan—Eilenberg system, generating the same spectral sequence, and we
concentrate on the one given by the top row and the superdiagonal.

DEFINITION 6.1.8. To each cohomological extended Cartan—Eilenberg system
(H*,n,d) we associate the (top) cohomological exact couple (A%, E®) given by the
diagram

e H*(s,00) ¢—— H*(s + 1,00) +—— ...

where

(A%)" = H*(s,00)
(E*)*=H*(s,s+1)
with as and 8, given by 7, while v, is given by d.

The spectral sequence (E,,d,),>1 associated to (H*,n,d) is the spectral se-
quence associated to the exact couple (A%, E®),.

The following two propositions and four lemmas are given by reindexing the
corresponding results from Section [3.5
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PROPOSITION 6.1.9. In the spectral sequence (E,,d,),>1 associated to an ex-
tended Cartan—Filenberg system (H*,n,0) we have

Zy =6~ im(y: H (s +1,00) = H* (s +1,00))
=ker(6: H*(s,s+1) - H* (s + 1,5+ 1))
=im(n: H*(s,s +r) = H"(s,5+ 1))

and
B; =nker(n: H*(s,00) = H*(s —r+1,00))

=im(s: H* (s —r+1,5) — H*(s,s + 1))
=ker(n: H*(s,s+1) > H*(s—r+1,s + 1))

so that n induces an isomorphism
E? i>im(77: H*(s,s4+r) > H*(s—r+1,s+1)).
The d.-differential is given by
ds: BS — E5TT
[z] — [6(2)]
where z € H*(s,s + 1), z =n(z) € H*(s,s+ 1) and 6(z) € H* (s +r,s +r+1).
Proo¥r. For the r-th cocycles,
S Him(n: H* (s +r,00) = H* (s +1,00))
=0 ker(n: H* (s +1,00) = H* (s + 1,5+ 1))
=ker(6: H*(s,s+1) = H* " (s + 1,5 +7))
by exactness and naturality.

H**(s+1,00) ¢—— H*+t1(s 4+ 1, 00)

H*(s,s+1) 0

For the r-th coboundaries,

nker(n: H*(s,00) = H*(s —r+1,00))
=nim(0: H* (s —r+1,5) = H*(s,00))
=im(s: H* (s —r+1,5) — H*(s,s + 1))
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for the same reasons.

H* (s—r+1,s) 0

Considering the composition 1" o’ (where the primes only serve to keep the
two homomorphisms apart),

H*(—00,5+ 1) ¢ H*(s —r+ 1,5 + 1) &— H*(s,s + 1) 0

A

H* Y(s—r+1,s)

o

the isomorphism
' H(s,5+ 1)/ kex(n") — im(y")

restricts to the asserted isomorphism
Ef = Z3/B; = im(n)/ ker(n") —> im(n" o 1)
cCi

Note that we already know that B = ker(n”)
ker(n”) = ker(n").

If z =n(z) € Z5 C H*(s,s + 1) with z € H*(s,s + r), then §(z) = n(y) €
H**(s4+1,00) with y = () € H*T(s+r,00), by naturality. Hence n(y) = §(z) €
H**(s 4+ 7, s+ r+ 1), also by naturality. Thus d2([z]) = [n(y)] = [6(2)].

m(n’) = Z%, so that im(n') N

H**(s+1,00) ¢—— H* (s + r,00)

|

H*  (s+rs+7r+1)
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LEMMA 6.1.10. The colimit
G* = H*(—00,00) & colsimH*(s, 00)
is exhaustively filtered by
F*G* =1im(n: H*(s,00) = H*(—00,00)).
LEMMA 6.1.11. Consider an extended (H*,n,0) such that

o HY(s5,00) - H*(s41,00) ¢ ...

is degreewise discrete. Then
75 =ker(0: H*(s,s +1) = H* (s +1,00))
=im(n: H*(s,00) = H*(s,s + 1))
and the filtration (F*G*)s is degreewise discrete.
PROOF. If H""1(i,00) =0 for i > b= b(n + 1) then
ker(6: H"(s,s +1) = H" "1 (s +1,00)) = ker(§: H"(s,54+1) — H" " (s4+1,5+7))
for all s +r > b, i.e, for all r > b — s, so (Z5,)" equals this common value of
(Z7)". 0
LEMMA 6.1.12. Consider any extended (H*,n,6). Then
B: =im(§: H* !(—o00,s8) — H*(s,5+ 1))
=ker(n: H*(s,s+1) » H*(—o00,s+1)).
Proor. The union B3 = colim, B; equals
co£imker(n: H*(s,8+1) = H*(s—r+1,s+1)) 2 ker(n: H*(s,s+1) = H*(—00, s+1))
since H*(—o00,s+ 1) & colim, H*(s —r+1,s + 1). O

LEMMA 6.1.13. Consider any extended (H*,n,d). There is a preferred isomor-
phism
im(n: H*(s,00) = H*(s,s+1)) _ F°G”
ker(n: H*(s,s +1) = H*(—oo,s+ 1))  Fst1G*

for each s € 7.

PROPOSITION 6.1.14. Let (H*,n,0) be an extended cohomological Cartan—Eilenberg
system, with associated spectral sequence (E,,d;),>1 and filtered target G* = H*(—00, 00).
(1) There is always a preferred injective homomorphism

FSG* C Es,*
PG T

which is an isomorphism if Z5, = im(n: H*(s,00) — H*(s,s+ 1)).
(2) In particular, if the sequence
o HY(s5,00) - H*(s+1,00) ¢ ...
is degreewise discrete, then ( is an isomorphism and the spectral sequence
EV = G*

COnverges.
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SKETCH PROOF. Consider the following diagram, with G* = H*(—o00, 00).

G* <i+§H*(s,oo) —  H*(s41,00)
>
BSJ/ //'Y/s
H*(s,s4+1)

The maps is and B, induce isomorphisms
FsG* =~ H*(s,00)

= =, ker(yy)
Fst1G* im(ay) + ker(is) Bs ker(iy)

The inclusion ker(v;) C Z5, and identity 8; ker(is) = B3, then give the inclusion

ker(vs) Z3
Bsker(is) — B3,

—ES.

6.2. Pairings of Cartan—Eilenberg systems

We can now define a pairing of cohomological Cartan—Eilenberg systems, fol-
lowing Douady’s presentation [Dou58] in the Cartan seminar.

DEFINITION 6.2.1. Let ("H*,n,4), ("H*,n,0) and (H*,n,d) be finite cohomo-
logical Cartan—Eilenberg systems. A pairing p: ((H*,” H*) — H* of finite Cartan—
Eilenberg systems is a collection of degree-preserving homomorphisms

pr: 'H*(s,8+71)@"H* (uyu+7r) — H (s +u,s +u-+r)

for r > 1 and s,u € Z. These are required to satisfy the following two conditions.
(SPP I) Each square

/H*(S/,S/+T/)®NH*('U;,7UI+T/) Hort H*(Sl+u/’5/+u/+7,/)
-| [
"H*(s,s+7) @ H* (u,u+ 1) ——— H*(s + u, 5 +u+7)

commutes, forr > 1,7 > 1,s < s, u </, s+r < s'+r’ and u+r < u'+7’.
(SPP II) In each (non-commutative) diagram

0
’H*(3,5—|—7‘)®”H*(u,u—|—7‘)&’H*(s,s—kl)®”H*(u+r,u—|—r—|—1)

\
5®n H*(s+u,s+u+r) m
\
'H*(s+r,s+r+1)@"H*(u,u+1) — s H*(s +u+r,s+u+r+1)

with » > 1 and s,u € Z, the diagonal composite equals the sum of the
two outer composites:

Spr = (6 @n) + i (n®90).
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REMARK 6.2.2. In terms of elements © € '"H*(s,s +r) and y € "H*(u,u + r),
the spectral pairing condition (SPP II) asks that

8z y) =0d(x) ny) + (=)*n(x) - 8(y)

where we write - for the pairings p, and w1, and |z| equals the total degree of z.
In other words, |z| =n if © € "H™(s, s+ r). This follows from how é ® n and n ® §
are defined to act on = ® y, since 17 has degree 0 and § has degree 1.

THEOREM 6.2.3 ([Dou58|, Thm. IT A]). A pairing u: (H*,”"H*) — H* of finite
Cartan—FEilenberg systems induces a pairing p,: (E.," E;) = E, of the associated
spectral sequences, with

pi: By ®"EY — Bt
equal to
pr: 'H*(s, 8 +1) @ "H*(u,u+1) — H* (s +u,s +u+1).

REMARK 6.2.4. Recalling Definition this part of Douady’s theorem as-
serts that

pr: "B @"E} — EZTY
for each r > 1 satisfies the Leibniz rule
doptr = . ('dr @ 1) + p-(1 ®"d,)
d(z-y) ="de(2) -y + (=1)"z - "d, (y)
for x € 'E,. and y € "E,., and that p,11 is induced by u, in the sense that
prr([z] @ [y]) = [ur(z @ y)]
in H(E,,d,) % E,11, where 'd,.(z) = 0 and "d,(y) = 0.

((ETC: Douady writes (in French): “The demonstration consists of a long series
of verifications that the reader (if there is one) will do himself if he wishes.”))

((ETC: As noted by Sebastian Goette (MathOverflow 2016), less than (SPP I)
is needed for this result.))

PROOF. We prove this by induction on r > 1, using the diagram below.

"H*(s,s+1) @ "H*(u,u+1)

TR

n®n H*(s+u,s+u+1)

}
n®s

"H*(s,s+7r)"H*(u,u+r) ——— 'H*(s,s + 1) @ "H*(u+r,u+r—+1)

T

o@n H*(s4+u,s+u+r) 11

I

"H*(s+r,s+r+ 1)@ "H*(u,u+1) —— H*(s +u+r,s+u+r-+1)
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Classes [z] € 'E? and [y] € "E" are represented by r-th cocycles

r=n(z)e'Z C'H*(s,s+1)

y=n(w) €"Z C"H"(u,u+1),
with z € "H*(s,s +r) and w € "H*(u,u + r). Then p,.([z] ® [y]) € E5T" is the
class of

wm(r®y) € Z5T C H*(s+u,s +u+1),
which we can write as n(u,(z ® w)) with p,. (2 @ w) € H*(s + u,s +u + 7). Hence
we can calculate d,.(u,([x] ® [y])) € ESTT" as the class of
S(pr(z@w)) € ZETT C H (s +u+rs+u+r+1).

This equals the sum of

(@ ©n)(z®w) =p(d(z) ©y)
and
(@ 0)(z ®w) = (—1)* (2 © §(w)),
where |z| = |[z]|. Here §(z) € '"H*(s+r,s+7r+1) represents 'd,([z]), so p1(6(z) ®y)
represents u,("d,([z]) @ [y]) € EST**". Similarly, 6(w) € ”"H*(u,u + r) represents
"d,([y]), so p1(z ®6(w)) represents p,([z] ®"d-([y])) € BT+, Hence d,(pr([2] ®
[y])) equals the sum

pr ("l ([2]) @ [y]) + (—1)|[$”ur([x] ®"d([y)) € EsHetT

as claimed.

Having proved that p; restricts to define u, on E,.-classes for each r > 1, it
follows that u, induces p,41 upon passage to homology with respect to d,., since
both are calculated from p;. |

((Note that (SPP II) relates triangulated structure to monoidal structure, and
that the precise interaction between these notions is not well axiomatized [May01].
Higher category theory may give a cleaner presentation of this interaction.))

DEFINITION 6.2.5. Let ("H*,n,9), ("H*,n,d) and (H*,n,d) be extended coho-
mological Cartan—Eilenberg systems. A pairing p: ((H*,”"H*) — H* of extended
Cartan—FEilenberg systems is a pairing (u,.) of the underlying finite Cartan—Eilenberg
systems, together with degree-preserving homomorphisms

Poo: 'H*(s,00) @ " H*(u,00) — H*(s + u,00)
for s,u € Z, satisfying the following additional condition.

(SPP III) The squares
"H*(s,00) ® " H* (u, 00) ——=— H*(s + u, 00)
] [
"H*(s,s +7r)@"H*(u,u+r) L)H*(s—&-u,s—ku—i—r)
and
"H*(s',00) @ "H* (v, 00) &H*(s’—i—u’,oo)

"H*(s,00) ® " H*(u, 00) —=— H*(s + u, 00)
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commute, for r > 1, s < s’ and u < v'.

In other words, condition (SPP III) extends (SPP I) to the case ' = oo and
1 <r < oo, where s + 00, u + o0 and s + u + oo are interpreted as oo.

LEMMA 6.2.6. Given a pairing u: (H*,"H*) — H* of extended Cartan—
Eilenberg systems, with filtered target groups

'G* ="H"(—00,0)
"G* =" H*(—00,0)
G* = H*(—00,00)
there is a unique filtration-preserving pairing
v:'GF "G — G*
making the diagrams

"H*(s,00) ® "H*(u, 00) —= H*(s + u, %0)

Lo

F3'G* @ FY' G — 2 — pstug*
/G* ® //G* v G*

commute for all s,u € 7Z.

PRrROOF. The isomorphisms colimg’'H*(s,00) = 'G* and colim,, " H*(u, 00) =
"G* induce an isomorphism

colim’H* (s, 00) ® "H* (u, 00) — 'G* @ " G*
S,u
so v is the canonical map induced by the composites
"H*(s,00) @ " H*(u,00) 2= H* (s 4 u,00) — G*,

which are compatible by the second part of (SPP III). This makes the outer rectan-
gle commute. The tensor product of the defining surjections 'H*(s,00) — F*'G*
and " H*(u,00) — F“’G* gives the surjection 'H*(s,00) ® "H*(u,00) = F*'G* ®
Fu"'G* in the left hand column, whose kernel maps to zero in F¥T*G* C G*. Hence
there is a unique homomorphism v** making the upper square commute. It follows
that the lower square commutes, by the stated surjectivity. O

PROPOSITION 6.2.7. Let "H*,n,90), ("H*,n,0) and (H*,n, ) be extended Cartan—
Filenberg systems with associated spectral sequences ('E,.,'d,.), ("E,.,"d,) and (E,,d,)
converging to 'G*, "G* and G*, respectively. Let

,LL: (/H*,/IH*) — H*
be a pairing of extended Cartan—FEilenberg systems. Then the associated spectral
sequence pairing

wr: (E"E) — ET
converges to the filtration-preserving pairing

v 'G* "G — G*.
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PrOOF. We show that the lower square in the diagram

"H*(s,00) ® " H*(u, 00) = H*(s + u, 00)

FS/G* ® Fu//G* L Fs+uG*

Fs/G* Fu//G* 5o Fs+uG*
Fs—o—l/G* ® Fu+1//G* Fs+u+1G*

C®C¢ 9

Hoo
/‘EvgO R ”Eé‘o E;—J‘ru

commutes, where each ( is given as in the sketch proof of Proposition [6.1.14] The
upper and middle squares commute by the definition of v** and 7", respectively.
By the surjectivity of the upper and middle left hand maps, it suffices to prove that
the outer rectangle commutes. In view of the construction of ¢, the outer rectangle
can instead be factored as follows.

"H*(s,00) ® "H*(u, 00) = H*(s + u, 00)

L

/ZgO ® //Zgo Zg(—)&-u

l |

Moo
lEgo ® //Ego N E;(—)‘ru

Here the lower square defines pio in terms of the restricted pairing p;|, and the
upper square is part of the following commutative diagram.

/H*(S,OO) ®NH*(U,OO) L)H*(S"_ua OO)
lzgo ® NZ;LO pl Zgg»u

I |

"H*(s,5+1) @ "H*(u,u+1) ——=— H*(s +u, s + u+1)

O

REMARK 6.2.8. In the presence of (SPP I), condition (SPP II) follows from the
stronger condition below.
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(SPP I1+) In each (non-commutative) diagram

"H*(s,s+7r)@"H*(u,u+1) 1Lﬁ)’H"‘(s,s—i—r) Q"H*(u+ r,u+2r)

Hr

51 H*(s+u,s+u+r) Hr
\
"H*(s 47,54 2r) @ "H* (u,u + 1) ——— H*(s + u 47,5 + u + 2r)
with 7 > 1 and s,u € Z, the diagonal composite equals the sum of the
two outer composites:
Sptr = (0@ 1) + pr(1®6).
((ETC: This appears in Neisendorfer’s Memoir [Nei80].))

6.3. Filtered differential graded rings

Many multiplicative Cartan—Eilenberg systems, with associated multiplicative
spectral sequences, arise from filtered differential graded rings.

DEFINITION 6.3.1. The tensor product of two cochain complexes (‘C*,’§) and
("C*,"d) is the total complex
C* — /O* ® llc*
with
Ck — @ /Cz‘ ®”Cj,
i+j=k
equipped with the differential 6 =’ @ 1 +1® "4, given by
Sz @y)="0z)©y+ (~1)"z@"3(y),

where |z| = i is the total degree of x € 'C*. We note that §6 = 0, so that (C*,J) is
a cochain complex.

The wunit cochain complex is Z, concentrated in degree 0.

The twist isomorphism

e Ydon i doil-Xox
is the chain isomorphism given by
rr@y) = (-)"Wyow.

LEMMA 6.3.2. The tensor product, unit complex and twist isomorphism define
a symmetric monoidal structure on the category of cochain complezes.

PROOF. This means that the tensor product is associative, unital and commu-
tative, up to coherent isomorphisms. The associativity isomorphism

(lc* ® //O*) ® lllc* [ lc* ® (llc* ® ///O*)

maps (zRyY) Rz toz® (Y 2).
The unitality isomorphisms

Z2Cr=2C*"2(C"QL
identify 1 ® z, x and x ® 1.
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The commutativity isomorphism is given by the twist isomorphism.
The required coherence diagrams are listed in [ML71, §VII.1 and §VIL7]. O

The tensor product lets us define pairings 'C* @ "C* — C* of two cochain
complexes to a third. We concentrate on the case when the three cochain complexes
are the same.

DEFINITION 6.3.3. A differential graded ring is a cochain complex (C*,§)
equipped with a unital and associative cochain homomorphism

w: C*C* — C*.

In other words, p makes (C*,d) a monoid in the monoidal category of cochain
complexes.

More explicitly, 4 maps z @y € C" ® C™ to pu(zr Qy) = -y € C*™™ and
satisfies the Leibniz rule

8(zy) =6(x) y+ (—)lz-5(y).

Furthermore, there is a cocycle 1 € C° with -1 = = 1.z for all =, and
(x-y)-z=a-(y-2) for all z, y and z. In categorical terms, associativity and
unitality ask that the diagrams

(C*®C0C* — = s C*® (C* ® C*)
u®1l k@#
Crocr—L ot Core0or

and

zecr Lo acr < cr o
J/u
O+
commute, where n: Z — C* maps 1 € Z to 1 € C*.

1R
IR

EXAMPLE 6.3.4. The singular cochains C*(X) on a space X form a differential
graded ring, with respect to the cup product

U: C*(X) @ C*(X) — C*(X)
given by the Alexander—Whitney formula.

LEMMA 6.3.5. The cohomology H*(C*) of a differential graded ring (C*, 6, )
is a graded ring.

PrOOF. For cocycles z € C™ and y € C™ the product of their cohomology
classes [z] € H"(C*) and [y] € H™(C*) is the cohomology class

[2] - [y] = [z - y] € H"T™(C™)

of the product = -y = p(x -y). This is a cocycle by the Leibniz rule, and its
cohomology class only depends on the cohomology classes of x and y, by further
applications of the Leibniz rule. O
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REMARK 6.3.6. If C* is a complex of A-modules for some commutative ring A,
and p is A-bilinear, we say that C* is a differential graded A-algebra, often abbre-
viated to a “DG algebra”. The cohomology H*(C*) is then a graded A-algebra.
The further abbreviation “DGA” can be confusing in this context, since a “DGA
algebra” means a “differential graded augmented algebra”, in the terminology from
the Cartan seminar. We will discuss augmentations later, in the context of Hopf
algebras.

REMARK 6.3.7. There is more structure in the cohomology of a differential
graded ring than this graded ring structure, including a variety of Massey products.
If a =[z], b=[y] and ¢ = [z] satisfy a-b=0 and b- ¢ =0 in H*(C*), then we can
write 2 -y = 6(u) and y - z = §(v), for some cochains u and v. The expression

w=u-z— (=) v
then defines a cocycle, since
d(w)y=6(u)-z—x-d(v)=(z-y) - z—x-(y-2)=0.
Its cohomology class
[w] = [u-z— (=1)*lz -] € (a,b,¢)

then defines an element in the Massey product (a,b,c¢) C H™(C*), where n =
|a| + |b] + || — 1. Different choices of cobounding classes u and v may give different
classes [w], and the Massey product equals the set of all possible such values.
((ETC: This is not the most standard sign convention.)) ((ETC: Give reference to
Borromean rings example?))

DEFINITION 6.3.8. A differential graded ring (C*,d, ) is commutative if the
diagram

N

CeCr ———— "Rl
commutes, i.e., if z -y = (=1)1#Wly .z for all ,y € C*.

REMARK 6.3.9. The cohomology of a commutative differential graded ring is
a (graded) commutative ring, but there are natural examples of non-commutative
differential graded rings, such as the cochains C*(X) on a space X, whose coho-
mology is nonetheless (graded) commutative. There are more flexible notions of
commutativity up to chain homotopy, and higher chain homotopies, that are often
more appropriate. An F, differential graded ring satisfies “homotopy everything”
conditions. These lead to the construction of power operations in the cohomology
of these differential graded rings, or algebras, of which the Steenrod operations in
mod p cohomology are prime examples.

We can also consider pairings of two filtered cochain complexes to a third.
Again, we concentrate on the case when the three filtered cochain complexes are
the same.

DEFINITION 6.3.10. A filtered differential graded ring is a cochain complex
(C*,§) equipped with a decreasing filtration (F*C*)s and an associative and unital
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cochain morphism p: C*®C* — C*, such that the product preserves the filtration.
In other words, the image of the composite

FsC* @ F'C* — C* @ C* 15 ¢~
is contained in F$t“C*, for all s,u € Z.
LEMMA 6.3.11. Let C* be a filtered differential graded ring. There is a unique

chain map p*>* making the diagram

FsC* @ FuCr Ly pstuce

J J

creCr —r
commute, for each pair (s,u). These induce a unique chain map p, making the

diagram

FsC* @ Feos — 1y pstucs

| |

FsC* ® e pe  FSTUCH
FerrC* Fu+rc’* Fs+u+rC*
commute, for allT > 1, s and u.

Proor. Both p*t"% and p*%*" take values in F*T4+rC*, O

A pairing of filtered cochain complexes induces a pairing of finite Cartan—
FEilenberg systems and the associated spectral sequences. Most of the following
result is given in [Mas54, §7, §9], with proofs left to the reader.

PROPOSITION 6.3.12. Let C* be a filtered differential graded ring, with associ-
ated finite Cartan—FEilenberg system

H*(i,j) = H*(F'C*/FIiC*)
for integers i < j. The pairing p induces a pairing
pr: H*(sy s+ 1)@ H (u,u+r) — H (s +u,s+u+r)
of finite Cartan—FEilenberg systems, and a pairing
pr: B2 @ B — E5T
of the associated spectral sequences, making (E,,d,)y>1 a ring spectral sequence.
The Ei-term is given by
Ef’t = H (PO PO
and the F1-pairing
pi: H*(FEC*/FsH1C*) @ H*(F C* JF'T1C*) — H*(FeteC* JFstetior)
is given by
pa: [m(2)] @ [7(9)] — [7p> (2 © 7)),
where w: F5C* — FSC*/FsTIC*| ete.
If the filtration (F*C*)4 exhausts C*, then (u,.) and
loo: H*(s,00) @ H*(u,00) — H*(s + u, 00)
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define a pairing of extended Cartan—FEilenberg systems, with H* (s, 00) = H*(F*C™*).
The pairing of spectral sequences converges to the filtration-preserving pairing
w: H*(C*) @ H*(C*) — H*(C™),
where G™ = H"™(C™) is exhaustively filtered by F*G™ = im(H"(F*C*) — H"(C")),
for s € Z.
Proor. The chain homomorphism
pr: F5C*/FPSTTC* @ FUC* JFYTTC* — FStuC* Jpstutrox
and the cohomology cross product induce the finite Cartan—Eilenberg system pair-
ing
L : H* (FSC*/FS+TC*> ® H* (Fuc*/Fu+rC*)
—5 H*(F*C*/F*t"C* @ F“C* /F"T"C*)
m H*(Fs+uc*/Fs+u+rC*) )

In the extended case we set F*°C* = 0 and F'~>°C* = C*, and the chain homo-
morphism p** induces

fioo: H*(FSC*) @ H*(F"C*) =5 H*(F*C* @ F*C*) " H*(FstuC*).

We must confirm conditions (SPP I) and (SPP II) in the finite case, and condi-
tion (SPP III) in the extended case.
The diagram

F¥C* @ Y o e ' o

|

F3C* @ Fror 2 pstucs

of cochain complexes commutes, for s < s’ and v < ¢/, and induces a commutative
diagram
Fs/c* Fu/c* L Fs/+u’0*
Fs'+r' O ® Fu'+r' O Fs’+u/+r O

| I

Fsc* Fucv* L Fs+uC*
Fs+rc* ® Fu+rc* " Fs+u+rc*
of quotient complexes, forr > 1,7 > 1, s+r < s’ +7" and u+r < o' +7r’'. Passing
to cohomology, we obtain the square required to commute in (SPP I).
Let Z € F*C* and § € F“C* lift cocycles x € F*C*/F*T"C* and y €
FuC*/F"t"C*, representing classes [z] € H*(s,s +r) and [y] € H*(u,u + r).
Note that §(%) € F*+t"C**! and §(j) € F*F"C*+L. The product

5= Ms,u(i, ®g) c Fs+uC*

then lifts
Feruc*

2= (T ®Y) € momm e
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representing [z] = pr([z] ® [y]) € H*(s + u, s + v+ r). Its image
5([2]) = dur(z] @ [y) € H M (s +utrs+utr+1)

under the connecting homomorphism is then given by the class [rd(Z)] of the image
of the coboundary
5(2) = op*M (i @ §) € Fetutroxtt
under the projection 7: FstutrCxl — pstutrCstl/pstutr+los+l By the
Leibniz rule,
ou(E @ §) = p(8(&) ©§) + (-1)1"u(@ @ 6(7))
in C*, so [md(2)] equals the sum of

[mu** ™ (8(2) @ §)] = [ (76(2) @ 7(5))] = pa (8([2]) @ n([y]))
and (1)1 = (=1)l=l = (=)=l times

[ (2 @ ()] = [pa (7(2) @ w0 (5))] = pa (n([]) @ 3([y])) -
This proves that du, = p1(6 ® n) + p1(n ® §) when evaluated on any [z] ® [y], as
demanded by (SPP II).
Letting F>°C* = 0, the proof of (SPP I) extends as stated to the cases with

" = oo and r > 1 or r = oo, where we interpret n + oo as oo for all integers n, and
this proves (SPP III). O

REMARK 6.3.13. If we replace m with the canonical projection 7: F*C* —
FsC*/Fst7C*, so that 7(Z) = z and 7(g) = y, then the above proof of (SPP II)
proves the stronger form (SPP II+) from Remark

6.4. Multiplicative Serre spectral sequence

REMARK 6.4.1. We return to the situation of a fiber sequence F — E 5 B.
Serre’s original construction [Ser51| of his spectral sequence used singular cubes
o: I" — E to define a cubical chain complex (A.(F),d) (say) with homology
calculating H,(E), which could be increasingly filtered by saying that o lies in
F,AL(E) if po: I — E — B factors through the projection I"™ — I® to the s first
coordinates. Dually, the cubical cochain complex (A*(E),d) calculating H*(E) is
decreasingly filtered by saying that a cochain lies in F'* A*(E) if it vanishes on chains
of filtration < s — 1.

There is a cup product making A*(E) a differential graded ring, and the de-
creasing filtration (F*A*(E)), respects the product, making A*(E) a filtered dif-
ferential graded ring. Hence the associated spectral sequence

E' = H¥(B; #Y(F)) =, H*TY(E),

which is the cohomology Serre spectral sequence for p: E — B, is a ring spectral
sequence. The pairings of E;- and Fs-terms are given in terms of the cup products
in A*(B), H*(B) and H*(F), and the spectral sequence pairing converges to the
cup product in H*(E).

Instead of working with cubical chains and cochains, we will filter the singular
cochain complex C*(E) by the subcomplexes F*C*(E) = C*(E, Es_1). These are
not strictly respected by the cochain level cup product, because the cross product
of two cochains vanishing on Fs_; and F,_; will vanish on all chains in Es_; X F
and in E x E,_1, but usually not on all chains in F;_; x FUFE x E,_1. Hence
C*(FE) is not a filtered differential graded ring, and we must give a different proof
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of the multiplicativity of the cohomology Serre spectral sequence. For this we will
adapt [Whi78| §XII1.8], making use of excision isomorphisms and the formalism
of pairings of Cartan—Eilenberg systems.

DEFINITION 6.4.2. Let p: E — B be a fibration, with B a CW complex. Let
E, = p~1(B®), with E, = () for —0o0 < s < 0 and E,, = E. Define a cohomological
extended Cartan—Eilenberg system H* = H*(p) by

H*(Z7.]) = H*(Ej—hEi—l)
for —oo < i < j < oo, with §: H*(i,j) — H**'(j, k) equal to the connecting
homomorphism

§: H (Ej_1,E;i1) — H* T (Ey_1,E;_1) .
The associated spectral sequence is the cohomological Serre spectral sequence
Byt = By (p) =, H'(B)
with
Bt = Coy(B; #N(F))  and By’ = HY(B; #'(F)).

PROPOSITION 6.4.3. Let p’': B/ — B’ and p’": E"” — B" be fibrations, with B’
and B" CW complexes. Let p' x p”": E' x B — B’ x B" be the product fibration.
There is a natural pairing of extended Cartan—FEilenberg systems

pr (H*(p"), H*(p")) — H*(p' x p")
with components
pr: H (B 1, By y) @ HY (B oy, By )
4) H*(E,—i-r 1 X EZ—H’ 13E;—1 X E//—i-r 1 UE9+T 1 X EZ 1)
— H*((El E/I)erqurfla (E x E )s+u71)
and
froo: H*(E', E,_y) ® H*(E", E;/_,)
S H*(E'x E"E._ | x E'"UE' x E!'_))
— H*(E' x E",(E' x E")ssu_1).
PROOF. To simplify the notation a little we restrict to the case where p’ =
p” =p: E — B, but the general case is easily recovered by working with p’ in the

first factor and p” in the second factor of each product.
The product B x B has the CW structure with k-skeleton

(B x B)(k) — U B® « BU)

itj=k
We lift the skeleton filtration along p x p to define the filtration on E x E with
(ExE)jy= |J EixE;.
i+j=k

We then have inclusions
(B x B)ttv=1 ¢ B6=1 « BUB x B™1)

and
(E X E)s—‘,—u—l C Es—l x EFUFE X Eu—l
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of subspaces of B x B and E x E, respectively. This defines

fioo: H*(E,Es_1) @ H*(E,Ey_1) = H*(E x E,E,_1 x EUE x E,_1)
- H*(E X Ea (E X E)erufl)

as the composite of the cohomology cross product and the (now) evident restric-
tion map. The definition of u, for finite > 1 is a little more elaborate. The
subcomplexes

Blst+r=1)  glutr—1)

and
(Bx B)),, = U B® x BY

8,U,T
1+j=s+u+tr—1
i<sorj<u

of B x B have intersection
B(sfl) ~ B(u+r71) UB(errfl) ~ B(ufl)
and union
B(s+r—1) ~ B(u+r—1) U (B ~ B)(s+u+r—l) ]
Note that (B x B)t“=1) c (B x B)) Likewise, the subspaces

S,U,T
Eerrfl X Eu+r71

and
(ExE),, = U E; x E;

S,U,T
i+j=s+utr—1
i<sorj<u

of ¥ x E have intersection
Es—l X Eu+r—1 u Es+r—1 X Eu—l
and union
Es+r—1 X Eu+r—1 U (E X E)s+u+r—1 .
Furthermore, (E X E)s1y—1 C (E x E)} See Figure Hence there is an

s,u,r*
excision isomorphism

H*(E8+T71 X Eu+r71 U (E X E)erqurfly (E X E)/\ )

S,u,T
— H*(Es+r—1 X EU+T—17ES—1 X Eu+r—1 U Es+r—1 X Eu—l) 5

and a restriction homomorphism

H*(Es-‘rr—l X Eu+r—1 U (E X E)s-i—u-i—r—la (E X E)/\ )

S,u,r

— H*((E' X E)stutr—1,(E X E)su-1).

The pairing p, equals the composite
H*(Es+r—la Es—l) X H*(Eu+r—1; Eu—l)

4 H*(Eerrfl X Eu+r711 E5,1 X Equ'r‘fl U Es+7"71 X Eufl)

o

— H*(Es+7n_1 X Eu+,«_1 U (E X E)s+u+7~_1, (E X E)A )

S,u,T

— H*((E X E)s+u+r—1, (E X E)s+u—1) .
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(B X E){ =
u+r ° ° ° ® ° ° ° °
Es+7’7l X Eu+rfl
u+r_1 . . ° ° . . . .
u ° ° ° @ ° ° @ °

u—1 . . . . . o o .
TT (E X E)S-HH—T
(E X E)s+u+r71

(E X E)s+u71

s—1 s s+r—1 s+r

FIGURE 6.1. Subspaces of £ X E

Condition (SPP I) follows by naturality of the three homomorphisms composing
to u, with respect to the inclusions

Esfl - Es’fl
Eerrfl C Es/Jrr/fl
Eu—l - Eu/—l

Eu-i-r—l C Eu’+r’—1
(E X E)stu-1 C (E X E)gyu—1
(B X E)stutr—1 C (B X E)spurtr—1
(ExE)., .. C(ExE)

’ ’ ’
s,u,r s u',r

fors<s,u<u,s+r<s +r" and u+r < v +r'. Only the last one requires
comment: The inclusion

A — ) ) . J— A
(ExB),, = E;x E; C | | By x By = (B x E)) o0,
i+j=stutr—1 i 45 =s"+u' +r' —1
t<sorj<u i’ < s orj <u

holds since if i < sand i+ j = s+u+r —1then E; x E; C E; x Ey with ¢ < s’
and i+ j = s +u + 1" — 1, and similarly if j <u <.

Condition (SPP III) holds in the same way, setting ' = oo, and noting that
the excision isomorphism in the definition of pu, is the identity map of

H*(EXE,Es 1 X EUE X Ey_1)
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when r = oco.
To verify condition (SPP II) we consider the composite

H*(Es+r71»Esfl) ® H*(Eu+rfl7Eufl)
L H*((E X E)S+u+7‘—17 (E X E)s—‘,—u—l)
5
L HMN(E X E)syurr,(EX E)giuir1)

H H*Jrl(Ei XEj,El'_l XEjUEl' XEj_l),
1+j=s+u+r

IR

where the final isomorphism follows from excision. We claim that (1) the component
with (4,7) = (s + r,u) equals

H*(Esyr1,Es 1) @ H (Byir_1,Ey_1)
8 N ( By, Bopr1) @ H* (Eyy Eyy)
— H*"Y(Eqyr X By, Eqfp1 X By UEgyr X Ey_y),
(2) the component with (i,5) = (s,u + r) equals
H*(Esyr1,Es-1) @ H (Eyqr—1, Ey_1)
12 Y B, Ey_1) ® H (Butr, Buir_1)
= H"Y(Ey X Byyr, BEs—1 X Byiy UEs X Eyyr1),
and (3) the remaining components are zero. This implies the relation

Spr =1 (0 ®@n) + 1 (n®6).
((ETC: Elaborate?))
For the first claim we use the commutative diagram in Figure [6.2] with the
following abbreviations.
X = ES+T—1 X Eu+r—1 U (E X E)s+u+r
Y = Es+r71 X Equrfl ) (E X E)erqurfl
Z = Es—l X Eu @] Es+r X E’u.—l

The two quadrangles containing H**1(X,Y) commute by the naturality of § with
respect to the maps of triples

(B % E)stutrs (B X E)suir—1, (B X E)su—1) C (X, Y, (E x E)S,, ;)

S, u,T

and
(Eerr X Eu»Es%»rfl X Eu U Es+r X EuflaZ) C (X;K (E X E)/\ )

((ETC: Elaborate?))
The second claim follows from a similar diagram.
For the third claim we assume i + j = s + u + r with i ¢ {s,s + r}, so that
j & {u,u+ r}, and use the abbreviations
V:E5,1 XEUEXEu,1
W = Es—l x BEU Es+r—1 X Eu+r—1 UE x Eu—l
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and the following commutative diagram.

H*((Eerrfly Esfl) X (Equrfly Eu71)>

IR

H*(Y,(E x E))\) = H*(W, V)

H*((E X E)s+u+r—17 (E X E)s+u—1) H*+1(V[/7 W)

H*+1((E X E)s+u+r7 (E X E)s+u+r71) — H*+1((E X E)s+u+r N VV, (E X E)s+u+rfl)

H** (B, Eim) % (Ej, Ej—1))
The quadrangle commutes by naturality of § with respect to the map of triples
((E x E)s+u+r nw, (E x E)s+u+r717 (E x E)s+uf1) - (W,VV, V)'
Since H*TY(W, W) is trivial, it follows that the left hand vertical composite is
O

Zero.
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By Theorem [6.2.3] and Proposition [6.2.7] the pairing
pr (H*(p'), H*(p")) — H"(p' x p")

of extended Cartan—Eilenberg systems induces a pairing
(1r: (Er(p'), Er(p")) = Er(p x p"))

of the associated cohomological Serre spectral sequences, converging to a filtration-
preserving pairing

v: H(E')® H*(E") — H*(E' x E")
of their abutments. We now make these pairing explicit. Recall the isomorphism
Bt = HYY By, Ey_y) = Oy (B; #°4(F)) from Proposition

PROPOSITION 6.4.4. The pairing of E1-terms
By () © B (") = HEP(EL B_y) © H** (B, BlLy)
By (B ) (B % B aet) = BT %)
corresponds to (—1)* times the cross product
o (B A (F)) © Oty (B A (F) 5 CE (B x B (8 x ).

SKETCH PROOF. To simplify the notation, we again assume p’ = p”/ = p. The
cohomology cross products

(B, BOD, ' (F)) @ H (B®), B (F))
4 Hs+u(B(s+u),B(s+u—1);%t(F) ®%D(F))

and

HNF) @ A (F) =5 A (F x F)
then combine to define the cross product of the proposition. The sign (—1)
from the factor

U arises

HST((I5,015) x Fy, ) ® H“+”((Ig,8l;3‘) x Fy,)

s BT (3 915 X By, x )

of the pairing p1, which sends (gs,a X fo) @ (Gu,g X f5) 10 (=1)"Gstu.0.8 X fa X 3,
where t = | f,|. The cross product does not account for the grading of f,, hence is
missing this sign. (I

LEMMA 6.4.5. The pairing of Es-terms
po: B3 (p) @ By (p') — ESTTU (0! x p)
corresponds to (—1)* times the cohomology cross product
H*(B'; A1 (F)) @ HY(B"; #°(F")) =5 H*"“(B' x B"; #(F' x F")).

PROOF. We obtain po from pq by passing to cohomology with respect to the
d;-differentials. O

LEMMA 6.4.6. The filtration-preserving pairing
v: H(E')® H*(E") — H*(E' x E")

equals the cohomology cross product.
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PrROOF. By definition,

poo: H*(E',E._|)®@ H*(E",E!!_)) — H*(E' x E",E._ x E" UE' x E!l _})
— H*(E' x " (E' X E")s1u—1)
is given by the relative cohomology cross product followed by restriction. Passing

to the colimit for s - —oo and u — —oo gives v, and this colimit is achieved
already for s = u = 0. O

To pass from the external cross product to the internal cup product, we assume
p' = p’ = p: E — B and pull back along a filtration-preserving approximation
D: E — FE x E to the diagonal map A: E — E x E.

PROPOSITION 6.4.7. Let B be a CW complex based at a 0-cell by, letp: E — B
be a (Hurewicz) fibration, and let F = p~1(bg) be its fiber. There is a homotopy

H:IxB—BxB

with H(t,by) = (bo, bo) for all t, from the diagonal map A: B — B x B to a cellular
map D: B — B x B. It admits a lift

H:IxFE—FExFE

with (p x p)H = H(1 x p), from the diagonal map A: E — E x E to a filtration-
preserving map D: E — E x E. This restricts to a homotopy

H:IxF—FxF
from the diagonal map A: F — F x F to a map D: F — F x F.

PROOF. By cellular approximation, the map A: B — B x B is homotopic to a
cellular map D: B — B x B, and we may assume that the homotopy H is stationary
on {bo}, since A is already cellular on that subspace.

The diagonal map A: E — E x FE lifts Ap: E — B x B, so by the homotopy
lifting property for p X p we have a homotopy H: I X E — E X E from A to a map
D: E — E x E with (p x p)D = Dp.

E a ExE

s R4
iol H J{PXP

IXE-——3IxB—BxB
1xp H

The restriction H|I x F then factors through F' x F C E X E, giving the required
homotopy H from A: F — F x F to amap D. O

PRrROPOSITION 6.4.8. The filtration-preserving map D: E — E X E induces a
morphism
D*: H*(p x p) — H"(p)
of Cartan—FEilenberg systems and a morphism
Dy EX(p x p) — E7"(p)

of cohomological Serre spectral sequences. The homomorphism D7 corresponds to
the restriction

D*: ClLy (B x B; *(F x F)) — Cly (B; 5% (F))
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associated to the cellular map D: B — B x B and the coefficient homomorphism
D* = A*: " (F x F) — J*(F). The homomorphism D% corresponds to the
restriction homomorphism

D* = A*: H*(B x B; *(F x F)) — H*(B; #*(F)).
The induced morphisms of filtered target groups is
D* = A*: H*(p x p)(—o0,00) = H*(E X E) — H*(E) = H*(p)(—00,00).
PRrROOF. The map of pairs D: (E;j_1,FE;—1) = ((ExE)j_1,(EXxE);_1) induces
D H(pxp)(i, ) = H*(EXE)j1, (EXE)i1) — H*(Ej—1, Ei1) = H*(p)(i, J)

for all (extended) integers ¢ < j. The rest follows by chasing the definitions, and
using the homotopies H, H and H to note that D* = A*, D* = A* and D* = A*,
once we have passed to cohomology groups. (Il

THEOREM 6.4.9. Let p: E — B be a Hurewicz fibration, with B a CW complex.
Each choice of filtration-preserving lift D: E — E x E lifting a (cellular) diagonal
approximation D: B — B x B induces a pairing of extended Cartan—Filenberg
systems

D*p: (H*(p), H"(p)) — H"(p)
and of cohomological Serre spectral sequences
Dy (E7(p), EX™(p)) — EX"(p) -
The pairing of E1-terms
EY(p) @ EY(p) — By (p)
corresponds to (—1)* times the cochain cup product
Co (B; A (F)) @ Cyy (B; A" (F)) = Ce (B; A ()
associated to D. The pairing of Eo-term,
Ey'(p) © By (p) — B3 (p)
corresponds to (—1)* times the cohomology cup product
H* (B A (F)) @ H" (B; A (F)) — H*(B; " (F)),

and is independent of the choice of D and D. This pairing of spectral sequences
converges to the cup product pairing

H*(E) ® H*(E) = H*(E)
in the cohomology of the total space.

PROOF. This follows by composing the external pairing 4 from Proposition[6.4.3]
with the morphism D* from Proposition [6.4.8] The composites

HNF) @ A (F) =25 24(F x F) 25 00+ ()
H*(B) ® H*(B) =5 H**%(B x B) 2 H**%(B)
H*(E) @ H*(E) = H*(E x E) 25 H*(B)

are equal to the respective cup products, in view of the homotopies H: A~ D,
H:A~Dand H: A ~ D. [l
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6.5. The cohomological Wang and Gysin sequences

THEOREM 6.5.1. Let F 5 E % B be a fiber sequence, with B ~ S* a 1-

connected CW complex. There is a long exact sequence
s Y F) 2L g(E) - HY(E) S HY(F) -2 HN(E) > L
where i* is a ring homomorphism and
S(xUy) =d(x) Uy + (=)= Drus(y).
ProOOF. The Serre spectral sequence
Ey' = H*(B; H'(F)) =, H*"(E)
is a ring spectral sequence with Fy = FE, and E,;; = F. Setting H*(B) =
7Z{1,g,} we can write d,(1 ® x) = g, ® d(z) with §: H{(F) — H"**1(F). The
Leibniz rule
d(1®zUy) =d,(1@2)U(l®y)+ (- (1er)ud,(Qoy)

translates to the given derivation rule for 4. O

Recall the divided power algebra I'(x) = Z{v;(z) | ¢ > 0} with yo(z) = 1,
71 (z) = x and v;(x) - v;(z) = (4,7)Vi+,(x), graded so that |y;(z)| = i|z|. Here
(4,7) = (i + 7)!/il4! is the binomial coefficient. Let A(z) = Z{1,z} denote the

exterior algebra on z, with #2 = 0. Usually |z| is even in the divided power case,
and odd in the exterior case.

THEOREM 6.5.2. Let uw > 2. If u is odd, then
H*(Q5") 2 T'(x)
with |z| =w — 1. If u is even, then
H*(QS") 2 A(z) ® T'(y)
with || =u—1 and |y| = 2(u —1).
PrROOF. The Wang sequence for Q5% — PS* — S%, with PS" contractible,

reduces to isomorphisms

o~

§: H"(F) — H" "*1(F).
Suppose first that v > 3 is odd. Let q9(z) = 1 and inductively set v;(z) €
H®=1(Q8") for i > 1 so that §(v;(z)) = v;_1(z). By induction on i and j,
(i) U () = via () Uy (@) + 7i(z) Uy (@)
equals (1 — 1,5) + (4,5 — 1) = (¢, 7) times
6 (Vi (@) = Vitj—1(2).

This proves that v;(z) Uy, (x) = (4, 7)vit; ().

Next suppose that u > 2 is even. Fix z € H“"}(QS%) so that §(z) = 1.
By graded commutativity, 22 = 0. Let v(y) = 1 and inductively set ~;(y) €
H?(=1(Q8") for i > 1 so that §(v;(y)) = xyi_1(y). Then §(zvi(y)) = 1U~;(y) —
rUzyi_1(y) = %i(y), so vi(y) generates H?(“~1)(QS") while x7;(y) generates
HECHD=1)(Q8"), By induction on i and j,

d(vi(y) Ui (y) = xvic1(y) Ui (y) +vi(y) Uayi—1(y)
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equals (i — 1,7) + (4,5 — 1) = (¢, 7) times

5(%’+j (y) = ’I%+j—1(y) .

Hence v;(y) U (y) = (4,5)7i+5(y)- O
3(u—1) Z 0 0
0 0 0 0
dy,
2(u—1) z 0 0 Z
0 0 0 0
dy,
u—1
0
t/s 0 u

THEOREM 6.5.3. Let F 5 E % B be a fiber sequence, with F ~ SV and B a
1-connected CW complex. There is a long exact sequence

s B 2 gr(BY s H(E) P B U(B) S HYTY(B) s

where p* is a ring homomorphism and e = §(1) € H**Y(B) is the Euler class of
the (oriented spherical) fibration.

ProOOF. The Serre spectral sequence
ES' = H¥(B; HY(F)) =, H*TY(F)
is a ring spectral sequence with By = E,41 and E,y2 = F. Setting H*(F) =

7{1,g,} we can write d,1(z ® g,) = §(z) ® 1 with §: H*~?~1(B) — H*(B). The
Leibniz rule

Ay (1®g,) U (x@1)) = dv1(1® g,) U (2@ 1) + (=1)"(1® g) Udppa (z © 1)

translates to d(x) = (—1)"I*le Uz, since dyy 1 (x ® 1) = 0 lies in a trivial group. We
can replace § with x — e Uz without affecting the exactness of the sequence. [
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v HO(B) Hs—v—l(B) Hs—v(B)

0 0 0
0 HO(B) Hsfvfl(B) H5+1(B)
t/s 0 s—v—1 v+1 s s+1

REMARK 6.5.4. The Euler class vanishes if p admits a section s: B — E. If B
is a closed, oriented (v + 1)-manifold with fundamental class [B] € H,11(B), and
E = S(TB) — B is the unit sphere bundle in the tangent bundle TB — B, then
the Euler class e € H'"!(B) evaluates on [B] to the Euler characteristic of B:

(e,[B]) = x(B).

See [MS74]| Cor. 11.12]. In particular, the Euler characteristic vanishes if B admits
an everywhere nonzero vector field.

REMARK 6.5.5. Let U(k) denote the rank k wunitary group. It acts freely on
the contractible Stiefel space

Vi(C™) ={(v1,...,v5) | vjv; =8 ;}
of unitary k-frames in C* = (J,, C", with orbit space the Grassmannian
Gri(C®) ={V Cc C* | dim¢c (V) = k}
of k-dimensional complex linear subspaces of C*°. The principal U (k)-bundle
U(k) — Vi (C*®) — Gri(C™)

is thus universal, and Gri(C>) ~ BU(k) is a model for the classifying space
of U(k). We get natural bijections

Vecty; (B) = Buny ) (B) = [B, BU(k)] = [B, Gry,(C™)]

for all CW complexes B. Here Vect§ (B) denotes the set of isomorphism classes of
rank k complex vector bundles £ — B.

When k& = 1, we have V1(C>®) = S(C*>®) = S and Gri(C®) = CP*® ~

K(Z,2), so

[B,BU(1)] = [B,CP™] = [B, K(Z,2)] = H?*(B)
by the Eilenberg-MacLane representability theorem. The class ¢;(L) € H?(B)
corresponding to a complex line bundle L — B is called the first Chern class of L,
and classifies L up to isomorphism.

When k > 2, the space BU (k) ~ Gri(C*) is not an Eilenberg-MacLane space,
so [B, BU(k)] is not naturally identified with a cohomology group of B. However,
each cohomology class ¢ € H"(BU (k)) pulls back along the classifying map f: B —
BU (k) of any CF-bundle E — B to define a class ¢(F) = f*(c) € H*(B). This class
¢(F) depends naturally on E — B, and is called a characteristic class. To determine
all characteristic classes for complex vector bundles, we calculate H*(BU (k)).
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THEOREM 6.5.6. For each k > 0 there are isomorphisms
H*(BU(k)) 2 Z|cy, ..., ck)
with |¢;| = 2i. The Gysin sequence associated to the fiber sequence
U(k)/U(k — 1) — Vi(C®)/U(k — 1) = Vi(C¥)/U(k),
with

F=Uk)/U(k—1)=5%"1
E =V (C®)/U(k—1)~BU(k —1)
B =V (C>)/U(k) = Gr(C>) ~ BU(k),

breaks up into short exact sequences

0 — H*"2*(BU(k)) %Y H*(BU(k)) LN H*(BU(k —1)) — 0.

Here p*(c;) = ¢; for 1 < i < k, while ¢y, € H?**(BU(k)) is the Euler class of
p: E— B.

PROOF. We proceed by induction on k, hence assume that
H*(BU(k—1)) =Zc1,...,Cr-1]

where ¢; € H?(BU(k — 1)) has been specified for 1 < i < k — 1. We use the fiber
sequence F' — E — B, defined as above. Here U(k) acts transitively on S(C*) =
S2F=1 with stabilizer U(k — 1), which gives the identification U(k)/U(k — 1) =
S§2k=1_ The restricted U(k — 1)-action on V}(C>) makes V3 (C>®) — Vi (C>®)/U(k—
1) = E a universal principal U(k — 1)-bundle, so that E ~ BU(k — 1). (One can
define an explicit equivalence E ~ Gry_1(C>).)

Since H*(BU(k — 1)) is trivial in odd degrees, the Gysin sequence for F —
E — B breaks up into exact sequences

0 — H"2%(BU(K)) % H™(BU(k)) X~ H"(BU(k — 1))
2y g BU(R)) < B (BU(R)) — 0,

one for each even integer n. It follows by induction on n that H"*1(BU(k)) = 0
for n + 1 odd, so the Gysin sequence really breaks up into short exact sequences,
and H*(BU(k)) is concentrated in even degrees. Moreover, p*: H"(BU(k)) —
H™(BU(k — 1)) is an isomorphism for n < 2k, so we can uniquely define ¢; €
H?*(BU(k)) for 1 <i < k by the condition p*(¢;) = ¢; € H*(BU (k — 1)). Finally,
we set ¢, = e € H**(BU(k)) to be the Euler class of this spherical fibration, so
that

dok(1® gog—1) = ® 1

in the cohomological Serre spectral sequence. To show that the resulting ring
homomorphism

h: Zey,. .. cx) — H(BU(K))



6.6. RATIONAL COHOMOLOGY OF INTEGRAL EILENBERG-MACLANE SPACES 141

is an isomorphism, we use induction on the degree * and the following vertical map
of short exact sequences.

04)22’6Z[01,...70k] L}Z[Cl,...,ck} %Z[cl,...,ck_ﬂ —0

A

0 H*—Zk(BU(k,)) & H*(BU(k)) L) H*(BU(k - 1)) —0

O

REMARK 6.5.7. We call ¢; € H*(BU(k)) the i-th Chern class. For each C*-
bundle E — B with classifying map f: B — BU(k), we call ¢;(E) = f*(¢;) €
H?(B) the i-th Chern class of the bundle. The Chern classes ¢;(E) determine the
ring homomorphism

#*: H*(BU(k)) — H*(B)
C; — Ci(E) .

This is generally less information than the isomorphism class of the vector bundle,
i.e., the homotopy class of f: B — BU(k), but characteristic classes often provide
conveniently accessible cohomological invariants of this less accessible homotopical
datum.

((ETC: Whitney sum and Cartan formula. Functorial construction gives Bi ~
p: BU(k —1) —» BU(k), where i: U(k — 1) — U(k) is the inclusion. Stable classes
in H*(BU) = Z[ci | k > 1].))

(ETC: H*(BO(k);F3) = Fawn,...,wg] for w; € H(BO(k);Fz). Thom’s
formula Sq¢'(U) = ®(w;).))

6.6. Rational cohomology of integral Eilenberg—MacLane spaces

Let n > 1. Recall that K(Z,n) is a (n — 1)-connected CW complex, with
TnK(Z,n) = 7Z and m; K (Z,n) = 0 for i # n. Each homology group H;(K(Z,n)) is
finitely generated of rank equal to the dimension of

Hi(K(Z,n) © Q — H;(K(Z,n); Q)
over Q. The evaluation pairing induces an isomorphism
H'(K(Z,n))/(torsion) = Hom(H;(K(Z,n))/(torsion), Z) .
DEFINITION 6.6.1. For n > 1 let the universal class
un € H"(K(Z,n)) = Hom(H,(K(Z,n)),Z)
correspond to the inverse Hurewicz isomorphism
hi': Hy(K(Z,n)) — 7o (K (Z,n)) = Z.
((ETC: Many authors write ¢,, for this universal class.))
THEOREM 6.6.2. Let n > 1. If n is odd then
H*(K(Z,n); Q) = Ag(un) = Q{1,un}

with u2 = 0. If n is even then

H*(K(Z,n);Q) = Qlu,) = Q{1,un,ujl, ... } .
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Finite type and the universal coefficient theorem imply the following conse-
quence, which proves Theorem [£.6.15]

COROLLARY 6.6.3. Let n > 1. If n is odd then

Q forie{0,n},

0 otherwise.

If n is even then

Q for0<i=0 modn,
0 otherwise.

Hi(K(Zvn)§@) = {

PROOF OF THEOREM. When n = 1, the cohomology of K(Z,1) ~ S* is well-
known to be exterior on ¢g; = uy in degree 1.

Suppose that the theorem holds for an odd n > 1. We use the cohomology
Serre spectral sequence with rational coefficients

Ey' = H*(K(Z,n+1); H(K(Z,n);Q)) =, H*"'(PK(Z,n +1); Q)
for the homotopy fiber sequence
K(Z,n) — PK(Z,n+1) 2 K(Z,n+1)
This is isomorphic to the integral spectral sequence tensored with Q, which is still

a spectral sequence since Q is torsion-free, hence flat, so that tensoring with it is
exact. Since K(Z,n + 1) has finite type, we have an isomorphism

H*(K(Z,n+1);Q) ®g H*(K(Z,n); Q)
= B} = HY(K(Z,n + 1); H(K(Z,n); Q) .

Since PK(Z,n + 1) is contractible, the abutment is Q in total degree 0. The
E5-term is concentrated in the two rows ¢t = 0 and ¢ = n, so

dpi1: H'(K(Z,n);Q) — H™ (K (Z,n +1); Q)

must be an isomorphism. More precisely, this transgressive differential is an integral
isomorphism mapping u, to

dn+1(un) = Unp+1,

by compatibility of the Hurewicz homomorphisms with coboundaries and pullbacks.
(If one does not wish to check this, it suffices to know that dnt1 (uy,) is a rational
unit times 41, in which case we calculate below that dy1(u?,,; Uuy) is a unit

times uﬁlfl, hence generates the same Q-vector space as the latter class.)
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n| Q 0 0 0 Q 0 0 0 Q 0
0 don 0 dorn 0 s
0 0 0
0 Q o o0 o0 Q 0 0 O Q 0
t/s! 0 n+1 2(n+1)
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We now proceed as for the Gysin sequence. Suppose inductively for a j > 0

that

Then

HI(K(Zn+1);Q) ={

dn+1(u£+1 U uy,)

Qfupy} fori=j(n+1),
0 for j(n+1)<i< (j+1)(n+1).

. i,mn i+n+1,0
doyr: BV — EL

must be an isomorphism, for each j(n+1) <i < (j+ 1)(n+1). Since

= ugLJrl U dn+1(un)

_,,Jt1
- un+1

must generate HU+D™+) (K (7Z,n+1);Q), the inductive claim also holds for j + 1.
This proves the theorem for n + 1 even.

Next, suppose that the theorem holds for an even n > 2. We use the same Serre
spectral sequence as above, but now the Fs-term is concentrated in the rows 0 <

t =0 mod n. Again the transgressive differential

dny1: H"(K(Z,n); Q) —

oy

maps u, to (a unit times) t,41.

H"Y(K(Z,n+1);Q)

0 et
om| Q 0 0 *Q 0
0 by
n Q 0 0 Q 0
0 SO
0| @Q 0o 0 "Q@ 0
t/s! 0 n+1 u
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It follows from the Leibniz rule that
(6.1) dnH(u@ = jUpy1 U u{fl

for all j > 1. Since we are working with rational coefficients, ju,+1Uul~! generates
E3TRUTIR oo that

Bt {Q for (s,t) = (0,0),

2710 otherwise, for s <n + 1.

It remains to confirm that H*(K(Z,n+1);Q) =0 for alli >n+1. Let u >n+ 1
and suppose, inductively, that H*(K(Z,n + 1);Q) = 0 for n +1 < i < u. Then
EY? =~ HY(K(Z,n);Q), and we must have E%° = 0 since the abutment is trivial
in total degree n. The final differential

. 0u—1 u,0
dy: B, — E}
is trivial EOu—1l ¢ gOusl h
is trivial, because E;, C E,’5 = 0. Furthermore,

dufnfl : En+1,u;n72 Eu,()

u—n— u—n—1
with u—n—1 > 2 must also be zero, because E/'* 1" " % is trivial if 0 < u—n—2 < n

orifu—n—12>n+2 When u=2(n+ 1) the differential

ntln 2(n+1),0
dnt1: By — By

must be zero because the source is generated by dnﬂ(u%) = 2up41 U u, and
dpy1dns1 = 0. Hence we can only have E%? = 0 of E;“O =0, ie, if H*(K(Z,n +
1); Q) = 0. This confirms the claim by induction on n, and proves the theorem for
n + 1 odd. O

REMARK 6.6.4. For n > 2 even, the use of the Leibniz rule to calculate

dnyr: BOIY — EME U=D™ Lelies essentially on knowing the cup product struc-

ture of H*(K(Z,n); Q) and the fact that the Serre spectral sequence differential
dp+1 is a derivation. Furthermore, the presence of the coefficient j in (6.1) means
that this argument does not work integrally, since j is usually not an integral unit.

6.7. First p-torsion in 7.(S%)
The 2-connected cover of S? sits in the Puppe fiber sequence
K(Z,1) — 75357 — S 2 K(Z,2).
Since QK (Z,2) ~ K(Z,1) ~ S* we can recognize this as the Hopf fiber sequence
St — &% 1 52

and its classifying map go: S2 = BS! ~ CP>.
The 3-connected cover of S3 is less familiar. We have a Puppe fiber sequence

K(Z,2) — 7545° — §* 25 K(Z,3).

The cohomology of QK (Z,3) ~ K(Z,2) ~ CP> is well known, and allows the
following calculation.
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PROPOSITION 6.7.1. The Serre spectral sequence
Ey' = H*(S% H(K(Z,2))) =5 H*" (7545
has Es-term
Ey* = H*(S*) & H*(CP™) = Algs) © Zly]
with g3 € H3(S3) and y = uy € H*(CP>), and nonzero differentials
ds(y’) = jgsy’ ™
for all j > 1. Hence

Z fori=0,
Hi(1548%) = Z/j fori=2j+12>5,
0 otherwise,
and
Z fori =0,
Hi(1545%) = Z)j fori=2j>4,
0 otherwise.

ProoOF. The natural homomorphism
H*(S%) @ H*(CP*®) — H*(S% H*(CP>))

is an isomorphism. The Fs-term thus appears as below.

0\0
sl z 0 0z
0\0
2| z 0 0 *z
0\0

0 0

0 Z Z

t/s' 0 3

Since 7453 is 3-connected, the differential ds: Z{y} = ES* — E3° = Z{gs}
is an isomorphism. With the right choice of identifications, this implies that

ds(y) = g3
The Leibniz rule thus implies
ds(y’) = jgsy’ "

for all § > 0. This leaves the following E4; = F..-term, with gy/~! generating a
copy of Z/j in bidegree (3,2(j — 1)), for each j > 2.
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0 Z 0 0 0

t/s' 0 3

This calculates H*(7>45%), and our finite type result and the universal coeffi-
cient theorem then determine H.,(7>45%). O

COROLLARY 6.7.2. 7m4(S3) 22 Z/2 is generated by En.
PROOF. We have m4(7545%) = Hy(1>45%) & Z/2 by the Hurewicz theorem,

~

and 74(7>45%) = 74(S?) by the long exact sequence in homotopy for the fiber
sequence defining 7>45%. We also know that E: m3(S?) — m4(S?) is surjective, by
Freudenthal’s stability theorem, so En must generate m4(S%). O

Let p be a prime. Further arguments, with the Serre class of finite abelian
groups of order prime to p, shows that
mi(S%) 2 7my(15:5%) = Hy(15,5°)
for 3 < i < 2p maps to
Hi(T24SS)
by a homomorphism with kernel and cokernel finite groups of order prime to p.
Hence the p-Sylow subgroup of ;(S%) is trivial for 3 < i < 2p, and is isomorphic

to Z/p for i = 2p. A map representing the first p-torsion in 7, (S?) is often denoted
ay: S — S8,

6.8. Cohomology of K(Z/2,2)

To proceed to calculate 75(S%) 2 75(7555%) we might study H.,(7>55%) using
the Puppe fiber sequence

K(Z)2,3) — 7555% — 7545 — K(Z/2,4)
and the Serre spectral sequence
Ey* = H* (1545 H*(K(Z/2,3))) = H*(1>55%).

For this, we would need to know H*(K(Z/2,3)), which we might hope to deduce
from H*(K(Z/2,2)) using the loop—path fibration

K(Z)2,2) — PK(Z/2,3) — K(Z/2,3) .
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To get started with this, we might first deduce H*(K(Z/2,2)) from the loop—path
fibration

K(Z)2,1) — PK(Z/2,2) — K(Z/2,2),

where the cohomology of K(Z/2,1) ~ RP> is well known. However, in the coho-
mological Serre spectral sequence with integral coefficients

Ey' = H*(K(2/2,2); H'(RP™)) =, H*"'(PK(Z/2,2))

there are more classes in the Fs-term than those that arise as products of classes
on the axes:

H*(K(Z/2,2)) ® H (RP®) — H*(K(Z/2,2); H(K(Z/2,1)))

due to the presence of Tor-terms. Hence it is more convenient to make the calcu-
lation with coefficients in the field o, and thereafter to use Bockstein arguments
((ETC: see later)) to recover the integral information.

Here H*(RP>;Fy) = Fyla] with a = uy € H(RP>;F,), and the cohomologi-
cal Serre spectral sequence with Fa-coefficients has the form

E3' = H5(K(Z/2,2); H(RP™:Fy)) =, H*t'(PK(Z/2,2);F,)
with
H*(K(Z/2,2);F,) @5, H (RP®;Fy) —» E3*.

As usual, the abutment H*(PK(Z/2,2);F2) = Fy is known to vanish in positive
degrees, and we seek to use this to determine the cohomology of the base. Clearly
K(Z/2,2) is 1-connected, and dy(a) = b with b generating H?(K(Z/2,2);F3) = F,.
Since da(a?) = ba — ab = 0, we must have ds(a?) = by for some nonzero b; €
H3(K(Z/2,2);Fy). Furthermore, ds(ab) = b*> must be nonzero, and d(aby) = bb;
must be nonzero. Since dz(a*) = b1a® + a?b; = 0 and do(a?b;) = 0 we must have
d3(a®b;) = b2 nonzero. At this point we must decide whether dy(ab?) = b® is
nonzero in HS(K(Z/2,2);F5), so that ds(a*) = by is nonzero in H®(K(Z/2,2);Fy),
or if b3 = 0 and dy(a*) = ab®.

In fact, the former is the case. We can see this using the map f: K(Z,2) —
K(Z/2,2) inducing the surjection mo(f): Z — Z/2. Here f*(b) = y. Since y> # 0
in HS(K(Z,2);Fy), it follows that b # 0, so that ds(a*) = by for some nonzero
by € H5(K(Z/2,1);F3). The reader can continue this argument, up to total de-
gree 8, where one must decide whether b6 and bb; by are linearly independent in
H'(K(Z/2,2);Fs), in which case dg(a®) = bs for a nonzero by € H?(K(Z/2,2);F),
or if dg(a®) is a nonzero linear combination of abb? and abib.

Again, some external information in addition to the multiplicative structure
of the spectral sequence is needed. In the next chapter we discuss the natural
cohomology operations

Sq': H"(X;Fy) — H" (X ;TFy)

introduced by Steenrod, which were used by Serre [Ser53| to calculate the mod 2
cohomology of Eilenberg—-MacLane spaces. Similar results for mod p cohomology,
with p an odd prime, are due to Cartan [Car54].
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CHAPTER 7

The Steenrod algebra

7.1. Cohomology operations
FEilenberg and MacLane proved a representability theorem for cohomology.
DEFINITION 7.1.1. For n > 1 and G any abelian group let the universal class
u, € H*(K(G,n); G) 2 Hom(H, (K (G,n)),G)
correspond to the inverse Hurewicz isomorphism
h': Hy(K(Gon)) — 70 (K (G, n))

G
For n = 0, with K(G,0) = G, we let uy € H°(K(G,0);G) be the class of the
0-cocycle that takes g € K(G,0) to g € G.

I

Recall that [X, Y] denotes the based homotopy classes of base-point preserving
maps from a CW complex X to a space Y.

THEOREM 7.1.2 (Eilenberg-MacLane, [Hat02, Thm. 4.57]). There is a natural
isomorphism
X, K(Gn)] = H"(X:C)
[l [ (un)
for all based CW complexes X .
SKETCH PROOF. Fix a homotopy equivalence
5: K(G,n) — QK(G,n+1)
inducing the identity homomorphism G = 7, (K(G,n)) = 7, (QK(G,n + 1)) =
Tnt1(K(G,n+1)) 2 G, and let
o: BK(G,n) — K(G,n+1)
be the adjoint map. We define a generalized cohomology theory M on CW pairs (X, A)
by
M"™"(X,A) =[X/A,K(G,n)],
with : M"(A) — M""}(X, A) sending the homotopy class of f: A — K(G,n)
to the homotopy class of the composite
X/A~XUCA —SA L SK(Gn) -5 K(Gn+1).

Here coXf: ¥A — K(G,n+1) can also be described as the left adjoint of 5f: A —
K(G,n+1). The abelian group structure on M™(X, A), and the additivity of 4,
can be deduced from the fact that K(G,n) ~ Q>K(G,n+2) is a double loop space.
The coexactness of the Puppe cofiber sequence

A— X —XUCA—YA — ...
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proves exactness, while homotopy invariance, excision and additivity are straight-
forward.

The coefficients groups of this cohomology theory are M* = M?!(point) =
[S° K(G,t)], which equals G for t = 0 and 0 for ¢t # 0. Hence the hypotheses
of the Eilenberg—Steenrod uniqueness theorem (see Theorem are satisfied,
and M*(X,A) =2 H*(X, A;G). For based CW complexes X we deduce that there

is a natural isomorphism
[X, K(G,n)] = M"(X,{0}) = H"(X, {z0}; G) = H"(X;G).
By the Yoneda lemma, the isomorphism must be induced by the class
yn € H'(K(G,n);G)

that corresponds to the identity map of X = K(G,n), and more careful check of
definitions shows that ¥, = u, is the universal class. O

A cohomology operation is a natural transformation between (possibly gener-
alized) cohomology groups. We concentrate on the case of ordinary cohomology
theories.

DEFINITION 7.1.3. A cohomology operation of type (G,n;G’,n’') is a natural
transformation . .
Ox: H'(X;G) — H" (X;G).

Here X — H"(X;G) and X — H™ (X; @) are viewed as functors from CW
complexes to sets, so each fx is a function, not necessarily a homomorphism. The
sum (or difference) of two cohomology operations of type (G,n;G’,n’) is another
cohomology operation of the same type, so the set of such cohomology operations
is an abelian group.

LEMMA 7.1.4. The abelian group of cohomology operations of type (G,n; G',n’)
is isomorphic to

[K(G,n), K(G',n')] = H" (K(G,n); G").

ProoOF. This is the Yoneda lemma classifying natural transformations from
a represented functor. A map 0: K(G,n) — K(G',n’) corresponds to the natu-
ral transformation # with components fx taking the homotopy class of f: X —
K(G,n) to the homotopy class of 6f: X — K(G',n’). Conversely, the natu-
ral transformation € corresponds to the homotopy class of a map 0: K(G,n) —
K(G',n’) representing 0 n)(un) in H" (K(G,n);G). O

Computing the cohomology of K(G,n) is thus equivalent to determining the
cohomology operations from H"(X;G). By the Hurewicz theorem, there are only
nontrivial cohomology operations of type (G,n; G',n’) when n’ > n.

ExXaMPLE 7.1.5. For £ > 1 and R a commutative ring, let the k-th power
operation

¢ =€k H"(X;R) — H"(X;R)
be the cohomology operation of type (R, n; R, kn) given by
r)y=2ab=2zu.. Uz

(with k copies of x). This operation is additive if k = p is a prime and p = 0 in R.
((ETC: Is there a standard notation?))
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7.2. Steenrod operations

Let p be a prime. Steenrod [Ste47], [Ste52|, [Ste53] introduced cohomology
operations in mod p cohomology, i.e., cohomology with coefficients in the field
F, = Z/p, which in a sense generate all other such cohomology operations. These
are “reduced power operations”, meaning that they are linked to the p-th power
operation

& HY(X;F,) — H"(X;F)p),
but generally land in H™ (X;Fp) with n <n' < pn. See Steenrod-Epstein [Ste62],
May [May70] and Hatcher [Hat02| §4.L] for more detailed expositions.

We start with p = 2, when the reduced power operations are called reduced
squaring operations, or Steenrod squares. The following theorem characterizes these,
and can be taken as the basis for an axiomatic development of the theory.

THEOREM 7.2.1 (|Ste62, §1.1]). There are natural transformations
Sq': H"(X;Fy) — H" (X TFy)
for alli >0 and n > 0. These satisfy

(1) Sq( )= for all x;
q"(x) =z Uz for n = |x|;

(2) S
(3) Sq'(x) =0 fori> |z|;
(4)

FlazUuy) = ZSq YU S (y).

i+j=k

Note that Sq¢* increases cohomological degree by i. By the first three items, the
only “new” operations are the S¢‘(x) for 0 < i < n. The fourth item is the Cartan
formula from |[Car50].

PROOF OF THEOREM. To define the Sq(z) for € H"(X;F5) represented by
the homotopy class of a map f: X — K(Fs,n), we will construct maps

RP® A X LA RP® A K, 3 8% A, Ky A Ky~ Ko,

Here RP>® = S§°°/Cy and we write K,, = K(Fq,n) and Ki, = K(F3,2n) to
simplify the notation. ((ETC: Maybe H, = K(Fs,n) is better, since this is the
n-th space in the Eilenberg—MacLane spectrum H = HF5.)) The homotopy class
of the composite represents an element

= [0 AA)LA f)] € H™(RPE A X;Fy).
By the Kiinneth theorem,
H*(RP® A X;Fo) = H*(RP®;Fy) © H*(X;Fy)
where H*(RP*;F3) = Fa[a] with |a] = 1. Hence we can write
y=> a""®Sq (x)
i=0

for a unique sequence of elements Sq’(x) € H"**(X;Fy). This defines the (poten-
tially) nonzero Sq¢'(x).
To explain 6, we must first introduce the quadratic construction

DQ(X) :S_T_O /\CQX/\X,
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also denoted Q(X) [Kah69, §1] and AX |[Hat02] p. 503]. Our notation (including
the structure maps 0 and 3 that appear below) conforms with that used for extended
powers in [BMMSS86|, §1.2]. Here Cy = {e,t} is the group of order 2, with unit
element e. It acts freely from the right on the unit sphere S*° = S(R*), with

v -t = —v for each unit vector v, and the orbit space is S°/Cy = RP*>. For a
based CW complex X the group C5 acts from the left on the smash product
XxX
XANX =
XvX

by the twist isomorphism 7: X A X — X A X, with t- (x Ay) = y Az. The
quadratic construction is the balanced product

SN, XANX =(STAXNANX)/(~)
where ~ denotes the relation
(—v,zAy)=(v-t,izAy)~ (vt (AY)) = (v,y A2)

forve S® x € X and y € Y. Let S* = S(R**!) € S°. The action of Cy respects
this subspace, so we can filter Dy(X) by the subspaces

< C DY NX)C DYX)=S"Ac, XANX C -+ C Do(X).
There are homeomorphisms X A X 2 5% Ac, X A X = DJ(X) and
L ANXAX/(~) 281 Aoy X A X = D3(X)

where (0,2 Ay) ~ (1,y A x) at the left hand side. Hence there is a long exact
cohomology sequence

oo HTYXAX Fa) =5 H*(DY(X);Fa) — H*(XAX;Fy) 25 H*(XAX;Fa) — ... .

We now specialize to the case X = K, = K(F3,n) and degree * = 2n. By the
Kiinneth theorem, K, A K, is (2n — 1)-connected, and

H? (K, A Kpp:Fy) = Fo{upn Ay}
where u,, € H "(Kp,;Fs) is the universal class. Furthermore,
(1= 7)(up Atp) = tp Aty — (—1)"2un ANup, =0,
since we are working with Fa-coefficients, so 6 = u,, Au,, admits a unique extension
6, € H>"(Di(K,);Fs). Moreover, D}(K,) — Do(K,) is (2n + 1)-connected (it
amounts to adding cells of dimension > 2n + 2), so the restriction homomorphism
H*™(Dy(Ky); F2) — H*(D3(K,); Fs)
is an isomorphism, and #; admits a unique extension § € H?>"(Dy(K,):Fy). It is
represented by a map
0: DQ(Kn) = Sio lAYoR K, NK, — Ky,
whose restriction
00: DY(K,) =2 K, NK, — Ka,
represents the smash (= reduced cross) product A: H™(X;F) @ H™(Y;Fy) —
H?"(X NY;Fy).
The (reduced) diagonal map A: X — X A X satisfies t - A(x) = A(z) = x Az,
hence induces a map

TAA:RP®AX — 5° Agy X A X = Dy(X)
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sending ([v],z) to [v Az Ax], for v € S and z € X. Its restriction to v € S° C S
is identified with the diagonal map

A X2RPIAX — DYX) =X AX.

Given a class € H"(X;F5), represented by a map f: X — K,,, we can form the
following commutative diagram.

A

X XAX
IAS
1 RP A X — 102 SF Acy XA X
INF
A
K, K, N K, IAFAS
RP® A K, —28 S Ay Kn A K,
()
Kgn 6

The composite O(LAA)(AAf) =0(LAfAF)AANA): RPP AX — Ky, defines the
cohomology class we write as

Y a" '@ Sq'(x) € H'(RP™;Fy) @ H*(X;Fp) = H* (RPN X;Ty).
=0

Its restriction to H*(X;Fy), corresponding to i = n, is the pullback along A of
z Az € H*(X A X;Fy), represented by 0o(f A f), which equals 22 = z Uz €
H?"(X;F5). This defines the natural transformations Sq’, satisfying conditions (2)
and (3) in the theorem.

(In the universal case, (1 A A)*6*uz, = 3 ,a" " ® Sq'(u,) in H>"(RP A
Ky;Fo).)

The Cartan formula (4) can be deduced from the following diagram.

Do (/\)

DQ(Kn A Km) e DQ(Kn+m)

i
DQ(Kn) /\DQ(Km) [’
GAGJ

Kon A Ko —"—— Ko(nim)

It commutes up to homotopy, as can be verified by comparing the two composites
after restriction to (K, A K;n) A (K, A K,,) = DY(K,, AN Kp,). If f: X — K, and



154 7. THE STEENROD ALGEBRA
g: Y — K,, represent x € fI”(X;]Fg) and y € f{m(Y;]Fg), respectively, then the
composite

RPEAXAY 28 Dy(X AY) P89 Dy (K A Kon) — Koo

can be expanded in two ways, to yield the identity

n+m
> a"t e St (e Ay) = ZzanzuamJ®Sq()Uqu(y)-
k=0 1=0 j=0

Comparing terms gives the Cartan formula.

By naturality, the Cartan formula also holds for relative and unreduced coho-
mology, as well as for the external smash product and cross product pairings. For
example,

Sqt(z ANy) = Z Sq'(x) A S¢ ()
i+j=k
in H*(X AY;Fy).

Property (1), that Sq° equals the identity operation, is not obvious. The state-
ment for n = 1 follows by naturality from the case z = u; € H'(K7;F5), which is
an assertion about the composite

RP® A Ky 23 8% Agy Ky A Ky — K.

By naturality with respect to g;: S — K7, it suffices to check that
RPLA ST 2 51 Ag, ST A S

induces the nonzero homomorphism (an isomorphism) in H?(—;Fy), which can be
seen from an explicit cellular model. See [Hat02] p. 505].

This shows that Sq°(g1) = g1 in H*(S';F2). When combined with the Cartan
formula for XX = S'A X, it follows that each reduced squaring operation commutes
with the suspension isomorphisms

o H"(X;Fy) — H"(SX;Fy)

given by o(x) = g1 Az, since Sq*(g1 Az) = Sq°(g1) A Sq*(x) = g1 A S¢*(x). Tt then
follows, by naturality with respect to X UC'A — X A, that each Sq* commutes with
the connecting homomorphisms

§: H"(A;Fy) — H" (X, A;TFy).

It also follows that each Sq' is additive, i.e., is an Fo-linear homomorphism.
Finally, to verify that Sq°(z) = z for € H"(X;Fy) it suffices, by naturality,
to check the case © = u, € H"(K,;F2), and since g,: S — K, induces an
isomorphism g} : H"(K,;F2) — H™(S™;Fs), it suffices to treat the case x = g, €
H"™(S™;F,). This now follows from the case z = g; € H*(S';F3), by commutation
of S¢" with the suspension isomorphism. O

The operation Sq! had also been previously considered.
DEFINITION 7.2.2. Let

0-G —G—G" =0
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be a short exact sequence of abelian groups. The induced short exact sequences
0— Cu(X;G") — Cu(X;G) — Cu(X;G") = 0
0—-C"X;G) — C*"(X;G) — C*(X;G") =0

of chain and cochain complexes induce long exact sequences in homology and co-
homology, with connecting homomorphisms

ﬂ: Hn(X,GH) — Hn—l(X;G/)
/82 Hn(X,G//) — Hn+1(X7GI)

called the homology and cohomology Bockstein homomorphisms associated to the
extension 0 - G’ — G — G” — 0. These are natural in X, so the cohomology
Bockstein is a cohomology operation of type (G”,n;G',n+ 1).

LEMMA 7.23. Let0 -G - G = G" = 0and 0 - G" — Gy = G" — 0 be
extensions of abelian groups. Then the composite Bockstein homomorphisms

Ho(X;G7) 22 Hy (X367 25 Hyo(X5GY)
HY(X;G") 2 g (x; 6" 25 H (X 6
are both zero.

PrOOF. There exists a commutative diagram

0 0
G —G
0 G G G 0
J_
0 G" G G" 0
0 0

with exact rows and columns. (In this situation, we say that the Yoneda composite
of G - G; — G" and G’ — Gy — G"" is trivial. Compare [ML63| Lem. XII.5.3].)
((ETC: Return to Yoneda composition in Ext later.)) Then the homology Bockstein
Bo for G — G5 — G factors as

Ho(X;G") 25 Hy ((X5Gh) =2 Hyo1 (X367,
and the composite

Hy 1(X;Gy) -2 Hoo(X367) 25 Hy o(X5G)
is zero. The cohomology proof is essentially the same. (Il

PROPOSITION 7.2.4. Sq¢t = 8: H"(X;Fs) — H""(X;Fs) equals the coho-
mology Bockstein for the extension 0 — Z/2 — Z/4 — Z/2 — 0. In particular,
Sq'Sq' = B =0.
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PROOF. By naturality it suffices that Sq'(u,) = B(u,) € H" ™ (K,;Fy) for
u, € H"(K,;Fs3). Consider the Moore space M,, = S™ Uy e™t! which admits an
(n + 1)-connected map f: M, — K,. Since f*: H"*1(K,;Fs) — H" 1 (M,,;Fs)
is an isomorphism, it suffices to check that Sq'(a) = B(a) for a = [f]. Since Sq¢*
and 8 both commute with suspension isomorphisms, it suffices to verify this when
n=1and M; = S* Uy €2 =2 RP2. Here Sq'(a) = a? generates H2(RP?;F,), and a
direct calculation with H*(RP?;7Z/4) shows that 8(a) = a.

The composite 84 is trivial, by the previous lemma with G' = G" = G" = Z/2,
G1:G2:Z/4andG:Z/8. O

LEMMA 7.2.5. The Steenrod squares on the powers of any a € H*(X;Fs) are

given by
Sqi(aj) — (Z)ai-"—j .

The binomial coefficient can be read mod 2, since the expression takes place in
H*(X;F3). Hence Lucas’ theorem (Lemma below) is helpful.

PROOF. Let the inhomogeneous sum Sq(z) = >, Sq¢'(z) € @, H"(X;Fs)
denote the total squaring operation on x. The Cartan formula then reads
Sq(xy) = Sq(x)Sq(y)
and Sq(a) = a+a? = a(l +a) in H*(X;F3). Hence
Sq(a’) = Sq(a)) = (a+a2)) = a/(1+ ay
so that Sq'(a?) = a’ - (z)az = (z)a“'j for 0 <i < j, and S¢*(a?) = 0 otherwise. [
Here is the analogue of Theorem for odd primes p.
THEOREM 7.2.6 ([Ste62| §VI.1]). Let p be an odd prime. There are natural
transformations
P HM(X;F,) — H"P20-D(X;F,)
for alli >0 and n > 0. These satisfy
(1) P%z) ==z for all x;
(2) Pi(x) = aP for|z| = 2i;
(3) Pi(x) =0 for|z| < 2i;
(4)

Phauy) = 3 Pila)UPI(y).
i+j=k
The fourth item is the Cartan formula. The “new” operations are P’ for 0 <
i < |z|/2. We call the Bockstein operation
B: H"(X;F,) — Hn+1(X§Fp)

associated to the extension 0 — Z/p — Z/p? — Z/p the mod p Bockstein. Note
that P? increases cohomological degree by 2i(p — 1), while 3 increases it by 1.

LEMMA 7.2.7. B85 =0.

ProoF. This follows from Lemma using the diagram with G’ = G” =
G" =Z/p, Gy = Gy = Z/p? and G = Z/p>. O
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LEMMA 7.2.8.

BlxUy) =Bx) Uy + (—1)"lz U B(y).

PROOF. This follows from the Leibniz rule for the coboundary in C*(X;Z/p?)
acting on a cochain cup product. (I

7.3. The Adem relations
Let Sq¢'Sq’ denote the composite operation

(X Fy) 50 {7 (X Fy) 595 (i (X Fy).
These satisfy the Adem relations.
THEOREM 7.3.1 (JAdeb52|, [Ste62| §1.1]). The identity
B VL) k-1 o
Sq'Sq’ = Z ( o )qu+Jkqu
k=0
holds, fori < 2j.

Again, the binomial coefficients can be read mod 2. The summation limits can
be omitted, given the convention that (Z) =0 for kK < 0 and &k > n. The Adem
relations in degrees x < 11 are listed in Figure In particular,

Sq¢tSq% = SgPT | S¢tS¢P T =0 and S¢¥TiS¢tl =0
for all j > 0.

SKETCH PROOF. We consider the universal case of S¢‘'S¢’(z) for # = u, in
H™(X;Fy) with X = K,,, and apply the quadratic construction twice.

INIAA

[ee] o0 oo 0 o0
RPX® ARP® A K, —2125 RP® A Dy(K,) —22 5 RPX A Ko,

[1ns [1na
D> (0)

DZ(D2(K7L)) — D2(K2n)

| |

By AK, —— % DK, —— Ky,

Here
D(Da(X)) = ST Acy (ST Acy X/2)2 2 (8% x (S™)2)4 Acym(ce X,
where Cy x (C3)? denotes the semi-direct product. In the upper part of the diagram,

(LAA)O (usn) = D a*" 5 @ Sq" (uan)
k
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SqtSqt =0
Sqlqu — Sq3
SqtSqg® =0

S¢?Sq® = Sq¢>Sq
Sq'Sq* = Sq¢°

Sq*Sq® = Sq¢° + Sq*Sqt
S¢*Sqg* =0

SqtSq¢® =0

S¢*Sq* = Sq° + S¢°Sq'
Sq3Sq® = Sq¢°Sqt

Sq'Sq® = Sq”
Sq2Sq° = Sq¢%Sqt
S¢*Sq* = Sq”
Sq¢*Sq® = Sq¢°Sq*
SqtSq" =0

Sq25q6 ZSq7Sq1
SqBSqS :Sq7Sql

SqtSq* = Sq"Sqt + Sq¢°S¢?

S¢°Sq® =0

Sq'Sq® = Sq¢°
Sq*Sq" = Sq¢° + S¢®Sq¢
S¢®Sq® =0

Sq*Sq® = S¢° + Sq®Sq' + Sq"Sq®
Sq¢°Sq* = Sq"Sq?

Sq*Sq? =0

Sq¢*Sq® = Sq'° + S¢°Sq'
Sq¢*Sq" = Sq¢°Sq*

Sq'Sq° = S¢'° + S¢*Sq?
Sq¢°Sq° = Sq°Sq*

Sq¢°Sq* = Sq"Sq*

Sq'Sq"0 = Sg't

S¢2S¢° = S¢'°Sq"

SPSqS = Sqtt

Sq'Sq" =S¢t + S¢°Sq?
Sq°Sq® = Sq't + Sq°Sq?
S4°Sq® = S¢°Sq” + S¢°Sq’
Sq"Sq* =0

FIGURE 7.1. The Adem relations in degrees * < 11

in H*(RP° A Kay; Fo) = Fyla] ® H*(K;Fy), which maps to

in H*(RP° ARP® A K3 Fa) 2

n—4{

2= (AATAA) AN (D a®F © S (uan))
kz a® P @ (LA A) 0 (Sq" (usn))
— zk: a®F @ Sq" (1A A) 0% (u2n))
— Zk:a%—k ®Sq" (> b @ Sq' (un))
& [

=> @@y 8¢ (") ® S¢ (Sq’ (un))

L

. ) a2n—i—j ® bn+i—€ ® quSqé(un)
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We claim that z is invariant under the twist map 7 A 1 that interchanges the
two copies of RP{°. This implies an identity among the composite operations
Sq’Sq*(u,), for varying j and ¢, from which the Adem relations can be extracted
with some effort. See [Ste62| p. 119] or [Hat02, p. 508].

To prove the claim, we use the extended power

Dy(X)=FXyi Ny, XAXANXANX),

where 3, denotes the symmetric group on four letters and p: EF¥y — BY, is a
universal principal 34-bundle. The group X4 acts freely from the right on E¥,4, and
acts from the left on X% = X AX AXAX by permuting the factors. When X = K,
the map 6)): K/* — Ky, representing the fourfold smash product extends, uniquely
up to homotopy, to a map 0': D4(K,,) — K4n. An inclusion G = Cy X (Cy x Cy) C
¥, induces B: Da(D2(X)) — D4(X), so that 8’8 ~ 6D5(0). The diagonal map
A: K, — K} is Y4-equivariant, and leads to the map 1 A A: BYy, A K, —
Dy(K,). The inclusion 1 x At H = Cy x Cy C Co x (Cy x Cg) = G C %4
now induces RP® ARP® = B(Cy x C3)4 — B4, and the left hand vertical
map, making the whole diagram commute up to homotopy. Hence z can also be
calculated as the pullback of (1AA)*(8')*(u4n) € H*(BY4; F2)@ H*(K,; F). There
is an inner automorphism of ¥4 that maps H = Cs x C5 to itself by the twist map 7.
Since inner automorphisms induce the identity map on group cohomology, i.e., on
H*(BX4;F2), the claim that z is invariant under 7 follows. O

The reduced power operations P? and the mod p Bockstein B satisfy the fol-
lowing Adem relations.

THEOREM 7.3.2 (|Adeb3|, [Ste62] §VI.1]). Let p be an odd prime. If i < pj
then

[¢/p] .

. . )G —k) =1\

pPipi — E —1)ttk ((p 4 piti—kpk
k:O( ) 1 — pk

If i < pj then

/7] .
Pi Pj — _ 1)tk (p - 1)(.7 - k)) PH_j_kPk.
pp = 3 (P70 Y)

) [(i_i)/p](_l)”’“ ((p -1)(j—k) - 1) piti—kgph.

= i—pk—1

In each case the summation limits can be omitted, given the convention that
(Z) =0 for k < 0 and k > n. The first few odd-primary Adem relations (for j = 1)
are

PP = (-1’ (p B 2> pit!
(3

for i < p, which implies (P!)P =0,
. p—1 . p—92\ .
Pzﬁpl — (_1)1 <p ] >BP1+1 _ (_1)1 <p 1)Pz+15
i i—
for i < p, and
PPRPl = gprp!
(for i = p).
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By Lucas’ theorem, binomial coefficents mod p can be conveniently calculated
from base p expansions. See [Ste62] Lem. 2.6] or [Hat02, Lem. 3C.6] for a proof.

LEMMA 7.3.3 (Lucas). Letp be a prime, and writen =, n;p' and k =Y, k;p’
with n;, k; € {0,1,...,p—1}. Then
n n;
<k> = H <k:) mod p.
Here (27) =0 if k; > n;. For p = 2, this reduces the calcuation of (Z) to the
cases (8) = ((1)) = (}) =1 and ((1)) = 0. Hence (Z) = 0 mod 2 if and only if there

is an 7 such that n; = 0 and k; = 1, i.e., there is a 1 below a 0 when n and k are
written in base 2.

7.4. The Steenrod algebra

DEFINITION 7.4.1. The mod 2 Steenrod algebra is the (unital and associative)
graded Fy-algebra A = 7(2) generated by the symbols S¢* for i > 0, subject to
the Adem relations

o j—k—1 ke
Sq'S¢ = Sq'ti=kg
q'Sq zk: < o ) q q
for i < 2j, and Sq° = 1.

For each odd prime p, the mod p Steenrod algebra is the F,-algebra A = o7 (p)
generated by the symbols P? for i > 0 and 3, subject to the Adem relations, P’ = 1
and 85 = 0.

LEMMA 7.4.2. Let p be any prime. For each space X the mod p cohomology
H*(X;F,) is naturally a graded left A-module, where A = </ (p).

PROOF. For p = 2, each symbol Sq’ in A acts on H*(X;Fy) as the Steenrod
operation of the same name. This defines a left action by A, since the Steenrod
operations satisfy the Adem relations and Sq° acts as the identity.

The proof for odd p is essentially the same. ([

DEFINITION 7.4.3. Let I = (i1,42,...,%) be any finite sequence of positive
integers. We call £ = ¢(I) the length of I, write

I
HEDI
s=1
for the degree of I, and say that I is admissible if
Z.s 2 2Z-s+1

for each 1 < s < /. Let
Sql = Sq¢'1Sq¢™ ... Sq*
denote the product in A, as well as the corresponding composite of Steenrod oper-

ations. The empty sequence I = () is admissible of length 0, and SqV =1 equals
the identity.

We also refer to £(I) and |I| as the length and (cohomological) degree of Sq’,
respectively, and say that Sq’ is admissible when I is admissible.
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)

) Sq'

) S¢?

) S¢3, S¢*Sq*

) Sq*, S¢Sq*

) Sq¢°, Sq*Sq*

) S¢°, Sq¢°Sqt, Sq*Sq?
) Sq”, Sq¢°Sq', S¢®Sq?, Sq*SqSqt

) Sq¢®, Sq"Sq', S¢°Sq?, Sq°Sq*Sqt

) Sq¢°, S¢®Sq*, Sq"Sq?, S¢°Sq*Sqt, S¢S

) Sqlo’ ngsql, Sq85q2, Sq75q25q1, S’q7Sq3, Sq65q35q1
) Sqll, SquSql, ngsq27 SqSSqQSql, Sq85q3, S’q7Sq3S’q1

e o~ o~

FIGURE 7.2. The admissible monomials in degrees x < 11

THEOREM 7.4.4 (|Ste62, Thm. 1.3.1]). The admissible monomials Sq’ form a
vector space basis for A = o/ (2).

SKETCH PROOF. The monomials Sq’ clearly generate A. If I is not admis-
sible, meaning that i, < 2i,,; for some s, then we can rewrite S¢/ by means of
the Adem relation for Sg¢% Sq's+1. This replaces I with sequences of lower mo-
ment Z£=1 sis, so the process eventually halts. This proves that the admissible
monomials generate A.

To prove that the admissible monomials form a basis, recall the action

sa'tah) = (1)

i
of the Steenrod operations on H*(RP>;Fy) 2 Fy[a]. By the Cartan formula, this
determines the action of Sq’ on

H*(RPOO X e X RPOO,FQ) %Fg[al,...,an],

where the product contains n copies of RP*°. A proof by induction on n shows
that the elements

Sql(ay ... an) € Falay,. .., an)
for I admissible of degree |I| < n are linearly independent. Since n can be chosen

to be arbitrarily large, this proves that the admissible Sq! are linearly independent.
O

The basis of admissible monomials for A in degrees * < 11 is listed in Figure[7.2]

DEFINITION 7.4.5. Let the augmentation €: A — Fy be the graded ring homo-

morphism given by €(1) = 1. Its kernel is the augmentation ideal
I(A) = ker(e)
which equals the positive degree part of A. The classes in the image I(A)? C I(A)
of the pairing
IA)@IA) CA®RA— A
are said to be decomposable, and the quotient
Q(A) = I(A)/1(A)?

is the graded vector space of (algebra) indecomposables of A.
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THEOREM 7.4.6 ([Ade52, Thm. 1.5], [Ste62, Thm. 4.3]). The operation Sq*
is decomposable if and only if k is not a power of 2. Hence
Sqt,Sq%, Sqt, ..., Squ, e
generate A as an algebra, and
Q(A) = Fa{S¢* | i > 0}.

PrOOF. If k is not a power of 2, we can write k =7 + 2¢ with 0 < ¢ < 2¢. The
Adem relation

foot (251N iyt
ququﬂ = ( ) )qu+2" + (decomposable terms)
i

and the case (2£;1) =1 of Lucas’ theorem show that Sq¢* = Sqi"’zl is decomposable.
Conversely, to see that S¢* is not decomposable for k = 2¢, consider the A-
module action on H*(RP>;Fy) = Fya]. From

a2 for 1 =0,

. A p
Sq'(a®) =< a®"" fori=2,
0 otherwise

we see that any operation of degree 0 < x < 2¢ acts trivially on a2
£ 14
decomposable operation of degree 2¢ must also map a® to zero. Since S¢? instead

maps a? to CLQHI, it cannot be decomposable. O

PROPOSITION 7.4.7. If X is a space with H*(X;Fy) = Fylz] or H*(X;Fy) =
Folz]/(z"*Y) with h > 2, and |z| = n, then n is a power of 2.

. Hence any

PROOF. Since H" (X;Fy) = 0 for 0 < i < n the operation Sq"™(x) must be
trivial if Sq™ is decomposable. Since Sq"(z) = z? is assumed to be nontrivial, it
must instead be the case that Sq¢™ is indecomposable. (I

PROPOSITION 7.4.8. If f: S?"~1 — S™ has odd Hopf invariant, then n is a
power of 2.

PRrROOF. If f has odd Hopf invariant, then its mapping cone C'f = S Uy e*" is

a space with H*(C'f;Fy) = Fa[z]/(23) with |x| = n. O
Let p be any odd prime.
DEFINITION 7.4.9. Let I = (€1,41, ..., €, 4, €04+1) be a sequence of integers with
£ >0, each €; € {0,1}, and each is > 1. Let
pl=pgapi. . pepipgen

be the product in A = &/(p), as well as the corresponding composite of Bockstein
and Steenrod operations. Here 8° = 1 and ' = 3. We say that I is admissible if

is 2 €s+1 + Plsy1
for each 1 < s </, and write
| =€ +2i(p— 1)+ +e+2i(p— 1)+ €1
to denote the degree of P!,

THEOREM 7.4.10 ([Ste62, Thm. VI1.2.5]). The admissible monomials P! form
a vector space basis for A = </ (p).
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THEOREM 7.4.11 (|Ste62, Thm. VI1.2.7]). The operation P* is decomposable if
and only if k is not a power of p. Hence
B, PL. PP ... PP ...
generate A as an algebra, and
Q(A) =F, {8, P
When p = 3, the operation P’ has degree 4i.

PROPOSITION 7.4.12. If X is a space with H*(X;F3) = Fs[z] or H*(X;F3) =
Fs[z]/(z"*1) with h > 3, and |z| = n is a power of 2, then n € {2,4}.

i>0}.

PRrROOF. If n = 1, then 2 = —z2 by graded commutativity, which contradicts
222 # 0 in H*(X;F3). Hence n = 2j is even, 3 acts trivially, and P?(z) = 23 # 0.
If P7 is decomposable, then j = 2k must be even and P*(z) = 22 # 0, with P*
indecomposable. In the latter case, k is a power of 3 and 4k = n, so k = 1 and
n = 4. Otherwise, j is a power of 3, s0 j =1 and n = 2. O

THEOREM 7.4.13. If X is a space of finite type with H*(X) = Z[z] or H*(X) =
Z[z]/(z"*) with h > 3, then n = |x| is 2 or 4. If H*(X) = Z[x]/(2®) then
n=2">2is a power of 2.

PrOOF. The finite type assumption ensures that H*(X;F,) = H*(X) ® F,.
Suppose that H*(X) = Z[z] or Z[x]/(x"T!) with h > 2. By graded commutativity,
n = |z| is even. Proposition implies that n is a power of 2. If h > 3, then
Proposition implies that n € {2,4}. O

REMARK 7.4.14. The complex and quaternionic projective spaces CP>, CP",
HP> and HP" show that Z[z] and Z[z]/(z"*+1) with |z| = n are realized as the
integral cohomology of spaces for n € {2,4} and any h > 0. The octonionic
projective plane QP? = S U, e'6 realizes the case n = 8 and h = 2, but there is
no space OP3 realizing the case n = 8 and h = 3.

The question remains whether Z[x]/(2®) can be realized as the cohomology of
a space when |z| = n = 2¢ with 7 > 4. This is equivalent to the Hopf invariant one
problem, of deciding whether there exists a map f: S?"~1 — S" with H*(Cf) =
Z[z]/(z*), which was famously decided in the negative for all i > 4 by Adams
[Ada60]. (The case ¢ = 4 was excluded earlier by Toda.) We will see later that
Adams’ result corresponds to nonzero differentials in the Adams spectral sequence
for the sphere spectrum.

7.5. Cohomology of Eilenberg—MacLane spaces

Using Steenrod operations, we can resolve the question from Section about
the mod 2 cohomology Serre spectral sequence for the loop—path fibration of K(Z/2,2).

LEMMA 7.5.1. Let p be any prime. The mod p cohomology transgression
dO,n—l, Eo,n—l — En,O
n N n n
commutes with the Steenrod operations in H*(F;Fy,) and H*(B;F)).

PROOF. Recall that 7 = d%"~! is given by the additive relation

n

(q")716: H"V(F;F,) -2 H™(E, F;F,) < H"(B,by;F,).
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Any cohomology operation commutes with ¢*, and the Steenrod operations com-
mute with 6. Hence if 7%(z) = y then 7""(S¢'(z)) = Sq¢'(y) in the p = 2 case,
since §(Sq¢*(z)) = Sq'(6(x)) = Sq*(¢*(y)) = ¢*(5¢'(y)), and similarly for odd p. O

DEFINITION 7.5.2. For p=2and ¢ > 1 let
M; = (271272 0 2,1).

It is the unique admissible sequence of length i and degree 2¢ — 1.

Sq2

Sqt

[\ >~ (=2}
ol S Q| N 2 >

bl Sq1>b1 } Sq? >b2 | Sqt >bg

t/s 0 2 4 6 8

PROPOSITION 7.5.3.

H*(K(Z/2,2);Fy) 2 Fa[b, by, ba,...]
with b = ug € H*(K(Z/2,2);F2) and b; = SqMi(b) € H2i+1(K(Z/2,2);F2) for
each i > 1. The Serre spectral sequence

Ey" = H*(K(Z/2,2);F2) ® H*(K(Z/2,1);F)

> Fy(b, by, ba,...] ® Fala]

= H*(PK(Z/2,2);F3) = Fy
has transgressive differentials da(a) = b and

dyi 11 (a®) = by

for each i > 1.
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SKETCH PROOF. By induction on i, we have Sq™i(a) = o', for each i > 1.
Hence each a?' is transgressive, with dyi1(a?") = dagi1(Sq¢™i(a)) = Sq¢™i (dz(a)) =
SqMi(b) = b;. It follows by an induction on u > 0, using a theorem of Borel, that
the Fs-algebra homomorphism

Fa[b,b; | i > 1] @ Fola] — H*(K(Z/2,2);Fs) @ Fola] = E5"
is an isomorphism in base degrees s < u. (I

This was generalized by Serre to calculate H*(K (G, n);Fq) for all finitely gen-
erated abelian G. The role of the collection {M;}; is replaced by a condition on
the excess of an admissible sequence.

DEFINITION 7.5.4. If I = (i1,...,4¢) is an admissible sequence, so that iy >
2is41 for each 1 < s < ¢, we define its excess to be
e(I) = (i1 — 2ig) + - - - + (ig—1 — 2ip) +ip =iy —ig — - -+ — i = 201 — |I].

This is a non-negative integer. The only admissible sequence with e(I) = 0 is
I = (), and the only admissible sequences with e(I) = 1 are the M; for i > 1.

THEOREM 7.5.5 (|Ser53, Thm. 2]). Suppose n > 1. Then
H*(K(Z/2,n);F2) = Fo[Sq  (un) | e(I) < n].

In words: the mod 2 cohomology algebra of K(Z/2,n) is the polynomial algebra
generated by the classes Sq(u,), where u,, € H*(K(Z/2,n);Fs) is the universal
class, and where I ranges over all admissible sequences of excess less than n. Serre’s
result includes the following stable range calculation.

COROLLARY 7.5.6. The homomorphism
S"A — H*(K(Z/2,n);F2)
¥ Sq’ — Sql (uy)
is an isomorphism in degrees x < 2n, i.e., for |I| < n.
Proor. Each admissible I of degree |I| < n has excess e(I) < n, except for
I = (n), and Sq"(u,) = u2. Hence the Sq’(u,) with I admissible of degree |I| < n

range over the algebra generators of H*(K(Z/2,n);F2) in degrees * < 2n, together
with the unique decomposable monomial in that range of degrees. O

Let @, € H*(K(Z,n);F3) denote the unique nonzero class, given by reduction
modulo 2 of the universal class in H"(K(Z,n);Z). Note that §(@,) = 0, so that
Sq'(ii,) = 0. Let i, denote the last entry in an admissible sequence I = (i1, ... ,i).

THEOREM 7.5.7 (|Ser53, Thm. 3]). Suppose n > 2. Then
H*(K(Z,n);Fa) = F2[Sq" (i) | e(I) < n,ig > 1].

In words: the mod 2 cohomology algebra of K(Z,n) is the polynomial algebra
generated by the classes Sq’(@,,), where I = (i1,...,i;) ranges over all admissi-
ble sequences of excess less than n, except those of length ¢ > 1 with final term
i¢ = 1. When n = 2, only the empty sequence satisfies these conditions, so that
H*(K(Z,2);F3) = Falty,], as we already know. Serre’s result implies the following
stable range statement.
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COROLLARY 7.5.8. Let n > 2. The homomorphism
S"AJASGt — H*(K(Z,n);Fy)
¥ Sq’ — Sql (uy,)
is an isomorphism in degrees * < 2n, i.e., for |I| < n.

PRrOOF. By ASq' we mean the left ideal in A generated by Sq¢'. In view
of the relation Sq¢'Sq' = 0, it has a basis consisting of the admissible Sq! with
I = (iy,...,i7) where i; = 1. Hence the Sq’ (i, ) with I admissible of degree |I| < n
and i > 1 (if £ > 1) range over the algebra generators of H*(K(Z,n);Fs) in
degrees x < 2n, together with the unique decomposable monomial, Sq" (i, ) = 42,
in that range of degrees. O

ExAMPLE 7.5.9. The exact Serre sequence

Tn+l *

0 — H"(K(Z/2,n);Fs) ~— H"(K(Z,n);Fs) — H" Y (K(Z,n+1);Fs) L5 ...
T P (K (T + 1) Fa) 2 HW(K(Z/2,0):Fa) s H2(K(Z, n); Fy)
associated to the homotopy fiber sequence
K(Z,n) - K(Z/2,n) 25 K(Z,n+1)

satisfies i*(u,) = n, so that i*(Sq’ (u,)) = Sq’(4,), by naturality. Hence i* is
surjective, and 7™ = 0 for n < m < 2n, It follows that p*(ii,41) = Squ,, since
this is the only nonzero class in its degree, so that p*(Sq’t,.1) = Sq'Sq'u,. In
particular, the Serre sequence splits up into the short exact sequences

0 X" 1A/ASqE 2w A U sm A ASe 0

in degrees n < x < 2n. Here p*(X"*+19¢!) = ©"Sq! S¢', while i*(£"Sq') = X" S5q!
mod ASq'. ((ETC: We will encounter the A-module extension

0— $LA/AS¢" — A — AJ/ASq" — 0
later in the context of the Adams spectral sequence.))
The analogous results for odd primes p were obtained by Cartan [Car54]. Let
I=(e1,41,... €000, €41),
with £ >0, e € {0,1} and i5 > 1, for each 1 < s < /. Let
as = €5+ 2(p — 1)is

be the degree of 3¢ P, with asy1 = €;41. The admissibility condition, that i, >
€s+1 + Pist1, is equivalent to the condition as > pasi1. Hence

(a1 —paz) + -+ (ag — pagt1) + a1 = a1 — (p— Laz — - — (p — Dagy
is non-negative. We can write this as e; + (p — 1)e(I), where
6(1) :27:1 —ag — - — Ag4q -

defines the p-primary excess of I.
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DEFINITION 7.5.10. For I = (ey,11,. .., €, ip, €0+1) admissible, let
6([) :211 7@27"'7&@_},_1
= 27,1 — (62 + 2(]9— 1)22) — o T €41

be the excess of I.

This agrees with Kraines [Kra71] and Tamanoi [Tam99), but differs from the
convention of May |[May70, Not. 10.1(b)], who adds €; to the above definition
of e(I).

DEFINITION 7.5.11. Let Sg,(z; | i) denote the free graded commutative IF,-
algebra (= symmetric algebra) on a set of generators z;, i.e., the tensor product
of a polynomial algebra F,[z;] for each z; of even degree and an exterior algebra
Ap, (x;) for each z; of odd degree.

THEOREM 7.5.12 ([Car54, Thm. 6]). Let p be an odd prime, and n > 1. Then
H*(K(Z/p,n);Fp) = S, (P! (un) | e(I) < n)
is the symmetric algebra generated by the classes P'(u,), where
un € H"(K(Z/p,n); Fp)

is the universal class, and where I = (€1,11,...,€s, 10, €041) Tanges over all admis-
sible sequences of excess less than n.

SKETCH PROOF. Cartan’s condition pay < (p—1)(n+ag+-- -+ ay) translates
to pa; < (p—1)(n+ay+ -+ agy1) in our notation, and is equivalent to e(I) < n.
See also [May70, Thm. 10.3], where e(I) corresponds to our €; + e(I), and the
condition “ 1 = 1” should be read as “e; = 17. O

COROLLARY 7.5.13. The homomorphism
YA — H*(K(Z/p,n);Fp)
> Pl — Pl(u,)
is an isomorphism in degrees x < 2n, i.e., for |I| < n.

Proor. Each admissible I of degree |I| < n has excess e(I) < n. The decom-
posable classes in H*(K(Z/p,n);F,) lie in degrees * > 2n. O

THEOREM 7.5.14 ([Car54, Thm. 6]). Let p be an odd prime, and n > 1. Then
H*(K(Z,n);F,) = Sk, (P'(,) | e(I) < n, €41 = 0)
is the symmetric algebra generated by the classes P (i), where
Uy € H"(K(Z,n);F)p)

is the mod p reduction of the universal class, and where I = (€1,i1,...,€p,1p,€041)
ranges over all admissible sequences of excess less than n and with €py1 = 0.

COROLLARY 7.5.15. The homomorphism
S"AJAB — H* (K (Z,n);Fp)
»" Pl Pl(a,)

is an isomorphism in degrees x < 2n, i.e., for |I| < n.
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PROOF. Each admissible P! of degree |I| < n (and not ending with ) has
excess e(I) < n. The decomposable classes in H*(K(Z/p,n);F,) lie in degrees
* > 2n. O

7.6. Stable cohomology operations

The Steenrod operations Sq’ and P! are stable, in the following sense.

DEFINITION 7.6.1. A stable cohomology operation 6 = (0i)x of type (G;G’,n)
is a sequence of cohomology operations 6y of type (G, k; G',n + k) such that each
diagram

(X G) — 2 AnHk (X6

Ulz :JU

HHU(EX; Q) 25 itk (X @)
commutes, where o denotes the suspension isomorphism.
((ETC: Is there a sign (—1)" needed? Is X = S' A X or X A S17))
DEFINITION 7.6.2. The cohomology suspension
w: H™YY ;G — H™(QY;G")

maps the homotopy class of f: Y — K(G',m 4+ 1) to the homotopy class of
Qf: QY - QK(G',m+1) ~ K(G',m).

REMARK 7.6.3. The standard notation for the cohomology suspension is o,
not w, but for this argument is seems clearer to reserve & to denote the equivalence
K(G,k) 2 QK(G,k + 1) and the suspension isomorphism represented by it.

LEMMA 7.6.4. A sequence (0)r of cohomology operations of type (G, k; G',n+
k) is stable if and only if w(Ox+1) = Ok for each k, where

w: H"WYK(G k+1);G)) — H"HMK(Gk);G)
is the cohomology suspension.

ProOF. By the Eilenberg-MacLane representability theorem, 6 = (6y)y is sta-
ble if and only if each diagram

K(G k) — 5 K(G' 0+ k)

5J~ ~l&

QK (G, k+1) 2 QR (G n + k + 1)

commutes up to homotopy. This is equivalent to the condition that w maps the
cohomology class represented by 81 to the cohomology class represented by 6.
O

In other words, the abelian group of stable cohomology operations of type (G; G’, n)
is isomorphic to the sequential limit

lim H"WH(K(G,k): Q)
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of the diagram
(7.1) 2 HPRY(K(GL R+ 1);GY) =5 HYPH(K(GLE); G =

The composite of a stable operation of type (G; G', n) followed by a stable operation
of type (G'; G”,m) is a stable operation of type (G; G”,n+m), so the collection of
all stable cohomology operations of type (G; G, n) for n € Z forms a graded (usually
non-commutative) ring. When G =T, this ring is the mod p Steenrod algebra, as
we can now deduce from the calculations of Serre and Cartan.

PROPOSITION 7.6.5. Let p be any prime, and let A" C A = o/ (p) denote the
degree n part of the mod p Steenrod algebra. The homomorphism

A" = lim [ (K (Fy, k); Fy)
60— (H(Uk))k
is an isomorphism. Hence A is isomorphic to the graded ring of stable cohomology
operations of type (F,;Fy,,n) for arbitrary n.
PROOF. The homomorphisms
SFAT — ﬁn+k(K(Fp7 k)§Fp)
¥R —s O(ug)
are compatible with the cohomology suspensions w, and are isomorphisms for k£ >
n. Hence they combine to map A" isomorphically to the group of compatible
sequences (0;)g. In particular, each morphism w in (7.1]) is an isomorphism, for
k > n. It is clear that the product in A corresponds to the composition of (stable)
cohomology operations. O
((ETC: In terms of spectra, A = H*(H). Here H"(H) = limy, H"t* (K (F,, k); F,)
because Rlimy H""*~Y(K(F,,k);F,) = 0. Dually, A, = H,(H) with H,(H) =
colimy Hy 41 (K (Fp, k);Fp).))

7.7. Hopf algebras

Let A = &/(2). The mod 2 cohomology of any space H*(X;Fs), is naturally
an A-module and a commutative Fo-algebra, satisfying the Cartan formula

(x Uy) Z Sq'(z) U S¢ (y)
i+j=k
and the instability condition S¢‘(z) = 0 for i > |x|. Following Milnor [Mil58]
Lem. 1], there is an algebra homomorphism
PvV:A—ARA
qu — Z Sqi ®qu,
itj=k
and each A ® A-module can be viewed as an A-module by restriction along . The
Cartan formula then says that the cup product

H*(X;Fy) ® H*(X;F3) — H*(X;F)

is an A-module homomorphism, where the A-module structure in the source is
obtained by restriction in this way. We also say that H*(X;Fs) is a A-module
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algebra. Completely similar results apply at odd primes p. The coproduct 1) makes
A a cocommutative Hopf algebra, and we shall now review this algebraic structure.
The paper [MMG65| by Milnor and Moore is a standard reference.

DEFINITION 7.7.1. Let R be a commutative ring, which will be a field IF, in
our main applications. For R-modules L and M we write L @ M = L g M
for the tensor product over R and Hom(M, N) = Hompg(M, N) for the R-linear
homomorphisms. If L, M and N are (homologically) graded, then

(LeM),= @ Lie M,
itj=k
and
Hom(M, N); H Hom (M, Ni).
i+j=k
The twist isomorphism
T LM — ML
maps T ®y to (—1)Yy ®x, for x € L; and y € N;. There is a natural isomorphism
Hom(L ® M, N) = Hom(L, Hom(M, N))

taking f: L& M — N to g: L — Hom(M, N), with f(z ® y) = g(x)(y). Here f is
left adjoint to ¢ and g is right adjoint to f. The natural evaluation homomorphism
(= adjunction counit)

e: Hom(M,N)®@ M — N
is left adjoint to the identity on Hom(M, N), and the natural homomorphism (=
adjunction unit)

n: L — Hom(M,L ® M)
is right adjoint to the identity on L ® M. We say that (graded) R-modules form a
closed symmetric monoidal category, cf. [ML63, §VIL.7].

DEFINITION 7.7.2. A (graded) R-algebra is a (graded) R-module A with a
product ¢: A® A — A and a unit n: R — A such that

ARAR A2 A A

¢®1J Lﬁ
AwA—2 4
and

RoA N A0Ad® AR

Ny

A

commute. It is commutative if the diagram

ARA—T— 3 ARA

R e

cominmutes.
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DEFINITION 7.7.3. The ring R is the initial R-algebra. The product ¢: RQ R —
R is the canonical isomorphism and the unit n7: R — R is the identity.

The tensor product of two R-algebras A and B is the R-algebra A ® B with
product given by the composite

A9B2A9B'Y ' Ao Ao BoB® A9 B

and unit
RReR™ A@B.
In the full subcategory of commutative R-algebras, the tensor product is the cate-

gorical sum.

DEFINITION 7.7.4. An R-algebra (A, ¢,n) is augmented if it comes equipped
with an algebra morphism e: A — R. Let

I(A) =ker(e: A— R)
be the augmentation ideal, and let the R-module of indecomposables Q(A) be the
cokernel
I(A) ® I(A) 2 1(A) T Q(A) - 0
of the restricted product. A subset S C I(A) that generates A as an R-algebra
will map to a subset w(S) C Q(A) that generates Q(A) as an R-module, and
the converse often holds. The elements in I(A)? = ¢(I(A) ® I(A)) are said to

be (algebra) decomposable, and an element z € I(A) with 7(z) # 0 is (algebra)
indecomposable.

((ETC: If A = RJ[z]] is a formal power series algebra, with e¢(z) = 0, then
Q(A) = R{z}, but = does not generate A algebraically.))

DEFINITION 7.7.5. A left A-module is a (graded) R-module M with a pairing
A A® M — M such that

A A M2 Ao M

oo1 |

A M —2 5 M
and
n®1
RM — A M

!

M

commute.
A right A-module is a (graded) R-module L with a pairing p: L ® A — L such
that

LoAo AN Lo A

1% l”

LoA—"
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and
LA LR
l -
L
commute.

Given a right A-module L and a left A-module M, the tensor product L ®4 M
is the coequalizer
1®A .
LRARM - LM ——L®@4 M
P
where 1 ® A and p ® 1 are given by the left and right action maps, respectively.
Given two left A-modules M and N, the R-module of A-linear homomorphisms
Homy (M, N) is the equalizer

\-
Hom 4 (M, N) —— Hom(M, N) —__ Hom(A ® M, N),
A

where \*(f) = fA: AQM — N and A, (f) = \1®f): A@M — N for f: M — N.

EXAMPLE 7.7.6. Let G be a topological group, with multiplication m: GxG —
G. The Pontryagin product

¢: H.(G;R) ® H,(G;R) = H,(G x G;R) = H,(G; R)
and the homomorphisms n: R — H,(G;R) and e: H,(G;R) — R induced by
{e} € G and G — {e} make H,(G; R) an augmented R-algebra. Likewise, if X is
a topological space with a left G-action, then M = H,(X;R) is a left H.(G; R)-
module.
Dually, for any space X the cup product

U: H*(X;R) ® H*(X; R) =% H*(X x X;R) 25 H*(X; R)

and the homomorphism n: R — H*(X; R) induced by X — {x¢} make H*(X; R)
a (graded) commutative R-algebra. A choice of base point zyp € X determines an
augmentation e: H*(X; R) — R, induced by {z¢} C X.

EXAMPLE 7.7.7. If V is an R-module, then the left action

NA AoV Agy

makes A®V a left A-module, known as an extended A-module. There is a natural
isomorphism
Homy(A® V,N) = Hom(V,UN),

where N is any A-module and UN its underlying R-module. Hence the extended
A-module functor V — A ® V is left adjoint to the forgetful functor U from left
A-modules to R-modules.

If R is a field, then the extended A-modules are the same as the free A-modules,
all of which are projective. If, moreover, A is a connected R-algebra then each
projective A-module is free, by a theorem of Kaplansky [Mar83, Prop. 11.2].

The dual theory of coalgebras and comodules is developed in [MMG65] and [EM66).
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DEFINITION 7.7.8. A (graded) R-coalgebra is a (graded) R-module C' with a
coproduct ¥: €' — C ® C' and a counit e: C — R such that

c—Y LcwcC

wl Jw®1
1®y

CeC—CoCeC

and

R
IR

P
R®C’<KC®OT®E>O®R

commute. It is cocommutative if the diagram

C
P W

cCeC——  sCxC

cominutes.

REMARK 7.7.9. We can write
- Yater
(6%

for suitable z’,z” € C. Then

(2] «
Z( )B® /5®$ Zx@) //23®(//)//
a,f
by coassociativity, and

Y elat)zln == wge(r)
[0}

[e3

by counitality. Cocommutativity asks that

2 : / ” 72 : NI ’
Ty ®T, = (_1) e, Q@ Ty,
[0

[

We often omit the summation indices in these formulas, and write
P(z) = Zx’ ® z"”
@) e @) ed =3 o @) o @)
Z e(z )2 =z = Zx’e(m”)
Zw’ Rz = Z(—l)‘“”/‘lgﬂ//lx” ®x.

DEFINITION 7.7.10. The ring R is the terminal R-coalgebra. The coproduct
1: R — R® R is the inverse of the canonical isomorphism and the counit e: R — R
is the identity.
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The tensor product of two R-coalgebras C' and D is the R-coalgebra C' ® D
with coproduct given by the composite
ceD**¥cewcoDeD'Y$ CeDaCaD

and counit

CoD S ReR>R.
In the full subcategory of cocommutative R-coalgebras, the tensor product is the
categorical product.

DEFINITION 7.7.11. An R-coalgebra (C, ), €) is coaugmented if it comes equipped
with a coalgebra morphism n: R — C. Let

J(C) =cok(n: R— C)

be the coaugmentation coideal, (ETC: also known as the unit coideal)) and let the
R-module of primitives P(C) be the kernel

0= P(0) == J(C) = J(C) & J(C)
of the corestricted coproduct. In terms of elements,
PC)={zecC|¢p@)=r@l+1oa},

and an element x € C with ¢)(z) = z® 1+ 1 ®z is said to be (coalgebra) primitive.
((ETC: Also define “imprimitive”?))

REMARK 7.7.12. In the coaugmented case, we can write
P(x) :x®1+2x’a®x’;+1®x
for x € I(C) = ker(e) = J(C), with z,, s € I(C'), and this often gets abbreviated

to
1/)(x):x®l+2x’®x”+l®x.

DEFINITION 7.7.13. A left C-comodule is a (graded) R-module M with a coac-
tion v: M — C ® M such that

M—"—sCoM

/| [so2
1Qv

CoM—CCeM

and
M

JV

R®M<Wc’®M

1R

commute.
A right C-comodule is a (graded) R-module L with a coaction 0: L — L ® C
((ETC: Not a standard notation.)) such that

L—"——LeC

J Jw@w

Leoc Y rececC
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and
L \
LeC T L®R
commute.

Given a right C-comodule L and a left C-comodule M, the cotensor product
L O¢ M is the equalizer
1Qv
LOcM—LeM — LeCoM
where 1 ® v and o ® 1 are given by the left and right coaction maps, respectively.
Given two left C-comodules M and N, the R-module of C-colinear homomor-
phisms Homg (M, N) is the equalizer

Home (M, N) —~— Hom(M, N) Hom(M,C ® N),

Vx

where v*(f) = (1@ f)v: M - C®N and vi(f) =vf: M - C®N for f: M — N.

REMARK 7.7.14. Note that we write Homp(M, N) to denote the B-module
homomorphisms f: M — N when B is an algebra and M and N are B-modules,
and to denote the B-comodule homomorphisms f: M — N when B is a coalgebra
and M and N are B-comodules. This will also apply to the derived functors
Exti(M, N). We may say “module Ext” or “comodule Ext” to distinguish the two
cases.

EXAMPLE 7.7.15. Let G be a topological group, with multiplication m: G x
G — G. Suppose that H*(G; R) is finitely generated and projective over R in each
degree, so that the cross product
H*(G;R)® H*(G;R) = H*(G x G; R)
is an isomorphism. (Recall that ® = ®.) Then the Pontryagin coproduct

b: H*(G; R) ™ H*(G x G; R) “=s H*(G; R) ® H*(G; R)

and the homomorphisms e¢: H*(G;R) — R and n: R — H*(G;R) induced by
{e} € G and G — {e} make H*(G;R) a coaugmented R-coalgebra. Likewise,
if X is a topological space with a left G-action, then M = H*(X;R) is a left
H*(G; R)-comodule. (The hypothesis on G ensures that

H*(G;R)® H*(X;R) = H*(G x X;R)

is also an isomorphism.)
Dually, for any space X with H,(X; R) flat over R in each degree, the diagonal
coproduct

H.(X;R) 2% Ho(X x X; R) “55 H.(X;R) ® H.(X; R)

and the homomorphism e: H,.(X; R) — R induced by X — {z¢} make H,(X;R)
a (graded) cocommutative R-coalgebra. A choice of base point xg € X determines
a coaugmentation 1: R — H,.(X; R), induced by {zo} C X.
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EXAMPLE 7.7.16. If V is an R-module, then the left coaction

v:cev¥oeceV

makes C'® V a left C-comodule, known as an extended C-comodule. There is a
natural isomorphism

Hom(UM,V) =2 Home(M,C® V),

where M is any C-comodule and UM its underlying R-module. Hence the extended
C-comodule functor V — C'®V is right adjoint to the forgetful functor U from left
C-comodules to R-modules.

If R is a field, then every extended C-comodule is injective, and each injective
C-comodule is a retract of an extended C-comodule. ((ETC: If, moreover, C is
connected, is every injective C-comodule actually extended?))

DEFINITION 7.7.17. A (graded) R-bialgebra is a (graded) R-module B with a
product ¢: B® B — B, unit n: R — B, coproduct ¥: B — B ® B and counit
€: B — R such that

(1) (B, ¢,n) is an R-algebra,
(2) (B,%,€) is an R-coalgebra, and
(3) ¢ and € are R-algebra homomorphisms.

LEMMA 7.7.18. The following are equivalent:
e Y and € are R-algebra homomorphisms.

e ¢ and n are R-coalgebra homomorphisms.

PROOF. The conditions that ¥ and e are R-algebra homomorphisms ask that
the diagrams

BoB*"\BeBoB®B
1®TR1

® BRB®B®B

J(¢®¢
B i B®B

and

R—=S3R®R BeB-254R®R R—5R
o A L A R B
B—Y.BwB B—° LR B—“>R

commute. These are also the conditions that ¢ and 7 are R-coalgebra homomor-
phisms. [l

DEFINITION 7.7.19. There are natural homomorphisms

P(B) J(B) +— I(B) Q(B)

for each bialgebra B. If P(B) — Q(B) is surjective, then we say that B is primi-
tively generated.
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This terminology is most appropriate when a set of module generators for Q(B)
also generates B as an algebra.

DEFINITION 7.7.20. A Hopf algebra over R is an R-bialgebra B equipped with
an R-linear conjugation x: B — B such that

commutes.
With the notation ¢(b) = > b’ ® b”, we can write the condition as follows:
DO x(0) =ne(b) =Y x(v)-b".
LEMMA 7.7.21. A bialgebra admits at most one conjugation.
Hence being a Hopf algebra is a property, not a structure, for bialgebras.

LEMMA 7.7.22. The conjugation x: B — B is an anti-homomorphism of al-
gebras, and an anti-homomorphism of coalgebras, so that x¢ = ¢7(x ® x) and

vx = (X ® X)7Y.
LEMMA 7.7.23. Let B be a commutative or cocommutative Hopf algebra. Then
x2=1,sox=x""':B— B.

See [MM65| §8] or [DNRO1] §4.2] for proofs. The following examples are
closely related to those first studied by Heinz Hopf [Hop41].

EXAMPLE 7.7.24. Let G be a topological group. Suppose that H,(G; R) is flat
over R in each degree, so that the unit n: R — H.(G; R), Pontryagin product

¢: H.(G;R)® H,(G; R) — H.(G;R),
counit €: H,(G; R) — R and diagonal coproduct
v: H,(G; R) — H,.(G;R) ® H.(G; R)
make H,(G; R) an R-bialgebra. The inverse map i: G — G induces the conjugation
X =i«: Hi(G;R) — H.(G; R)

making H,(G; R) a cocommutative Hopf algebra over R.
Suppose instead that H*(G; R) is finitely generated and projective over R in
each degree, so that the unit n: R — H*(G; R), cup product

¢: H*(G;R)® H*(G; R) — H™*(G;R),
counit €: H*(G; R) — R and Pontryagin coproduct
v: H*(G;R) — H*(G; R) ® H*(G; R)
make H*(G; R) an R-bialgebra. The inverse map i: G — G induces the conjugation
=" H*(G;R) — H*(G; R)
making H*(G; R) a commutative Hopf algebra over R.
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DEFINITION 7.7.25. Let B be a Hopf algebra over R. For left B-modules L
and M we give the tensor product L ® M the “diagonal” B-module structure with
left action A\: BQ L® M — L ® M given by the composition

BoLoM - BoBoLeoM ¥ BeLoBaM 2 Lo M.

For left B-modules M and N we give Hom (M, N) the “conjugate” B-module struc-
ture with left action A\: B ® Hom(M, N) — Hom(M, N) given by the right adjoint
of the composition

B®Hom(M,N)o M "2%" Be B®Hom(M,N)® M

9791 B ® Hom(M, N) ® B® M "**3*' B @ Hom(M, N)® Bo M
"9 B @ Hom(M,N)@ M 2 B N 25 N
There is a natural isomorphism
Hompg(L ® M, N) = Homp(L,Hom(M, N)),

so that f: L& M — N is B-linear if and only if its right adjoint g: L — Hom(M, N)
is B-linear.

If B is cocommutative, then the twist isomorphism 7: L@ M — M ® L is
B-linear, and the left B-modules form a closed symmetric monoidal category.

((ETC: Margolis [Mar83|, §12.1] writes L A M for this tensor product of B-
modules.))

EXAMPLE 7.7.26. The left B-action on the functional dual DM = Hom(M, R)
of a left B-module M is adjoint to the composition

BeDMoM™DMoBaoM "' DMoBeo M3 DM e M - R.

REMARK 7.7.27. For b € B with ¢(b) = > 0 ® V", £ € L and m € M we have
b-(t@m)=> ()1 Lab” m.
For f € Hom(M, N) we have
(b~ f)m) =D (=D f(x (") - m).
In particular, for b € B and f € DM = Hom(M, R), we have

(b f)(m) = (=1)PMT£(x(b) -m) .

DEFINITION 7.7.28. Let B be a Hopf algebra over R. For left B-comodules L
and M we give the tensor product L ® M the “codiagonal” B-comodule structure
with left coaction v: L@ M — B ® L ® M given by the composition

LoM“BoLoBoM ' ¥ BeBoLoM 28" ' BeLo M.

If B is commutative, then the twist isomorphism 7: L® M — M ® L is B-colinear,
and the left B-comodules form a symmetric monoidal category.

((ETC: We might write L A M for this tensor product of C-comodules.))
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REMARK 7.7.29. For left B-comodules M and N we cannot generally give the
R-module Hom(M, N) a natural “coconjugate” B-comodule structure such that
fi: L®M — N is B-colinear if and only if its right adjoint g: L — Hom(M, N)
is B-colinear. If M = colim; M; and v;: Hom(M;, N) — B ® Hom(M;,N) is
a suitable coaction, then lim;v;: Hom(M,N) — lim; B ® Hom(M;, N) will not
generally factor through B ® lim; Hom(M;, N) & B ® Hom(M, N).

When B is flat as an R-module there is, however, a different internal function
object F'(M, N) with a natural B-comodule structure, and a natural isomorphism

Homp(L ® M,N) = Homp(L, F(M,N))

so that f: L ® M — N is B-colinear if and only if g: L — F(M, N) is B-colinear.
See Hovey’s paper [Hov04, Thm. 1.3.1] for a construction, which satisfies F'(M, B®
V) =2 B®Hom(M,V) when N = B® V is a coextended B-comodule. Here V is
any left R-module. There is a natural homomorphism F(M,N) — Hom(M, N),
which is injective if M is finitely generated over R, and an isomorphism if M is
finitely presented over R, cf. [Hov04} Prop. 1.3.2]. We can think of F(M, N) as
the elements of Hom(M, N) with algebraic B-coaction.

A second approach |Boa82] is to consider B-comodules as a subcategory of
B*-modules, where B* is the (non-commutative) ring of (right) R-module homo-
morphisms B — R. A third approach is to consider Hom(M, N) as a “completed”
B-comodule, with coaction Hom(M, N) — B® Hom(M, N) landing in a completed
tensor product.

For a module M over a Hopf algebra B, the extended B-module B ® UM and
the diagonal B-module B ® M are not equal, but isomorphic. We call this the
untwisting isomorphism, but the name may not be standard.

ProproSITION 7.7.30 (JABP69, Thm. 3.1], [LMSMS86, Lem. 11.4.8]). Let B
be a Hopf algebra and M a left B-module. The composite

BoM ™ BoBaoM*¥3Be M,

mapping b @ m to Y. b @ b"m, defines an isomorphism
BoUM — B@M
from the extended B-module on UM to the tensor product of B and M with the
diagonal B-action.
ProOOF. The inverse isomorphism is given by the composite

BoM* 3 BeBeoM 2% BeBe M 23 BaM

mapping b@m to > b ® x(b")m. O
PROPOSITION 7.7.31 ([BMMSS86|, pp. 92-93]). Let B be a Hopf algebra and
M a left B-comodule. The composite

BoaM¥SBoBoM®E BoM

defines an isomorphism
BoM — BUM

from the tensor product of B and M with the diagonal B-coaction to the extended
B-comodule on UM.
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PROOF. The inverse isomorphism is given by the composite

BoaM**3BoBaoM 'Y BeBoM 2 Bo M.

We now turn to the behavior of these algebraic notions under dualization.

DEFINITION 7.7.32. Let DM = Hom(M, R) denote the functional dual of a
(graded) R-module M.

((ETC: Adapting Dold—Puppe [DP80, §1] and Lewis—May—Steinberger [LMSM&6|
§IIL.1], M is said to be (strongly dualizable, finite or) dualizable if the canonical
homomorphism

M ® DM = Hom(R, M) ® Hom(M, R) — Hom(M, M)
is an isomorphism. Equivalently: M is finitely generated projective over R.))

LEMMA 7.7.33. Let M be a graded R-module. If M is bounded below then DM
is bounded above, while if M is bounded above then DM is bounded below. If M
is finitely generated and projective over R in each degree, then DM 1is also finitely
generated and projective over R in each degree, and the canonical homomorphism

p: M — DDM
is an isomorphism.

LEMMA 7.7.34. Let L and M be graded R-modules. If L and M are both
bounded below (or both are bounded above, or one of them is bounded above and
below), and L (or M) is finitely generated projective over R in each degree, then
the canonical homomorphism

®: DL® DM — D(L® M)

is an isomorphism. Here (f®g)(z®y) = (=1)9=lf(z)-g(y) for f € DL, g € DM,
ze€L andy e M.

LEMMA 7.7.35. Let A be a graded R-algebra that is bounded below (or bounded
above) and finitely generated projective over R in each degree. Then DA with the
coproduct

v: DA P4 DA A) 2 DA DA
and counit
e: DA ﬂ) DR~ R

is a graded R-coalgebra.
Conversely, if C is a graded R-coalgebra, then DC' with the product

¢: DC® DC -2 D(C® ) 2% DC

and the unit
n: R~ DR 25 DC
is a graded R-algebra.
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LEMMA 7.7.36. Let A be an augmented graded R-algebra that is bounded below
(or bounded above) and finitely generated projective over R in each degree. Then
DA is coaugmented by

n: R~ DR 25 DA,

and the isomorphism J(DA) = DI(A) restricts to an isomorphism
P(DA) = DQ(A).
Conversely, if C' is a coaugmented graded R-coalgebra, then DC' is augmented
by
Dn,

e: DC — DR R,
and the isomorphism I(DC) = DJ(C) induces a homomorphism

Q(DC) —s DP(C).

If R is a field, then this is a surjection. If, furthermore, C is bounded below (or
bounded above) and finitely generated over the field R in each degree, then this is
an isomorphism.

PROOF.

1(DC) © I(DC) —2— [(DC) —"— Q(DC) —— 0

|

DJ(C)® DJ(C)

®l
Dy

D(J(C) ® J(C)) —= DJ(C) -2~ DP(C) —— 0

R

O

LEMMA 7.7.37. Let M be a left A-module, with A and M both bounded below (or
both bounded above, or A bounded above and below), and with A finitely generated
projective over R in each degree. Then DM with the left coaction

DX ® !
vi: DM — D(A® M) =— DA® DM

is a left DA-comodule. ((ETC: Likewise for right A-modules.))
Conversely, if C is a graded R-coalgebra and M 1is a left C-comodule, then DM
with the left action

A: DC @ DM -2 D(C @ M) 2% DM
is a left DC'-module.

LEMMA 7.7.38. Let L and M be right and left A-modules, respectively, with L,
M and A all bounded below (or all bounded above, or two of them bounded above
and below), and with A finitely generated projective over R in each degree. Then
the isomorphism DL ® DM = D(L ® M) restricts to an isomorphism

DLOpa DM = D(L®4 M).
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LEMMA 7.7.39. Let M and N be left A-modules, with M, N and A all bounded
below (or all bounded above, or A bounded above and below), and with A finitely
generated projective over R in each degree. Then f+— Df defines a homomorphism

D: Homa(M,N) — Hompa(DN,DM).

If, furthermore, M and N are finitely generated projective over R in each degree,
then D is an isomorphism.
Conversely, if M and N are left C-comodules, then f +— Df defines a homo-
morphism
D: Homg(M,N) — Hompc(DN,DM).

If M, N and C are all bounded below (or all bounded above, or C is bounded above
and below), and they are all finitely generated projective over R in each degree, then
D is an isomorphism.

((ETC: Are there further simplifications when R is a field, so that p: M —
DDM and p: N — DDN are injective?))

PROPOSITION 7.7.40. Let B be a graded R-bialgebra that is bounded below (or
bounded above) and finitely generated projective over R in each degree. Then DB
with the product

¢: DB® DB -2 D(B® B) 2% DB

unit
n :R~DR 25 DB,
coproduct
v: DB 2% D(B® B) % DB® DB
and counit

e:DB2YDR~R

is a graded R-bialgebra. If B is commutative (resp. cocommutative), then DB s
cocommutative (resp. commutative). If B is a Hopf algebra, then DB is a Hopf
algebra with conjugation

v: DB 2% DB.
EXAMPLE 7.7.41. Let R = Z. There is a bicommutative Hopf algebra B = Z[¢],
with underlying algebra the polynomial ring on one generator £ in nonzero even

degree. The product is given by ¢(£'®¢&7) = €117, For degree reasons, the coproduct
on ¢ can only be ¥(§) = ® 1+ 1 ® &, which implies that

(e = > )¢ ed

it+j=k
by the binomial theorem. The conjugation satisfies x(§) = —&. The coalgebra
primitives and algebra indecomposables of B are

o

Z{¢} = P(B) — Q(B) = Z{¢},

so B is primitively generated.
The dual Hopf algebra DB = T'(x) has underlying algebra the divided power
ring on one generator = in a nonzero even degree. Here I'(z) = Z{v(z) | k >
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0} with vo(x) = 1, y1(z) = z and y(x) dual to &¥. The product is given by
d(vi(z) ® v;(x)) = (4, ) vi+;(x), and the coproduct is given by
(@) = Y vilw) @(@) .

itj=k
The conjugation satisfies x(vx(z)) = (—1)*yx (). The coalgebra primitives of DB
are

P(DB) = Z{x}
while the algebra indecomposables are
QDB =z} & @ Z/pfr (@) [n>1}.

p prime

This uses the number-theoretic fact that

g if k = p" with n > 1
ng{(.)|O<i<k}_ p 1 1? with n > 1,
! 1 otherwise.

((ETC: Reference?)) In other words, vx(x) is indecomposable if and only if k = p”
is a prime power, and in this case pyx(x) is decomposable.
The general theory ensures that

Z{z} = P(DB) = DQ(B) = D(Z{¢})
while in this example, the homomorphism

Z{z} © @ Z/p{yp ()} = Q(DB) — DP(B) = D(Z{¢})

is not an isomorphism.

REMARK 7.7.42. For || = uw—1 > 2, this example is homologically realized by
B = H,(QS5") with DB = H*(£25"), and 25" is equivalent as an A, space (in par-
ticular, as a homotopy associative H-space) to a topological group G. The problem
of realizing B cohomologically is more subtle, and was discussed in Remark

((ETC: Return to structure theorems.))

7.8. The dual Steenrod algebra

Milnor proved that the Cartan formula for the Steenrod operations implies that
the mod p Steenrod algebra is a Hopf algebra, for each prime p.

THEOREM 7.8.1 ([Mil58] Lem. 1], [Ste62, Thm. II.1.1, Thm. VI.2.10]). Let
A = o/ (p) be the mod p Steenrod algebra. The assignments

qu — Z Sq' @ S¢’
i+j=k
forp=2, and
fr—BR1+126
PFe—s Y PP
it+j=k
for p odd, extend uniquely to ring homomorphisms
vV:A—ARA
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so that
Oz Uy) = ()9 (z) L " (y)
for each 0 € A, z,y € H*(X;F,) and ¥(0) =>.0' ® 60" € A® A.

SKETCH PROOF. Following Milnor, let R be the set of § € A for which there
exists an element p € A ® A such that

0 = ¢p: H*(X;F,) @ H*(X;F,) — H*(X;F))
for all spaces X. Then R is closed under sum and product in A, and contains the
S¢* for p =2 and B and the P* for p odd, hence is equal to the whole of A.

To prove uniqueness of p, evaluate 8¢ on H*(X;F,) ® H*(X;F,) for a space X
that faithfully detects the action by A in a large range of degrees. If |8] = n, one
can let X = K(Z/p,n) or X = K(Z/p,1)".

Letting ¢(6) = p then defines the ring homomorphism ). (]

REMARK 7.8.2. The admissible basis shows that A is concentrated in non-
negative cohomological degrees, and is finite-dimensional over I, in each degree.
Moreover, F,{1} equals the degree 0 part of A, so we say that A is a connected
algebra. This implies that there is a unique augmentation e: A — IFp.

THEOREM 7.8.3 ([Mil58 Thm. 1], [Ste62, Thm. I1.1.2, Thm. VI.2.11]). The
Steenrod algebra A, with the coproduct ¥: A — AR A and the augmentation e: A —
Fp, is a cocommutative Hopf algebra over IF,.

PROOF. The known formulas for ¥(Sq¢*), ¥(8) and ¥(P¥) imply that v is
coassociative and counital. The existence of the conjugation y follows from the
fact that A is connected [MM65, Def. 8.4]. It satisfies

> S¢'x(S¢7) =0
itj=k
for k > 1, x(8) = —p5, and
> Px(P)=0
i+j=k
for k > 1. O

DEFINITION 7.8.4. For each prime p, let the (mod p) dual Steenrod algebra
A, = DA = Hom(A,F,) be the function dual of the mod p Steenrod algebra.

COROLLARY 7.8.5 (|Mil58, Cor. 1]). The dual Steenrod algebra A, is a com-
mutative Hopf algebra over .

REMARK 7.8.6. The finite type results for A imply that A, is concentrated
in non-negative homological degrees, and is finite-dimensional over FF,, in each de-
gree. Hence DA, = A. Moreover, F,{1} equals the degree 0 part of A,, so A, is
connected.

Milnor determined the structure of A, as an algebra, with product dual to the
coproduct ¥: A = A® A, as well as its coproduct, dual to the product ¢: AR A —
A. We will now see his results can be proved.

Let X be any space, and p any prime. For brevity we set H,(X) = H.(X;TF,)
and H*(X) = H*(X;F,). There are natural left and right A-module and A*-
comodule structures on H,(X) and H*(X), for a total of eight combinations, as



7.8. THE DUAL STEENROD ALGEBRA 185

explained by Boardman in his paper [Boa82|. Four of these were discussed by
Milnor in [Mil58], and we review these below. The remaining four are then obtained
by use of the conjugation x: A — A, or its dual.

First, the cup product

U: H*(X)® H*(X) — H*(X)
and the Steenrod operations
A A® HY(X) — H*(X)

naturally give H*(X) the structure of a left A-module algebra. This means that
the diagrams

A A® H(X) 2% A H*(X)

o1 | |

A® H*(X) —2— H*(X)
and

A® H*(X) @ H*(X) —2 4 A H*(X)

A® A® H*(X) ® H*(X) H*(X)

1®T®1l TU

A H(X)® Ao H* (X) —2 5 7*(X) @ H*(X)
commute, together with unitality conditions (which we omit to display). Further-
more, H*(X) is commutative, in the graded sense.

EXAMPLE 7.8.7. The Cartan formula tells us that the cohomology cross product
pairing
x: H'(X)@ H(Y) — H" (X xY)
is A-linear, where A acts diagonally on the left and by the standard action on the
right. When X or Y is of finite type mod p, so that x is an isomorphism, this shows
that the diagonal A-action on the tensor product models the Cartesian product of

spaces, to the eyes of mod p cohomology. Likewise, it models the smash product of
spaces to the eyes of reduced mod p cohomology.

Second, applying Hom(—,F,) to the left A-module action A defines a homo-
morphism

Hom(A,1): Hom(H*(X),F,) — Hom(A ® H*(X),F,).

When H,(X) has finite type, there are natural isomorphisms
H.(X)
A, ® H(X)

= Hom(H*(X),F,)
=5 Hom(A ® H*(X),F,)

and the composite

H,(X) = Hom(H*(X),F,) — Hom(A ® H*(X),F,) = A, ® H,(X)
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defines a natural left A,-coaction
v: Ho(X) — A, @ H (X).

Using CW approximation and commutation of homology with strongly filtered col-
imits, one can show that this coaction is well-defined and natural for all spaces X,
not just those with mod p homology of finite type. ((ETC: We can give a more
direct construction when we have presented homology in terms of the Eilenberg—
MacLane spectrum.)) The cup product is dual to the homomorphism

Ay Ho(X) — H (X x X)) 2 H.(X)® H.(X)
induced by the diagonal map A: X — X x X. It follows that the diagrams

H (X)) —Y—— A, @ H.(X)

J lml

A @ H(X) =25 A, ® A, @ Ho(X)

and

H(X)®H.(X) —2Y s A, @ H,(X) ® A, ® H.(X)

A*T J{1®T®1

H.(X) A, ® A, @ Ho(X)® H.(X)

VJ/ J{¢®1®1

A, @ H(X) — 9% LA, @ H,(X)® H.(X)

commute. Hence H,(X) is naturally a left A,-comodule coalgebra. Furthermore,
H,(X) is cocommutative, in the graded sense.

EXAMPLE 7.8.8. A dualized Cartan formula tells us that the homology cross
product pairing

x: H (X)® H,(Y) — H. (X xY)

is A,-colinear, where A, coacts diagonally on the left and by the standard coaction
on the right. This shows that the diagonal A.-coaction on the tensor product
models the Cartesian product of spaces, to the eyes of mod p homology. Likewise,
it models the smash product of spaces to the eyes of reduced mod p homology.

Third, we can give H,(X) the structure of a right A-module, with action
pr H(X)® A— H.(X)

taking ¢ € H,(X) and 0 € A* to p(é ®0) = £-0 € H,_x(X). Here ¢ -0 is
characterized by the condition

(=)0 - 2,8) = (x,€ - 6)
for each x € H*(X), where 6 - = A\( ® ) = 6(z). In other words,
0. H"(X) — H*(X)
r—=0-x
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corresponds to the dual of the homomorphism
-0 H (X) — H.(X)
E— &0

under the identification H*(X) = Hom(H,(X),F,), with appropriate signs. ((ETC:
This is the sign convention from [Ada69, p. 76].)) It is traditional to write

Sq. () =¢-Sq¢'
Pl =¢- P!
for these right actions, but one should beware that this means that
SqlSql = Sqi’
PJPI _ PIJ
where IJ denotes the concatenation of I and J. Direct calculation ((ETC: Maybe
spell this out?)) then shows that the diagrams

HX)oAcoA 2L H (X)) A

1®¢J{ P

H(X)® A—2L 5 H,(X)

and
H.(X)® A ! H.(X)
A*@,{ P*
H(X)H,(X)® A H,(X)® H.(X)
101y PRp
J/ 17®1 T

HX)oH(X) oA A2 B (X))o Ao H.(X)® A

commute, so that H,(X) is a (cocommutative) right A-module coalgebra.
Fourth, applying Hom(—,F,) to the right A-module action p defines a homo-
morphism

Hom(p, 1): Hom(H,(X),F,) — Hom(H,(X) ® A,F,).
The natural homomorphism
H"(X)® A, 2Hom(H,.(X),F,) ® Hom(A,F,) — Hom(H.(X) ® A,F,)
is an isomorphism if H*(X) is bounded above, in which case the composite
H*(X) =2 Hom(H,(X),F,) — Hom(H,(X) ® A,F,) = H(X) ® A,
defines a natural right A,-coaction
AN:CHY(X) — H (X)® A,

(The notation \* is the one used by Milnor in [Mil58| §4].) In general, there is an
isomorphism

Hom(H,(X) ® A,F,) = H*(X) ® A.,
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where the right hand side denotes the completed tensor product with
[[E*x) @ A,
in cohomological degree k. We then have a completed right A.-coaction
N HY(X) — HY(X) ® A, .
The diagrams

H(X)® A, X% g7 (X) 3 A, & A,

and

H*(X)® A, ® H(X)® A, -2 H*(X)® H*(X) ® A, & A,

/\*®/\*T J1®1®¢

H*(X)® H*(X) H*(X)® H*(X) ® A,
Ul lu@l
H*(X) a H*(X)® A,

commute. Hence A* is an algebra homomorphism, and H*(X) is a (commutative)
completed right A.-comodule algebra.

Recall the admissible sequences M; = (2¢71,...,4,2,1) for i > 1. We set
My = (). Recall also that RP>* ~ K(Z/2,1) and

H*(RPOO,FQ) = FQ[CL],

with @ in degree 1 corresponding to the universal class u; in mod 2 cohomology.
We let a; € H;(RP™;F3) be dual to a’, so that H,(RP>;Fs) = Fo{a; | j > 0}.

LEMMA 7.8.9. ,

2 ifI=M;, 0>
Sql(a): a if .“270
0 otherwise

for I admissible.
PRrOOF. This follows by induction on the length of I, using the formula
_ o ‘ a? for £k =0,
Sq*(a*) = <k>ak+2l ={a?" for k=2

0 otherwise.

DEFINITION 7.8.10. For ¢ > 1 let the Milnor generator
& € Agiy
be characterized by
1 for I = M;,
0 otherwise,

<Sq17 §Z> = {
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for each admissible I of degree 2¢ — 1. Furthermore, let & = 1.

REMARK 7.8.11. Milnor actually writes (; for this class in Ayi_;. Other au-
thors instead write ¢; for the conjugate x(&;) of this class, which can be confusing.
Another notation for the conjugate is &;.

LEMMA 7.8.12. The homomorphism
H;(RP>®;Fy) — cogmﬁj_1+n(K(Z/2, n);Fo) = A4
with Hom-dual
AT lim HI=Y"(K(Z)2,n);Fy) — H)(RP>;Fy)

is given by

0 otherwise.

4 ‘:2i;
o fi

Proor. The homomorphism
AL — HI(RP™;F,)
0 — 6(a)
maps S¢Mi to @/ for i > 0 and j = 2¢ and sends the remaining admissible Sq’

to zero. Hence the dual homomorphism H,;(RP>;Fy) — A; ; maps a; to & for
j = 2% with ¢ > 0, and to zero for the remaining j. (I

Since A is cocommutative, A, is a commutative Fs-algebra, and in fact it has
a particularly simple structure.

THEOREM 7.8.13 (|[Mil58, Thm. 2, App. 1]). There is an algebra isomorphism
Al = TFofg i > 1],
with &) = 20 — 1.
SKETCH PROOF. The monomials

gR _ 71“1 T2 Ty

2 )4

where R = (r1,72,...,7¢,0,...) ranges over all finite length sequences of non-
negative integers, form a basis for Fo[¢; | i > 1], which maps to A.. Milnor checks
[Mil58] Lem. 8] that in each degree n, a matrix with entries

<SqI7 £R> c ]FZ

is lower triangular with no zeros on the diagonal, hence is invertible, where I ranges
over the admissible sequences of degree n and R ranges over the sequences of degree
>, (28 — 1)r; equal to n. Since these Sq’ form a basis for A", it follows that these
monomials £F form a basis for A,,. O

PROPOSITION 7.8.14.

Na)=Y a” ©g

i>0
in H*(RP>;F,) ® A,.
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PRrROOF. The right A-module action

H;(RP*®;Fy) ® A7~ — H;(RP>;Fy)

is zero unless j = 2, in which case
pew i) = {0 LT

for I admissible of degree 2¢ — 1. Dually, the right A*-coaction

HY(RP>;Fy) — HI(RP™;Fy) @ Aj_y
is zero unless j = 2, in which case it maps a to a? ® &. Collecting terms for all j,
we obtain the stated formula for A*(a). O

Since A is non-commutative, A, is not cocommutative. The coproduct for A,
encodes much the same information as the Adem relations do for A, but the fol-
lowing formula is often easier to work with for theoretical purposes.

THEOREM 7.8.15 (|Mil58 Thm. 3, App. 1]). The coproduct ¥: A, — A, ® A,
is given by

&) = Y. &g,
itj=k
where & = 1.

PROOF. The completed right A,-coaction \* is multiplicative, hence satisfies
N(a2) =3 (@ = (Y e gl) -y e,
i>0 i>0

It is also coassociative, so that

Ve @) =W e1) o o)

j=0
=Y N ey =3 Y v g

j=0 i>0 j>0
is equal to

1)V @) =10 o) =Y o @)

k>0 k>0

as an element in H*(RP>;Fy) ® A, ® A,. Comparing coefficients of a2 gives the
stated formula for ¢(&), for each k > 0. O

((ETC: The indecomposable quotient Q(A) = ]FQ{SQQi
primitives P(A,) = Fo{&¥
Q(A,) = Fo{¢& | @ > 1} is dual to the primitives P(A) = Fo{Q; | j > 0}, with
Q; in degree 271 — 1 dual to &41. Here Qo = B and Q; = [quj,Qj_l] =

S¢% Qi1+ Q;-18¢% for j > 1))
For odd primes p, we set

i > 0} is dual to the

2

pMi — pp''pr'™*  prpl
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for i > 1, and PMo = 1. There is an equivalence K(Z/p,1) ~ BC, = S*/C,, with
H*(Bome) = AIFp (a) ® Fp[b] )

with a in degree 1 corresponding to th_e universal class u1, and b = S(a) in degree 2.
Let aoj and ag;41 be dual to b7 and ab’, respectively, so that H,(BCp; Fp) = Fp{a; |
Jj =0}

There is also a map CP*® ~ K(Z,2) — K(Z/p,2) inducing the canonical
homomorphism Z — Z/p on my, and

H*(CP*;Fy) = Fp[0]
with b in degree 2 corresponding to the reduced universal class @z. Let 3; be dual
to b7, in degree 2j, so that H,(CP>;F,) = F,{8; | j > 0}.
LEMMA 7.8.16.
a for Pl =1,
Pl(a) = b for PT = PMiB withi >0,
0 otherwise
and _
b for PT = PM: with i > 0,
{0 otherwise,
for I admissible.
DEFINITION 7.8.17. For ¢ > 0 let the Milnor generator
T; € Agpi_q
be characterized by

1 for P = pM
<PI7 Ti> — or . ﬂa
0 otherwise,

for each admissible I of degree 2p’ — 1. In particular, 7o = .
For i > 1 let the Milnor generator

& € Agpi_o

1 for PT = pMi,
<Pla§i> = {

be characterized by

0 otherwise,

for each admissible I of degree 2p® — 2. Furthermore, let & = 1.
((ETC: Is (B, 5) = 1 with the standard conventions?))
LEMMA 7.8.18. The homomorphism
H;(BCp;Fy) — colim Hj 110 (K(Z/p,n);Fp) = Ajy
with Hom-dual
ATV = 0im [ (K (Zp, ) Fy) — HY (BC,; Fy)
is given by

7 forj =2t
P A for j 2
0 otherwise.
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The homomorphism
Hy;(CP>;F,) — Haj(K(Z/p,2);Fp) — colim Haj_oin(K(Z/p,n);Fp) = Agj_»
with Hom-dual
AP72 = lim HY 24 (K(Z/p, ) Fy) — HY (K (Z/p,2);Fy) — HY (CP>;F,)

A

is given by

0 otherwise.

THEOREM 7.8.19 (|Mil58, Thm. 2]). There is an algebra isomorphism
Ao Ag (i 12 0) @6 |0 > 1],
with |7;| = 2p* — 1 and |&;| = 2p° — 2.
PROPOSITION 7.8.20.
Na)=a®l+ > W o
>0
o)=Y 1 e
>0
in H*(BCy;Fp) & A,.
THEOREM 7.8.21 ([Mil58, Thm. 3]). The coproduct 1: Ax, — A, ® A, is given

by
Y =nelt Y & o
i+j=k
vE) = D & eg.

i+j=k

((ETC: The indecomposable quotient Q(A) = F,{8, PP' | i >0} is dual to the

primitives P(A.) = Fp{m0, 51107, | ¢ > 0}. Furthermore, the indecomposable quotient
Q(AL) =Fp{r0,7:,& | i > 1} is dual to the primitives P(A) = F, {3, Q;, P | i > 1},
with @Q; in degree 2p° —1 dual to 7; and P? in degree 2p* —2 dual to &;. Here Qo = 3
and Qi+1 = [sz7Qi] = PPZQZ‘ — QiPpl fOI' ’L Z 0))

((ETC: Milnor basis. Define P} as dual to £ 7))



CHAPTER 8

Convergence (TO BE WRITTEN)

8.1. Algebraic limits and colimits

((ETC: Sequential colim, lim and Rlim. Six-term exact lim-Rlim sequence.
Vanishing of Rlim. Mittag—Leffler condition? Pro-isomorphism?))

8.2. Filtrations, revisited
8.3. Strong convergence
8.4. Conditional convergence
8.5. The Bockstein spectral sequence

((Browder. Torsion, localization, completion.))

8.6. Complex orientations

((ETC: Multiplicative Atiyah—Hirzebruch spectral sequence.))






CHAPTER 9

Stable Homotopy Theory

9.1. Smooth bordism and stable homotopy groups

Lev Pontryagin [Pon50| (and earlier?) and René Thom |Thob54] developed
the close connection between the bordism classification of manifolds and the sta-
ble range homotopy groups of certain spaces. See also [MST74| §17,§18], [Sto68]|
and [Rud98].

9.1.1. Transversality. We can view the k-sphere S* as the one-point com-
pactification R* U {oo}, based at infinity, or as the quotient space D*/0D¥, based
at the image of the boundary. Any map f: S"t* — S¥ is homotopic to a smooth
map with 0 € R¥ C S* as a regular value, i.e., a map that is transverse to 0, and
the preimage M = f~!(0) is then a closed smooth n-dimensional submanifold of
R+ c S™FF. The stabilization f A S' = f A1: S*Tk A ST — SF A S! then has
the same preimage

(f AD)7H0) = F7H0),
but is now realized as a submanifold of R***+1 If [: [, AS™** — S* is a homotopy
from fy to f1, with both fy and f; transverse to 0, then F' can be deformed relative
to Iy A S™** to a smooth map that is transverse to 0. The preimage W = F~1(0)
is then a compact smooth (n+1)-dimensional submanifold of I x R"** < I, AS"HF
with boundary

anMOHMl.

We call W a bordism from My = f;(0) to My = f;*(0), and say that My and M,
are cobordant. This defines an equivalence relation, and we write [M] for the bor-
dism class of M. The set of all bordism classes of closed (always smooth) n-
manifolds is denoted A5,.

LEMMA 9.1.1. The rule [f] = [M] with M = f~1(0) defines a homomorphism
of graded (commutative) rings
T (S) — S
PROOF. We have seen that f ~ f~1(0) defines a function m,1(S*) — A,
that is compatible with stabilization, hence factors uniquely through the stable

homotopy group
Tn(S) = cokim Tk (S®).

The disjoint union of manifolds defines a sum
+ oMy X Ny — My
and the Cartesian product of manifolds defines a product

My X Ny — Nvm
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making A, = (A;,), a graded commutative Fa-algebra, known as the unoriented
bordism ring.
The sum in 7,1 (S*) takes [f] and [g] to the class of

[t g SR gty gk 1Y gl

so that (f +g¢)~1(0) = f~1(0)[J ¢~ '(0). The smash product of f: S"** — S* and
g: St — S¢ defines a map

gntmtktl o gtk n gmAt FAL gk o gl _ Sk+e

with (f Ag)~1(0) = £=1(0) x g~1(0). It follows that the sum and product in 7. (S)
are mapped to the sum and product in 45. O

To be useful, this ring homomorphism must be refined, by either restricting the
manifolds M C R™** studied to account for special structure on their normal bun-
dles, which arises from their construction as transverse preimages, or by extending
the targets of the maps f: S"** — S* to allow for more general normal bundles,
or both.

9.1.2. Framed bordism. A smooth embedding M C R™** induces an em-
bedding of the tangent bundle 7: TM — M into the trivial bundle e"**: M x
R"*t* — M, with normal complement the normal bundle v: NM — M. For each
x € M, the fiber N,M C R"** is the orthogonal complement of T, M C R"**.

If M = f71(0) is the preimage of the regular value 0 € R¥ C S*, then the
derivative f.: TR"**|5; — TRF|y of f along M induces a bundle isomorphism

0: NM =5 M x R*.

This is a trivialization, or framing, of the normal bundle of M. If we replace f
with f A1, then the normal bundle of M C R"™*+lisv@el: NM x R — M, with
trivialization § x R: NM x R = M x RFt1. We say that 6 and § x R define the
same stable framing, and that (M, 0) is stably framed.

If F: I, AS™F — S* is a smooth homotopy from fy to fi, all of which are
transverse to 0, then the derivative F, of F' along the compact (n + 1)-manifold
W = F~1(0) C I x R"** induces a trivialization

O: NW = W x R*

that restricts to the trivializations 6y and 6; of the normal bundles of My =
fo(0) € R™F and My = f;71(0) € R™* respectively. We say that My and M,
are stably framed cobordant. This defines an equivalence relation, and we write Q"
for the set of all stably framed bordism classes of stably framed closed n-manifolds.

THEOREM 9.1.2 ([Pon50] ((ETC: earlier?))). The rule [f] — [(M,0)] with
M = f710) and §: NM = M xRF defines an isomorphism of graded commutative
ings
m(S) = QI
SKETCH PROOF. To construct the inverse, consider a stably framed, closed n-
manifold M. There exists an embedding M C R"** with a trivialization : N M =

M x R*, and any two such become isotopic if we enlarge k. Choosing a Euclidean
metric, we get a homeomorphism

D(6): D(NM) = M x D*
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of umit disc bundles over M. Let S(): S(NM) = M x dD* denote its restric-
tion to the unit sphere bundles. We can view M as a subspace of D(NM) by
the zero section. By the tubular neighborhood theorem there is an embedding
D(NM) C R™* that extends the inclusion M C R™** such that the open disc
bundle D(NM) — S(NM) = int D(NM) C R"** is an open neighborhood of M.
We can then form the composite map
otk Sntk ~ D(NM) ~ M x D* Dk .
FoST = G T D(NM) © S(NM) M x@DF @Dk 0
It has 0 € D¥ — S* as a regular value, with preimage f~1(0) = M x {0} = M,
which is normally framed by #. Hence the stable class of [f] € T, %(S*) in 7, (S)
maps to the stably framed bordism class of (M, ), and these are mutually inverse
correspondences. O

Pontryagin used this construction, and the classification of stably framed closed
surfaces, to prove that m2(S) 2 Z/2, generated by the stable class 7% of the com-
posite

noFEn: §* — 83 — §2.
This Z/2 detects the Arf invariant of a quadratic form that refines the bilinear
intersection form on Hj(—;F3) of the framed surface. In particular, not every
framed closed surface is framed cobordant to a sphere. Pontryagin thereby rectified
an earlier mistake he had made (in 1938) concerning this problem.

Similar work shows that the stable homotopy classes v? € mg(S) and o2 €
714(S), where v and o are the stable classes of the Hopf fibrations v: S7 — S4
and o: S — S8 correspond to 6- and 14-dimensional framed manifolds, respec-
tively, that are not framed cobordant to homotopy spheres. Work by Kervaire—
Milnor [KM63| addressed the question whether each framed n-manifold can be
modified, by a process now called “surgery”, so as to be framed cobordant to
a homotopy sphere. This is can always be done unless n = 4m — 2, in which
case there is a possible obstruction in Z/2, known as the Kervaire invariant of
the framed bordism class, given by the Arf invariant of a quadratic form on the
middle homology Hap,—1(—;F2) of the manifold. Browder [Bro69] showed that
the Kervaire invariant vanishes for each n not of the form 2(2/ — 1). The Ker-
vaire invariant one problem then asks: For which n = 2(2/ — 1) does there
exist a class 0; € 7,(S) = Q" with nontrivial Arf-Kervaire invariant? The
squared Hopf fibration examples show that such classes exists for j € {1,2,3}.
Mahowald-Tangora [MT67| showed that 6, € m30(S) exists, and Barratt—Jones—
Mahowald [BJM84| proved that 65 € mg2(S) exists, by hard calculations with
the mod 2 Adams spectral sequence for the sphere spectrum. The next problem,
concerning the existence of 05 € m126(S) lies outside our current computational
range. It was a great surprise when Hopkins-Hill-Ravenel [HHR16| proved, using
an equivariant form of complex bordism, that ; does not exist for any j > 7. The
case j = 6 remains open.

9.1.3. Unoriented bordism. For a general smooth embedding M C R"**
there need not exist a (stable) trivialization 6 of the normal bundle v: NM — M.
However, there exists a Gauss map

g: M — Gr(R"™*) € Grp(R™®) ~ BO(k)
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to the Grassmann manifold of k-dimensional real subspaces of R"**  given by
g(z) = N,M C R"* for all z € M.

By including R™** in R™® @ R¥ 22 R we can continue this map to the Grass-
mannian of k-dimensional subspaces of R°°, which is a classifying space for principal
O(k)-bundles. The universal principal O(k)-bundle

O(k) — Vip(R*®) — Gri(R™),

where V;,(R*°) is the contractible Stiefel space of orthonormal k-frames in R*, has
an associated “tautological” R*-bundle v*: E(7*) — Gr,(R™), whose fiber over
V € Gri(R*) is the k-dimensional vector space V' C R,

((ETC: Slightly better to let Vi(R*) and Gri(R>) be the spaces of k-frames
and k-dimensional subspaces of R>® @ RF, rather than of R*, with stabilizations
Vie(R*®) = Vi1 (R*®) and Gri(R*®) — Gri41(R*) sending (v, ...,vg) and V to
(U1,..., V5, er+1) and V @ R, respectively.))

The identity maps on the N, M, for x € M, define a bundle map

NM —2 5 B(+%)

|

M —2— Gr(R™)
covering the Gauss map. Equivalently, there is an isomorphism v = g*(v*), ex-
pressing the normal bundle of M as the pullback along g of the tautological bundle
over Gr(R™).

DEFINITION 9.1.3. For a Euclidean vector bundle ¢: E(§) — B, with unit disc
bundle D(¢) — B and unit sphere bundle S(§) — B, let the Thom complex be the
quotient space

Th(€) = D(§)/S(€) -

In particular, let Th(7"*) denote the Thom complex of the tautological R¥-bundle
VF5 (%) = Gry(R™).

((ETC: Another common notation for the Thom complex is M (£).))
If € is associated to the principal O(k)-bundle p: P — B, then

E(€) = P xoay R,
so that

PXOk Dk
Th(€) = &)

v Tl D*/oD" = P i
P <o 0D '+ Now) D"/0 '+ Nok) S

In particular, Th(y*) ~ MO(k) = EO(k)+ Aow) S*. If B is a compact Hausdorff
space, then Th(§) = E(£) U{oo} can be characterized as the one-point compacti-
fication of the total space FE(£). In general, Th(&) is the quotient of the fiberwise
one-point compactification P X o) Sk of E(€) by the section P Xo(k) 100} = B at
infinity.

LEMMA 9.1.4. The Thom complex is functorial, and there is a natural homeo-
morphism Th(¢ @ ') = Th(&) A ST
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PROOF. A bundle map & — 7 induces maps D(§) — D(n), S(§) — S(n) and
Th(§) — Th(n), so the Thom complex is functorial.

The Whitney sum bundle ¢ @ €' has total space E(¢ @ €') = E(¢) x R, so
D @e') 2 D(E) x D and S(E @ €') 2 S(€) x D' U D(€) x dD!. Hence

D(¢) x D?

Th€® €)= 5% DU D(e) x 9D

>~ Th(¢) A S*.

O

Returning to the context of the normal bundle NM — M and the Gauss map
g: M — Grp(R>), we can now use the bundle map §: NM — E(+*) to form the
Pontryagin—Thom construction
Sn+k

Sn kit D(N M) = SN L) L Th(v*) ~ MO(k),

representing a homotopy class

[f] € 7Tn+k(Th<'7k)) = Tk (MO(K)) .

In general, two embeddings M — R"™** and M — R"** become isotopic if
we increase k and £ to a sufficiently large common value, and isotopic embeddings
induce homotopic Pontryagin-Thom maps f. Furthermore, replacing M C R"**
with M C R™"#+1 has the effect of replacing f: S"T* — Th(y*) with the composite

fo8ntk

Gntk+l o gntk p gl FAL Th(v*) A St —Zs Th(~F+1).

Here
o Th(7*) A S* = Th(y* @ €') — Th(yF+)

is the map of Thom complexes induced by the bundle map

E( &e') —— E(* )

| |

Grp(R®) —— Gy (R®)

covering the inclusion taking V C R* to V&R C R*® & R = R*. Hence, to the
closed n-manifold M we can associate a well-defined class in

co}vim Tongk(Th(v*)) = co}vim Ttk (MO(k)) = m1p(MO) .
Conversely, given f: S"t* — Th(y*¥) ~ MO(k) we can deform f to be trans-
verse to the zero section Gry,(R>) C Th(+*), in which case the preimage
M = f~(Grp(R™))

is a smooth and closed submanifold of S™** of codimension k, i.e., a closed n-
manifold.

THEOREM 9.1.5 (|[Tho54, Thm. IV.8]). The rule [f] — [M] defines an isomor-
phism of graded commutative rings

T (MO) =2 A, .
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More generally, we are lead to study sequences of spaces (M), and their ho-
motopy groups m,4+x(My) in a “stable” range of degrees n that grows to infin-
ity with k. We can compare these groups for different %k if we are given maps
o: My NSt — M +1, inducing homomorphisms

E [«
Tk (Mi) == Tppar (Mi A ST) T g1 (Myga) -
The stable range groups are then given by the sequential colimit
(M) = co}cimwnHC(Mk) .

These objects M = (My, o) are the (sequential) spectra of algebraic topology, and
a key feature of stable homotopy theory is to view a spectrum M as an object
that gives an undivided presentation of the sequence of abelian groups m,(M) =
(73 (M)

Proceeding from the theorem above, and knowledge of the cohomology

with |w;| = 4, as a module over the mod 2 Steenrod algebra A, Thom went on
to calculate the cohomology H*(MO;Fs) as an A-module, finding it to be free on
specific generators. Using a trivial case of the Adams spectral sequence, this led to
the following conclusion.

THEOREM 9.1.6 ([Tho54, Thm. IV.12]).
F*(MO) = ]Fg[mn | n 7é 22 — 1] = F2[$27I4,IL‘5, .. }

is the graded polynomial ring over Fo on one generator x,, in each positive degree n
not of the form 2¢ — 1.

EXAMPLE 9.1.7. A3 = m3(MO) = 0, so each closed 3-manifold is the bound-
ary M = 0W of a compact 4-manifold.

9.1.4. Oriented bordism. One may consider other kinds of bordism, usu-
ally corresponding to conditions on the stable normal bundle that are intermediate
between being trivialized (as for framed bordism) and satisfying no further require-
ments (as for unoriented bordism). ((ETC: It is also possible to consider bordism
for more general topological manifolds, or piecewise-linear (PL) manifolds, in which
case the normal vector bundles are replaced by the weaker notion of a microbun-
dle, cf. [Mil64] and [MMT79], and transversality is not as easily achieved as in the
smooth case.))

In the case of an oriented (closed, smooth) manifold M, each tangent space T, M
comes with a choice of orientation, which determines an orientation of each normal
space N, M. Hence there is a Gauss map

g: M — a;"k(R""'k) C Gri(R™) ~ BSO(k)

to the oriented Grassmann manifold of oriented k-dimensional subspaces of R"*%,
which is a double covering of Gr(R"**). The universal principal SO(k)-bundle

SO(k) —> Vi(R®) —s Grj,(R™)
shows that évrk(Roo) ~ BSO(k), and there is a tautological oriented R*-bundle

% E(7%) — Gri(R>) with Thom complex
Th(3*) ~ ESO(k)+ Asow) S* = MSO(k).
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The pull-back of 75+1 along Gry(R®) C Gryy1(R™) is % & €', so there is a map
o: Th(7®) A ST — Th(3*11).

To each oriented n-manifold M the Pontryagin-Thom construction
Sn—i—k

Sntk —int D(NM)
then determines a well-defined class in

colim Tnen(Th(FF)) = colim Tniu(MSO(k)) = 7, (MSO) .

AT ~ Th(v) -4 Th(3*) ~ MSO(k)

Let €2, denote the group of oriented bordism classes of oriented (compact,
smooth) n-manifolds. Disjoint union and Cartesian product of oriented manifolds
gives O, = (2,,)n the structure of a graded commutative ring, called the oriented
bordism Ting.

THEOREM 9.1.8 (|[Tho54, Thm. IV.8]). The rule [f] — [M] defines an isomor-
phism of graded commutative rings

T« (MSO) = Q..
From knowledge of the rational cohomology
H*(BSO; Q) 2 lim H* (BSO(K); Q) = Qp; | > 1

with |p;] = 44, and the dual rational homology algebra, Thom could calculate
(M SO) rationally.

THEOREM 9.1.9 (|Thob54, Thm. IV.17]).
T (MSO)®Q = Qly; | i > 1]
with |y;| = 4i. One may take y; to be the oriented bordism class of CP?'.
The integral structure of 7, (M SO) = Q. was determined by Wall [Wal60].

EXAMPLE 9.1.10. Qg = m3(MSO) = 0, so each closed oriented 3-manifold is
the boundary M = OW of a compact oriented 4-manifold. This special case had
previously been shown by Rohlin [Roh51].

9.1.5. Complex bordism.

9.1.6. Bordism (homology) theories. ((ETC: The Steenrod (realization)
problem. Thom, Sullivan.))

9.2. Sequential spectra

Building on the work of Lima [Lim58] and Boardman [Vog70|, Adams’ Chicago
lectures from 1971 [Ada74, Part ITI] gave a construction of the stable (homotopy)
category as a (closed) symmetric monoidal category, based on an underlying cate-
gory of sequential CW spectra without precise monoidal properties. Around 1995
several categories of spectra with closed symmetric monoidal properties were dis-
covered. We focus on “orthogonal spectra”, and use the paper [MIMSS01| by
Mandell, May, Schwede and Shipley to give a parallel development of sequential
and orthogonal spectra.

We work in the category Z of based, compactly generated, weak Hausdorff
spaces and basepoint preserving maps.
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DEFINITION 9.2.1. A sequential spectrum M is a sequence of spaces M; for
k > 0 and structure maps

O’ZMk/\Sl—>Mk+1.

A map of sequential spectra f: M — N is a sequence of maps fr: My — N such
that the diagram

M A St 2 My

flc/\ll lfk-u

N A st —<2 Nk+1
commutes, for each k > 0. Let Sp" denote the category of sequential spectra.

The superscript N refers to the indexing by integers & > 0, which will be
modified in the section on orthogonal spectra.

DEFINITION 9.2.2. The graded homotopy groups m.(M) of a sequential spec-
trum M are given in degree n by the colimit

(M) = co}cim Ttk (M)

of the sequence of homomorphisms
e — 7Tn+k(Mk) — 7Tn+k+1(Mk+1) — .,

for n+k > 2, each mapping the homotopy class of 2: S"** — M, to the homotopy
class of the composite

ol A1) STt o gtk A LI ApoA G1 Ty Ap
Any map f: M — N induces compatible homomorphisms 7,1 (fx): Tnir(My) —
Ttk (Ng) with colimit 7, (f): 7, (M) — m,(NN), for all integers n, making 7, a
functor from sequential spectra to graded abelian groups.

We often write f, for m,(f) or m.(f).

DEFINITION 9.2.3. A map f: M — N is a stable equivalence if the induced
homomorphism f,: 7.(M) — 7w.(N) is an isomorphism. We may then write
f:M =5 N or M ~ N. The stable equivalences form a subcategory # C Sp~,
which properly contains the homotopy equivalences.

((ETC: Might prefer to write ~ for stable equivalence, since homotopy equiva-
lence is rarely relevant. An alternative is to go to the stable category and write &,
but for some purposes it will be necessary to stay at the point-set spectrum level.))

DEFINITION 9.2.4. A localization €[# ~] of a category ¢ at a subcategory #
is a category with a functor ¢: € — %[# ~!] mapping each morphism in # to
an isomorphism in ¢’[# ~!], such that for any functor F: ¢ — 2 mapping each
morphism in # to an isomorphism in & there is a unique functor F': €[# ~1] — 2
such that F = F oy.

W r——sC —C[W

- F
N

9
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The localization €' [# ~1], if it exists, is well-defined up to unique isomorphism
as a category under 6. However, in general there can be set-theoretical hindrances
to the existence of a localization, since we require our categories to have a set,
instead of a proper class, of morphisms between any two objects. Quillen’s theory
of (closed) model categories provides one approach to showing that a localization
exists, and this will allow us to make sense of the following definition.

DEFINITION 9.2.5. The stable category Ho(Sp") is the localization
Spit ——= Sp"[# '] = Ho(Sp")

of the category Sp" of sequential spectra with respect to the subcategory # of
stable equivalences. Let

[M, N] = Ho(Sp")(M, N)
denote the set of morphisms in the stable category from M to N.
We get a factorization of functors
7ot SpNY = Ho(Sp") == grAb

from a stable model category via a triangulated category to a graded abelian cat-
egory. We shall later give an equivalent definition of the stable category as a
localization Ho(Sp®) of a category Sp® of orthogonal spectra. The latter stable
model category has better (closed symmetric) monoidal properties than SpY, com-
patible with the “tensor triangulated” structure on the stable category and the
“abelian monoidal” structure on graded abelian groups. Both homotopy categories
are constructed using Quillen model structures in a paper by Mandell, May, Schwede
and Shipley [MMSSO01].

DEFINITION 9.2.6 ([MMSSO01, Def. 1.3, Ex. 4.1]). For each ¢ > 0 let
Euvp: SpN — 7

be the (level ¢) evaluation functor mapping M = (M, o) to M. Let the (level ¢)
free functor
Fy: T — SpN

be its left adjoint, so that there is a natural bijection

SpN(FyX,N) = 7 (X, Evy(N)).
Explicitly,
X ASEt for k>4,
* otherwise.

(Fe X))k = {

The structure maps o: (FyX)x AS! — (FyX)j41 are the identities when k > ¢, and
the base point inclusion otherwise.

In particular, Fp X = XX is the suspension spectrum of X, with (X*°X); =
X A S* for each k > 0. For each integer n we define the n-sphere spectrum S™ by

gn _ FpS™  forn >0,
) Fo,.S° forn <0,

so that (S™), = S™** for n + k > 0 and * otherwise. In particular, S° = S with
S, = S* for each k > 0 is the sphere spectrum.
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DEFINITION 9.2.7. A spectrum M is (n — 1)-connected, or n-connective, if
(M) = 0 for all * < n. It is bounded below if it is n-connective for some integer n.
We abbreviate (—1)-connected (or 0-connective) to connective.

ExAaMPLE 9.2.8. The homotopy groups
T (S) = co}cim 7rn+k(Sk)

of the sphere spectrum are the stable homotopy groups of spheres, also known as the
stable stems. By the Hurewicz theorem they are trivial for n < 0, and isomorphic
to Z for n = 0, so the sphere spectrum is connective. The determination of ()
for n > 0 is an ongoing field of study.

DEFINITION 9.2.9 ([MMSSO01] Def. 6.2, Def. 5.4, Thm. 6.5]). Let I be the set
of inclusions 7: 5171 — D% for n > 0, where S~1 = (. Let FI = FNI be the set of
maps of sequential spectra Fyi: FgSi_l — Fy DY for £>0 and n > 0.

A map i: M — N of sequential spectra is a relative cell spectrum (= relative
FI-cell complex) if N is the colimit of a sequence of maps

M=N0)—...—N@{) —N@{EG+1) —...— N
where each N(j) — N(j + 1) is obtained by cobase change
Vo S(a) —V,, D(a)

‘| |s
N(j) —— NG +1)

from a sum of maps S(«) — D(«) in FI. We say that N is a cell spectrum (=
FI-cell complex) if *+ — N is a relative cell spectrum.

A map i: M — N in Sp" is a Quillen cofibration (= g-cofibration) if it is a
retract of a relative cell spectrum i’ : M’ — N’, meaning that there is a commutative
diagram

M—M —M

i

N——N ——N

where the horizontal composites are the identity maps.

We say that N is Quillen cofibrant (= g-cofibrant) if * — N is a Quillen
cofibration. Any retract of a cell spectrum is Quillen cofibrant. ((ETC: Converse?))
If g: M¢ = M is a stable equivalence, and M¢ is Quillen cofibrant, then we say
that M€ is a cofibrant replacement for M.

REMARK 9.2.10. Cobase changes and colimits are created levelwise, so for a
cell spectrum N each space Ni is a cell complex, and o: N A St — Ny is the
inclusion of a subcomplex. ((ETC: Converse? Will the cell filtrations (N (j)x); and
(N(j)k+1); be compatible?))

ExaMpPLE 9.2.11. Cofibrant replacements can be constructed by CW approx-
imation. ((ETC: Check details. The cellular and skeletal filtrations are generally
different.))
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DEFINITION 9.2.12. Let M be a sequential spectrum. The adjoint structure
map
c: M — QMk+1
is the right adjoint, for the loop—suspension adjunction, of the structure map
o My NS — M.

The homomorphism 7,4, (M) = Tnir+1(Mir1) in the definition of m, (M)
can be reexpressed as mapping the homotopy class of z: S"t* — M. to the homo-
topy class of the left adjoint S"+F+1 = gn+k A Gl 5 My of the composite

ST Ly M - QM

DEFINITION 9.2.13 (|[MMSSO01, Def. 9.4]). A commutative square of based

spaces
D E
f

A——B
in which p and ¢ are Serre fibrations, is a weak homotopy pullback if the induced
map D — A xp E is a weak homotopy equivalence or, equivalently, if g: ¢~*(a) —
p~1(f(a)) is a weak homotopy equivalence for each a € A.

DEFINITION 9.2.14 ([MMSSO01| Prop. 9.5]). A map p: M — N of sequential
spectra is a stable fibration (= g-fibration) if and only if p: My — N is a Serre
fibration and the diagram

g
—

My —2— QM4

Pkl J{kaqu

Ny, L> QNk+1

is a weak homotopy pullback, for each k£ > 0.

We say that M is stably fibrant (= g-fibrant) if M — x is a stable fibration. If
j: N 5 N7 is a stable equivalence, and N7/ is stably fibrant, then we say that N7/
is a fibrant replacement for N.

LEMMA 9.2.15. M is stably fibrant if and only if it is an Q-spectrum, i.e., if
each adjoint structure map
&: My — QM4 q

is a weak homotopy equuvalence.
PRrROOF. Each map M) — * is a Serre fibration. O

EXAMPLE 9.2.16. A fibrant replacement M ~ M can be constructed by setting
M ,f equal to the mapping telescope (or homotopy colimit) of the sequence of maps
~ ~ 2~
M, L> QM/H—I &) QQMk+2 M Q3Mk+3 —_— ...

((ETC: Check details regarding adjoint structure maps for M/, why they are weak
homotopy equivalences, and why M — M7 is a stable equivalence.))

See Quillen [Qui67], Dwyer—Spalinski [DS95] or Hovey [Hov99, §1.1] for more
detailed introductions to model category theory.
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DEFINITION 9.2.17. A model category € is a category with all small limits
and colimits, together with a model structure. A model structure on € is three
subcategories, of weak equivalences, cofibrations and fibrations, with the following
properties.

(1) f f: L > M and g: M — N are composable morphisms, and two of f, g
and gf: L — N are weak equvalences, then so is the third of these.

(2) If f: M — N is a retract of f': M’ — N’, and f’ is a weak equiva-
lence, cofibration or fibration, then f is a weak equivalence, cofibration or
fibration, respectively.

(3) If i: K — L is a cofibration, p: M — N is a fibration, the square diagram

K—M

L——N
commutes, and ¢ or p is a weak equivalence, then there exists a map

L — M making both triangles commute.
(4) Each map K — N admits factorizations

K2sMPN and K-51L-4%N

where j and g are weak equivalences, i and j are cofibrations, and p and ¢
are fibrations.

THEOREM 9.2.18. The category Sp" of sequential spectra is a ((ETC: compactly
generated, proper, topological)) model category with respect to the classes of stable
equivalences, Quillen cofibrations and stable fibrations.

We refer to [MMSSO01, Thm. 9.2] for the proof.

((ETC: The compact spaces 5171 and DY admit the small object argument,
by a variant of Lemma Are transfinite composites required for the relative
cell spectra?))

REMARK 9.2.19. Any two of the subcategories in a model structure determine
the third. For example, the Quillen cofibrations can be characterized as those maps
i: K — L that have the left lifting property, as in (3) above, with respect to all
acyclic stable fibrations (= acyclic g-fibrations), i.e., the maps p: M — N that are
stable equivalence and stable fibrations.

DEFINITION 9.2.20. For each sequential spectrum M and space X we define
XANM, M ANX and Map(X, M) to be the sequential spectra with k-th spaces
X AN My, My AN X and Map(X, My), respectively, and with structure maps

1N

XAMASY 23 X A Mgy,

My AXASY 25 My ASYAX 22 My AX

and
Map(X, My) A S — Map(X, My, A 81) M%7 Map(X, Myi1) .

Equivalently, the adjoint structure maps for Map(X, M) are

Map(X, My,) "5 Map(X, QMj41) = Q Map(X, My1)
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In particular, let I, A M, CM = I AM, XM = S' A M, Map(Iy,M), PM =
Map(I, M) and QM = Map(S', M) denote the cylinder, cone, suspension, free
paths, paths and loops on M, respectively.

See [Hov99, §1.2] for a discussion of cylinder objects and homotopies between
maps in a model category.

LEMMA 9.2.21. If M is Quillen cofibrant then I, AM is a cylinder object for M,
meaning that
MVM=OI AMS S T AM—=5 M

is a factorization of the fold map MN M — M through a Quillen cofibration followed
by a stable equivalence (in fact, a homotopy equivalence).

Two maps f,g: M — N are homotopic, denoted f =~ g, if there exists a map
H: I, N\M — N

such that Hig = f and Hi; = g. Homotopic maps induce identical homomorphisms
of stable homotopy groups, so any homotopy equivalence is a stable equivalence.

PROPOSITION 9.2.22 ([Hov99| Prop. 1.2.8]). If M is Quillen cofibrant and N
is stably fibrant, then a map f: M — N is a stable equivalence if and only if it is
a homotopy equivalence.

This is a formal consequence of the model category structure.
Let Splff C SpN denote the full subcategory of simultaneously Quillen cofibrant

and stably fibrant spectra, and let Spff /=~ denote the quotient category with the
same objects, but with morphism sets the homotopy classes
(Spey/=)(M,N) = Sp" (M, N) /=~
of maps M — N.
THEOREM 9.2.23 (|[Hov99, Thm. 1.2.10]). The induced functor
S/~ — Ho(Sp") = Sp" [ ']

is an equivalence of categories. If q¢: M¢ = M and j: N = N7 are cofibrant and
fibrant replacements, respectively, then

[M, N] = Ho(Sp™) (M, N) = SpN(M¢,N¥)/~.

In particular, the stable category Ho(Sp"Y) = SpN[# ~1] exists as a category
(with sets, not proper classes, of morphisms). Furthermore, we can identify the
morphisms sets [M, N| by replacing M and N with stably equivalent spectra M¢
and N7, with M¢ Quillen cofibrant and N/ stably fibrant, and then calculating the
set of homotopy classes of maps M¢ — N/.

COROLLARY 9.2.24. For each integer n there is a natural isomorphism
[S™, M] & m,(M).
PROOF. Any fibrant replacement (and these exist, by the model category struc-
ture) j: M = M/ induces isomorphisms j,: m.(M) = m,(M/) and j,: [S™, M] =

[S™, Mf], so we may assume that M is stably fibrant, i.e., an Q-spectrum. Further-
more, S™ is a cell spectrum, hence Quillen cofibrant, so

[$™, M] = Sp™(S™, M)/~
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is given by the homotopy classes of spectrum maps x: S™ — M.
When n > 0, this is the homotopy classes of maps xy: S™ — My. Since M is
an ()-spectrum, each homomorphism

Wn(Mo) — 7Tn+1(M1) —_— ... — 7Tn(M)

is an isomorphism, so [S™, M| = m,(M). When n < 0, we are instead considering
the homotopy classes of maps z_,: S — M_,,. Again, each homomorphism

mo(M_p) — mi(M_py1) — ... — (M)
is an isomorphism, so [S™, M| & m,, (M). |
9.3. Triangulated structure
We now prove that the stable category is, indeed, stable.
LEMMA 9.3.1. There is a natural isomorphism
T (Map(S%, M)) = 71, (M).
PROOF. This is the colimit of the isomorphisms
Tk (Map(St, My)) & mypnin(My)
matching S"t* — Map(S', My) to its left adjoint S* A S"F — M;,. O
ProroOSITION 9.3.2. There is a natural isomorphism
E: mp(M) —5 1140 (S A M)
mapping the class of x: S"T* — M, to the class of 1 Ax: ST A S"TF — ST A M;..

PROOF. First, suppose that z: S"** — M, is such that 1 A z: Stk
S A Mj, represents zero in colimy 714,41(S* A My,). By first increasing k, we may
assume that 1 A z: S™"+k 5 1 A M, is null-homotopic. It follows that

et Al=71(1Az)T: S"TFASY — M AS?

and o(x A 1): S*E+TL 5 M,y are null-homotopic. Hence o(x A 1) represents the
zero class in 7, (M) = colimy, m, 1, (My). Since x and o(x A 1) represent the same
class in this colimit, F is injective.

Tk (My) ——— Tnypp1 (Mr 1) ——— Tnyrp2(Mgr2) — ...

J | J

7T1+n+k(sl A Mk) — 7Tl+n+k+1(Sl A Mk+1) —)7T1+n+k+2(sl A Mk;_l’_Q) — ...

Second, consider an element in colimyg 7r1+n+k(51 A My,) represented by the
homotopy class of a map y: S' A S"T* — ST A My, as well as by its stabilization
a?(y AN1A1). Let

:z::TyT/\l:S”Jrk/\Sl/\SIHMk/\Sl/\Sl.

Then 1Az: STASPTRFASTAST — STAM,ASTAS! is homotopic to y A1AL, since a
cyclic permutation of S* A ST A St is homotopic to the identity. Hence o?(y A1TA1)
is homotopic to (1 Aa?)(1 Ax) = 1 Ao?(x): STHHE+2 5 QLA M, 5. Tt therefore
represents the same class as the image of o2(x): S"T**2 — My, which proves
that FE is surjective. O
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ProrosiTION 9.3.3. The adjunction unit
n: M — Map(S*, S* A M)
is a stable equivalence.
ProOOF. The homomorphism 7, factors as the composite
Nt Tn(M) 2 740 (ST A M) 2 mr,(Map(St, ST A M))

of the isomorphisms from the previous two lemmas, hence is an isomorphism for
each n. (]

PRrROPOSITION 9.3.4. The adjunction counit
e: S* AMap(St, M) — M
is a stable equivalence.

ProOF. The composite

1 1 €
Map(S*, M) M (S50 Map(S*, S* A Map(S*, M)) Map(5 ) Map(S*, M)
is the identity [ML71, Thm. IV.1.1], and m,(n) is an isomorphism for each n, so

mn(Map(St, €)) is an isomorphism. Hence 74, (€) is an isomorphism. O

Here is the promised stability result. It shows that the stable model structure
makes Sp" a stable model category in the sense of [SS03, Def. 2.1.1], which implies
that its homotopy category is triangulated.

THEOREM 9.3.5. The suspension functor M + S' A M is an equivalence of

categories
SY A —: Ho(Sp"™) = Ho(Sp").
In other words, for all sequential spectra M and N the function
SYA—: [M,N] = [S' A M,S' A N]

is a bijection, and each M is stably equivalent to a spectrum of the form S* A N.

PROOF. For any cell complex X the functor X A — preserves Quillen cofibra-
tions and the functor Map(X, —) preserves stable fibrations. In particular, S' A —

preserves Quillen cofibrant objects and Map(S!, —) preserves stably fibrant objects.
Hence the adjunction

SpN (ST A M, NT) = SpN (M€, Map(S*t, NT))
passes to a natural bijection
[SY A M, N] = SpN(St A M, NF)/~
= Sp™ (M, Map(S*, N7))/~ = [M, Map(5*, N)].
Replacing N by S! A N, the composite
(M, N] 525 [S7 A M, ' A N] 2 [M, Map(5", S* A N)]

is induced by the adjunction unit n: N — Map(S*, St A N). Since this is a stable
equivalence, the induced function is a bijection.

The adjunction counit e: St A Map(St, M) — M exhibits M as being stably
equivalent to ST A N for N = Map(S*t, M). O
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DEFINITION 9.3.6. For a map f: M — N of spectra let
Cf=NUCM

be the mapping cone (= homotopy cofiber) of f: M — N. There are canonical
maps

MIsN Sof S stam
with ¢ and ¢ induced by M — CM and N — x, respectively. We call this the
(homotopy cofiber) Puppe sequence generated by f.

PropPOSITION 9.3.7. The Puppe sequence of f: M — N induces a long exact
sequence of stable homotopy groups

- = (M) L>7rn(N) AN T (Cf) 2, Tn—1(M) = ...,
where E 00 = q.: m,(Cf) — m,(S* A M).

PRrROOF. It suffices to prove exactness at 7, (N), and i, f, = 0 is clear.

gntk i C§ntk g Sl A gntk

T

M, t Ny, zk Cfy o Sl/\Mk

If y: S"**k — Ny corresponds to a class [y] in ker(i,), then we may increase k and
assume that i,y is null-homotopic, hence extends to a map z: C.S"* — Cf;. The
induced map of quotients z': S* A S"tF — S A M;, then represents a class [z'] in
7140 (ST A M) which corresponds, under the isomorphism E, to a class [x] € m, (M)

with f.([z]) = [y]- -

DEFINITION 9.3.8. A map f: M — N is n-connected if 7, (f) is an isomorphism
for x < m and surjective for * = n, or, equivalently, if C'f is n-connected.

More generally, a Puppe sequence induces long exact sequences

= ST AMT] S [Cf,T) 5 (N T) L (T -
and
S [T, M) L5 [T, N] 25 [1,0] 5 (1,80 A M] > ...
both co- and contravarlantly, where T is an arbitrary spectrum. T hlS can be de-

duced from some basic properties satisfied by the suspension operator S* A — and
the Puppe sequences, which make the stable category a triangulated category. See

Proposition [9.3.15]

REMARK 9.3.9. Puppe [Pup67, Stz. 3.5] introduced axioms for a triangu-
lated category (at a 1962 conference in Aarhus), and Verdier [Ver96] added the
octahedral axiom (in his 1967 PhD thesis). Further references include Beilinson—
Bernstein—Deligne [BBD82| §1.1], Margolis [Mar83|, App. 2], Neeman |[Nee01,
Ch. 1], Hovey—Palmieri-Strickland [HPS97, App. A.1] and May [May01} §2].

DEFINITION 9.3.10 ([ML71, §VIIL.2]). An Ab-category is a category € in which
each morphism set % (X,Y) is an abelian group and composition is bilinear. An
additive category is an Ab-category with all finite sums and products, such that
these are canonically isomorphic. We write 0 for the zero object, i.e., the empty
sum and product.
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We adopt May’s formulation [May01}, Def. 2.1] of the definition below.

DEFINITION 9.3.11. A triangulated category is an additive category € equipped
with an additive functor

>: € — €

called suspension, and a collection A of diagrams
x Ly %7 ex,

called distinguished triangles, briefly denoted (f, g, h). We assume that ¥: € — &
is an equivalence of categories. Furthermore, we assume that:

(1) For any object X the triangle

XL X-—50—0xx

is distinguished, for any morphism f: X — Y there exists a distinguished
triangle (f,g,h), and any triangle that is isomorphic to a distinguished
triangle is itself distinguished.
(2) If (f,g,h) is distinguished, then so is its rotation
Yy -4z onx vy,
(3) Consider the following braid diagram.

’ 11

h g J

Y

Z U
g n i /
f - =
Y |4
. =
i
U

X

AN
~_

f//

W
\‘ 1
Y
e
X

Assume that h = gf and j” = (Xf")g”, and that (f, f', f"), (9,9',9")
and (h, b, h'"") are distinguished. Then there are maps j and j’ such that
the diagram commutes and (7,5, j"’) is distinguished.

Axiom (3) is the braid form of Verdier’s octahedral axiom. These axioms imply
the following 3 x 3 lemma.

LEmMA 9.3.12 ([BBD82, Prop. 1.1.11], |[May01} Lem. 2.6]). Assume that
if = f'i and the two top rows and two left columns are distinguished in the following
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diagram.
x—L sy ,z " ,vx
7 J k >
x Ly W sy
i J’ K i’
xr Iy 9 g s x
P I N
x hny ELnz sy

Then there is an object Z'" and maps f", g", b, k, k' and k" such that the diagram
is commutative, except for its bottom right hand square, which commutes up to the
sign —1, and all four rows and columns are distinguished.

In particular, the fill-in axiom of Puppe and Verdier follows from those above.
We state it as a lemma.

LEMMA 9.3.13 ([MayO01} Lem. 2.2]). If the rows are distinguished and the left
hand square commutes in the following diagram, then there is a morphism k that
makes the remaining two squares commute.

f g h

X Y 7z nX
{ JJ k Jm
x Ly 8 g W s

REMARK 9.3.14. The precise axioms for a triangulated category may not be
optimal: all natural examples seem to come from a stable model category or a
stable co-category, which satisfy refined axioms as discussed in [Nee91]. In these
examples, there is a construction of the fill-in morphism £ that is well-defied up to
addition of a composite

zMysx sy L7,
and this ambiguity is generally smaller than that allowed by the lemma above.

PROPOSITION 9.3.15. For (f, g,h) distinguished and T any object, the sequences
T, X) L (T Y) s (T, Z2) s E(T, X)) —— ..
and
X, ) e T (2, T) (X, T) e .
are exact.

PrOOF. We show that im(f,) = ker(g.). Giveni: T — X in ¢(T, X)) we have

1

T T 0 ST
{ lj k J{Ei
x- L,y 9,7 h,vx
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with j = fi, and there is a fill-in map k. Hence gfi = 0, so im(f,) C ker(g«).
Conversely, given j: T — Y in €(T,Y) with gj = 0 we have

T 0 Oy LI 5. y
A
y 2z tuwx vy
and there is a fill-in map 3i. Hence X5 = X(f7), so j = fi, and ker(g,) C im(fy).
The other cases are proved by similar arguments. ([l

Puppe [Pup67, §3] proved the following theorem for a smaller category than
Ho(SpY), while in its present form the result is due to Boardman (unpublished, but
see [Vog70| or [Ada74]).

THEOREM 9.3.16. The stable category Ho(SpY) is triangulated, with suspension
functor

YM=S'"AM

and distinguished triangles the diagram that are isomorphic to Puppe sequences
ML N of L SstAM.

PROOF. We first argue that Ho(Sp") is an Ab-category. For any L and N there
are spectra L’ and N’ and stable equivalences L ~ S? A L’ and N ~ Map(S?, N').
The homotopy commutative cogroup structure on S? induces abelian group struc-
tures

[L,M] = [S* AL',M] and [M,N]=[M, Map(5®, N')]
so that the composition pairing
[M, N] x [L, M] = [M,Map(S? N")] x [S* A L', M|
5 [S? A L', Map(S?, N")] = [L, N]

is bilinear.

The stable category has all sums and products, defined levelwise. The Ab-
category structure implies that the finite sums are canonically isomorphic to the
finite products, see [ML71, §VIII.2], so that Ho(Sp") is additive. In particular,

MVN = MxN
is a stable equivalence, and
(M) @ m(N) 21 (MVN)27m, (M X N) 27, (M) x 7(N).

The (left) suspension functor is an equivalence by Theorem Axiom (1)
is straightforward, and Axiom (2) follows from the known fact that the Puppe
sequence

N-Sof 5 0i L EN
is isomorphic, in the stable category, to

N-Sof - SyMm L eN.
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To verify the braid/octahedral axiom, we follow [May01, §5]. We may as-
sume that the distinguished triangles (f, f’, f"), (9,¢’,¢") and (h, ', ") are Puppe
cofiber sequences, so that there is a commutative diagram

h i(9) 3"
2Cf
i(h) q(9)
Zi(f)

/
m/w/

V

a(f)

with j: YUCX — ZUCX induced by g: Y — Z and j': ZUCX — ZUCY
induced by Cf: CX — CY. It remains to verify that (j,j’,j"”) is distinguished,
which amounts to constructing an explicit (stable) equivalence Cj ~ Cg that is
compatible with j' and j”. ((ETC: Is this a homotopy equivalence?)) ((ETC: May
gives a further reduction using the model structure.)) O

9.4. Spectral homology and cohomology

The Eilenberg—-MacLane representability of ordinary cohomology readily ex-
tends to show that any spectrum M represents a generalized cohomology theory.
Dually, George Whitehead [Whi62| §5] showed how spectra also give rise to gen-
eralized homology theories. Since we are working with based spaces these theories
will always be reduced, but we do not add tildes to indicate this.

DEFINITION 9.4.1. Let M = (Mjy,0); be a sequential spectrum. For each
space X let
M, (X) = 7 (M A X)
be equal to colimy, 7,1 (My A X), and let

~

o My (X) — Myn(S* A X)
be the composite of the isomorphisms

(TAL),

T (M AX) -2 71140 (ST A M A X)
For any pair (X, A) let

Tian(MASYAX).

M, (X,A) =M, (XUCA)
and let
0: M, (X,A) — M,_1(A)
be the composite
Mo (X UCA) %5 M, (S* A A) 75 M,_1(A)
induced by ¢: X UCA — S* A A and the inverse of o.

Note that if (X, A) is a CW pair, or A — X is a Hurewicz cofibration, then
XUCA~X/Aso Mp(X,A) = M,(X/A).
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PROPOSITION 9.4.2. The functor (X, A) — M.(X,A) and the natural trans-
formation 0: M.(X,A) — M._1(A) define a (generalized) homology theory for
pairs (X, A). Its coefficient groups are M, = 7. (M).

PROOF. We check the axioms for CW pairs (X, A). Functoriality and natural-
ity are clear. By Proposition [0.3.7 the Puppe sequence

AL inl

ANMIDY X AM PSS opam LA ST AANM

of f A1, where f: A — X is the inclusion and C'f = X UCA, induces a long exact
sequence of homotopy groups. It is isomorphic to the sequence

MAAYL M AX 2 prncf 2 M AS A A

by way of the evident twist maps, and this proves exactness. Homotopy invariance
and excision are likewise clear.

Additivity for infinite sums requires a bit more effort. Let (X, )qcs be a col-
lection of (based) spaces, where J is some indexing set. Letting F' range over the
filtering (= directed and nonempty) poset of finite subsets of J, we can form the
inclusions

\/ Mp A X, — \/ My A X
aEF acJ
and consider the canonical homomorphism

colim ;i \ M AXo) — moi(\ MeAXo).
aeF aeJ

We claim that this is an isomorphism, because S™** and the cylinder I, A S"*F
are both compact. For this we need that \/ . ; My A X, is strongly filtered by the
Vaer Mi A X4, in a more general sense than in Definition See [Str}, Lem. 3.6]
for a proof, which is similar to that of Lemma [3.2.5

These isomorphisms are compatible for increasing k, and passing to sequential
colimits we deduce that

CO}%mMn( \/ X,) — Mn(\/ X,)
acl acJ
is an isomorphism. By finite additivity,
P Mo (Xa) = Mu(\/ Xa)
aEF a€F

and

are isomorphisms. Stringing these together, we have confirmed the additivity axiom
for the homology theory X — M, (X). Finally, the coefficients groups of this theory
are M, = M,(S%) = m.(M A S°) = 7, (M). O
REMARK 9.4.3. The isomorphisms
M,(X)=m,(MNX)=[S", M A X]
and
[S", M AX]=[S'AS™, SPAMAX] =[S M ASYAX]
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express the homology theory M in terms of the triangulated structure of the stable
category. We will define the associated cohomology theory so that
MMX)2[ST"AX, M) 2 [E®X,5" A M|
and
[ST"AX,M] =2 [ST' ASTA X, M].
However, to correctly calculate morphisms to M in the stable category, we need to
consider homotopy classes of maps to a fibrant replacement M ~ M7 of f, i.e., toa
stably equivalent 2-spectrum (recall Lemma [9.2.15)). The issue is that while there
typically is a map
Map(X, M)" — Map(X, M7)
from a fibrant replacement of Map(X, M) to the indicated mapping spectrum, it
is not always true that this map is a stable equivalence. This issue stems from the
fact that sequential colimits do not generally commute with infinite products. This

is not a problem if X is homotopy equivalent to a finite cell complex, as assumed
by Whitehead [Whi62, (5.10)], but we do not wish to restrict to this case.

DEFINITION 9.4.4. Let M = (My,0)x be a sequential spectrum. Let M/ =
(M ,f ,0)k be a fibrant replacement of M, i.e., an Q-spectrum with a stable equiva-
lence M ~ M. For each space X let

M"™(X) = m_, Map(X, M7)

be equal to colimy 7_, 1 Map(X, M,{), and let
o M™(X) = M (S' A X)
be the composite of the isomorphisms
7_p Map(X, MY) = 7_;_,, Map(S*, Map(X, M¥)) = 7_;_, Map(S* A X, M7).

For any pair (X, A) let

M™"(X,A)=M"(XUCA)
and let

§: M™(A) — M (X, A)
be the composite

M™(A) T MRS A A) Ly MUF(X U CA)
induced by the isomorphism o and ¢: X UCA — S' A A.
((ETC: (In-)dependence of choice of fibrant replacement.))

PROPOSITION 9.4.5. The contravariant functor (X, A) — M*(X, A) and the
natural transformation §: M*(A) — M'**(X, A) define a (generalized) cohomology
theory for pairs (X, A). Its coefficient groups are M* = w_,.(M).

ProOOF. We check the axioms for CW pairs (X, A). Contravariant functoriality
and naturality are clear. For each k the Puppe fiber sequence

= QMap(A, M) MUY Map(x U €A, M)

MY Nap(X, M) MY Map(4, M)
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induces a long exact sequence of homotopy groups
5
- = T nak Map(A, M) %5 7, Map(X U CA, M})

RN 7 —n+k Map(X, M,{) f—*> T_n+k Map(A4, M,{)

for k > n (and some weaker form of exactness for k = n). Passing to sequential
colimits over k confirms the exactness axiom. Homotopy invariance and excision
are straightforward.

Additivity requires that the canonical exchange map

M"(\/ Xao) & coEmH T —ntk Map(Xa, M,f)

LN HCOhmﬂ'—n-s-k Map( Xa,Mf HM"

is an isomorphism, which holds because M7 is an Q-spectrum, so that each colimit
is achieved at a finite stage, i.e., for any & > n. The coefficient groups of this
cohomology theory are M* = M*(SY) = m_, Map(S°, M) = 7_,.(M). O

REMARK 9.4.6. Each morphism f € [M,N] in the stable category induces
morphisms

fo: Mp(X) 2 [S", M AX] — [S",N A X] =2 N,(X)
for MM(X) 2 [ST"AX,M] — [ST"AX,N] = N*"(X)
of homology and cohomology theories. In particular, we have a functor
Ho(Sp") — Cohomology theories

from the stable category to the category of cohomology theories. By Brown’s repre-
sentability theorem [Bro62, Thm. I], each cohomology theory X +— M*(X) arises
in this way from some spectrum M, so this functor is essentially surjective. The
functor is also full, in the sense that each morphism of cohomology theories comes
from a morphism in the stable category, but in general it is not faithful, meaning
that there may be nontrivial morphisms f € [M, N] that induce the zero morphism
fe: M*(X) — N*(X) for each space X. These are called superphantom maps by
Margolis [Mar83| p. 81], and their existence shows that the stable category is not
equivalent to the category of cohomology theories. The former has the richer struc-
ture, and the latter is the quotient category where superphantom maps are ignored.
More explicitly, there is a short exact sequence

0 = Rlm[SMj, Ny — [M, N] — lim[Mj, Ni] = 0

and if f: M — N is such that each fr: My — Nj is null-homotopic, then f induces
the zero morphism f,: M*(X) — N¥(X) for all X. Hence the superphantom maps
from M to N are given by the derived limit group Rlimg[X My, Ni]. Goodwillie
(MathOverflow, 2013) notes that there are nonzero superphantom maps KU —
YHZ.

ExXAMPLE 9.4.7. Let G be an abelian group. The FEilenberg—MacLane spec-
trum HG has k-th space

HGy = K(G, k)
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an Eilenberg-MacLane space of type (G, k), and adjoint structure maps given by
homotopy equivalences

5: K(G,k) = QK(G,k+1).

Hence HG is an Q-spectrum. Its coefficient groups are 7, (HG) = G concentrated
in degree 0, and this characterizes HG up to stable equivalence. It represents
ordinary homology and cohomology with G-coefficients, so that

H,(X;G) = HG,(X) = colim 7 1 (HG, A X)
H"(X;G) = HG"(X) = [X, HG,,]
for n > 0. These groups are trivial for n < 0.

EXAMPLE 9.4.8. The sphere spectrum S has k-th space Sy = S* and structure
maps given by the identifications o: S* A S1 22 S*+1_ Its coefficient groups

m™(S) = co}cim Tk (SF)
are the stable homotopy groups of spheres. There is a fibrant replacement S ~ S/
with
Sf=Q(s*) = colim Ol gkt
for each k, such that each adjoint structure map
5: Q(SF) = QQ(S*F)

is a homeomorphism. The sphere spectrum represents stable homotopy and coho-
motopy, so that

T (X) 2 8,(X) 2 colim (X A )
Te(X) =2 S"M(X) = colgim [X ASY 8™
The Pontryagin—Thom construction extends to an isomorphism
Qf"(X) 2= 7 (X4)

where Q/7(X) is given by framed bordism classes of framed n-manifolds M"™ — X,
equipped with structure maps to X.

When X = BG is the classifying space of a finite group G, the proven Segal
conjecture [Car84] implies that

T¢(BGy) = A(G) e
is the completion of the Burnside ring A(G) of G at its augmentation ideal, while
T3(BG) =0

for n > 0. The precise statement also determines 7(BG4) = 0 for n < 0, in terms
of stable homotopy groups.

ExXAMPLE 9.4.9. The Thom spectra MO and M SO have k-th spaces
MOy, = Th(v*) =~ EO(k)+ Moy S*
MSOy = Th(3*) ~ ESO(k)+ Aso S*
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the Thom complexes of the tautological vector bundles E(7*) — Gri(R*>) and
E(7*) = Gri,(R®). The structure maps

o: Th(y*) A S = Th(v* @ ') — Th(y* 1)

o: Th(3®) A St = Th(3* @ ') — Th(3**1)
are induced by the vector bundle maps covering the inclusions Gry(R*>) C Grj41(R>)
and Gri(R>®) C Griy1(R*). Their coefficient groups are m.(MO) = .4 and

(M SO) =2 Q.. The associated homology theories are precisely (unoriented) bor-
dism and oriented bordism, so that

M (X) 2 MO, (X)) = Cogmﬂ-n_l’_k(MO(k) ANXL)
D (X)X MSO,(X4) = cogmwn+k(MSO(k) NX4).

EXAMPLE 9.4.10. There are ((ETC: ring)) spectrum maps
S —— MSO —— MO

L

H7Z —— HF,
inducing ((ETC: multiplicative)) morphisms

Q" (X) —— Q(X) ——— AH(X)

L]

H,(X;Z) — H,(X;F>)

of homology theories. The vertical maps take an oriented (resp. unoriented) bor-
dism class [f] with f: M™ — X to the image f.[M] of the integral (resp. mod 2)
fundamental class of M. The map MO — HF; admits a section, so each mod 2
homology class can be represented by a closed manifold. The map M SO — HZ
does not admit a section, and not every integral homology class can be represented
by a closed oriented manifold. Thom |[Tho54| Cor III.7, Thm. II1.9] showed than
for n < 6 every integral homology class can be represented by a closed oriented
manifold, but for each n > 7 there exist integral homology classes that cannot be
so represented.

((ETC: Complex bordism. Landweber exact homology theories.))

ExAMPLE 9.4.11. The classification of rank k complex vector bundles
Vect (X) = [X, BU(k)],
where BU (k) ~ Gr(C™), extends to a classification of complex vector bundles of
arbitrary rank
Vect®(X) = (X, [ BU(K)].
k>0

The Whitney sum & @ n of vector bundles induces a commutative monoid structure
on both sides of this bijection, which is induced by a map

[1BUG) x [ BUG) — [] BU®)

i>0 >0 k>0
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on the right hand side. We can localize, to make the operation — @ €' invertible,
and obtain an isomorphism

KU(X) =~ [X;,Z x BU]

where BU is the classifying space for the infinite unitary group U = (J, U(k). When
X is a finite-dimensional CW complex, the left hand side is the group completion of
VectC(X ), also known as the complex K -group of X. The (complex) Bott periodicity
theorem |Bot59| asserts that

Z x BU ~ QU ,

while
U~ Q(Zx BU)

is clear from the existence of a principal U-bundle p: EU — BU with contractible
total space. Hence

7 x BU ~ Q*(Z x BU)
U~QU.

Following Atiyah and Hirzebruch [AH61|, we can therefore define an Q-spectrum
KU with

U for k odd,

having adjoint structure maps given by the two homotopy equivalences above.
Working with real vector bundles, we have the classification

Veet™(X) = [X4, [ BO(R)]

k>0

KU, = {Z x BU for k even,

with BO(k) ~ Gri(R*), with localization
KO(X) 2 [X,,Z x BO]
where BO is the classifying space of the infinite orthogonal group O = |J, O(k).

When X is finite-dimensional, this is the real K-group of X. The (real) Bott
periodicity theorem [Bot59] asserts that

Z x BO ~Q(U/O)
U/O ~Q(Sp/U)
Sp/U ~ QSp
Sp ~ Q(Z x BSp)
Z x BSp ~ Q(U/Sp)
U/Sp~Q(0/U)
0/U ~ Q0
0 ~Q(Z x BO).
Here Sp = |J,, Sp(k) denotes the infinite symplectic group, and the homogeneous

spaces are formed using complexification O — U, symplectification U — Sp, (for-
getful) complexification Sp — U and realification U — O. It follows that

7 x BO ~ Q8(Z x BO).
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We can therefore define an Q2-spectrum KO with
Z x BO for k=0 mod 8,

Uu/o for k=1 mod 8,
Sp/U for k=2 mod 8,
Sp for k=3 mod 8,

KOy =
Z x BSp for k=4 mod 8,

U/Sp for k=5 mod 8§,
o/U for k=6 mod 8,
0] for k=7 mod 8,

having adjoint structure maps given by the eight homotopy equivalences above. It
follows that KOy, ~ Qf(Z x BO) where k+¢ =0 mod 8, and we may assume that
0<2<8.
The associated cohomology theories are complex and real (topological) K-

theory, with

KU™(X) = [X, KU,]

KO™"(X) 2 [X,KO,]
(unreduced theories) for n > 0, extended 2- and 8-periodically, respectively, for
n < 0. The coefficient groups of these theories are

. (KU) = {

Z for * even,
0 for % odd,
and
Z for x =0,4 mod 8,
T(KO)=<7Z/2 forx=1,2 mod 8,
0 for *x =3,5,6,7 mod 8.
The external tensor product of vector bundles induces pairings
KU"X)® KU™Y) — KU ™ (X xY)
KO"(X)® KO™(Y) — KO™™(X xY)
turning these coefficient groups into graded rings. Their structures are
7 (KU) = Z[u,u™!]
with |u| = 2, and
m.(KO) = Z[n, A, B, B~'/(2n,7%,nA, A*> — 4B)
= (..., Z{1},Z/2{n}, Z/2{n*},0,Z{ A},0,0,0,Z{B},...)

with |n| = 1, |A] = 4 and |B| = 8. Complexification of vector bundles induces a
natural transformation ¢: KO™(X) — KU"™(X), and the induced ring homomor-
phism

c: m(KO) — . (KU)
is given by ¢(n) = 0, ¢(A) = 2u? and ¢(B) = u®.

When X = BG is the classifying space of a finite group G, Atiyah [Ati61Db|

proved that

KU°(BG) = R(G)}¢
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is the completion of the complex representation ring R(G) at its augmentation
ideal, while
KU'(BG)=0.
Since KU™(BQ@) is 2-periodic, this calculates KU*(BG@G) in all degrees. The corre-
sponding result for connected compact Lie groups G is due to Atiyah and Hirze-
bruch [AH61], while the result for general compact Lie groups is part of the Atiyah—
Segal completion theorem [AS69], and motivated the Segal conjecture for stable
cohomotopy, mentioned above. The corresponding results for real K-theory are due
to Anderson [And64]. In particular
KO°(BG) = RO(G)}¢

KO'(BG) =0

KO"(BG) = RSp(G)}c
KO®(BG) =0
where I(G) now denotes the augmentation ideal in the real representation ring RO(G),

and RSp(Q) is the RO(G)-module of quaternionic representations.
REMARK 9.4.12. The expressions in Remark for M, (X) and M*(X) for

spaces X, in terms of morphisms in the stable category, suggest that we can extend
these homology and cohomology theories over the suspension spectrum functor
»>°: Ho(.7) — Ho(Sp")
X +— XX = [hX,
so as to define the M-homology
M,(X)=m(MAX)=[S",M A X]
and M-cohomology
M"™(X)=[X,S" AM]

of a spectrum X.

For cohomology, this makes sense as stated, and extends the previous definition.
In particular, with H = HF, the mod p Eilenberg-MacLane spectrum, we see that

A" > H"(H)=[H,S" N H|
recovers the stable cohomology operations of type (Fp;F,,n), i.e., the degree n part
of the Steenrod algebra. Hence there is an algebra isomorphism
A= H*(H).

For homology, we have not yet made sense of M A X when M and X are
both sequential spectra. This can be done |[Ada74, §II1.4], but a more satisfactory
construction can be given in the context of orthogonal spectra, which we turn to in
the next section. This will then lead to the formula

A, 2 H,(H)=[S",H AN H]
for the degree n part of the dual Steenrod algebra, and there is a Hopf algebra

isomorphism
A, =2 H.(H).
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9.5. Orthogonal spaces

We now give a different model for the stable category, namely as the homotopy
category Ho(Sp®) = SpP[# ~1] obtained by inverting the stable equivalences in a
category Sp? of orthogonal spectra. The categories Sp" and Sp® are not equivalent,
but their associated homotopy categories

Ho(Sp™) ~ Ho(Sp?)

are, so that we may replace our earlier use of Ho(Sp") with Ho(Sp®). This has
the advantage that Sp? is closed symmetric monoidal, with the (orthogonal) sphere
spectrum .S as unit object, a symmetric monoidal smash product LA M as monoidal
pairing, and a function spectrum F'(M, N) as the closed structure. Furthermore,
these data induce a closed symmetric monoidal structure on Ho(Sp?).

Orthogonal spectra were defined in [May80|, under the name of .7,-prespectra,
and orthogonal ring spectra were defined even earlier in [May77|, under the name
of Z,-prefunctors, but the good properties mentioned above first became apparent
with the introduction by Jeff Smith of symmetric spectra in 1994 (“Specters of
symmetry”, unpublished), and the unification of the two ideas in [MMSSO01].

Following Schwede ((ETC: reference?)) we index orthogonal spectra on a min-
imal (= skeletal) subcategory of the category of all finite-dimensional inner prod-
uct spaces and isometries used by Mandell-May—Schwede—Shipley. See also “model
structure on orthogonal spectra” on https://ncatlab.org/nlab/show/HomePage and
[HHR16|, Prop. A.12].

DEFINITION 9.5.1. Let O(k) denote the group of orthogonal k x k matrices. It
acts linearly on R* and its one-point compactification S¥ = R*¥ U{oo}. We consider
O(k) x O(¢) as a subgroup of O(k + ¢), via the block sum of matrices.

We continue to work in the category 7 of based, compactly generated, weak
Hausdorff spaces and basepoint preserving maps.

DEFINITION 9.5.2. An orthogonal spectrum M consists of a left O(k)-space My,
and a map
o Mk/\Sl — Mg

for each k > 0, such that the composite
ot My ANSY T Mya NS T D My ASY T My
is O(k) x O(f)-equivariant for every k, ¢ > 0.

To justify this definition, we take a step back and define a closed symmetric
monoidal category of orthogonal spaces. The sphere spectrum S is a commutative
monoid in this category, and the category of right S-modules becomes the category
of orthogonal spectra. This is closed symmetric monoidal because S is commutative.
There is an analogous story for sequential spectra, which are the right S-modules
in a category of sequential spaces, but in this case S is not commutative, so the
module category does not inherit the monoidal structure.

DEFINITION 9.5.3. Let O be the topological category with objects the integers
k > 0, and with morphism spaces

Ok, ) = O(k) fork=2¢,
)0 otherwise.
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It is symmetric monoidal, with unit object 0 and monoidal pairing
+: (k) — k+¢

+:(A,B)|—><A 0>,
0 B

where A € O(k) and B € O({). The symmetry isomorphism

Tkl 04k

equals the block permutation matrix

0 I
Xkt =
I, O
where I}, € O(k) and I, € O({) are the identity matrices.

The object k may also be viewed as R*¥ with the standard inner product, in
which case the monoidal pairing is the direct sum of inner product spaces, and the
symmetry is the usual twist isomorphism R* @ R¢ =2 R¢ @ R,

DEFINITION 9.5.4. An orthogonal space is a continuous functor
M:0— 7.

A map of orthogonal spaces is a continuous natural transformation f: M — N.
We write .79 for the topological category of orthogonal spaces.

Explicitly, M maps each k > 0 to a space My € 7, and for each A € O(k) we
have a map M(A): My — My, which defines a continuous left group action

A O(]{i)_;,_ AN My — M
(A,z) — Ax.
LEMMA 9.5.5. The category T© is tensored and cotensored over 7, by setting
(X A\ M)k =X N My
(M A )();€ =M ANX
F(X, M), = Map(X, M)

for M € 79 and X € .7, with the evident O(k)-actions. There are natural home-
omorphisms

Map(X, 7%(M,N)) = 7°(M A X,N) = 7% M, F(X,N)).

LEMMA 9.5.6. The category Z° has all small limits and colimits, given for any
diagram o — M, by

(hm Ma)k = lim(Ma)k

(colim M, ), = colim(My ) ,

with the evident O(k)-actions.
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LEMMA 9.5.7. The category (.79,U,®,Hom) of orthogonal spaces is closed
symmetric monoidal, with unit object given by Uy = S° and Uy, = * for k > 1, with
monoidal pairing given by the Day convolution product

(LeM),=\/ Ok)s Aowxow) Li A M;
i+j=k
and with closed structure given by
Hom(M, N); H Map(M;, N;,)°W) .
i+j=k
The symmetry 7: L Q M =MoL maps
CAxANy€eOk)y No(i)x O (5) L; N M;
to
Cxji Ny ANz € O(k)+ Nogyxoe) Mj A Li
for i+ 75 =k. There is a natural homeomorphism
F9L® M,N) = 7°L,Hom(M, N)).
PrOOF. The Day convolution can also be written as the topological colimit

(L® M), = colim L; ADMj.
i,Jyi+j—k

where the indexing category is the left fiber +/k of +: O x O — O at k.
The symmetry is well defined, because

A0
C ANxANy=CAAzx A\ By
0 B

is mapped to

A 0
C(O B) Xji NyANz=Cx;: NBy N Ax.

It would not be well-defined without the factor ;.
The adjunction homomorphism for L, M and N can be expanded to

1 7(x & M), N)° Hﬂ Li A Mj, Ny ;)00x00)
k
= Hﬂ LivMap(MjaNiJr )00))O0) Hy (L;, Hom(M, N);)°®
ivj

d

DEFINITION 9.5.8. The (orthogonal) sphere spectrum S has underlying orthog-
onal space

S:k+— S = S* =R U {0}
based at oo, with A € O(k) acting on S* by its linear action on R*.

The following lemma makes the whole theory work.
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LEMMA 9.5.9. The sphere spectrum is a commutative monoid in orthogonal
spaces, with unit n: U — S given by the identity no: Uy = S° = Sy, and with
multiplication p: S ® S — S given by the O(k)-equivariant maps

(S®8 =\ Ok)s No@xoy) S' A — S* =S
i+j=k

that are left adjoint to the O(i) x O(j)-equivariant identifications
CRVNCERC
fori+j5=k.

PRrROOF. Associativity and unitality are clear, so the key thing to check is com-
mutativity, which amounts to the commutativity of the diagrams

Vit jer O(k)+ Noiyxo) SN ——T—— Vjpizk O

\/

for all k& > 0. This follows from the observation that I Az Ay for z € S and
y € S7 maps via Xj,i NyAx to xji-(yAx) =x Ay along the upper and right hand
route, and maps directly to = A y along the left hand route. O

k)4 Nogyxogy S7 A S

LEMMA 9.5.10. For each £ > 0 the evaluation functor Evy: 9 — T given
by Eve(M) = My has left adjoint Gy: T — T given by
OW) L NX fork=1¢,
* otherwise.

Go(X)k :{

LEMMA 9.5.11. There is a natural isomorphism
Gi(X) @ G;(Y) = Gig (X NY)
for XY € T and i,j > 0.

9.6. Orthogonal spectra

DEFINITION 9.6.1 ([MMSSO01} Def. 1.9, Ex. 4.4]). An orthogonal spectrum M
is a right S-module in orthogonal spaces. A map f: M — N of orthogonal spectra is
a map of right S-modules. We write Sp® for the topological category of orthogonal
spectra.

REMARK 9.6.2. This agrees with Definition [9.5.2] because the right S-action
p: M ®S — M is given by O(k) x O(f)-equivariant maps

Phe: M. A Se — Mk+g

that satisfy unitality and associativity, and which are therefore determined by the
components ¢ = pg1: My A S — M1, for all k > 0. Conversely, the latter
determine the right S-action when the equivariance condition for of: M A S —
Mj, 1y is satisfied.
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LEMMA 9.6.3. The category Sp° is tensored and cotensored over 7, by setting
(X AM) =X A M
(MAX)g=M,NX
F(X, M), = Map(X, My)
for M € Sp® and X € .F. There are natural homeomorphisms
Map(X, Sp®(M, N)) = Sp®(M A X, N) = Sp°(M, F(X, N)).
PRrROOF. The right S-actions are given by

1Ac?

XAMANS" LS XA Mgy

oAl

My AXASE LS M AS A X TN Mo A X

0 (7 0 Map(l,o’ )
Map(X, M) A S Map(x, M, A 89 MU Map (X, M) -
U

LEMMA 9.6.4. The category Sp® has all small limits and colimits, given for
any diagram o — M, by

(tim M, )i = lim(M, )
(cogm M) = cogm(Ma)k .
ProOOF. The right S-actions are given by
(ngl(Ma)k) rst 9 lim (Mg A S%) 29 tim g 9 lim (Mo )0

colim o*

(colim(Ma)k> A St << colim ((Moé);c A Se) —  colim(My) gt -
@ [e% «

O
LEMMA 9.6.5. The forgetful functor U: Sp® — 79 has left adjoint L — L® S

and right adjoint N + Hom(S, N). The evaluation functor Ev,: Sp® — T given
by Eve(M) = My has left adjoint Fy: T — Sp® given by

Fi(X)=GiX)® 8§,
so that
O(k‘)Jr NO(k—10) X A Skt for k>4,
* otherwise.

Fo(X), = {

PROOF. The left adjoint of the composite Ev,U: Sp® — T — 7 is the
composite of left adjoints Gy(—) ® S: .7 — F9 — Sp®. This evaluates on X to
the orthogonal spectrum Fg(X ) given at level k by

Fo(X)r = (Go(X \/ O(k)+ Nogyxo(j) Ge(X)i NS,
i+j=k
which equals
O(k)+ Nowxotk—o OW) 4 AX AS* = O(k)4 Nogr—r) X AS*
for k> ¢, and is * for k < £. 0
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DEFINITION 9.6.6. The orthogonal suspension spectrum X*°X = FyX of a
space X is given by
(B®X), = X AS*
with the standard O(k)-action on S¥, for each k > 1. For each integer n we define
the orthogonal n-sphere spectrum S™ by

gn — FyS™ forn >0,
) Fo,S8° forn <0,

so that
Sntk forn >0,
(8™")k = O(k) 4 Aonsky S™F forn <0and n+k >0,
* forn+ k <0,

with the evident O(k)-action.

DEFINITION 9.6.7. Given an orthogonal spectrum M = (My, o), the underly-
ing sequential spectrum UM = (My, o) is obtained by forgetting the O(k)-action
on My, and ignoring the O(k) x O(f)-equivariance condition on o*, for each k > 0
and £ > 0. Let

U: Sp° —s 5pN
denote the forgetful functor.

DEFINITION 9.6.8. The homotopy groups m.(M) = (m,(M)),, of an orthogonal
spectrum M are the homotopy groups of its underlying sequential spectrum:

(M) =7m,(UM) = co}cimﬂnJrk(Mk) .

A map f: M — N of orthogonal spectra is a stable equivalence if the induced
homomorphism f,: m.(M) — m.(N) is an isomorphism, which is equivalent to
asking that the underlying map of sequential spectra is a stable equivalence.

PROPOSITION 9.6.9 ([MMSSO01, Prop. 3.2]). The forgetful functor U: Sp® —
SpN admits a left adjoint, called the prolongation functor

P: SpN — S5p?,
which satisfies
P(F'X) = F,X
for each £ > 0 and space X, and which commutes with colimits.

Here FIN denotes the free functor that is left adjoint to Ev,: Sp~ — 7, which
was simply denoted Fy in Section [9.2

E’Ug T
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EXAMPLE 9.6.10. Fy(S°) = S equals the sphere spectrum, while F;(S!) has
k-th space

Fi(SY)e = O(k)4 No—1) (S* A S*71) = Th(e' & Tge-1)
for each k > 1. The left adjoint of the identity S! = Ewv;(S) is a map of orthogonal
spectra
A Fi(SY) — S = Fy(SY)
given at levels k > 1 by the O(k)-equivariant extension
Akt O(k) 4 Ao—1) S — SF

of the O(k — 1)-action on S' A S¥=1 = G* This is 2(k — 1)-connected, so A is a
stable equivalence. More generally [MMSSO01, Lem. 8.6], the left adjoint

N Fppi(SY) — Fu(S9)

of the canonical inclusion S* — O(£ + 1)4 Aoy ST = Fi(S?)41 is a stable equiv-
alence for each £ > 0. This is the feature of orthogonal spectra that allows us to
define the stable equivalences as the m,-isomorphisms.

REMARK 9.6.11. In the parallel theory of symmetric spectra, based on the
symmetric groups X in place of the orthogonal groups O(k), the corresponding
maps ¢ are not m,-isomorphisms, but must nonetheless be taken to be stable
equivalences, hence invertible in the stable category, to ensure that the stably fibrant
objects are the 2-spectra. By working with orthogonal spectra we do not need to
distinguish between stable equivalences and m,-isomorphisms, which simplifies the
exposition.

DEFINITION 9.6.12. The stable category Ho(Sp?) is the localization
Sp® = Sp°[# =] = Ho(5p°)
of the category of orthogonal spectra with respect to the subcategory # of stable
equivalences. For orthogonal spectra M and N, let
[M, N] = Ho(Sp®)(M, N)
denote the set of morphisms in the stable category from M to N.

This does not conflict with our earlier usage, because of the following theorem.
This is a consequence of a stronger statement, proved in [MIMSS01, Thm. 10.4],
saying that the adjunction (P, U) defines a Quillen equivalence between the stable
model structures on Sp" and Sp°.

THEOREM 9.6.13. The functor U: Sp® — SpN preserves stable equivalences
and induces an equivalence of categories

U: Ho(Sp®) = Ho(Sp").
We have the following analogue of Definition |9.2.9

DEFINITION 9.6.14 ([MMSSO01, Def. 6.2, Def. 5.4, Thm. 6.5]). Let I be the
set of inclusions i: Sf__l — D% forn > 0. Let FI = FOT be the set of maps of
orthogonal spectra Fyi: FgSZ_l — FyD?%, for £ >0 and n > 0.

A map i: M — N of orthogonal spectra is a relative cell spectrum if N is the
colimit of a sequence of maps starting with M, where each map is obtained by
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cobase change from a sum of maps in FI. A map i: M — N in Sp? is a Quillen
cofibration (= g-cofibration) if it is a retract of a relative cell spectrum.

We say that an orthogonal spectrum N is a cell spectrum if x — N is a relative
cell spectrum, and that N is Quillen cofibrant (= g-cofibrant) if * — N is a Quillen
cofibration. If ¢: M¢ = M is a stable equivalence of orthogonal spectra, and M€
is Quillen cofibrant, then we say that M€ is a cofibrant replacement for M.

We also have the following analogue of Definition [9.2.14

DEFINITION 9.6.15 ([MMSS01}, Prop. 9.5]). A map p: M — N of orthogo-
nal spectra is a stable fibration (= g-fibration) if and only if the underlying map
Up: UM — UN of sequential spectra is a stable fibration, i.e., if pr: M — Ny is
a (non-equivariant) Serre fibration and

My —2— QM

pkl J/kaJrl

N —7— QN

is a (non-equivariant) weak homotopy pullback, for each k > 0.

We say that an orthogonal spectrum M is stably fibrant (= g-fibrant) if M —
is a stable fibration. If j: N = N/ is a stable equivalence of orthogonal spectra,
and N7 is stably fibrant, then we say that N/ is a fibrant replacement for N.

The prolongation of a (relative) sequential cell spectrum is a (relative) orthog-
onal cell spectrum, with the same cell filtration. An orthogonal spectrum is stably
fibrant if and only if it is an (2-spectrum, i.e., if each adjoint structure map is a
weak homotopy equivalence.

THEOREM 9.6.16. The category Sp® of orthogonal spectra is a ((ETC: com-
pactly generated, proper, topological)) model category with respect to the classes of
stable equivalences, Quillen cofibrations and stable fibrations.

Again, we refer to [MMSS01, Thm. 9.2] for the proof. To compare the stable
model structures on Sp" and Sp® we follow [Hov99, §1.3] and discuss Quillen
adjunctions and Quillen equivalences.

DEFINITION 9.6.17 ([Hov99, Def. 1.3.1]). Let ¢ and 2 be model categories,
and let F': € — 2 be left adjoint to G: & — ¥, so that there is a natural bijection

2(F(X),Y)=?2(X,G(Y)).
We say that the adjoint pair (F,G) is a Quillen adjunction if

(1) F preserves cofibrations, and
(2) G preserves fibrations.

This is just one of four equivalent formulations of this definition, because of the
following lemma.

LEMMA 9.6.18 ([Hov99, Lem. 1.3.4]). F preserves cofibrations if and only if
G preserves acyclic fibrations, and G preserves fibrations if and only if F' preserves
acyclic cofibrations.
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PROOF. If Fi is a cofibration in &2 for each cofibration 7 in %, and ¢ is an
acyclic fibration in 2, then G¢ has the right lifting property with respect to each
cofibration 7, hence is itself an acyclic fibration. The other three cases are similar.

O

DEFINITION 9.6.19 ([Hov99, Def. 1.3.6]). Given a Quillen adjunction (F,G),
let the total left derived functor LF: Ho(%) — Ho(Z) be defined by
(LE)(X) = F(X)

where X¢ ~ X is a (functorially defined) cofibrant replacement. Let the total right
derived functor RG: Ho(2) — Ho(%€) be defined by

(RG)(Y) = G(YY)
where Y ~ Y7 is a (functorially defined) fibrant replacement.

LEMMA 9.6.20 ([Hov99, Lem. 1.3.10]). Let € and 2 be model categories
and (F,G) a Quillen adjunction. Then LF: Ho(%) — Ho(2) is left adjoint to
RG: Ho(2) — Ho(%), so that (LF, RG) form an adjoint pair.

DEFINITION 9.6.21 ([Hov99, Def. 1.3.12]). A Quillen adjunction (F,G) is
called a Quillen equivalence when, for each cofibrant X in € and each fibrant Y
in Z,amap f: F(X) — Y is a weak equivalence in & if and only if its right adjoint
g: X = G(Y) is a weak equivalence in %

PROPOSITION 9.6.22 ([Hov99, Prop. 1.3.13, Cor. 1.3.16]). Let F: € — 2 and
G: 9 — € be a Quillen adjunction. The following are equivalent:
(1) (F,G) is a Quillen equivalence.
(2) LF: Ho(%¢) — Ho(2) and RG: Ho(2) — Ho(€) are adjoint equivalences
of categories.
(3) G reflects weak equivalences between fibrant objects and, for every cofi-
brant X in € the map n: X — G((FX)7) is a weak equivalence.

THEOREM 9.6.23 ([MMSSO01, Thm. 10.4]). The adjoint pair (P,U), with
P: SpN — Sp® and U: Sp® — SpV, is a Quillen equivalence. Hence
LP: Ho(Sp") = Ho(Sp?)
RU: Ho(Sp®) = Ho(Sp")
are adjoint equivalences of categories.
SKETCH PROOF. U: Sp® — SpN preserves stable equivalences and stable fibra-
tions, so (P, U) is a Quillen adjunction. Furthermore, U reflects stable equivalences

and, for every Quillen cofibrant M in Sp" the map n: M — UPM ~ U((PM)/)isa
stable equivalence. This verifies the equivalent conditions of Proposition[9.6.22] O

9.7. Closed symmetric monoidal structure

Since S is commutative, the category of right S-modules is isomorphic to the
category of left S-modules. A right S-action p: M ® S — M determines a left
S-action

NSeM - MeS - M
and vice versa. Furthermore, we can form the tensor product L ®g M and the func-
tion object Homg (M, N) of right S-modules L, M and N, and these remain right
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S-modules. These define the smash product and function spectrum, respectively,
for orthogonal spectra.

THEOREM 9.7.1. The category Sp® of orthogonal spectra is closed symmetric
monoidal, with unit object the sphere spectrum S, monoidal pairing the smash prod-
uct given by the coequalizer

pR1L
LeSeoM 1‘®A>L®ML>L®SM:LAM

and with closed structure the function spectrum given by the equalizer

P
F(M,N) = Homg (M, N) ——s Hom(M, N) —_ Hom(M & S, N).
P

((ETC: Ezxplain p* = Hom(p,1) and p«.)) The symmetry 7: L A M SsMAL s
induced by 7: L Q@ M =y M ® L. There is a natural homeomorphism
Sp°(L A M, N) = Sp®(L, F(M, N)).
REMARK 9.7.2. The coequalizer defining (L A M), can be expanded as follows.

Vaibremt O+ Ao(ayxom)xo(e) La A SP A M,

p/\IJ( ll/\k

Visj=k Ok)+ Nogyxo() Li A M
(LAM)k
The identifications for b = 1 generate the remaining ones, and set the composite
Lo ASYAM, 2% Lowy AM, — (LA M)as1se
equal to the composite

a cl/\{”— Xe, 15+ a c+1 — a+1+4c>
Lo ANS*AM, =% {xe1}s ANLoa A M, (L AM)

for all @ > 0 and ¢ > 0.
The equalizer defining F'(M, N); can be expanded as below.

F(M,N);
L
Hi+j:k Map(M;;, N;,)OW
|
ITitaspec Map(Ma A 5P, N,)O(@)>0®)

The conditions for b = 1 generate the remaining ones, and demand that the com-
posite

F(M, N); —s Map(Mar1, Nivar1) 2% Map(M, A ST, Nisari)
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is equal to the composite

F(M,N); — Map(Mg, Niya) Map(ASe) Map(Mq A S*, Niyas1).

DEFINITION 9.7.3. For i +j =k let ¢;;: Ly AM; — (LAM), map x Ay €
L; A Mj to the image of Iy Az Ay € O(k)1+ No@yxo() Li AN My C (L ® M), under
Tt (L@ M) = (L ®s M)k = (LA M)g.

((ETC: Give bilinearity diagram for pairings L A M — N7))
The smash product of spectra extends the smash product of spaces, in the
following sense.

LEMMA 9.7.4. There is a natural isomorphism
F(X)ANFj(Y)2 Fi j(XAY).
for XY € F and i,j > 0.
PROOF. Gi(X)®S5®sG;(Y)®S = Gi;(XAY)®S using Lemmal[9.5.11] O
ExaMPLE 9.7.5. The isomorphism
S'AST = FyS' A S0 = St
followed by the stable equivalence \: Fy S — S from Example define a stable
equivalence
StasTt =S,
The smash product of spectra also generalizes the smash product of a space
with a spectrum.
LEMMA 9.7.6. For X € .7 and M € Sp°® there are natural isomorphisms
SPXANMEXAM
MAYSEX=2MAX
FE®X, M) F(X,M).
The homotopy group functor m, is compatible with the smash product of or-
thogonal spectra and the tensor product of graded abelian groups, in a lax sense.
PROPOSITION 9.7.7. There is a natural homomorphism
(L) @m (M) — m (LAM)
and a homomorphism
Z — m(S)
that make 7, : Sp® — grAb a lax symmetric monoidal functor.
REMARK 9.7.8. For 7, to be a lax monoidal functor means that the two evident
composite pairings
T (L) @ m (M) @ mo(N) — m(LAM AN)
are equal (where we have suppressed the associativity isomorphisms), together with

two unitality conditions, see [MIL71] §XI.2]. To be symmetric then means that the
square

7w (L) @ mu (M) —— m. (L A M)

(M) @ (L) —— (M A L)
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commutes. Lax monoidal functors send monoids to monoids, and lax symmetric
monoidal functors take commutative monoids to commutative monoids. There is a
natural homomorphism

m F(M,N) — Hom(7m, (M), m(N))
that is right adjoint to the composite
T F(M,N) @ mo(M) — 7. (F(M,N) A M) == m,(N),
where €: FI(M,N) A M — N is the adjunction counit (= evaluation).

SKETCH PROOF OF PROPOSITION [0..7 Given f: S* — L; and ¢g: S™7 —
M; we form the composite

’

fog: §ttmriti T glritmej o0 glti g gmet LA AM; 25 (LA M)y )

where 7/ is any map of degree (—1)™%. If m > 0 we can let 7/ = 1ATgm gi A1, but we
should also allow m < 0 in this construction. Then [f - g] € Term+it+; (LA M)i1;)
only depends on [f] and [g]. Furthermore, one can check that the stable class of
[f - g] in Tprm (L A M) only depends on the stable classes of [f] in m¢(L) and of [g]
in 7, (M), so that we obtain a well-defined pairing

(L) X (M) — Tppm (L A M).

This is bilinear, and hence factors uniquely through the tensor product, as asserted.
One can also check that

([f]-[g) = (=1)""[g] - [f]

for £ = |f| and m = |g|, so that the lax monoidal functor =, is symmetric. O

COROLLARY 9.7.9. The pairing
e (S) @M (S) — (S AS) = m(5)

makes m.(S) a graded commutative ring. For each orthogonal spectrum M the
pairing
(M) @l (S) — m (M AS) 2w (M)

makes (M) a right 7.(S)-module. The lax monoidal structure homomorphism
factors uniquely through

(L) ®x, () T (M) — 7 (L A M)
and the closed structure homomorphism factors uniquely through
T (M, N) — Homy (s)(m(M), 7 (N)) .

DEFINITION 9.7.10. An orthogonal ring spectrum is an orthogonal spectrum E
equipped with a multiplication u: A E — F and a unit n: S — E such that

EANEANE-LMSEANE
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and

SAE LS EAES EAS
f‘
E

commute. It is commutative if the diagram

R
R

ENE——— SEMNE

RN

DEFINITION 9.7.11. An orthogonal left E-module spectrum is an orthogonal
spectrum M with a pairing A\: EA M — M such that

comimutes.

EANEAM -2 pAM

Mll J)\

EAM —2 oM
and

SAM-" EAM

g
M

commute.

There are similar definitions of right module spectra, bimodule spectra, algebra
spectra and commutative algebra spectra.

ExAMPLE 9.7.12. The sphere spectrum S is a commutative orthogonal ring
spectrum. Any orthogonal spectrum M is an orthogonal (left and right) S-module
spectrum. A (commutative) orthogonal ring spectrum E is a (commutative) S-
algebra spectrum.

REMARK 9.7.13. There are also weaker notions, of ring spectra and module
spectra up to homotopy, for which the (structure maps and) diagrams above are
only required to (exist and) commute in the stable category Ho(Sp®).

LEMMA 9.7.14. For each ring spectrum E (orthogonal, or up to homotopy), the
homotopy groups m.(E) form a graded m.(S)-algebra, which is graded commutative
if E is commutative. For each left E-module spectrum M (orthogonal, or up to
homotopy) the homotopy groups m.(M) form a graded left w.(E)-module.

((ETC: Get spectral sequences
B2, = Torl, ™ (m(L), me(M)) = meis(L A M)

and
E5' = Bxt)! ) (mo(M), mu(N)) =5 75 Fu(M, N)

for orthogonal ring spectra E and appropriate E-module L, M and N. See [ EKMM97,
Thm. IV.4.1].))
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9.8. Monoidal model structure

DEFINITION 9.8.1. Let € be a closed symmetric monoidal category, with monoidal
pairing ®. Leti: A — X and j: B — Y be morphisms in %. Their pushout-product
map

107 A®Y Uugp X®B — X QY
is the canonical morphism from the pushout to the lower right hand corner in the
following commutative square.

A B— s Any

i®1l J(i@l

XoB—-XxoY

DEFINITION 9.8.2. Let ¥ be a closed symmetric monoidal category with a
model structure. The pushout-product axiom requires that:

eIfi: A— X and j: B — Y are cofibrations, then so is their pushout-
product ¢ [J j.
e If, furthermore, (i or) j is a weak equivalence, then so is ¢ J j.
The unit axiom requires that:

e The canonical map ¢®1: U°®Y — U Y is a weak equivalence for each
cofibrant Y, where ¢: U¢ ~ U is a cofibrant replacement of the unit.

REMARK 9.8.3. The unit axiom is automatically satisfied when the unit ob-
ject U is cofibrant, which is the case for the stable model structure on Sp®. However,
there are other useful model structures on orthogonal spectra, such as the positive
stable model structure, for which the unit S is not cofibrant. The positive model
structure lifts to a model structure on commutative orthogonal ring spectra, hence
is useful for the study of the homotopy theory of commutative algebra spectra.
((ETC: André—Quillen cohomology.))

DEFINITION 9.8.4. A monoidal model category € is a a closed symmetric
monoidal category with a model structure satisfying the pushout-product axiom
and the unit axiom.

DEFINITION 9.8.5. Let € be a monoidal model category. The total left derived
pairing
@%: Ho(%€) x Ho(€¢) — Ho(%)
maps (X,Y) to X¢® Y*°, where X¢ ~ X and Y° ~ Y are cofibrant replacements.
The total Tight derived closed structure
Hom®: Ho(%)° x Ho(%¢) — Ho(%)

maps (X,Y) to Hom(X¢, Y /), where X¢ ~ X and Y ~ Y/ are cofibrant and fibrant
replacements, respectively.

THEOREM 9.8.6 ([Hov99, Thm. 4.3.2]). Let € be a monoidal model category.
The total left derived pairing &%, unit object U, symmetry T and total right derived
closed structure Hom™ define a closed symmetric monoidal structure on Ho(€). In
particular, there is an adjunction

Ho(%)(X ®F Y, Z) = Ho(¢)(X,Hom" (Y, Z)) .
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THEOREM 9.8.7. The closed symmetric monoidal category Sp® of orthogonal
spectra, with the stable model structure, is a monoidal model category.

COROLLARY 9.8.8. The stable category Ho(Sp®) of orthogonal spectra is a
closed symmetric monoidal category.

REMARK 9.8.9. It is traditional to write L A M for the total left derived smash

product
LAY M =L°AM°
and to write F'(M, N) for the total right derived function spectrum
FR(M,N) = F(M* N7),

omitting the superscripts L and R from the notation. These are the constructions
that are homotopically meaningful when the objects L, M and N are only given
up to stable equivalence.

DEFINITION 9.8.10. Given spectra M and X, we define
M,(X)=[5",M A X]
o0 My (X) = Myan(S* A X)
as in Definition thereby extending the homology theory M over the functor
$°: 7 — Sp? from based spaces to orthogonal spectra.
DEFINITION 9.8.11. Given spectra M and X, we define
M"™"(X)=[X,S" AM]
o M™(X) — M"(S' A X)
as in Definition thereby extending the cohomology theory M over the functor
©>*: .7 — Sp® from based spaces to orthogonal spectra.

SKETCH PROOF OF THEOREM [9.8.71 We must verify the pushout-product ax-
iom. To verify the first part, it suffices to consider pairs of maps i: F; kSifl — Fp DV
and j: FgS_Tfl — FyDY', in the set F'I generating the relative cell spectra. The
pushout-product map i [J j then has the form

Fk+£(sn71 X D™ Ugn-1ygm-1 D™ X Sm71)+ — Fk+g(Dn X Dm)+ R

which is a Quillen cofibration.
The second part is proved in [MIMSSO01, Prop. 12.6], and relies on Proposi-
tion [1.8.12] below. O

PRrROPOSITION 9.8.12 ([MMSSO01, Prop. 12.3]). For any Quillen cofibrant or-
thogonal spectrum L, the functor

LAN—: Mw+—LANM
preserves stable equivalences.

This is first proved for L = F;S™, from which the general case follows. Infor-
mally, the proposition says that Quillen cofibrant orthogonal spectra are flat.

ExAMPLE 9.8.13. The functor
Y l=8"A—M—SIAM

from Ho(Sp?) to itself defines an inverse equivalence to ¥ = ST A —: M +— ST A M.
(ETC: Is AA1: Fy(SY) A M — M a stable equivalence if M is not cofibrant?))
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ProrosiTiON 9.8.14. If L is {-connective and M 1is m-connective, with L
(or M) Quillen cofibrant, then L A M is (£ + m)-connective and

c 7p(L) @ T (M) — 7 (L A M)
is an isomorphism.

SKETCH PROOF. There exists a stable equivalence M¢ ~ M, where M°¢ is
built from * by attaching n-cells of the form (CS™~!,8"~!) with n > m, and
LAM®~ LAM. There is also a stable equivalence L¢ ~ L, where L is built from
n-cells with n > ¢, and L A M¢ ~ L AN M¢. Here L¢ A\ M€ is built from n-cells with
n > £ + m, which implies that L° A M€ is (£ + m)-connective.

A more precise account of the m- and (m + 1)-cells of M€, and of the ¢- and
(£ + 1)-cells of L¢, shows that the (m + £)- and (m + ¢ + 1)-cells of M¢ A L¢ give a
presentation of m,¢(M®¢ A L°) as the tensor product m,, (M°) @ ms(L°). O

REMARK 9.8.15. Since the stable model structure on Sp® is both monoidal and
stable, the homotopy category Ho(Sp®) is both closed symmetric monoidal and
triangulated, and several compatibility conditions between the latter structures are
satisfied. Two of these are given in [HPS97, App. A.2] and [May01] Def. 4.1].
Let XX = S' A X.

(1) The composite
2ot =8'A8 -5 st ASt =55t
is multiplication by —1.
(2) For each distinguished triangle
xLyLz s
and object W in Ho(Sp?), the following triangles are distinguished.

WAX XM way X waz M smwax)

XAW Ay aw 2L zaw P sx A w)

Fw, x) "0 paw,y) "9 pow, z) T4

_%1)

PO s rw, x)

F(ﬁl)

SLR(X, W) Fzw) "D poy,wy "9 pox,w

In (2) we use fixed identifications WA XX 2 S(W A X), ZX AW =2 5(X A W),
FW,XX) 2 SF(W,X) and F(XX,W) = X7 F(X, W), coming from the closed
structure.

REMARK 9.8.16. May [MayO01] gives three more compatibility conditions that
are also satisfied, but these are not the full story, as explained by Keller and Nee-
man [KNO02]. We will make use of the following Leibniz rule for the connecting
homomorphism in homotopy. ((ETC: Does it follow from the conditions of May or
Keller-Neeman?))

Let i: A— X and j: B — Y be Quillen cofibrations and let
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be the pushout in the commutative square

ANB-—" L X AB

1/\jJ Jl/\j

ANY ML X AY .

By the pushout-product axiom the canonical map i j: W — X AY is a Quillen
cofibration, and we have isomorphisms

XAY X Y W
w o~ a''B ™ AAB

PROPOSITION 9.8.17. Let x € m,(X/A) and y € 7, (Y/B). Then

AB.

S

Y
AN =
/\B\/

Oz -y)=0z -y+ (—1)"z-dy
i T 1gnsm(W/(ANB)) = T 1ppim(AN (Y/B)) & T-1entm((X/A) A B).
Here 0x € m_14n(A) and 0y € m_14,,(B) are given by the composites
T (XJA) < 1 (X, A) 25 1140 (A)
T (Y/B) ¢ 7 (Y, B) 5 w_1 4 (B)

and O(z - y) is calculated using the following diagram.

R

(X, A) @ 7, (Y, B) — 7 (X/A) @ 1 (Y/B)
Tngpm (X AY, W) = Tnm(X/ANY/B)
|
T—14n+m(W, AN\ B) T—14n+m(W/(AA B))

]

T 14ntm(AA (Y/B)) ® T_14n4m((X/A) A B)

REMARK 9.8.18. When applied to (cofibrant replacements of) maps of the
form F(X',A) —» F(X',X) and F(X",B) — F(X",X), this gives a Leibniz rule
for pairings -: [X/,—]. ® [X", =]« — [X' A X", —]. that generalize the pairing
(=) @ mi(=) = m(—).

PrROOF. There are canonical isomorphisms
T14n(Fi) 2w, (X UCA) 2 m,(X/A),

where F'i denotes the homotopy fiber of i: A — X, so an element z € m,(X/A)
can be represented by the homotopy class of a map f: S"*% — (X/A);, of a
map f: D"tk U €Stk X, U CAy, or of a pair of maps (f: D"tk —
X, fo S7UE o ALY with f|ST1 R = if. for k sufficiently large. The im-
age 0x € m_14n(A) of z under the connecting homomorphism is the homotopy
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class of f.
g—1tn D" DryCsTitn =, pg-ttn
f ; Sn / f )
7
A ! X XUCA— %A
X/A

Likewise, any class y € 7,,(Y/B) can be represented by the homotopy class of
a pair of maps (g: D™t — Y,,§: ™1™+ — B,) with g|S~™!T™H = jg, for £
sufficiently large.

The product -y € Tp4m (X/AANY/B) = Ty (X AY) /W) is then represented
by (—1)™F times the pair of maps

FAg: D" PFAD™ s X AY S (X AY ) pse
FAGU S AG: STIHntk A pmtly pntk A g=14m+t _yy
+

Hence O(z - y) € T_14nim (W) is represented by (—1)™* times f A gU f A g, and
its projection to

T vtnem(W/(AA B)) = it (AN (Y/B) V (X/A) A B)

is (—1)™* times the homotopy class of the composite

a(Dn+k A Dm+£) _ S*l‘i”ﬂr‘rk A DerZ U Dn+k A Sfl+m+l

(+1,(7412"+’“) G-ltntk \ gmtly, gntk ) g—l+m+e

INYIN (ANY/BY BAX/A)ise.-

Here the signs +1 and (—1)"** reflect how the orientation of the boundary of
D"tk A D™F behaves under the projections given by collapsing D™ tF A §—1+m+¢
and S—1THE A D™+ respectively.
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el
>
<1}

SflJrn A Sfl+m

FAgUSAG

AAB
d(D™ A D™) w

FAGY FAG

S A Smy A STIEM S AANY/BV X/AANB

D" A D™ 119 XAY
Sm A S 119 X/ANY/B

It follows that the further projection to 7_11n1m(AA (Y/B)) is (=1)™F times
the homotopy class of

fAg: STHHRASTH s (ANY/B)jges
which equals the product 0z - y. Likewise, the projection to m_11n1m((X/A) A B)
is (—1)™k(=1)"tF = (—=1)"(—1)(m=D¥ times the homotopy class of
fAG: SR AS M (X/ANAB) gy,
which equals the product (—1)"z - dy. O
((ETC: Can we give this proof in Sp?? May assume A, X, B and Y are stably

fibrant (= Q-spectra), but then X/A and Y/B will usually not have this property.))
((ETC: Schwede—Shipley monoid axiom from [SS00].))

9.9. Multiplicative (co-)homology theories

To exhibit the Eilenberg—MacLane spectra HG as orthogonal spectra, we use
a functorial construction of Eilenberg—-MacLane spaces due to McCord, who works
in the category  of based, compactly generated, weak Hausdorff spaces.

DEFINITION 9.9.1 ([McC69, §5, §6]). Let G be a commutative topological
monoid and X a based space. Let
B(G, X) = [[(G x X1/~
Jj=0

be the space of formal sums
J

U= Z(giv xl)
i=1
with g; € G and z; € X, subject to the relations

(¢ )+ (g",2") = (", ") + (¢',2")
(¢ 2) +(¢"2) = (9 +¢",2)
(9,20) =0,
where g € X is the base point.
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We think of u as a finite set of points in X, labeled with elements in G, ignoring
any label at the base point. We give the image B;(G, X) C B(G, X) of (Gx X)’ the
quotient topology, and give B(G, X) = Uj>0 B;(G, X) the (weak) colimit topology.
In particular, there is a closed inclusion

G+ ANX :Bl(G,X) —)B(G,X)

The construction is clearly natural in the commutative topological monoid G and
the based space X. There is a natural map

p: B(G,X)ANY — B(G, X \Y)

mapping (>,(g:,x:)) Ay to >,(g:, i Ay), so homotopic maps X — X’ induce
homotopic maps B(G, X) — B(G, X’). There is also a natural pairing

v B(G,X)AB(H,Y) — B(G® H, X \Y)

sending 3. (9i, i) A D2, (hy,y;) to 32, (i ® hy)xi A yj.
((ETC: Discuss CW structure on B(G, X) for G discrete, X triangulated.))

THEOREM 9.9.2 ([McC69, Thm. 8.8]). If G is a discrete abelian group, and
(X, A) is a based triangulable pair, then

B(G,X) — B(G,X/A)
is a numerable principal B(G, A)-bundle. In particular, it is a Hurewicz fibration
with fiber B(G, A).
COROLLARY 9.9.3. Let G be a discrete abelian group. Then B(G,D™) is con-
tractible and B(G, S™) is a K(G,n)-space, for each n > 0.

PROOF. The homotopy equivalence D™ — * induces a homotopy equivalence
B(G,D"™) ~ B(G, x) = *. The Hurewicz fibration

B(G,S" ') — B(G,D") — B(G,S")

exhibits B(G, S™) as a (connected) delooping of B(G, S™™1). Since B(G,S%) = G
is a K(G,0)-space, it follows by induction that B(G,S™) is a K(G,n)-space. O

DEFINITION 9.9.4. For each (discrete) abelian group G let the Filenberg—MacLane
spectrum HG be the orthogonal spectrum with

(HG)x = B(G,S*)

having the O(k)-action induced by the linear O(k)-action on S* = R¥ U {cc}, and
with structure maps

o: (HG)x A S* = B(G,S*) A ST 25 B(G, S* A SY) = (HG) s
for each k£ > 0.
This is an Q-spectrum with

wn(HG):{G for n =0,

0 otherwise.
Hence there are natural isomorphisms
HG.(X) = H.(X;G)
HG*(X) =~ H*(X;G)
for all based X of the homotopy type of a CW complex.
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((ETC: Is HG Quillen cofibrant?))
DEFINITION 9.9.5. Let u: G’ @ G — G be a pairing of (discrete) abelian

groups. The induced maps
p: (HG): A (HG"); = B(G',S") A B(G”, S%)

5 B(G'®G", 8 AST) S B(G,87) = (HG) iy
are O(i) x O(j)-equivariant and compatible with the right S-module structures,
hence induce a map

p: HG' NHG" — HG
of orthogonal spectra.
EXAMPLE 9.9.6. If u: R® R — R is a ring multiplication, then
pnw: HRNHR — HR

makes H R an orthogonal ring spectrum, which is commutative if R is commutative.
If \: R® N — N is a left R-module action, then

AMHRANHN — HN

makes HN an orthogonal left H R-module spectrum. In particular, HZ is a com-
mutative orthogonal ring spectrum, and HG is an orthogonal (left and right) HZ-
module spectrum, for each abelian group G.

((ETC: Examples of Thom (ring) spectra.))

DEFINITION 9.9.7. Let u: L A M — N be a map of orthogonal spectra. For
based spaces or spectra X and Y the homology smash product pairing

L. (X)® M.(Y) 25 NJ(X AY)

is given by the composition

[SCLAX])@[S™ MAY] == [SEAS™ LAXAMAY]

IATAL HALAL
= "=

SHM LAMAXAY SHM NAXAY]

while the cohomology smash product pairing
L*(X)® M*(Y) 2 N*(X AY)

is given by the composition

[(X,SCALQ[Y,S™"AM] —= [XAY,S*ANLAS™ A M)|

1/\7/\1 ATAL | 1A1AR

XAY,SEANS™ALAM]) =5 [X AY,S7™ AN].

If X =Y are spaces, the cup product pairing is the composition
U: L (X) ® M*(X) 25 N*(X x X) 25 N*(X).

((ETC: Discuss pairings of (co-)homology theories, including interaction with
connecting homomorphisms. The Leibniz rule. Pairings of Atiyah—Hirzebruch spec-
tral sequences?))

We now follow [Ada69, Lec. 3] to discuss Steenrod operations and cooperations
for (generalized) E-cohomology and E-homology, but will apply this in the classical
case B = HF,,.
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PROPOSITION 9.9.8. Let E be a spectrum. The composition pairing

¢: E*(E) @ E*(E) — E*(E)
makes E*(E) a graded ring. For each spectrum Y the composition pairing

A EX(E)® E*X(Y) — E*(Y)
makes E*(Y) a graded left E*(E)-module. When E = H = HF),, this algebra equals
the mod p Steenrod algebra

A~ H*(H),

and the action

N H*(H)®@ H*(Y) — H*(Y)
agrees with the natural left A-action

XA H(Y;F,) — H*(Y;F,).

PROPOSITION 9.9.9. Let E be a ring spectrum (orthogonal, or up to homotopy).

The map
IApAL

XANENEANY — XANEAY
induces a pairing
m: T (X AE)Qr () T«(EANY) — m (X AEAY)

for all spectra X and Y. If X and E are such that m.(X A E) is flat as a right
7 (E)-module then m is an isomorphism for all' Y.

ProOF. The composite

T (XAE)@m(EANY) -5 1 (XAEAEAY) M3 2 (X AEAY)
equalizes the two homomorphisms from 7, (X A E) @ m.(E) @ m.(E AY) by (homo-
topy) associativity. If 7, (X A E) is flat over 7. (E), then m.(X AE) @, (g)T«(EAY)
and 7. (X AEAY) both define homology theories for CW complexes Y, or cell spec-
tra Y. Since m is an isomorphism for Y = S, it follows by induction that it is an
isomorphism for all cell spectra Y, hence for all Y when the smash products are
interpreted in the total left derived sense. (Il

DEFINITION 9.9.10. Suppose that E is a commutative ring spectrum (orthog-
onal, or up to homotopy), and that E.F = m.(E A E) is flat as a right (or left)
module over E, = m.(E). Let

L =MA1)s: BEx=m(SAE) — . (ENE)=E.E

nr=0An): Ex=mn(EANS) — m(EANE)=E.FE

¢ =A: E,E® E,E=n.(EANE) &, E/\E)—>7r*(E/\E):E*E
) (

(
e=pw: E,E=m.(EANE) — m.(F) =
X = Te: EE—m(E/\E)—HT*(E/\E) E.E

*

denote the left unit, right unit, product, counit and conjugation. Furthermore, let

b=(1AgAL),: B.E=n1(EASAE) — 1. (EAEANE)~ E,E®p, E.E

define the coproduct.
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PROPOSITION 9.9.11. The pair (E.E, E.), with the structure maps above, form
a graded Hopf algebroid. If n;, = ngr then E.E is a graded commutative Hopf algebra
over E,. When E = H = HF,, this Hopf algebra over E,. = F, equals the dual
Steenrod algebra

A, 2 H,(H).

REMARK 9.9.12. The terminology “Hopf algebroid” is due to Haynes Miller,
and means that E, and E.F are graded commutative rings that corepresent the
object set and morphism set of a functor from graded commutative rings to small
groupoids, i.e., to small categories in which each morphism is invertible. The homo-
morphisms 7y, and ng corepresent the target (= codomain) and source (= domain),
€ corepresents the identity morphism, ¢ corepresents composition, and y expresses
the existence of inverses.

DEFINITION 9.9.13. For each space or spectrum Y, let

v=1ANAL): B(Y) =1 (EASAY) — m(EAEAY) 2 E,E®p. E.(Y)
define the E, E-coaction on E,(Y).

LEMMA 9.9.14. The coaction v makes E.(Y) a left E,E-comodule. When E =
H = HF,, the coaction
v:H(Y) — H.H®y, H(Y)
agrees with the natural left A, -coaction
v: H(Y;F,) — A. @ H.(Y;F,).
Note that this construction does not presume that H,(Y;F),) is of finite type,
unlike the discussion in Section [.8

((ETC: Maybe discuss universal coefficient theorems and Kiinneth theorems
for spectral (co-)homology theories?))






CHAPTER 10

Homological Algebra (TO BE WRITTEN)

10.1. Tor and Ext

((ETC: Interpretation of Ext' as extensions. Yoneda composition?))

10.2. Ext over Hopf algebras

((ETC: Structure theorems for Hopf algebras.))

A connected algebra is automatically augmented by the inverse € = 7! of the
unit in degree 0. Dually, a connected coalgebra is automatically coaugmented by
the inverse n = e~ ! of the counit in degree 0.

THEOREM 10.2.1 ([MM65, Thm. 4.4]). Let R be a commutative ring, let A
be a connected R-bialgebra, let B be a connected left A-module coalgebra, and give
C = R®4 B the induced R-coalgebra structure. Suppose that the composite

A2 AR A0 BB
is split injective, and that the composite
7T:B'£’A®AB@>R®AB=C

is split surjective, both as homomorphisms of R-modules. Then there exists a ho-
momorphism
h:B— A®C

that is simultaneously an isomorphism of left A-modules and right C-comodules.

COROLLARY 10.2.2 ([MMG65, Thm. 4.4]). Let R be a field, let A C B be a pair
of connected R-bialgebras, and set C = R® 4 B. Then there exists an isomorphism

h: B> A®C
of left A-modules and right C'-comodules. In particular, B is free as a left A-module.

((ETC: Dual statement with C = ROy4 B.))
((ETC: Adams: Sub (Hopf) algebras of the dual Steenrod algebra.))
((ETC: Adams-Margolis: Sub (Hopf) algebras of the Steenrod algebra.))

10.3. Double complexes
10.4. The Cartan—Eilenberg spectral sequence






CHAPTER 11

The Adams Spectral Sequence

((ETC: Double centralizer theorem/problem))
The classical mod p Adams spectral sequence

Byt = Exty (H"(Y), H" (X)) = [X. V)]

aims to study the abelian group [X,Y] = Ho(Sp®)(X,Y) of stable morphisms
f: X =Y, by means of the A-modules H*(X) and H*(Y") and the derived functors
of Hom 4, where A denotes the mod p Steenrod algebra and H = HF,. It was
introduced by Adams in |[Ada58, §3]. The generalization to the study of [X,Y]
by means of the E* E-modules E*(X) and E*(Y), for a (homotopy commutative)
ring spectrum FE, is known as the Adams—Novikov spectral sequence (principally
for E = MU |[Nov67| and E = BP), or as the E-based Adams spectral sequence.
There is also a homological formulation

E;’t = Ext;’i (H*(X)7 H*(Y)) :>5 [X7 }/P/\]t78

of the Adams spectral sequence, in terms of the dual mod p Steenrod algebra A,
and the A,-comodules H,(X) and H,(Y), which is a little more generally applicable
than the cohomological version.

11.1. The d-invariant

The degree deg(f) of a map f: M™ — N™ of closed, connected, oriented n-
manifolds with fundamental classes [M] and [N] is the integer satisfying f.([M]) =
deg(f)[N] in H,(N;Z) =2 Z. The d-invariant is defined to detect similar informa-
tion.

DEFINITION 11.1.1. For spectra X and Y, let the (mod p cohomology) d-
invariant be the homomorphism
d: [X,Y), — Homy (H*(Y), H*(X))
[fl— 1"
where [X,Y],, = [S" A X, Y] denotes the degree n morphisms X — Y in the stable
category, and Hom"y (M, N) = Homu4(M,¥X"N) denotes the A-module homomor-
phisms M — N of cohomological degree —n, for (graded) A-modules M and N.
Hence d maps the homotopy class of f: S AX — Y to the induced homomorphism
F5HA(Y) — H*(S" A X) = S H*(X).
Let the (mod p homology) d-invariant be the homomorphism
d: [X,Y], — Hom}y (H.(X),H.(Y))

where Hom’j (M,N) = Homyu, (X"M,N) denotes the A,-comodule homomor-
phisms M — N of homological degree n, for (graded) A.-comodules M and N.
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Hence d maps the homotopy class of f: S A X — Y to the induced homomor-
phism f,: ¥"H,(X) 2 H.(S" AN X) — H.(Y).

((ETC: Resolve notational inconsistency between graded and ungraded Hom 4 (M, N),
Homy (M, N); and Hom"y (M, N).))

EXAMPLE 11.1.2. When X = S, the cohomology d-invariant specializes to the
homomorphism
d: m(Y) — Homy (H*(Y),F,),
while the homology d-invariant specializes to
d: m(Y) — Hom} (F,, H.(Y)).

LEMMA 11.1.3. The cohomology d-invariant is obtained by dualization from the
homology d-invariant, in the sense that it equals the composition

(X, Y], -5 Hom', (H.(X), H.(Y)) -2 Hom’, (H*(Y), H*(X)).

By Lemma the dualization homomorphism D is an isomorphism when-
ever H,(X) and H,(Y) are both bounded below and of finite type over F,. ((ETC:
Ounly H.(Y) needs to be bounded below and of finite type. Refine the lemma to
reflect this.))

The d-invariant is particularly sensitive for maps to spectra of the form W =
H AT, where T is an arbitrary spectrum. These are the H-injective spectra
of [Mil81}, §1], and can be expressed as sums or products of suspensions of Eilenberg—
MacLane spectra. ((ETC: Reference for the notion “injective class”. Maybe the
Eilenberg-Moore memoir?))

LEMMA 11.1.4. Let W, = H,(T). There are isomorphisms
HAT < \/s"H(W,) = [[="HW,)
in the stable category, each inducing the identity map of W, on m, for n € Z.
PRrROOF. Choose a basis for W,, = H,,(T) as an F,-vector space, and represent

its elements by morphisms f,: S™ — H AT. Use the product u: H A H — H to
extend these to morphisms

fa=@WADAANfo) X" H2HANS" > HAT,
and form their sum

gn: S"TH(W,) = \/S"H — HAT.
@

The sum
g: \/S"H(W,) — HAT

over n € 7 then induces the isomorphism g, : W, = H, (T) in homotopy, hence is
a stable equivalence. The canonical map
\/ EPHW,) — [[="H(W,)

induces the identity of W, on graded homotopy groups, hence is also a stable
equivalence. ([l
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ProprosITION 11.1.5. In the case W = H AT, the homological d-invariant

o~

d: [X, W], = Hom®,_(H.(X), H.(W))

is an isomorphism. If, furthermore, W is bounded below with mod p homology of
finite type, then the cohomological d-invariant

d: [X, W], — Hom’ (H*(W), H*(X))
is an isomorphism.
PROOF. By the Kiinneth theorem, the homology smash product
At H.(H)® H,(T) = H,(HAT)

is an isomorphism. Here H,(H) = A,, and the source has the diagonal A.-coaction.
By the untwisting isomorphism

A, ® H(T) = A, @ UH,(T)

of Proposition [7.7.31] this is isomorphic to the extended A.-comodule on the un-
derlying graded FF,-vector space of H,.(T'). By adjunction, there is an isomorphism

Hom’y (H.(X),A, ® UH,(T)) = Hom™(UH.(X),UH,(T)) .
Omitting the forgetful functor U from the notation, the composite homomorphism
[X,H AT, LN Hom’y (H.(X),H.(H AT)) = Hom"(H.(X),H.(T))

defines a morphism of cohomology theories for (spaces or) spectra X, since H,(T') is

automatically injective as a graded Fj,-vector space. Moreover, this morphism is an

isomorphism for X = S. Hence it, and d, is an isomorphism for every spectrum X.
When W is bounded below, the Kiinneth theorem gives an isomorphism

A: H*(H) ® H*(T) —s H*(H AT).

Here H*(H) = A, and the left hand side has the diagonal A-action. By the un-
twisting isomorphism

A H*(T)= A® UH*(T)

of Proposition [7.7.30 this agrees with the extended A-module on UH*(T). By
adjunction, there is an isomorphism

Hom} (A®@ UH*(T), H* (X)) 2 Hom* (UH*(T),UH* (X)) .
The composite homomorphism
[X,H AT, BN Hom} (H*(H AT), H*(X)) 2 Hom™(H*(T), H*(X))

defines a morphism of cohomology theories, since H*(T') is automatically projective
as a graded Fj-vector space. Moreover, it is an isomorphism for X = S precisely
when H,(T) is of finite type, which for W bounded below is equivalent to H, (W) =
A, ® H.(T) being of finite type. a
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11.2. Towers of spectra

DEFINITION 11.2.1. By a tower Y, of (orthogonal) spectra we mean a diagram
of the form

=Y BY, — ... — Y5
in Sp@. We write
YS,T = C(ar: Ye-{—r — Ye) = )/s U C)/s-&-r

for the mapping cone of a": Y, — Yi, so that we have a homotopy cofiber
sequence

(11.1) Yoir 25 Y, — Vi, — NYayr

for each s > 0 and r > 0. In particular, when » = 1 we have a homotopy cofiber
sequence

Yorr -5 Y, 5 V1 5 Y,

for each s > 0. We often display the tower, and the homotopy cofiber sequences
for r = 1, as follows.

Yo —— Y, Y, ——Y; - “— Y
S S
AN AN
;\ lﬁ N Jﬁ NN Jﬂ
N N AN
Ys,l Y1,1 Yo,l

Here the dashed arrows refer to maps to the suspension of the indicated target, i.e.,
of degree —1. We may also refer to this as a resolution in (orthogonal) spectra of
Yy, and redraw part of the diagram as follows.

(11.2) ... DY < DY < Y, L I Yoo < Y

By a (strict) map of towers ¢, : Y, — Z, we mean a sequence of maps ¢5: Yy —
Z such that each square

Yoy —— Y,
¢s+1l l%
Zgi1 — Z,

commutes in Sp@. There are then well-defined maps ¢, ,: Y, , — Z, for all s > 0
and r > 0, making the diagrams

r

}/s+r = Yts )/s,r E}/s+'r'
¢5+Tl ¢5J qSS,TJ Z¢5+TJ
Zs+r o Zs Zs,r EZS—‘,—’I"

commute.
The category Tow(Sp®) of towers of spectra is thus the category of functors
N°P — Sp®, where there is a unique morphism i — j in N°P precisely when i > j.
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REMARK 11.2.2. It might be more consistent to write Y'* in place of Y; for the
terms in a tower, since s behaves as a cohomological index and the tower induces
decreasing filtrations, but the use of a subscript is traditional, and when discussing
multiplicative structure we will want to use superscripts for (smash) powers of
spectra.

One could also consider biinfinite towers of spectra, which are functors Z°° —
SpP, but this will not be relevant for the Adams spectral sequence, and there are
some technical complications regarding model structures that we avoid by concen-
trating on non-negatively graded towers.

The homotopy spectral sequence associated to a tower of spectra will only
depend its image in the stable category, including the distinguished triangles (11.1),
which we shall refer to as resolutions.

DEFINITION 11.2.3. By a resolution (Yy,Y, 1) in the stable category, we mean
a diagram of the form

Y1 —— Y Yo ——Y ——Y,
. K x
N AN
;\ JB N Jﬂ N JB
AN AN N
Yo Yia Yo

)

in Ho(Sp®), where each triangle

Yo 5V, S v, Lyyv,

is distinguished. By a (weak) map of resolutions ¢.: (Y, Yi1) = (Zs, Zx1) we
mean sequences of morphisms ¢,: Y; = Z; and ¢51: Y51 — Z5 1 in Ho(Sp@), such
that the diagrams

B v
Ys+1 2 Y; Ys,l EY:s+1
¢s+1l ¢sl ¢s,1J( E¢S+1J
B v
Z5+1 = Zs Zs,l EZerl
commute in the stable category.
Here is a different view of a map of resolutions.
e — Y —2 Y, — .. — Y, e Y; = Yo
N N K
N N AN
RN ‘4 RN A AN %
Dst1 Y;’l bs b2 Yl,l b1 Y(),l b0
$s,1 1,1 $0,1
...‘)ZS+1 L}ZSH...*)ZQ e Al 2 Zy
X N K
N N AN
RN % TN % REERN A
Zs1 AR Zo,1

REMARK 11.2.4. Each morphism a: Y,y; — Y, in Ho(Sp®) can be embedded
in a distinguished triangle, as above, but Ys; is then only determined up to non-
canonical isomorphism in the stable category. Hence, in order to associate an exact
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couple to the tower Y, we need to extend it to a resolution (Y;,Y, 1) by fixing
choices of these distinguished triangles.

((ETC: Why does each resolution in Ho(Sp®) come (up to isomorphism) from
a tower in Sp©7?))

DEFINITION 11.2.5. The homotopy exact couple (A, E) associated to a spec-
trum X and a tower Y, of orthogonal spectra, or to X and a resolution (Y;,Y} 1)
in the stable category, is the diagram

e [X7YS+2]* é [X5Y9+1]* é [X7}/5}* % [Xy}/s—l]* — ...

N N A

[X, Yor11]s (X, Y1)« (X, Y1)« ;
where
o (X, Yagtln =5 (X, Yale =5 (X, Yaln =5 [X, Yepalnot — -
is a long exact sequence for each s > 0. The bigraded abelian groups A and E are
given by
A% = [X, Y ]i—s = [S"° A X, Y]
B =X, Y1)ims =[S A X, Y]

The homotopy spectral sequence (E,,d,),>1 associated to X and Y, or (Y, Y 1),
is the spectral sequence associated to the homotopy exact couple, with

By =X, Youlis =[S A X, Y, 1]
and
dyt =By BYt — By
for all s > 0 and t € Z. The d,-differentials
Aot Bst —y gttt
then have (s,t)-bidegree (r,r — 1), for each r > 1.
REMARK 11.2.6. In view of the isomorphisms
A5t = [BEX, $°Y,]
EY 2 [SPX, %Y, ]

the lower part of the homotopy exact couple is obtained by applying [X,—]: =
[2fX, -] to the diagram (11.2). We treat the total degree ¢t — s as a homological
grading, so that the differentials have total degree —1, which means that the internal
degree t is homological and the filtration degree s is cohomological. Since the
filtration degree s interacts most directly with the term number r for the spectral
sequence, we write E? for the filtration s part of the E,-term. It is then traditional
to write E5* for the internal degree ¢ part of this graded group, even if (E#); might
have been more consistent.

DEFINITION 11.2.7. The abutment of the homotopy exact couple of X and Y
is the graded abelian group [X, Yp]. with the descending, exhaustive filtration

- C P X, Yl € FP[X, Y0lu C --- C FUIX, Ygl. = [X, Yo«
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given by
FPIX, Yyl = im([X, Y.). 5 [X, o))
for s > 0.

EXAMPLE 11.2.8. There are injective homomorphisms

FOIX Yol ¢

Es,s-i—n
FsH1X, Yyln e

for all s > 0 and n € Z. If for each n the groups [X, Y], vanish for all sufficiently
large s, then the filtration (F*[X,Yy].)s is degreewise discrete, and the homotopy
spectral sequence

Eﬁ’t s [X7 YO]t—s

converges (strongly), by Proposition [2.5.11] so that each ¢ is an isomorphism.
EXAMPLE 11.2.9. When X = S, the homotopy exact couple of (Y;,Y, 1) is the
diagram

e

oo T (Yoyo) ——= 1 (Vi) T (YVy) —— m (Ye1) —— ...

SSPSIEST

T (Yst1,1) e (Ys,1) me(Yso1,1) )

where
o T (Yer1) =5 ma(Ya) -5 1 (Yar) -5 ey (Yaga) — -

is a long exact sequence for each s > 0. The bigraded abelian groups A and E = F;
are given by

and d' = py: By — EFTY! equals the composite
B
7ths(yvs,l) L> 7"'tfsfl(Y'erl) — 7Tt,3,1(YYS+1’1) .

DEFINITION 11.2.10. The abutment of the homotopy exact couple of Y is the
graded abelian group 7. (Y)) with the descending, exhaustive filtration given by

Frr.(Yo) = im(m (Y2) = 7. (Y0))
for s > 0.
ExAMPLE 11.2.11. There are injective homomorphisms

Fora(Yy) ¢

Es,s+n
Fstlm, (Yo) o

for all s > 0 and n € Z. If the connectivity of the spectra Y increases to infinity
with s, then the filtration (F*7m.(Yp))s is degreewise discrete and the homotopy
spectral sequence

E?t -5 7Tt—s(YE))

converges (strongly), so that each ¢ is an isomorphism.
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REMARK 11.2.12. The Adams grading convention for a homotopy spectral se-
quence is to use (¢ — s, s)-coordinates, placing each group E$! at the position with
horizontal coordinate t — s and vertical coordinate s. The d,-differentials then have
(t — s, s)-bigrading (—1,r), mapping one column to the left and r rows up.

° . ° °
S+ ° Estrttr=1 ° °
. . dr g .
s ) . Est °
° ° ° °

5/t—s t—s—1 t—s

When the spectral sequence converges to [X, Yp]., the associated graded groups
of the filtration (F*[X,Yp],)s are given by the groups in the E.-term that are
located in the column with ¢ —s = n. There is then a tower of short exact sequences

FSJrl[X?}/O]n S s n
FsH X, Yyl F2[X. Y] o po+letlt
S FS[X?YE)]TL ~ s,8+n
F*[X,Yo]n PR ES;
s—1 FSil[X7 YO}“ ~ ms—1l,s—14n

mapping down and across, ending with an edge homomorphism

[X>Y0]n ~ 0,n
~ O e B = [X, Youln

X, Y, —_—
X0l T g

induced by 8: Yy — Yo1.
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REMARK 11.2.13. We can associate a homological extended Cartan—Eilenberg
system (H,,7,0) to a spectrum X and a tower of spectra Y;, with graded groups

H*(_S -7 _S) = [Xv Y;,r]*
for 7 > 0. Equivalently,
H, (ia .7) = [Xv Y—j,j—i]*
for i < j. Alternatively, we can index this as a cohomological extended Cartan—
Eilenberg system (H*,n,d), with graded groups
H*(s,s+71)=[X,Y, ]«
H*(i,7) = [X, Y5 j—i] -«
A third, homotopical, indexing scheme for the Cartan—FEilenberg system works with
the graded groups
ﬂ-*(sa 5+ T) = [Xa }/577“]* .
In each case we interpret Y, as Yy for —oo < s < 0 and as * for s = co. The (top)
exact couple underlying each of these Cartan—FEilenberg systems is the same as the
homotopy exact couple of the tower of spectra, or of its associated resolution in the

stable category. ((ETC: Return to this when discussing products and pairings of
towers.))

11.3. Adams resolutions

Recall that a spectrum W is H-injective if it has the form H AT for some
spectrum 7', which means that it is stably equivalent to a wedge sum of suspensions
of Eilenberg—-MacLane spectra.

DEFINITION 11.3.1. Let Y be an (orthogonal) spectrum. A mod p Adams
resolution of Y is a resolution

Y9+1 - }/s R }/2 " Yl " YO
S S S
NN Jﬁ BN lﬁ NN Jﬂ
N AN N
Yo Yia Yo

s

in Ho(Sp®), with a stable equivalence Y ~ Yj, such that
(1) Y, is H-injective, and
(2) ay: Hi(Ysq1) = H.(Ys) is zero,
for each s > 0. A mod p Adams tower for Y is a diagram
=Y BY, — ... — Y5

in Sp?, with a stable equivalence Y ~ Yy, such that the associated resolution (with
Ys1 =C(a: Ysy1 — Ys)) is an Adams resolution.

REMARK 11.3.2. In view of the long exact sequences
e Ho(Yagr) 25 HA(Y)) 25 Ho(Yen) 25 Ho oy (Yarr) = -
o HTY(Ye) D B (Yan) 55 HY (V) 25 H* (Yepr) — ..

and the universal coefficient theorem, the condition that «, is zero is equivalent to
each of the following: that S, is injective, v, is surjective, a* is zero, 5* is surjective
or v* is injective.
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DEFINITION 11.3.3. The mod p Adams spectral sequence for [X,Y]. is the
homotopy spectral sequence

B =X, Yenlims =>4 [X,Y]i—s

associated to a mod p Adams resolution (Y5, Y, 1) of Y. In the case X = S we write
E?t(y) = 7Tt—s(Y9,1) s 7Tt—s(}/)

for this spectral sequence.

As stated, this depends on a choice of Adams resolution. We now show that
Adams resolutions exist, that they are quasi-uniquely defined and natural, and that
we can give algebraic descriptions of the F;- and Es-terms of the associated homo-
topy spectral sequences. In particular, the Fs-term will be seen to be independent
of the choice of Adams resolution.

DEFINITION 11.3.4. Let H = HIF),, with unit map h: S — H and ring spectrum
multiplication pu: H A H — H, and let

S H S g-L s
be the Puppe sequence generated by h, with H = Ch = H U;, CS.

Here h induces the stable mod p Hurewicz homomorphism 7, (X) — H,(X),
hence the notation. ((ETC: Alternative notations would be 7 or ¢.))

((ETC: Need S — H to be a Quillen cofibration, or Y to be Quillen cofibrant,
for the smash products defining ¥°Y; and »X°Y; ; to be homotopically meaningful.
One option is to implicitly work with the derived smash products. This may be-
come an issue when forming convolution products of towers, in order to discuss
multiplicative structure.))

DEFINITION 11.3.5. The canonical Adams resolution of Y

V3 ——Y ———YV ———Y

x N S
N ~ ~
N N N
Yo~ lﬁ Yo~ J{B AN lﬁ
~ ~ ~

HAY, HA Y, HAY

is defined inductively by setting Yy = Y and, for s > 0, letting
Yo 5 Yoy -5 BYopr 5 Y,
be equal to
hAL Al gnl

SAY, S HAY, S5 HAY, X5 St AY,.

This implicitly defines a: Y;;1 — Y, in Ho(Sp®), since ¥ is an equivalence of
categories. Equivalently,

Y, =HYAY
YY1 =HAHYAY

for each s > 0, with £, v and —X« induced by h, i and g, respectively.
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Note that the canonical Adams resolution of Y equals the canonical Adams
resolution

R D L P : (A ) 1H4>S

Y/\\ ﬁ\
S S N
H

HAY 2HN? HAS'H -
of S, smashed with Y.
LEMMA 11.3.6. The canonical Adams resolution (Y,,Y, 1) is an Adams reso-

lution of Y = Yy. If Y is bounded below with mod p homology of finite type, then
each Y 1 is also bounded below with mod p homology of finite type.

Proor. Each spectrum Y, ; = H AY, is H-injective by construction. Further-
more, each homomorphism

ﬁ*: H*(Y;) — H*(YSJ)

is induced by the unit inclusion

1IANRAL

HAY,Z2ZHANSANY, — HANHA\Y;,

which is split by the ring spectrum multiplication

HAHANY, " HAY,.

Hence . is (split) injective and o, = 0. (This only uses that p(1 A h) = 1 in the
stable category.)

Note that H and H are bounded below, with H,(H) = A, and H.(H) = J(A.)
both being of finite type. It follows from Proposition that if Y is bounded
below, then so is each Y; ;. If Y furthermore has mod p homology of finite type,
then the Kiinneth formula

H*(}/s,l) = A* ® J(A*)(X)S ® H*(Y)
shows that each Y, ; also has this property. O

The homological image of an Adams resolution begins as follows.

H,(X2Y5) H.(XY1) H.(Y)
\ }3\ IBW\ Iﬂ*
H,(32Ys,) H.(XY1,1) H.(Yo,1)

PROPOSITION 11.3.7. Let X be a spectrum and let (Yy,Y, 1) be an Adams res-
olution of Y. The Adams spectral sequence

Bt =X, Yaaleos = [X, Y]

satisfies:
(1) The d-invariant

d: B = Hom®y (H.(X), H.(S°Ys1))

s an isomorphism.
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(2) The diagram

Byt —2— Hom'y (H.(X), H.(2*Y,,))
ditJ/ Hom(1,8.7+)
BT — Homly (H.(X), Ho(57H1Y,11,0)
commutes.

(3) The A.-comodule complex

e H (S5 0) B2 H(S5Y, ) &2
LB ) B L (Ye) £ HU(Y) <0

is exact, and each H,(X*Ys1) is an extended A.-comodule. Hence this is
an injective A-comodule resolution of H,(Y).

PrOOF. Claim (1) follows from Proposition using the identification
Hom'; *(H,(X), H.(Ys,1)) = Hom®y (H.(X), H.(2°Y; 1)),

since each X°Y; ; is H-injective, i.e., has the form H A T.
Claim (2) follows from the commutative diagram below, since d5" = £, 7.

Byt ——2—— Hom', (H.(X), H.(3°Y,1))
(X, 25V, 4], —2— Hom?, (H.(X), H.(S571Y11))

ﬂ*l lHom(l Bx)

By L Hom!y (H.(X), Ho (251 Yas11))

Claim (3) follows by splicing together the sequences

0 H, (1Y) &5 H (DY, 1) &5 H (3°Y,) « 0

for all s > 0. These are all short exact, because o, = 0. Since each ¥°Y; ; has the
form H AT for some spectrum 7', the Kiinneth formula and untwisting isomorphism
show that

H,(X°Y1) 2 H.(H)@ H (T) =2 A, @ H.(T)
is an extended A,-comodule, for each s > 0. O
THEOREM 11.3.8. The Adams spectral sequence for [X,Y]. has Ea-term
By = Bxty (H.(X), H.(Y),

which only depends on the A,-comodules H.(X) and H.(Y). In the special case
X =S, we write

Ey'(Y) = Ext}j (Fy, H.(Y))
for this Ey-term.
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PROOF. Let If = H,(X%Y51), 8% = Buys: I = IFT and n = B, H (Y) — I2.
Then
s+1 ,0° st st 11 ,6° 40 ,m
T — L —  — I, +— I« H((Y)«<0
is an injective A.-comodule resolution of H,(Y'), so the cohomology groups of the
cochain complex

Hom(1,6°)
%

...+ Hom!, (H.(X),I:™) Hom!, (H.(X),I})

m s—1
1m0 Homl, (HL(X),I57Y) « ...

are by definition the A,-comodule Ext-groups Exti{i (Ho (X),H.(Y)), for all s >0
and t. Since this cochain complex is isomorphic to
,t ds—l,t

d3 _
e BTV pet T gt

M

these cohomology groups are precisely the components E;t of the Adams spectral
sequence Fo-term. (Il

The cohomological image of an Adams resolution begins as follows.

BV, HNRY) HAY)
X Tﬁ\ Tﬁ\ Tﬁ*
H*(%%Ys 1) H*(XY11) H*(Yp,1)

PROPOSITION 11.3.9. Let X and Y be spectra, and suppose that (Y,,Y, 1) is
an Adams resolution of Y with each Y51 bounded below and of finite type mod p.
The Adams spectral sequence

By =X, Yoalems =5 [X, Y]ios
satisfies
(1) The d-invariant

d: B =5 Hom®y (H* (%Y. 1), H (X))

is an isomorphism.
(2) The diagram

ESt 4 Hom'y (H* (%Y, 1), H*(X))

| lew,n
BT —L Hom!y (H* (3541 Y,p11), H* (X))

commutes.
(3) The A-module complex

o B T mr () L
B Hsv) TS B (You) S HY(Y) = 0

is exact, and each H*(X°Y; 1) is an extended A-module. Hence this is a
projective A-module resolution of H*(Y').
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PRrROOF. Claim (1) follows from Proposition [L1.1.5} using the identification
Homy *(H* (Ys 1), H*(X)) 2 Homy (H*(2°Y1), H (X)),
since each ¥°Y; ; is H-injective, i.e., has the form H A T, and is assumed to be

bounded below of finite type mod p.
Claim (2) follows from the commutative diagram below, since d}"* = B.7..

E 4>Q Hom’y (H*(X*Y, 1), H* (X))

’Y*l lHom(—y*,l)

[X, 25 1Y, 4]y — = Hom!y (H*(Z5H1Y, 1), H*(X)

ﬁ*l lHom(B*J)

By —— s Hom!y (H* (25 1Y, 41,1), H* (X))
Claim (3) follows by splicing together the sequences

0 H* (851, ,,) 25 H*(2°Y,,) 25 H*(2°Y,) = 0
for all s > 0. These are all short exact, because a* = 0. Since each ¥°Y; ; has the
form H AT for some spectrum 7', and is bounded below of finite type mod p, the
Kiinneth formula and untwisting isomorphism show that
H*"(X°Y, 1) = H"(H)@H (T) = Ao H*(T)
is an extended A-module, for each s > 0. O

THEOREM 11.3.10. Let X andY be spectra, with Y bounded below and of finite
type mod p. The Adams spectral sequence for [X,Y]. has Eay-term
B3 2 Bt (1 (V), H' (X))
which only depends on the A-modules H*(X) and H*(Y). In the special case X =
S, we write
Ey'(Y) = Ext}j'(H*(Y),F,)
for this Es-term.
PrOOF. Let P} = H*(X°Y; 1), 0s = v*B*: P¥ — P’ , and € = *: P} —
H*(Y). Then

Py, I By % pr O pe N Y) 50
is a projective A-module resolution of H*(Y'), so the cohomology groups of the

cochain complex
Hom@e+1:1) Homt S(Pr H* (X))

Hom(@s,

.+ Hom®y (P}, |, H* (X))
Y Hom!, (P:_,, H* (X)) « ...

are by definition the A-module Ext-groups Ext%'(H*(Y), H*(X)), for all s > 0
and t. Since this cochain complex is isomorphic to

s—1,t
s+1,¢ st 4 s=1t
. B E <1—E .
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these cohomology groups are precisely the components E;t of the Adams spectral
sequence Fo-term. O

Algebraic resolutions can quite generally be realized by Adams resolutions.
LEMMA 11.3.11. Let
1,8 50 7
oI, — I «— H,(Y)«0
be an extended A.-comodule resolution of H.(Y). Then there exists an Adams
resolution (Y, Y1) of Y such that the associated injective A.-comodule resolution
0
e H(SY,) & H,.(Yo.) L H.(Yy) = 0

is isomorphic to the resolution above.

ProoOF. Weset Yy =Y and choose H-injective Y; 1 such that H,(X°Y; 1) = I7,
for each s > 0. More explicitly, if

=A.V=@rA,

with V =@ X" F, welet T'=\/_, 8™ and set £°Y,; ~ HAT. Let 3: Yy — Yy 1
correspond to 1: H,(Y) — I? under the case s = 0 of the isomorphism

d: [Ys,Yy1] — Homyu, (H,(2°Ys), I?),

and let ¥Y; = C8 be its mapping cone, with v: Yy 1 — Y7 and Xa: XY; — XY
the canonical maps. Then v, realizes the surjection 19 — cok(n) = im(5°).
Inductively, for s > 1 let 8: Yy — Y, 1 correspond under d to the inclusion
im(65~1) C I?, and let ¥Y;;1 be its mapping cone, with v: Y;; — XYi;1 and
Ya: YYsy1 — XY, the canonical maps. Then +, realizes the surjection I7 —
cok(6°71) = im(§%), as required. O

LEMMA 11.3.12. Let
o P I PSS HY(Y) = 0

be a free A-module resolution of H*(Y'), with each P* bounded below and of finite
type. Then there exists an Adams resolution (Y,,Y, 1) of Y with each Y1 bounded
below and of finite type mod p, such that the associated projective A-module resolu-
tion

o HY(SYia) 2 H* (You) == H*(Yy) = 0

is isomorphic to the resolution above.

PRrROOF. We set Yy = Y and choose H-injective Y; 1 such that H*(X°Y, ) =
Py, for each s > 0. More explicitly, if

pr=@PreA=][x"A

«

we let T = \/_,S" and set X°Y;1 ~ HAT. Let 3: Yy — Y1 correspond to
e: P — H*(Y) under the case s = 0 of the isomorphism

d: [Ys, Y1) — Homu(PF, H*(S°Y,)),

and let ¥Y; = C8 be its mapping cone, with v: Yy 1 — Y7 and Za: XY; — XY
the canonical maps. Then v* realizes the inclusion im(0;) = ker(e) C F§.
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Inductively, for s > 1 let 8: Yy — Y, correspond under d to the surjection
P¥ — im(0s) factoring 95 through its image, and let XY, be its mapping cone,
with v: Y1 — YY1 and Ya: Y41 — XY, the canonical maps. Then v* realizes
the inclusion im(9s41) = ker(9s) C PZ, as required. O

((ETC: Check that each Adams resolution comes, up to isomorphism, from an
Adams tower.))

LEMMA 11.3.13. The Adams spectral sequence edge homomorphism
[X,Y], — E%" € Ey™ = Hom'y_(H.(X), H.(Y))

is equal to the mod p homological d-invariant. If Y is bounded below and of finite
type mod p, then the edge homomorphism

[X,Y], — E%" ¢ ES™ = Hom'y (H*(Y), H*(X))
is equal to the mod p cohomological d-invariant.

PROOF. The Ej-edge homomorphism [X, Y], — [X,Yy,]. = EY™ is induced
by B:Y — Yp1, and factors through the inclusion EY™* C EY* of the kernel of
B«Y«. The lower row in the commutative diagram

Buy- 8.
(X, 2Y1 ] ¢ [X, Yo )s ¢ [X, Y],

dlﬂ dlﬂ dl
Homa, (H.(X), I}) £ Hom_(H,(X),1%) <~ Hom, (H.(X), H,(Y)) 0

is exact, and therefore the Fs-edge homomorphism corresponds under the middle
isomorphism d to the right hand homomorphism d. (]

DEFINITION 11.3.14. For f € [X,Y], satisfying d(f) = 0, then the mod p
Hopf-Steenrod invariant

e(f) € Bxthy (HL (S X), H,(Y)) = Bxt ™™ (H,(X), H.(Y))
is defined to be the class of the A,-comodule extension
0 H,(S""X) < H,(Cf) ¢ H,(Y) + 0.
If Y is bounded below and of finite type mod p, then this equals the class
e(f) € Exth (H*(Y), H*(S7" X)) = Ext ™" (H*(v), H*(X))
of the A-module extension
0= H* (87 X) L5 g (Cf) 5 H*(Y) = 0.
ProroOSITION 11.3.15. The Adams spectral sequence near-edge homomorphism
FUX,Y], — EL" € By = BExty T (HL(X), Ho(Y))

equals the mod p Hopf-Steenrod invariant, mapping f with d(f) =0 to e(f).
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PROOF. A morphism f € [X,Y], = [E"X,Y] satisfies d(f) = 0 precisely if
Bf = 0, in which case there exist morphisms f;: ¥"X — Y7 and Cf — Yp1
making the following diagram commute.

snx Ly i op 9y yiny

R

Y, —2 Y, Yo —— TV

=B
Y11

s

Passing to homology, we get a commutative diagram

0—— H(Y) —2 H(Cf) —2 H (2" X) — 0

17

00— H (V) — " [0 o 2

1'2

*

of A,-comodules. Here the (well-defined) cohomology class
e(f) € Extly (H.(S'7"X), H.(Y))
of
S(Bf1)s € Homa, (H.(3'7"X), I})
corresponds both to the A,-comodule extension given by H,(Cf), and to the class

in EL" ¢ Ey' detecting f in the Adams spectral sequence. O

We can restrict an Adams resolution Y, to filtrations s > k, and obtain an
Adams resolution of Y.

LEMMA 11.3.16. Let (Yy,Ys 1) an Adams resolution of Yy, and let k > 0. Define
a resolution (Z,,Zx1) so that

Zon1 - 2y 25 2,0 2 972,04
is equal to
a B ot
Yk+s+1 — Yk+s — Yk+s,1 — EYvk+s-i—1

for all s > 0. Then (Z,, Zx 1) is an Adams resolution of Yi,. There is a morphism
of spectral sequences

(Eﬁ’t(Xa Z)a d?”) — (E§+S’k+t(X7 Y)v dT)

from the Adams spectral sequence for X and Zy = Y}, to the Adams spectral sequence
for X and Yy, which is an isomorphism for r = 1 and s > 0. In general, it is
surjective for 0 < s <r — 2 and an isomorphism for s > r — 1.



266 11. THE ADAMS SPECTRAL SEQUENCE

PRrROOF. This follows from the map of resolutions shown below, and the induced
map of exact couples and spectral sequences.

ee—> Yk+2 - Yk+1 “ Yy < — 0
K X
N AN
v % 'Y\ N A N R /
= Yit11 = Y = * ¢
— Yii2 Y1 Yy Yeog — ...
x e X
’\Y ~ % ’y\ A ;\ %
~ N AN
Yiyin Yi1 Yi_11

The r-th cycle groups Z$ = vy~ lima"~! for s > k are equal for the upper and

lower resolutions, while the r-th boundary groups B = Bkera”~! for s > k map
isomorphically for s — (r—1) > k and injectively in general. Hence the induced map
of E,-terms is an isomorphism for s > k+(r—1) and surjective for k < s < k+r—2.
The part s > k of the upper resolutions is an Adams resolution, since the maps «
and the spectra Y ; that appear there are also part of the given Adams resolution
(Y., Y, 1). Reindexing the spectral sequence associated to the s > k part of the
upper row gives the stated conclusions. O

((ETC: Given an Adams tower Y,, the finite tower given by Yy /Yy = Y5 j—s
at levels 0 < s < k is generally not an Adams tower, since the induced maps
a: Ys11/Yr — Yy /Y, may not induce zero in mod p homology.))

11.4. Comparison of resolutions

The following hypotheses (1) and (2) are satisfied for Adams resolutions.

PROPOSITION 11.4.1. Let (Y,,Ys1) and (Zs, Z, 1) be resolutions such that

(1) aw: Ho(Ysq1) = Hi(Ys5) is zero and

(2) Zs, is H-injective
for each s > 0. Let ¢po: Yy — Zy be any morphism in Ho(Sp®). Then there exists
a map of resolutions ¢, that extends ¢g.

Moreover, if 1, is a second map of resolutions extending ¢g = g, then aps =
ats for each s > 1 and ¢psa = Psa for each s > 0.

PROOF. Suppose, by induction, that ¢, ¢o1,...,$s—1,1 and ¢, have been com-
patibly constructed. Consider the diagram below, with horizontal distinguished
triangles.

Yo

N

Y, Yar LYo — BY,

| |
¢5J/ 5,1 | st | E(ﬁsl
v v

Zo— s 2oy 70— 52,

v
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We claim that S¢sa: Ysi1 — Zs 1 is zero in the stable category. This follows from
Proposition m with X =Y,41 and W = Z, 1, since the isomorphism

d: [Yap1, Zsn) — Homa, (Ho(Yay1), Ha(Z41))
maps S¢sa to the homomorphism
ﬂ*(ZSs*Oé*: H*(Y-erl) — H*(Zs,l)

and this is zero because a, = 0. By exactness of the sequence

[SYii1s Zoa] -5 Yo, Zoa] 2 [Vay Zoa] 25 [Vigr, Zoa]

there exists an extension ¢,1: Y1 — Zs 1 of f¢, over 8, and by the fill-in axiom for
triangulated categories (Lemma there exists a morphism XYs11 — Y241
making all three squares commute, in Ho(Sp®). We define ¢,4; so that L,y is
the latter morphism. This then completes the inductive step.

Regarding quasi-uniqueness, we have agp; = ¢ = Y9 = ab1, by assumption.
Suppose that a¢s = arps for some s > 1. Then s — ¢y = ), for some x,: Yy —
Z_lZs_Ll. Hence ¢sa — ¢psa = vyxsa = 0, since o, = 0 and Z_lZs_Ll is H-
injective. It follows that a¢si1 = ¢dsa = s = arbsyq, and this completes the
inductive step.

Y9+1 - Y:s—l
Ps+1 Pst1 Ps—1 Ps—1
Zs+1 2 Zs—l

(]

THEOREM 11.4.2. Let X and Y be spectra. When viewed as an Es-spectral
sequence, the Adams spectral sequence

By = Bxt} (HL(X), Ha(Y)) =, [X, V],

does not depend on the choice of Adams resolution for Y. It is contravariantly
functorial in X and covariantly functorial in Y .

Proor. By Proposition for any morphism ¢g: Yy — Zy and any two
Adams resolutions (Y, Y, 1) and (Z,, Z, 1) there is a map ¢,: Y, — Z, of resolu-
tions that extends ¢g, and this induces a map

o () < HL (Vo) < H.(Yp) 0

¢1,1*J{ ¢0,1*J 450*1
s

0
S H(SZ00) ¢ H(Zo4) —— H,(Z) «+——0

of injective A,-comodule resolutions. When ¢ is the composite of two stable equiv-
alences Yy ~ Y ~ Zj then this chain map is a chain homotopy equivalence, well-
defined up to chain homotopy, which induces a canonical isomorphism of Adams
FEs-terms.
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Contravariant functoriality in X is clear.

For a general morphism ¢: Y — Z we can choose Adams resolutions (Y;,Y, 1)
for Y and (Z,,Z,1) for Z, and extend ¢g: Yo ~Y — Z ~ Zy to ¢, as above.
The map of resolutions ¢, induces a morphism of Adams spectral sequences, which
is independent of the choices of resolutions from the Es-terms and onward. In
particular, the homomorphism

¢t Exty (Ho(X), Ho(Y)) — Ext}y (H.(X), H.(Z))

is given by the covariant functoriality of A,-comodule Ext in the second variable.
O

THEOREM 11.4.3. Let X and Y be spectra, with Y bounded below and of finite
type mod p. When viewed as an Es-spectral sequence, the Adams spectral sequence

Eyt = Exty' (H*(Y), H* (X)) =>4 [X,Y]i_s

does not depend on the choice of Adams resolution for Y. It is contravariantly
functorial in X and covariantly functorial in Y .

Proor. By Proposition for any morphism ¢y: Yy — Zp and any two
Adams resolutions (Y}, Y, 1) and (Z,, Z, 1) there is a map ¢,: Y, — Z, of resolu-
tions that extends ¢g, and this induces a map

= (DY) D B (Yo) —s H*(Y) —— 0

o al o]
02

= (920 0) 2 HY (Zon) —— H*(Zy) —— 0

of projective A-module resolutions. When ¢ is the composite of two stable equiv-
alences Yy ~ Y ~ Zy then this chain map is a chain homotopy equivalence, well-
defined up to chain homotopy, which induces a well-defined isomorphism of Adams
FEs-terms.

Contravariant functoriality in X is clear.

For a general morphism ¢: Y — Z we can choose Adams resolutions (Y;,Y, 1)
for Y and (Z,,Z,1) for Z, and extend ¢g: Yo ~ Y — Z ~ Zy to ¢, as above.
The map of resolutions ¢, induces a morphism of Adams spectral sequences, which
is independent of the choices of resolutions from the Es-terms and onward. In
particular, the homomorphism

bu: BExty(H*(Z), H* (X)) — Ext% (H*(Y), H* (X))
is given by the contravariant functoriality of A-module Ext in the first variable. O

Chain maps of algebraic resolutions can quite generally be realized by maps of
Adams resolutions.

LEMMA 11.4.4. Let (Yi, Y, 1) and (Zs, Z,1) be resolutions such that

)

(1) aw: Ho(Yyq1) = Hi(Y5) is zero and
(2) Zs, is H-injective

for each s > 0. Let ¢o: Yo — Zy be any morphism in Ho(Sp®), let fo = (¢o)« be
the induced homomorphism in homology, and let f.1 = (fs,1)s be a chain map of
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A, -comodule complexes

1 0
e H (S2Ya) ¢ — H.(SY1,) ¢— H,(Yo1) ¢—— H,(Yy) +——0

f2,1l f1,1l fo,ll foJ
1 0

e H(32Z51) <2 H,(S711) +>— H.(Zo1) +—— H,(Zo) +— 0

that extends fo. Then there exists a map ¢, of resolutions, with components
¢s:Ys > Zs and ¢ps1: Y1 — Zsa, such that (¢ps1)« = fs1 for all s > 0.

PROOF. The hypotheses (1) and (2) are satisfied for Adams resolutions. They
ensure that the top A,-comodule complex is exact, while the lower complex consists
of injective A,-comodules. Since Z,; is H-injective there is a unique morphism
¢s1:Ys1 — Zs inducing fs; in homology, for each s > 0. In the diagram with
distinguished rows

a B ol

Yi Yo Yo, ¥Yh
1 ¢0J ¢0,1J pITY
7~z L zy 23z,

the central square commutes, because ¢¢.1 03 and So¢g both induce fo10n =no fy
in homology, and Z,; is H-injective. Hence we can fill in the diagram with a
morphism ¢ : Y7 — Z; making the left and right hand squares commute.

Inductively, suppose that we have defined ¢y, ..., ¢s for some s > 1. In the
diagram with distinguished rows

YY1
nly
-5
ST Yo 2 Yoy — s SV — vy,
271ZS_171 @s Ds,1 Yhst1 S
nly <

Zo—L s 2o ST 57,

the composites ¢ 10851y and X" 1yoX "1 f_; 1 induce fs105° L and §*lofs 14
in homology, which are equal because the (fs1)s form a chain map. Furthermore,
Sy Ho(S7Ys11) — H.(Ys) is surjective, since au: Ho(Ys) = Hio(Ys—1) is
zero. Hence the composites ¢, 0 3 and 38 o ¢, induce the same homomorphism in
homology, and are therefore equal in Ho(Sp?) since Z, ; is H-injective. This proves
that we can choose a fill-in morphism ¢s41 making the two right hand squares
commute.

Continuing for all s, we obtain a map ¢, of resolutions, as required. O

((ETC: The map of resolutions ¢, is at least as unique as in Proposition[11.4.1}))
((ETC: We can choose “good” fill-ins ¢, arising from commuting homotopies.
Does this help in realizing maps of Adams resolutions by maps of Adams towers?))
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((ETC: Also write this out for cohomology and chain maps of A-module com-
plexes.))

We can compare the Adams spectral sequence for X and Y to the one for S
and F(X,Y). These have the same abutment, [X,Y], 2 7. F(X,Y).

LEMMA 11.4.5. (a) If X is finite and a: Y' — Y induces zero in mod p homol-
ogy, then F(1,a): F(X,Y') = F(X,Y) induces zero in mod p homology.
(b) If X is any spectrum and W is H-injective, then F (X, W) is H-injective.

PRroOF. (a) Finite spectra X are Spanier—Whitehead dualizable, with a natural
stable equivalence Y ADX ~ F(X,Y), so F(1,a) induces the same homomorphism
in mod p homology as aA1: Y ADX - Y ADX.

(b) We may assume that W = H A T, which is an H-module spectrum. Then
F(X,W) =F(X,HAT) is also an H-module spectrum, which implies that it is
H-injective. ((ETC: Elaborate?)) O

LEMMA 11.4.6. Let X be any spectrum, let (Y,,Ys1) be an Adams resolution
of Y, and let (F(X,Y),, F(X,Y).1) be an Adams resolution of F(X,Y). Then
(F(X,Ys), F(X,Y, 1)) is a resolution of F(X,Y) such that F(X,Ys.1) is H-injective
for each s, and there exists a morphism of resolutions

O, (F(Xv Y)*v F(Xa Y)*yl) — (F(Xv Y*)v F(Xv Y*,l))
with Oy: F(X,Y ) ~ F(X,Y)) a stable equivalence.
Proo¥F. This follows from Lemma [11.4.5| and Proposition [11.4.1] ((ETC: Dis-

cuss uniqueness?)) O

PRrROPOSITION 11.4.7. For spectra X and Y there is a natural morphism 6 from
the Adams spectral sequence for S and F(X,Y) to the one for X and Y, given at
the Es-terms by a homomorphism

0.: Exta, (Fp, H.(F(X,Y))) — Exta, (H.(X), H.(Y)).
If X is finite, then H. (F(X,Y)) 2 Hom(H.(X), H.(Y)) and
0.: Exta, (Fp, Hom(H.(X), H,(Y))) — Exta, (Ho(X), H (Y))
is an isomorphism.

PROOF. The morphism of spectral sequences is induced by the morphism of
resolutions from Lemma [11.4.6f The exact couple obtained by applying 7. to
(F(X,Y,), F(X,Y,1)) is isomorphic to the exact couple obtained by applying [X, —].
to (Y, Y, 1), which generates the Adams spectral sequence for X and Y.

If X is finite, then (F'(X,Y.), F(X,Y, 1)) is itself an Adams resolution, by
Lemma[IT.4.5] so the morphism of resolutions induces a chain homotopy equivalence
of FEi-terms, and an isomorphism of FEs-terms. Furthermore, the canonical map
YADX — F(X,Y) is a stable equivalence, so that Hom(H.(X), H.(Y)) 2 H.(Y)®
DH.(X)2H,Y)® H,(DX) 2 H.,(Y ADX) 2 H,(F(X,Y)). O

((ETC: For general X, (Hom(H.(X),I?))s might not define an (injective) A.-
comodule resolution, due to the difficulty with the coconjugate A.-coaction dis-
cussed in Remark Do we need to assume that F(X,Y)/p is bounded below
of finite type in order to write the left hand Es-term as Ext4(H*(F(X,Y)),Fp)?))
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DEFINITION 11.4.8. For any Adams resolution (Y;,Y, 1) of Y, let
Yo = h0£imYS
be the sequential homotopy limit of the underlying tower
= Y Yoo 2 Y,

and write a®: Yo, — Yy = Y for the evident map.
This homotopy limit, or microscope, can be defined as the homotopy equalizer
of two maps

1
HSYST>H5Y57

where 1 denotes the identity map and « is the product of the maps a: Ys41 — Y
for s > 0, together with the trivial map Yy — *. There is a natural short exact
lim-Rlim sequence

0 — Rlimmp, 41(Ys) — 7 (holim Yy) — lim m(Ys) = 0
for each n. Hence Y, ~ x if and only if limg 7. (Ys) = 0 and Rlim, 7.(Y;) = 0.
The Bousfield H -nilpotent completion Y}; of Y is defined so that there is a
homotopy cofiber sequence
Yo 5V —5 Y] — SV,
and Yoo ~ * if and only if Y — Y}} is a stable equivalence.

PROPOSITION 11.4.9. The stable homotopy type of Yo = holimgY; does not
depend on the choice of Adams resolution (Y., Y, 1).

PrOOF. Let (Ys,Y, 1) and (Z, Z, 1) be Adams resolutions of Yy ~ Y ~ Zy. By
Proposition we have maps of resolutions ¢, : Yy, — Z, and ¢ : Z, — Y, such
that Yspsa = a: Ys11 — Ys and ¢s9psa = a: Zs11 — Zs in the stable category, for
all s > 0. It follows that

(m(@s))st (M (Ys))s — (m:(Zs))s
and

(T (¥s))st (m4(Zs))s — (ma(¥5))s
are mutually inverse pro-isomorphisms [AMG69], [BK72, §II1.2] of towers, and
hence induce isomorphisms

o~

¢w: limm, (Yy) — lim 7, (Zs)
¢+t Rlimm,(Y,) — Rlimm,(Z,) .

((ETC: The claim for limg is easy. Can we also prove the claim for Rlims without
reference to the pro-category?)) The map

0 —— Rlimg 41 (Ys) —— (Yoo ) —— limg 7, (Yy) —— 0
ml tb*l dul
0 —— Rlimg 1,41 (Zs) —— 10 (Zoo) —— limg m, (Z5) —— 0
of lim-Rlim short exact sequences then implies that

¢*: ’/T*(Yoo) i W*(Zoo)
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is an isomorphism, so that Y, and Z,, are stably equivalent. ([l

((ETC: Can we prove directly from the definition of the microscope that ¥, ¢,
and 1 induce homotopic maps holim, Y — holim, Y;, and vice versa?))

((ETC: We now summarize the results of the convergence theory for spectral
sequences that might have been developed in more detail in Chapter[§]))

DEFINITION 11.4.10 (|[Boa99, Def. 5.1]). For any exact couple (4, E), let
AT = colgim A®
A = 11?1 A®
RA® = Rlsim A°.
We say that (A, E) converges conditionally to the colimit A= if A* = 0 and
RA* =0 are both trivial.

If £° =0 for all s < 0, as is the case for each homotopy exact couple associated
to an (Adams) resolution, then A% = A=l =~ =~ A%

LEMMA 11.4.11. Let (Yi,Yi 1) be an Adams resolution of Y. The homotopy
exact couple of X and Y, with A>* = [X,Ys]. and E** = [X,Y;1]«, converges
conditionally to [X,Y]. if and only if [X,Yoo]« = 0. This holds for every X if (and
only if) Yoo ~ .

Proor. This follows from the short exact sequence
0 — Rlim[X, Y{]n+1 — [X, holim Y;],, — lim[X,Y;],, — 0.

DEFINITION 11.4.12. For any spectral sequence (E,,d,.), let
RE = erim Z,
denote the right derived E,-term, where
- C L1 CZC---CZy=E;.
is the descending chain of r-th order cycles.
REMARK 11.4.13. If E} = 0 for s <0, then E7, | C E; for all r > s, and

Rlim Z° — Rlim E? ,

which partially justifies the notation RFE., (rather than RZ.,). Consider a bide-
gree (s,t). If (E,,d,) stabilizes in that bidegree (so that E$! = E%! for all suffi-
ciently large 7), then RES! = 0. This is always the case of E$? is finite for some r.
Hence if (E,, d,.) stabilizes in each bidegree, then RE., = 0. ((ETC: More generally,
it suffices that (E2?), satisfies the Mittag—Leffler condition in each bidegree.))

DEFINITION 11.4.14. A filtration
- CFTM'GCFGC---C@
of (graded) abelian groups is Hausdorff if
lign F°G=0

and it is complete if
Rlim F°G = 0.
S
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LEMMA 11.4.15. A filtration (F*G)s is Hausdorff and complete if and only if
the canonical map

G ilign FCS;G

is an isomorphism.

DEFINITION 11.4.16. A spectral sequence (FE,,d,.) converges strongly to a fil-
tration (F°G), of a (graded) abelian group G if there are isomorphisms

F5G o
CFTlG'—>EOO

for each s, and the filtration is exhaustive, Hausdorff and complete.

If the spectral sequence arises from an exact couple, we always assume that
the isomorphism ( is the preferred homomorphism from Proposition [2.5.11] Strong
convergence, together with solutions to all of the finite extension problems

FeG G
PG G
is precisely sufficient to reconstruct the (graded) abelian group G by passage to
algebraic colimits and limits.

—0

0= E —

LEMMA 11.4.17. If (F*G)s is complete Hausdorff and exhaustive, then there

are isomorphisms
a a

ﬁ:Gzhgncogm FSG

THEOREM 11.4.18 ([Boa99, Thm. 7.3]). Let (A, E) be an exact couple with
E* =0 for s <0, so that A" = A=, Any two of the following conditions implies
the third.

(1) The exact couple converges conditionally to the colimit A°.

(2) RE, =0.

(3) The spectral sequence converges strongly to A°, with the filtration F*AY =
im(a®: A5 — AY).

colim lim
a S

Hence, for a conditionally convergent Adams spectral sequence, the vanishing
of RE is equivalent to strong convergence.

11.5. The Adams filtration

DEFINITION 11.5.1. The abutment of the Adams spectral sequence for X and
Y with Adams resolution (Y,,Y; 1), is [X,Y]., with the decreasing, exhaustive
filtration given by

FIX,Y], = im(a®: [X,Ys], — [X,Y],).

We call this the Adams filtration of [X,Y].. We say that the elements of F*[X, Y],
have Adams filtration > s, and that the elements of F*[X,Y], \ F**![X, Y], have
Adams filtration exactly s.

LEMMA 11.5.2. The Adams filtration is independent of the choice of Adams
resolution.
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PrROOF. For any other choice of Adams resolution (Z,, Z, 1) we have a map of
resolutions ¢, : Yy — Z, making the diagram
Y
Y
commute, so

im(a®: [X, Vi), = [X,Y],) Cim(a®: [X, Z], — [X,Y],).

Reversing the roles of the two resolutions gives the opposite inclusion. Hence the
two image filtrations agree. ([l

Y, 2
%J
Z, -

s —

The Adams filtration can be characterized in terms of maps that induce zero
in mod p (co-)homology.

PRrROPOSITION 11.5.3. A morphism f € [X,Y],, has Adams filtration > s if and
only if it can be factored as a composite fy o---o fs of s morphisms

1

X = X, L x5

each of which (for 1 < i < s) induces the zero homomorphism fi.: H.(X;) —
H.(X;_1) in mod p homology.

L x I x =y,

PRrROOF. If f = a®g with g: X" X — Y, then f admits the factorization
X=X, %Y, 5. 5 BY,=Y

where (ag). = 0 and o, =0 (in mod p homology) in each case.
Conversely, if f = fio---0fs41 with f;, = 0 for each i, then we may inductively
assume that f; o---o fg: Xy — Y factors as

fro-ofi=atog
for some g: X, — Y.

Xy 2 froofs
T N
Yoy —2oY,— 2y
P
Yai

Then gfs11: Xsy1 — Y followed by 8 induces zero in homology, and has target the
H-injective spectrum Y 1, hence is null-homotopic. By exactness of the sequence

B B
[Xot1, Yora] = [Xor1, Vo] = [Xop, i
it follows that ¢gfsy1 = ag’ for some ¢': X,11 — Y11, which proves that f has
Adams filtration > s + 1. O

By the universal coefficient theorem, each condition f;, = 0 is equivalent to the
condition that f*: H*(X,_1) — H*(X;) is the zero homomorphism.
((ETC: The convergence theory of Chapter [§] gives the following conclusion.))
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DEFINITION 11.5.4. Let (S'/p¥),>1 be the tower of Moore spaces given by the
Puppe sequences

P = r P

1 P 1 i Sl/p3 4 2

p = r p
IR S
p = r P
gt _P g1 i S1/p 4,92

and let (S/p”),>1 be its desuspension, with S/p¥ = F;S!/p°.
The p-completion of a spectrum Y is the sequential homotopy limit
AN : v
Y, = holl)le NS/p
of the tower
.= Y AS/p? ﬂ)Y/\S/pQ K;Y/\S/p.

Let k: Y — Yp/\ denote the completion map, induced by the compatible maps
i: S — S/p’. We use the abbreviation

Y/p' =Y AS/p"
for the homotopy cofiber of p”: Y — Y. There is a distinguished triangle
Y/p -5 v/prtt S v/t 25 sy )p
for each v, where 3, is the v-th order Bockstein map.

((ETC: Each morphism 7: S/p**! — S/p? is uniquely determined as a fill-
in map for p odd, but there is some ambiguity for p = 2. This definition of p-
completion is not obviously multiplicative. Is the more intrinsic construction given
by Bousfield localization needed? Relate Bockstein maps to Bockstein homomor-
phisms.))

DEFINITION 11.5.5. For an abelian group G, let
GZA, = lign G/p’
denote its p-completion. In particular, let Z, = Zz/z\ denote the ring of p-adic
integers. We say that G is p-complete if the canonical homomorphism
k: G — GQ
is an isomorphism. If G is finite, then & is the surjection mapping all torsion of

order prime to p to zero, which maps the p-Sylow subgroup of G isomorphically
to G.
P

LEMMA 11.5.6. IfY has finite type, then there are natural isomorphisms

o

T (Y)) ¢ T (Y)) = lim ., (Y)/p" ¢ m(Y) @ Z
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If, furthermore, w.(Y) is p-complete in each degree, then k:Y — Yp/\ is a stable
equivalence.

((ETC: How can finite type be weakened? Check if the first isomorphism holds
if each 7, (Y") only has p-power torsion of a bounded order.))

((ETC: Also suffices that Y has finite p-local type, i.e., that each 7m,(Y) is a
finitely generated Z,)-module.))

((ETC: Discuss multiplicative properties of p-completion. How good is the map
X)ANY) = (X AY))T))

PROOF. Let ,»G = ker(p”: G — G). The tower of universal coefficient short
exact sequences
0—m(Y)/p’ — m(Y/p?) — pomp_1(Y) — 0
induces an exact sequence
0—m(Y), — 1i1r)n T (Y/p’) — hII)Ilpvﬂ'n_l(Y) ,
where the right hand limit is trivial because 7,_1(Y) is finitely generated. Hence

the left hand arrow is an isomorphism.
In the Milnor short exact sequence

0 — Rlimm,11(Y/p") — 7, (Y,)") — limm,, (Y/p¥) — 0
v v
each group m,41(Y/p") is finite, because 7, (Y") and m,11(Y") are finitely generated,

so the Rlim term vanishes and the right hand arrow is an isomorphism.
For any finitely generated abelian group G the canonical map

G®Z, —1mG®Z/p’ =limG/p®
is an isomorphism, since this holds for each cyclic group G. Note that the left hand

side commutes with sums, the right hand side commutes with products, and finite
sums and finite products agree. (]

PROPOSITION 11.5.7. There are stable equivalences
k:Y/p— (Y/p)y
K/ Y/p = (V1)/p
and an isomorphism
Fut Ho(Y) =5 Ho(Y))
in mod p homology (and cohomology).
PROOF. There is a homotopy (co-)fiber sequence
F(S[1/p],Y) — Y 5 Y
where S[1/p] is the homotopy colimit (= telescope) of the sequence
S5t s s,

((ETC: Do we need Spanier—Whitehead duality to prove this?)) Since p: S[1/p] —
S[1/p] is a stable equivalence, it follows that F(S[1/p],Y/p) ~ F(S[1/p],Y)/p ~
*, so that k: Y/p — (Y/p), and s/p: Y/p — (Y,})/p are stable equivalences.
Applying integral homology to the second of these, and noting that HZA S/p ~ H,
we deduce that .: H.(Y) — H.(Y,") is an isomorphism. O
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DEFINITION 11.5.8. Let
s Hz S HZ - 5!
be the Puppe sequence generated by the unit map h: S — HZ of the integral

Eilenberg—MacLane ring spectrum. Note that h is 1-connected (= 2-connective),
hence so is HZ. For each spectrum Y let

Yy —— Yy —— Y Y
K x K
N
N L@ N Jﬁ NN JB
N N N
Y3, Y, Yo
be the canonical HZ-Adams resolution of Y, with Yj =Y and

v 5yl Ly, TS SaY]

equal to
SAY! " HE AV DN HZAY! S ST AY!
so that
Y = HZ Y AY
Y, = HZAHZ AY
for all s > 0.

Note that (Y},Y] ;) is generally not a mod p Adams resolution, since the spectra
Y{ | are not of the form H AT.

PROPOSITION 11.5.9. LetY be any spectrum. The canonical HZ-Adams resolu-
tion ((Y/p)%, (Y/p)s1) of Y/p is a mod p Adams resolution. If Y/p is £-connective,
then (Y/p) is (s + £)-connective for each s > 0, so the homotopy exact couple

- ——rm((Y/p)y) —— m((Y/p)}) —— m(Y/p)

< L
EON R N
(YY) ()

is degreewise discrete, the Adams E1-term is concentrated in the regiont—s > s+,
and

Ey" = Ext%" (Fy, Ho(Y/p)) =5 m—s(Y/p)

is strongly convergent.
Proor. Each spectrum
S5 (Y/p).y = HLANHZ NY/[p

has the form HAT with T = HZ " AY, in view of the stable equivalence HZAS/p ~
H. Furthermore, each homomorphism

Bt Hu((Y/p)s) — Ho((Y/P)51)
is induced by the unit inclusion

HA(Y/p)=2HANSN(Y/p),

7 1/\h/\1

HAHZA (Y/p),,
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which is split by the right module action
HAHZA(Y/p), 225 H A (Y/p),

S

of HZ upon H. ((ETC: Other arguments are also possible.))
Suppose that Y/p is f-connective. Since HZ is 2-connective, the smash products

S(Y/p), = (HZ)" AY/p
S (Y/p)sy = HZ A (HZ)™ NY[p
are (2s + ()-connective, by Proposition [9.8.14 Hence A%' = m_,((Y/p),) and
E>t = ((Y/p),.1) are trivial for t — s < s 4 £, which implies that the terms of
the Adams spectral sequence are concentrated on and below the line t —s = s+/ in
the (t — s, s)-plane. Moreover, by Proposition [2.5.11| the Adams spectral sequence

converges (strongly) to a degreewise discrete filtration of 7, (Y/p). In particular,
there are canonical isomorphisms

~ Fs’]'('tfs(Y/p)

Es7t o~
0 Fs+177t—s(Y/p)

for all s > 0 and ¢, where
0=F"""*m,(Y/p) C F" 7, (Y/p) C - C F'mo(Y/p) C ma(Y/p)

for all n > 4. O
0 0 0 0 ) .
n—¢ | 0 0 0 . . .
0 0 . . . .
0 0 . . . . °
s/t—s 1 n

COROLLARY 11.5.10. IfY/p is bounded below, then (Y/p)oo ~ *

PROOF. We can calculate (Y/p)o using the canonical HZ-Adams resolution
of Y/p. If Y/pis £-connective, then 7, ((Y/p).) = 0 for n < s+¢, so lims 7, ((Y/p),) =
0 and Rlim, m,+1((Y/p),) = 0, which together imply that m,((Y/p)s) = 0 for

THEOREM 11.5.11. If Y/p is bounded below, then the Adams spectral sequence

Ey' = BExty (Ho(X), H (Y}))) =4 [X, Y} ]i—s

for X and Y;)A is conditionally convergent (to the achieved colimit).
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~N ~N
r Yia/ptt r Yo,1/p "t r

Yi1/p’ Yo,1/p"
FIGURE 11.1. Tower of Adams resolutions

PrOOF. The smash product of a fixed Adams resolution of S with the tower
Y == Y/p'™t LYt —

gives a tower of Adams resolutions, as in Figure The homotopy limit over v
of the lower part of the diagram gives a resolution ((Y4);, (Yx,1);,), which we claim
is also an Adams resolution.

Each H-injective Y; 1 has the form H AT ~ (HZ A T)/p, which implies that
k:Ys1 — (Y1), is a stable equivalence by Proposition Hence (Y1), is
H-injective. By the same proposition, the completion homomorphisms k, in the

commutative square

oS

)

Ho(Yar:) —2 H(

|

Ho((Yo1)p) —— H.((Ye)p)

IR
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are isomorphisms, so the vanishing of the upper a, implies the vanishing of the
lower a,.. This confirms the claim.
We shall prove that
ho&im(Ys);\ ~ *,

so that the homotopy exact couple for X and Yp’\ (hence also the associated Adams
spectral sequence) is conditionally convergent.
First, since (Y, /p,Ys,1/p) is an Adams resolution of Y/p, and Y/p is bounded
below, we know that
ho}ging/p ~ (Y/D)oo ~ *

by Proposition [I1.4.9] and Corollary [I1.5.10] Second, we have homotopy cofiber
sequences

holim Y, /p —% holim Y, /p®+! " holim Y, /p* 2% holim XY, /p

for all v > 1, so
ho%imYS/ pY o~ ok
in each case, by induction on v. This implies that
hoym(Ys)ﬁ = hoym ho%imYS /p’ ~ ho%im hoﬁim Y /p¥ ~ %,
by the interchange rule for homotopy limits. [

THEOREM 11.5.12. Let X and Y be spectra, with Y/p bounded below. The
Adams spectral sequence

B = Extj;{’i (Ho(X), Hi(Yy)) =5 [X, Y ]e—s

is strongly convergent if and only if RE., = 0. In this case, there are isomorphisms

s A
FUX Y0 L i
FHX, Y, oo

(X, Y ]n
X,V 2 lim T
[X, p ] 1m F5[X, Yp/\]n

for all s >0 and n.
PROOF. This is a special case of Boardman’s Theorem [T1.4.1§ O

REMARK 11.5.13. Suppose that Y/p is bounded below. The condition RE, =
0 holds if the spectral sequence terms E?! stabilize in each bidegree, which in turn
holds if E?* is eventually finite in each bidegree. In particular, this holds if E§’t
is finite in each bidegree, and this holds if H.(X) is bounded above and finite in
each degree and H,.(Y') is (bounded below and) finite in each degree. For example,
it suffices for strong convergence that X is finite and Y/p is bounded below and of
finite type.

((ETC: If Y/p is bounded below and of finite type, then each term I? in the
canonical injective A,-comodule resolution of H,(Y) is of finite type. If, further-
more, H,(X) is bounded above and of finite type, then Hom’, (H.(X),I?) is finite
for each bidegree (s, 1), hence so is its subquotient Ej3*.))

The special case X = S is worth emphasizing. Recall that 7.(Y,}) = m.(Y)
(YY) ® Z,, if Y has finite type.

IR

A
p
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THEOREM 11.5.14. Let Y/p be bounded below of finite type. The mod p Adams
spectral sequence
Ey' = Ext}' (Fp, Ho(Y))
— Bxt}{' (H (Y),F,) = m_y (1))

is strongly convergent, meaning that there are isomorphisms

FsTrn(YI)A) ﬂ-n(Y/\)
PV P o~ psstn d n YN~ lim—P 7%
Fs+17rn(yp/\) 00 an T ( D ) 1?1 Fsﬂn(YpA)

for all s >0 and n.

11.6. Ext over the Steenrod algebra
Suppose that Y/p is bounded below and of finite type. To calculate the Adams

FEs-term

E; =Exta(H*(Y),F,)
we consider a free, hence projective, A-module resolution

s PP Y P S HY(Y) =0
of H*(Y). The group E;t is then given by the cohomology in degree s of the
cochain complex
1 0
...« Hom', (P, F,) <— Hom, (Py,F,) <— Hom',(Py,F,) « 0

with §°* = Hom(s41, 1) for each s > 0. The passage to cohomology takes no effort
if the resolution is minimal, in the following sense.

DEFINITION 11.6.1. Let I(A) C A denote the augmentation ideal. A resolution
(Py,0) of an A-module M is minimal if Os41(Psy1) C I(A)P;, for each s > 0.

LEMMA 11.6.2. If (P.,9) is minimal, then 6° =0 for each s > 0, so that
EXtZt(Mv IFP) = Homi‘(Ps,IFp)
for all s >0 and t.

PROOF. Any A-module homomorphism f: Py — X'F, maps I(A)P;s to zero,
$0 0%(f) = £f0s41: Psy1 — X'F, will be zero when the resolution is minimal. O

LEMMA 11.6.3. Fach bounded below A-module M admits a minimal resolution
(Py,0). If M has finite type, then so does each Ps.

Proor. Choose an [F)-linear section to the projection M — IF, ® 4 M, and let
e Ph=A0 F,04a M) — M

be left adjoint to this section, where P, is the free A-module induced up from
F,®aM. Then 1®¢€: Fp,®4 Py — F, ®4 M is an isomorphism, and e is surjective,
since I, ® 4 cok(e) = 0 and cok(e) is bounded below.

Inductively, for s > 0 let Z; = ker(0ds), which must be interpreted as ker(e)
when s = 0. Choose a section to Zs; — [, ®4 Z5, and let

85+15 Ps+1 :A®(Fp XA Zs) *)Zs
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be left adjoint to the section. Then 1 ® 5s+1: Fp, ®4 Pog1 — Fp, ®a Zs is an
isomorphism, and 55+1 is surjective. Let Os11: Psy1 — Ps be its composite with
the inclusion Z; C P;.

The condition that 1 ® d, is an isomorphism, interpreted as 1 ® € for s =
0, is equivalent to the condition that O41(Psy1) C I(A)Ps, as can be seen by
chasing the following diagram with exact rows. The middle vertical surjection has
kernel I(A)P;.

Re+1
ds
0 Zs Ps Zs—l 0

N

Fpo®a 2y ——F, Q04 P ——F,®4 Zs_1 ——0

If M has finite type, then Py is finitely generated and free over A, hence it and Z
are of finite type. Inductively, if Z; is of finite type for s > 0, then so are P41 and
Zsiq. O

((ETC: Uniqueness up to isomorphism of minimal resolutions.))

For any finitely presented A-module M, at the prime p = 2, Bruner’s program
ext calculates a minimal resolution (Py,d) of M, in a finite range of bidegrees
$ < Smax and t < tmax. In essence, it calculates Z, = ker(9s) and chooses a
minimal generating set for this A-module, which is then a basis for Ps;.

In cohomological (= filtration) degree s > 0, we write

Py = A{sp, 87,y 855+ }
for the free A-module Ps, so that s} denotes the g-th generator in degree s, counting
from g = 0. In concrete cases we substitute numbers for s and ¢ in this notation,
leading to expressions such as 0§, 1} or 575. The program records the internal

degree t of each generator sj. Furthermore, it records the boundary homomorphism
Os+1: Psy1 — Ps by giving its value on each basis element in P, as an A-linear

combination
*k
Z 09 Sg
g

in Ps, where the 8, € A. By minimality,
EXtZ’*(M,FQ) = HOI’HA(PS,FQ) = IFQ{S(), S1y--+58gy--- } 5

where s;: Py — Fy denotes the dual of s7. In other words, s, takes the value 1 on
sy, and 0 on the other A-module basis elements of P,. In the concrete cases above,
we write Op, 14 and 513 for these elements in Exta(M,F3). The cohomological
degree of s4 is thus s, while its internal (homological, or homotopical) degree ¢ is

equal to the internal (cohomological) of s;.

EXAMPLE 11.6.4. We consider the case Y = S and M = Fy. A quick (15
second) machine calculation with $yax = 12 and ty,. = 28 suffices to compute

E;’*(S) = EX‘DZ*(FQ,FQ) = F2{00} EB]FQ{SQ | s>1,9g> 0}

in the range 0 < s < 12 and 0 < t < 28. This includes the rectangular region
0<s<12and 0 <t—s < 16 in the (t — s, s)-plane shown in Figure A
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|
|
12 oe
|
|
|
|
oe |
|
|
|
|
oe |
|
|
|
oe !
|
|
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| |
8 oe 1e
| |
|
| FTTTTTTrTTTToTos ‘
oe L1 20 3e
! |
e
! |
oe 1e 2e 3e 10 se
|
l
0
| i
oe L 1e 2e 3e fe
l |
o
w |
4 oe 1 | 1e 20 3e i@
! l
l
| el B '
l
oe | L e 20 EX) 1e 5@ ce
! |
e
|
oe | I 1e 2e 3e 10 ) ce 7e se
|
l
,,,,, 1
oe 1e 20 3e s
he By hs s
0 oel
0 4 8 12 16

FIGURE 11.2. Vector space basis for Ey"(S) = Ext%' (2, Fy), for
0<t—s<1l6and 0<s<12

filled circle labeled “g” in bidegree (t—s, s) represents the Ext-generator sg4, dual to
the A-module generator sj in the minimal resolution, both of which have internal
degree t. In this range, most groups Fj " have dimension 0 or 1 as Fa-vector spaces,
but in bidegree (t — s,s) = (15,5), corresponding to (s,t) = (5,20), there are two
generators 54 and 55, which means that
E3*(S) = Ext** (Fa, Fa) 2 Fa{54, 55}

is 2-dimensional. The program ext makes a deterministic choice of basis for this
Fy-vector space, but other methods of calculation might lead to a different choice

of basis, so care is needed when comparing different approaches. Table [T1.1] gives
the minimal resolution calculated by ext in this range.
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(51)gbs + (C1)((2°0°0)bs + (2 8)DS + 41hS) +

(I (¢ 1)bs + (7 7)PS + o;bS) + (91)((z‘0°€)bS + (2 “T1)bS + ,:08) | 82| & o1
(Y1) 128 + (6D gibs + (AD((T°0°0°0)bs + (T°0‘8)PS + (G °0)bs + (¥ ‘€)DS + (1 °G1)DS) +

(YD((c0°2)bs + (7 7)bS + (€°L)bS + (T01)bS + o,PS) | 52| ¢ ¢l

(1)ghs + (51)gbs + (KD 3PS + QD) eiPS | 2| & ¥l

(§D)hs + (ED)(c°0)bs + (FD((1°9)bs + ¢bs) + (Y1) (2 ‘€)bs + ¢bS) | o | © 8

(¢1)bs + (kD)(1°0°0)2S + (1 ‘7)bS + ,b5) + (91)(z‘2)bs + @,3 el oz .

(21)3hs + (I1)gbs + (91),0 fo| ¢ 9

(D) bs + (FD(10)Ps + (Y1)3bs | % | @ ¢

(IDDPs +(On)ebs | o| @ 4

Qs | % ¢ 0

(% v@ L S B

(f0)ghs | E1] 1 L

(Q0)sbs | G| 1 ¢

(Q0)bs | 1] 1 T

(f0)bs | 1] 1 0

Il | 0 0

(z)o x s s—3

91 > s —ppuegl>s a0y ‘ls sty =g
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(&p)ebs + (IF)((1°2)bS + b)) + (W) gibs | S5 ¢ 11
() ((1°0)bS + ¢hs) + (I) 1S | f¢| ¢ 6
Op)bs | Qe ¢ 0

(26) s + (L&) (12 0)bs + (1°0°9)bs + (¥ '1)DS + (€ '7)bS + (¢ L)bs + (1°01)DS + ¢, PS) +
() (¢ DS + (7 7)bs + (€' L)bS +o108) | W | ¥ <1

(Ye)(ree)bs + (Ee)((T°0°0)PS + (1 9)bS + ,bS) +
(1€)((¢'9)bs + (1°6)bs) + (2€)((¢‘0)bs + (€°9)bS + (26)bS + 1hS) | 5| ¥ ¥I
((e)¢bs + (£e)((1°0°0)bs + (2“1)bS + ,b5) + (2€)((CP)DS + o1PS) | S | ¥ 6
(%e)bs + (Le)((1°2)bs + bS) + (%0)bs | | ¥ L
Qe)ds | W ¥ 0

(4¢) b5 + (10)((2 '0°0)bg + (1 1°7)bS + (1°0°2L)bS + (¥ 2)bS + (¢ 8)bS + (1 ‘T1)bS + 11bS) +
(%) ((z‘0°2)bs + (¢‘1)bS + (7 ‘7)bS + (€°L)PS + (T '01)DS + o1b5) | Y| €  ¢1

(%2)1bs + (£2)((1°0°0)bs + (1 %)bS + ,b8) + (12)((¢ ‘2)bs + ¢hS) +

(52)((€°0)bs + ¢bs) + (%2)(7°0)bs + (32) (2 ‘L)bs + (%) ((€°9)bs + (2 '6)DS) | f¢| €  ¥1
(§¢)¢bs + (Fg)bs + (§2),08 + (1) ((1°0°1)DS + ¢bS) + (%) oibs | L6 ] € 6
(£2)((T1°0)bS + ¢bS) + (%2)bs + (L2)(1°0°0)bs + (%) ((z‘€)bs + ¢bs) | fe| ¢ 8
(Y2) b + (12)((2°0)bS + ¢bS) + (%2)((¢‘2)bS + ¢bS) | S| ¢ L
(%¢) s + (ig)bs + (Y%),bs | e | € ¢
(%e)bs | %] ¢ 0
(z)o r| s s—3

(‘yuo0) 91 > s —gpue g > s 10§ { -+ ‘Is s}y =g
UM Z JO (@ ) UONM[OSdI S[UPOUW-T/ 991 [RUWIUI T [T 9L
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(%11):b5 | 21 | a1 0

(%01)(bg | 911 | 11 0

(%).0s | %01 | 01 0

(%):bs | % | 6 0

(8L)1bs + (12)((1°2)bs + ¢bs) + (W) gibs | 18| 8  ¢I

(2)bs | %81 8 0

(£9)((1°0)PS + ¢bS) + (29)oPs + (£9)(T‘0°0)Ds + (29)((2“1T)bS + ,1P8) | §2| 2 o1
(Y9):bs + (19)((z‘0)bS + obS) + (29)((30T)DS + o1PS) | S| L &I

(%9):0s + (19)bs + (29),bs | f2| L 11

(%9):bs | | 2 0

(Ig)bs + (§9)hS + (26) (T 0)bs + (F8)((16)bs + ¢bs) + (%¢)(z‘11)bS | §9| 9 o1
(f6):bs + (19)((T1°0°0)bs + (T 9)bs + ,bg) + (%8)((G01)bS + o:P5) | P9 | 9  «¢1
(£6)1Ps + (29)phs + (16)ghs + (%8)ethS | S9| 9 ¥I

(%¢)bs + (19)(1°0)bs + (%) 1Ps | %9 9 11

(fe) s+ (%) bs | 9] 9 o1

(%e)bs | Q91 9 0

(I9)1bs + (7)) ((1°9)bs + ¢bS) + (%) gibs | 6| ¢ g1

(£9)bs + (G7)(1°0°0)bs + (1p)((1°9)bs + ¢bs) + (W) (7 9)bs + (zo1)DS) | s | ¢ g1
(57):PS + (X7)((2‘0)PS + obS) + (L7)(1‘e)bs + (%) ((¥e)bS + (¢°9)bs + (3 ‘6)bS) | ¢ | ¢  7¥1
AHVQ x s s—3

(quoo) 91 > s —gpue gl > s 10y ‘{ " ‘lsUsty = Sg
YIM T JO (@ ) UOTNOSOI S[POW-|/ 99 [ewIul]y ' TT 9[qRL,
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The minimal resolution starts
o A{20 ] 9> 0} 2 A1 i > 0} 25 A{05} <5 Ty — 0
with €(0F) = 1 and
an(17) = Sq¢* 0

for each 7 > 0. This way im(01) = I(A) = ker(e), which is minimally generated as
an A-module by the Sq¢2* for i > 0. Less obviously,

32(25) = Sq' 15

92(21) = S¢* 15 + Sq° 11

32(25) = Sq" 15+ Q1 11 + Sq" 13,
which correspond to the Adem relations S¢'Sq' = 0, S¢3Sq* + S¢%>5S¢®> = 0 and
Sq¢*Sqt + Q15¢> + Sq¢'Sq* = 0, respectively. Compare Figure Here Q1 =

Sq® + Sq?Sqt = Sq(0,1) is the Milnor primitive, dual to & in the Milnor basis
for A,.

DEFINITION 11.6.5. For an A,-comodule M, , with coaction v: M, — A, ® M,,
let

Py, (M) ={x € M, |v(x)=1®a}

be the subspace of A, -comodule primitives.
For an A-module M, let

Qa. (M) = Fp ®a M
be the quotient space of A-module indecomposables.

These should not be confused with the (coalgebra) primitives P(C') of a coaug-
mented coalgebra and the (algebra) indecomposables Q(A) of an augmented alge-
bra.

LEMMA 11.6.6. For any A.-comodule M,, there are natural isomorphisms
Exty" (Fp, M) 2 F, Oa. M, = Py (M)
and
Ext;*(M,F,) = Hom (M, F,) = Hom(Q (M), F,).
In particular,
EXt?Afj(Fpa Fp) = EXt?Af*(Fpa Fp) 2 F,{1}.
LEMMA 11.6.7. There are natural isomorphisms
Exty” (Fy, Fy) = Extyi" (Fy, Fy) = P(A.) = Hom(Q(A), F,)

where ‘
P(A.) = Fo{€2 | > 0}
forp=2 and
P(A.) =Fp{m, & |20}
for p odd.

((ETC: Reference for the following notations? Presumably h; refers to the
Hopf-Steenrod invariants.))
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DEFINITION 11.6.8. For p = 2 let
h; € ExtY? (Fa, Fy)

denote the class of ff, dual to Sq2i € Q(A), for each i > 0.
For p odd, let
ap € Exty! (F,,F,)
denote the class of 79, dual to 8 € Q(A), and let

h; € Ext*" VP (F ) F,)
denote the class of §fi7 dual to PP € Q(A), for each i > 0.

ExAMPLE 11.6.9. In the s -notation of ext, the generator in ES’O(S) is 1 = 0o,
while the generator in EZI"T(S) is h; = 1; for each i > 0. These classes are labeled

in Figure 1.2}

The calculation shows that Ej3”*(S) appears to vanish above a line of slope 1/2
in the (t— s, s)-plane, except for t —s = 0. This is indeed the case, as was proved by
Adams, and confirms that there are no other classes in E5/(S) for 0 <t —s < 16
than the ones shown in Figure

THEOREM 11.6.10 (|Ada66, Thm. 1.1]). For p = 2, the groups Ey'(S) are
trivial for
2s—1 fors=0 mod 4,
2s+1 fors=1 mod 4,
2s4+2 fors=2 mod 4,
2s4+3 fors=3 mod 4.

O0<t—s<

Adams’ proof uses the structure of A as a union of finite sub Hopf algebras A(n),
and some initial calculations.

DEFINITION 11.6.11. For p = 2, let
A(n) = (Sq", 5¢%,...,5¢>")
be the subalgebra of A generated by the Sq? with j < 27, or, equivalently, by the
Sq¢% with i < n.
For p odd, let
A(n) = (B, P',...,P""")
be the subalgebra of A generated by 5 and the PP with i < n.
In each case, A(n) is a finite sub Hopf algebra of A.
EXAMPLE 11.6.12. ((ETC: Assumes the @; and E(n) have been defined ear-
lier.)) Let p = 2. Then A(0) = E(0) = E(Sq'), while E(1) = E(S¢', Q1) C A(1) =
<Sq17Sq2> and E(2) = E(Sq17Q17Q2) C A(Q) = <Sq17‘9q27‘9q4>'

ExAMPLE 11.6.13. Recall that the r-th Adams differential
ds,t: Es,t N Ens+r,t+r—1

has (t — s, s)-bidegree (—1,7). The first possibly nonzero Adams differentials for S
are the following.

(1) ds—1(h1) € {0, 50} for s > 3;
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(2) d2(25) € {0,41};

(3) da(ha) € {0,351
Since this spectral sequence converges to m(S5) =2 7.(5)%, and we know that
71(S) = Z/2{n} # 0, it follows that 1; = h; must survive to E, and detect n: S —
S. Hence each class sp € E3° also survives to E,,. We shall see that it detects
2%, so that the groups E3°(S) = Fa{so} give the associated graded of the 2-adic
filtration on mo(S)4 = Za:

2 C 29T C - C 220 C 7.

It also follows that o (S)5 = Z/2, with a generator detected by 2;, and that m3(5)%
has order 22 = 8. However, the group structure of m3(5)% remains to be determined.
Moreover, m4(5)% = 0 and 75(5)% = 0, since the Fs- and E.-terms contain only
trivial groups in these total degrees. Furthermore, 74(S)5 = Z/2, with a generator
detected by 23.

If da(25) = 0, which turns out to be the case, then 77(S)5 has order 2* = 16
and 7g(5)% has order 22 = 4. If, on the other hand, d2(25) = 4; were nonzero, then
77(S5)% would have order 23 = 8 and 7g(S)% = Z/2. To decide between these two
cases we must calculate this Adams ds-differential.

Continuing, 7o (S)% has order 22 = 8, m19(S5)% = Z/2, 711(5)% has order 23 = 8,
m12(S)5 = 0 and m3(S)5 = 0. We can also see that m14(5)% has order dividing
2% = 32, but here there is room for many differentials from topological degree 15.

To proceed, we will use that the (commutative, orthogonal) ring spectrum
structure on S makes the associated Adams spectral sequence a (commutative)
algebra spectral sequence. This severely limits the possible differential patterns
that can be present in the spectral sequence.

11.7. Monoidal structure

For spectra X', X", Y’ and Y”, with smash products X = X' A X" and
Y =Y’ AY" there are Adams spectral sequences
"By = Exta, (H.(X'), H.(Y')) = [X',Y"].
"By = Exta (H(X"), H.(Y")) = [X",Y"].
Ey = Exta, (Ho(X), H (Y)) = [X,Y]..

The smash product of morphisms induces a pairing
At [Xl,Y,]n oY [Xlla Yﬂ}m — [Xv Y]n+m
that takes f: X¥"X’ — Y’ and g: ¥ X" — Y" to the composite

ETHTY = ST A ST A X AXT TS A X A ST AX Y A Y =y
It preserves the Adams filtrations, in the sense that F*[X' V'], ® F*[X",Y"], is
mapped into F¥T*[X,Y],, since if f = fio---o fs and g = g1 0+ 0 gy, with
H.(fi) =0 and H.(g;) = 0 in each case, then f A g is the composite of s + u maps
of the form f; A1 and 1 A g;, each of which induces zero in mod p homology.
((ETC: The following would go in the unwritten chapter on homological alge-
bra.))
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DEFINITION 11.7.1. Recall that for Hopf algebras, the tensor product of two
(co-)modules is again a (co-)module, using the diagonal (co-)action. Since A, is a
Hopf algebra, there is an internal product

A: Exta, (M',N')®Exts, (M",N") — Exts (M’ @ M",N' @ N")

given by choosing injective A,-comodule resolutions ('I?,d)s and ("I*,d), of N’
and N”| respectively, and forming their tensor product (I7,6), with

=P e
st+u=o
and 0 =0 ®1+1® 46, which is an injective A,-comodule resolution of N’ @ N (by
the untwisting isomorphism of Proposition [7.7.31]). Given s- and u-cocycles
f:M —'I? and g: M" — "I
the internal product of the cohomology classes [f] and [g] is the class of the com-
posite (s + u)-cocycle
M oM 2o oIt
If we have given A.-comodule homomorphisms M — M' @ M"” and N'@ N” —- N
then we can further internalize the product to obtain a pairing

A: Exta, (M',N')®@Exta, (M",N") — Exta, (M,N).

If M is an A,-comodule coalgebra and N is an A,-comodule algebra, this makes
Exta, (M, N) an F,-algebra.

DEFINITION 11.7.2. Dually, since A is a Hopf algebra there is an internal prod-
uct

A: Exta(M',N') @ Ext 4(M", N") — Exta(M' © M",N' ® N")
given by choosing projective A-module resolutions ('P*,9), and ("P*,9), of M’

S

and M"| respectively, and forming their tensor product (P¥,d), with
Pi= @ Prep;
st+u=o

and 0 =9 ® 1+ 1® 9, which is a projective A-module resolution of M’ @ M" (by
the untwisting isomorphism of Proposition [7.7.30]). Given s- and u-cocycles

f:'Pf— N and g:"Pf— N"
the internal product of the cohomology classes [f] and [g] is the class of the com-
posite (s + u)-cocycle

P 'Pre"Pr I N o N

If we have given A-module homomorphisms M — M’ ® M” and N' ® N — N
then we can further internalize the product to obtain a pairing

A: Exta(M',N") @ Exta(M",N") — Exta(M,N).

If M is an A-module coalgebra and N is an A-module algebra, this makes Ext 4 (M, N)
an Fp-algebra. See [ML63, §VIIL.4].
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THEOREM 11.7.3. (a) For spectra X', X", Y" and Y", with X = X' A X" and
Y =Y' AY", there is a natural pairing
Ne: ('E.,"E.) — E,
of Adams spectral sequences, with abutment the filtration-preserving pairing
A XY@ [ X7 Y] — [ X, Y.

mapping f @ g to fNg.
(b) The pairing of Eo-terms

Aot Exta (H,(X'), H(Y")) @Exta (H.(X"), H,(Y")) — Exta_(H,(X), H.(Y))

is the internal product.
(c) If Y'/p and Y /p are bounded below of finite type, then the Es-pairing

Na: Exta(H*(Y'), H*(X")) @ Exta(H*(Y"), H*(X")) — Ext4(H*(Y), H* (X))
is the internal product (followed by the pairing u: H*(X') @ H*(X") - H*(X)).

The special case X' = X" = X = S is interesting enough to spell out explicitly.
We also concentrate on this case in the proof.

COROLLARY 11.7.4. There is a natural pairing
Art (Er(Y'), Ex(Y")) — Ep(Y' AY")
of Adams spectral sequences, with abutment the filtration-preserving pairing
(Y @m (Y — m (Y AY").
The pairing of Ea-terms is the internal product
At Exta, (Fp, Ho(Y')) @ Exta, (Fp, H(Y")) — Exta, (Fp, H.(Y)).

IfY'/p and Y"/p are bounded below of finite type, then this equals the internal
product

At Exta(H*(Y'),F,) ® Exta(H*(Y"),F,) — Ext(H*(Y),F,).

When combined with naturality, with respect to a multiplication pu: EAE — E
or an action \: EA M — M, we obtain the following consequences. In particu-
lar, E,(S) is a (graded commutative) algebra spectral sequence, and each Adams
spectral sequence E,.(Y) is a (right) E,.(S)-module spectral sequence.

COROLLARY 11.7.5. If E is a ring spectrum (up to homotopy) with multiplica-
tion u: EANE — E, then there is a pairing

pr: (Ep(E), Er(E)) — Er(E)

of Adams spectral sequences making E,(E) an algebra spectral sequence, with abut-
ment the filtration-preserving graded ring product given by the composition

.(E) @ m.(E) — m.(EANE) 25 1, (E).
The pairing of FEo-terms is the internal product
i Exta, (Fp, Ho(E)) @ Exta, (F,, H (E)) — Exta, (Fp, H (E)) .
If E/p is bounded below of finite type, then this equals the internal product
i Exta(H*(E),Fp) ® Exta(H*(E),Fp) — Exta(H*(E),F,).
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COROLLARY 11.7.6. If M is an E-module ring spectrum (up to homotopy) with
action \: EANM — M, then there is a pairing

Ar: (Er(E),E.(M)) — E.(M)

of Adams spectral sequences making E.(M) an E,.(E)-module spectral sequence,
with abutment the filtration-preserving module action given by the composition

1 (E) @ 1o (M) — 1 (E A M) 25 7, (M).
The pairing of Eo-terms is the internal product
M Exta, (Fp, Ho(E)) @ Exta, (Fp, Ho(M)) — Exta, (Fp, H.(M)).

If E/p and M/p are bounded below of finite type, then this equals the internal
product

MA: Exta(H*(E),F,) ® Ext4(H*(M),F,) — Ext(H*(M),F,).

REMARK 11.7.7. We will obtain the pairings of Adams spectral sequences from
pairings of Cartan—Eilenberg systems. To construct these we assume that Y’ and
Y"” admit mod p Adams towers Y, and Y}, and form their convolution product Y,.
To ensure that Y, is a mod p Adams tower for Y, we assume that the towers Y, and
Y/ are cofibrant in a projective model structure on towers in orthogonal spectra.

DEFINITION 11.7.8. To each spectrum X and tower of spectra Y, we associate
the homotopical extended Cartan—FEilenberg system (mw.,n,0) with

W*(S?S + ’I") = [X)YS,T]*

for all s and r > 0. Here we interpret Y, as Yy for all —co < s < 0 and as * for
s = 0o. As usual, we let Y, , = C(a”: Ys1, — Y;) denote the mapping cone of
a”. When r = oo, this is interpreted as Y, oo = C(x — Y;) = Y. The structure
morphism

n: (s, s + 1) — m(s,s+7)

for extended integers s’ > s and '+’ > s+ is induced by the natural map Yy ,» —
Y, - of mapping cones, which appears in the following commutative diagram.

o ia”) a(a”)
Y;/+T/ _ YS’ _ }/5/»7"/ _ EYS’+T’

PRI

}/err < 1/s YS,T‘ ZY5+T

The connecting homomorphism

0: mu(s,s+71) — m_1(s+r,s+7+q)
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is induced by the composition j” = Yi(a?)og(a") in the commutative braid diagram
below.

o ta i(a”) i
Ys+r+q Y, Ys,T EYs-ﬁ-nq
\ / Y“) / a(a™)
al Si(a?)
Y9+r }/s,r—&-q E)/s—i-r
i(a?) Sal
Ys+r,q EY;-’-T“"Q
q(a)

DEFINITION 11.7.9. Let Tow(Sp®) be the category of functors Y,: N — Sp©,
i.e., towers of orthogonal spectra. A morphism ¢, : Y, — Z, is a natural transfor-
mation, i.e., a strict map of towers.

The evaluation functor Ev,: Tow(Sp®) — Sp® mapping Z, to Z, has a left
adjoint Fy: Sp® — Tow(Sp®), mapping Y to the tower

ek — Y Y — .. — Y
given by

Y foru <s,

Fo(Y), = {
*  foru>s,
with identity structure maps as indicated. Let F'F'I be the set of tower morphisms
F Fyi: Fy(F,ST") — Fy(F,DY)

for s > 0, £ > 0 and n > 0, obtained by applying the functors Fs for s > 0 to
the set F'I of generating cofibrations for the stable model structure on orthogonal
spectra. These all have the form

ek BT == F T — . —— 57

L J

i —— % —— F,D" F,D" . F,D"

for suitable s, ¢ and n.

Forming a pushout of the type
FF,S" ' — 5 F,F,D"
s
Y, —— 7.,

with ¢ € FFI, thus has the effect of extending a tower Y, by freely adjoining an
n-cell at level £ to Y, for all 0 < u < s, making no change to Y,, for u > s.
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DEFINITION 11.7.10. We say that ¢, : Y, — Z, is a projective stable equivalence
if each component ¢,: Y, — Z is a stable equivalence of orthogonal spectra, and
that ¢, is a projective stable fibration if each ¢5 is a stable fibration.

We say that ¢, is a relative cell tower if Z, is the colimit of a sequence

Y, =20 — ... - Z,(j)) — Z,(j+1) — ... — Z,

where each Z,(j) — Z.(j + 1) is obtained by cobase change along a sum of
morphisms in FFFI. We say that ¢. is a projective Quillen cofibration if it is a
retract of a relative cell tower.

As usual, Yy is a cell tower if ¥+ — Y, is a relative cell tower, and Y is projec-
tively cofibrant of * — Y, is a projective Quillen cofibration, which amounts to the
condition that Y, is a retract of a cell tower.

THEOREM 11.7.11. The projective stable equivalences, projective Quillen cofi-
brations and projective stable fibrations define a model structure on the category
Tow(Sp®) of towers of orthogonal spectra.

We refer to Hirschhorn’s book [Hir03, Thm. 11.6.1] for the proof. We call this
the projective model structure on towers.

((ETC: The compact spaces Sﬁ_l and D? admit the small object argument,
by a variant of Lemma Are transfinite composites required for the relative
cell towers?))

REMARK 11.7.12. The category of towers of orthogonal spectra also admits
other model structures, such as the Reedy model structure, which coincides with
the injective model structure. ((ETC: May be helpful for realizing (weak) maps of
Adams resolutions as coming from (strict) maps of Adams towers.)) The projective
model structure has the advantage that it is monoidal, which allows us to discuss
pairings of towers in a homotopy-invariant manner.

LEMMA 11.7.13. The projectively cofibrant towers are the retracts of the cell
towers Y,, which are towers

. — Y BY, — Y B Y,

of orthogonal spectra, where Yy is a cell spectrum, each a: Ysy1 — Yy is the in-
clusion of a cell subspectrum, and each cell in Yy is only present in Y, for u < s,
where the bound s depends on the cell, but is finite.

The projectively fibrant towers Z, are those for which Z4 is stably fibrant, i.e.,
an Q-spectrum, for each s > 0.

REMARK 11.7.14. Implicit in the model structure is that each tower Y, admits
a cofibrant replacement q: Y¢ =+ Y,, where Y is a (retract of a) cell tower. This
is a strong form of the classical assumption that Y is a CW spectrum and each
Y¢ , C Y is the inclusion of a CW subspectrum.

LEMMA 11.7.15. If Y, is a projectively cofibrant tower of orthogonal spectra,
then each collapse map

Yor = O(art Yorr — }/a) o YS/YS-’,—T
is a homotopy equivalence. Hence the Cartan—Eilenberg system (m,,n,0) satisfies

,’T*(Sa s+ T) = [XvY;/Y;-‘rT}*
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and the connecting homomorphism 0 is that of the ((ETC: strict)) cofiber sequence
K—i—r/ﬂ—&-r—‘—q i K/K—i—r—&-q — Y;/}/;+r .
DEFINITION 11.7.16. A (strict) pairing of towers v: (Y], Y]) — Y, is a collec-
tion of morphisms
Ve YINY! — Yarn
in Sp® making the squares

’ n _onl ’ n , 1Na ’ "
}/s+1 /\Yu H)/s /\Yu <7Yts /\Yu+1

Vs+17ul Vs,ul J/Vs,u«i»l

e [e]
K@—i—l—i—u Y9+u Ys-l—u—&-l

commute for all s,u > 0.

Equivalently, v is a morphism of bitowers, i.e., functors N> — Sp®, from the
external smash product

YANY]: (s,u) — Y AY,)
to
Yo+: (s,u) — Yeqy .

The functor Y — Y o+ from towers to bitowers admits a left adjoint, which defines
the convolution product of two towers.

DEFINITION 11.7.17. The convolution product of two towers Y, and Y] is the
left Kan extension (Y/ AY"),: N — Sp? defined by

(Y'AY"), = colim Y/ ANY]) |

stu>o

with the canonical map a: (Y AY")o11 = (Y AY"),.

By cofinality [ML71, Thm. 1X.3.1], the colimit can be calculated over the
smaller diagram below.

Y AY] Ly Ay

\La/\l
1N

Yo ANYY == Yo AYY

|

YIAY!  — 5 T

Ja/\l
1Na

YIAYY L0 Y AT,
la/\l
Yy AYY

(Strict) pairings v: (Y], Y/) — Y, thus correspond to maps of towers o,: (Y’ A
Y, = Y,, and vice versa.
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LEMMA 11.7.18. If Y] and Y] are cell towers, then (Y' AY"), is also a cell

tower with
Y'AY"), = | YY),
stu=o

having one cell of type FyyyFir e D™ for each pair of cells in' Y] and Y] of types
F,Fy DY and F,Fy D', respectively.

More generally, if Y, and Y] are projectively cofibrant towers then (Y' AY"),
is also projectively cofibrant.

Proor. ((ETC: Explain by induction over the cell attachments in Y] and in
Y/!)) O

LEMMA 11.7.19. The convolution product makes Tow(Sp®) a symmetric monoidal
category, with unit object the tower U, with Uy = S and Us = % for s > 1.

The convolution product with V)" admits a right adjoint, Y, — F(Y",Y),,
which defines a closed structure on Tow(Sp?).

DEFINITION 11.7.20. For Y/ Y, € Tow(Sp?), let

F(Yﬂv Y)s = leriuH;cr F(YJ’ Yotu),

with the canonical map a: F(Y",Y)s41 — F(Y",Y)s.

This limit can be calculated over the smaller (but infinite) diagram below.

F(YyYopa) —— F(Y3', Yor1)

F(Y]' Yei1) —— F(Y{,Ys)

F(YY',Ys)

PROPOSITION 11.7.21. The category Tow(Sp®) of towers in orthogonal spectra,
with respect to the closed symmetric monoidal convolution product and the projective
model structure, is monoidal.

SKETCH PROOF. To verify the first part of the pushout-product axiom, it suf-
fices to consider the cases where i: A, — X, and j: B, — Y, are of the form
F,F,S7 ' — F,F,D? and F,F,ST" — F,F,D", respectively. In this case i ] j
has the form

ForuFpo(S" P x D™UD™ x S™ Y, — Fy o Frypo(D™ x D™) 4,

hence is a cofibration. The proof of the second part is similar. ((ETC: The sec-
ond part involves the generating acyclic (= trivial) cofibrations j: F,F,D7}" —
F,Fy;(D™ x I);. Here ¢ O j is freely induced by the acyclic (= trivial) cofibration
Sl x D™ x TUD™ x D™ x {0} — D™ x D™ x I.))

The unit tower U, is cofibrant, so the unit axiom is trivially satisfied. O
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DEFINITION 11.7.22. Let Y] and Y, be projectively cofibrant towers, and let Y,
be any tower. ((ETC: Should we assume that Y, is (projectively) fibrant? Might
build cofibrant replacement for Y, and Y/ into the definition.)) A weak pairing
v: (Y], Y]) = Y, is a weak map of resolutions

e (YAY"), Y AY") 1) — (Ya,Yan) s

i.e., collections of morphisms 7,: (Y AY"), = Y, and 75 1: (Y AY")o1 — Y51
making the diagrams

(V' AY") i1 —2s (Y AY )y L (Y AY") gt —s SOV AY )i

Va+1l Vol ﬁd,ll Elfa+1l
B

Yoi1 z Y, You 1 p2)

s

commute in Ho(Sp?).

REMARK 11.7.23. A weak pairing v: (Y},Y]) — Y, determines morphisms

Ustu

Vet YINY! Z5 (Y AY" ) gpu =53 Yig
in Ho(Sp®), such that the squares

1 1
VI ANY) S YIAY) R YIAY )

l/s+1,ul Vs‘u,l Jys,uﬂ»l

[0
Ys—i—l—l—u Ys—&-u Ye-{—u—&-l

commute in Ho(Sp®) for all s,u > 0. However, there is more information in the
choice of a weak pairing than what is given by these morphisms in the stable
category, since the morphism 7, depends on more than its restrictions v, for
s+ u = 0. A weak pairing can be defined in terms of the 2-category of spectra,
spectrum maps and homotopy classes of commuting homotopies, but not at the
level of the 1-category Ho(Sp?).

Let Y] and Y be projectively cofibrant towers of orthogonal spectra, with
convolution product Y, = (Y’ AY"),, which is also projectively cofibrant by
Lemma[11.7.18, Hence the collapse maps

Ys/,r =Y/U CYs/+r — Ys//ylerr
Y. =Y uCY, —Y//Y],
Yor =Ys UOYs4r — Yy /Yoy,

are stable equivalences. We have (homotopical, extended) Cartan—Eilenberg sys-
tems (7, n,0), (7,n,0) and (m.,7n,0), with

(88 + 1) = mn (V) = mn(Y{/Yy,)
71—;{(57 5+ T) = 7I_TL(}/SI,IT) = WH(Y;//Y:&-T)
(s, 8 +7) = T (Yer) = ma (VY)Y
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and
mp(8,00) = m (YY)
Ty (8,00) = m (YY)
Tn(s,00) = 7, (Ys) -
The left hand commutative square

Yl AYIVYIAY L, SRR YUY — s VY] A YY)

u+tr
L5+r,uVLs,u+'r‘J Jbs,u J{ZS’H’T
o

Ys+u+r : }/s—i-u Ys+u/Ys+u+r

induces the right hand vertical map z; , , of horizontal (strict) cofibers.

((ETC: It is less obvious how to consistently pick maps Y, AY)' — Yoo,
from the smash product of mapping cones to a mapping cone. Maybe use the
minimum of the two cone coordinates?))

PROPOSITION 11.7.24. Let Y] and Y] be projectively cofibrant towers, with
convolution product Y,. There is a natural pairing p: (w,, 7)) — m of Cartan—
FEilenberg systems, given by the homomorphisms

Hr: T (Ys//Y;/Jrr) & Tm (YJI/Y:Jrr) — 7Tn+m(Ysl/Ysl+r A Y;//Y:H*)

Ls,u,r*

— 7Tn+m (sz—&-u/yvs-&-u-&-r)

and
froot Tn (YY) @ T (V) — T (Y] A YY) = Tntm (Ytu)
PROOF. We must verify conditions (SPP I), (SPP II) and (SPP III) from Def-
initions [6.2.1] and [6.2.5]
Condition (SPP I) follows directly from naturality of the lax monoidal pairing
(M) @ e (N) = m(M A N), in view of the commutative diagrams

’“s"u’,r’

/ / " "
Y;’/Y;’Jrr’ N Yu’/Yu’Jrr’ — YVS/"‘U'/YS'-F’U/-&‘T'

Lo

ls,u,r
Y)Y AY Y — Yeru/ Yetutr
fors<s,u<u,s+r<s +7r" and u+r <u +7r', where the vertical maps are
induced by o® ~*: Y}, - Y/, o* " V), - V) and o T 757" Y — Yy by
passage to quotients.
Condition (SPP III) likewise follows from the commutative diagrams

Ls/,u/
Y AY Y

o

Ls,u,r
YZ/YS/'*‘T A Ylil/yl—l-r I Ys+u/Ys+u+r
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and

Ls’,u/

Y;/’ A YTZ —_— }/;/+u/
YIAY! Y,
Condition (SPP IT) is more delicate. We confirm it in its strengthened form (SPP
IT+) from Remark |6.2.8] concerning the following diagram.

(YL YL40) © T (VL [ VL) —— s mn (VY1) © T (Vi Vi)

for

o®1 Tntm (Ystu/ YVstustr) Hr

\
Hor
M1 (Y, /Yiie,) @ mm (Y /Y ) ———————— Tngm—1 (Yorusr/ Yogusar)

To simplify the notation, set
A= }/S/+T/YS/+2T
X = Y;//Yrs/jt%‘
B = Y’l:/-Q-T/Y’U/,/-i-QT‘
Y =Y, /Y,

and W = AANYUXAB C XAY, so that X/AANY/B =2 (X AY)/W and
W/(AANB) =2 ANY/BV X/AV B. In the diagram

7n(X/A) ® 7 (V/ B) -2 Tn(X/A) ® T (B)
o®1 Tntm(X/ANY/B)
\
Tn-1(A) @ T, (Y/B) ' Tntm-1(ANY/BV X/AV B)

we then have the identity
(11.3) Oz -y)=0(x) y+(=1)"z-0(y)
in mem_1(AANY/BV X/AV B) for all x € m,(X/A) and y € 7, (Y/B), by

Proposition 0.8:17]

Condition (SPP II+) now follows from the strictly commutative diagram

AANB w XNY

J(’ns«}»r,’u,T’ULs,'u+'r','r' lbs,u,?r

* —— Y;Jrqu'r/Ys+u+2r E— Ys+u/Ys+u+2r
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which implies that

(11.4) T (X AY) /W) —2— i1 (W/(A A B))

Ls,u,r*l JLs+r,u,r*€BLs,u+r,r*

)
Tn+m (szjLu/Yrstqur) — 7Tn+mfl(yvs+u+r/yts+u+2r)
also commutes. Applying Zsyrure @ Usutr,r+ t0 (11.3), we conclude that
pr(z @y) = pr(0(z) ® y) + (—=1)"pr(z @ A(y))

in Ttm—1Ystutr/Ystutar), as required. O

REMARK 11.7.25. To confirm the Leibniz rule (SPP II+4), it is critical that the
diagram commutes, which we deduce from the strict commutativity of the
preceding diagram. ((ETC: At this point it is not sufficient to work only in the
stable category. Explain!))

PROPOSITION 11.7.26. Let Y] and Y] be projectively cofibrant Adams towers.
Then their convolution Y, is a projectively cofibrant Adams tower, with filtration
quotients

Yo /Yor1 = \| YI/YI AV
st+u=o

The injective A,-comodule resolution

(11.5) e Ho(SY) . Ho(SYi) &2 H, (Vo) < 0
of H.(Yy) is the tensor product of the injective A.-comodule resolutions
(11.6) e Ho(SUY!) = HA(SY] ) &2 HA(Y]) <0
and

(11.7) e HA(SY) = Ho(SY!) S HA(YY) 0

of Hi(Yy) and H.(Yy'), respectively.

PROOF. We view each a: Y/ | = Y/ and a: Y, ; — Y, as the inclusion of a
subspectrum, so that
Y, = |J vinyy
st+u=o
for each o > 0. In particular, Yy = YJAYy'. The tower Y, is projectively cofibrant by
Lemmal|l1.7.18] so each map «: Y,11 — Y, is a Quillen cofibration. The inclusions
tsu: Y{ NY) — Ysi,, then combine to the stated isomorphism

VYUY AV Yy Ve Yo
stu=o
Since Y /Y., ~ Y/, is H-injective, hence of the form H A T, it follows that
Y/ /Y ANY) /Y is equivalent to H AT AY,'/Y, |, and is therefore also H-
injective. This implies that Y, 1 ~ Y, /Y, is H-injective, for each o > 0.
To prove that a: Hy(Yy41) = H.(Y,) is zero, we first show that the cochain
complex (|11.5)) is the tensor product

(I7,0)e = ('13,0)s @ ("I}, 0)u
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of the cochain complexes and (11.7). Since the latter resolve H,(Y{) and

H. (YY), respectively, it follows from the algebraic Kiinneth formula that the former

resolves H,(Yy)® H.(Yy') = H.(Yp), which then implies that o, = 0 for each o > 0.
For each o, an isomorphism

b o=

stu=ao
is given by the composition
P H(SY) 0 Ha(S"Y,) = @) STH.Y!/Y,) © SUH (Y] /Y]
stu=o s+u=o
=57 @ H.(Y/YL AYL YLD = SH( N YUY AYL YD)
stu=o stu=o

>~ YOH, (Y, Yei1) =S H (V).

We claim that §* ® 1+ 1 ® 6" on the (s,u)-summand at the left hand side
corresponds to 6% on the right hand side. To prove this, we use the notation for
r = 1 from the proof of (SPP II+) in Proposition [11.7.24] so that we have Quillen
cofibrations

ii A= }/s/—&-l/Ys/—&Q — Y]V =X

G B=Y /Yo — Y /Y=Y

idj: W=AAYUXAB—XAY
and the identity
Iz®y)=0(x)®y+(-1)"z®Id(y)

holds in Hyym-1(X7(W/(A A B))) for z € H,(X°(X/A)) = H,(¥°Y];) = "I,
and y € Hy,,(X"(Y/B)) = Hp,(E"Y,/;) = "I;,. (This homology Leibniz rule can be
deduced from Proposition by applying H A— to each spectrum, and replacing
A with Ag.) When combined with the commutative diagram

H o (57 (X AY) /W) —"= Hp i1 (57 (W/(A N B)))

Ls,u,l*J/ J{Zs#»l,u,l*eazs,u#»l,l*

(oa 66 (on
Hn-i-m(z (YU/YU-H)) —_— I{n-&-m—l(E (Y0+1/Y0+2))
this proves that
7(z®y) =06"(z) @y + (-1)"z®"(y)

o+1 o 3
in I77,, 1, as desired.

As already outlined, we can now deduce that
H(12,8) = H*('I,6) & H* (I, 5)
is H.(Y]) ® H.(Yy') =2 H.(Yp) concentrated in cohomological degree 0.

H*(ES+1Y9+1) H*(ZSYG) e H*(Eyl) H*(}/O)
lﬁ* \ lﬁ*x J{g*\ lﬁ*
I:-H I8 Is—l Il IO

5° * 551 * * 50 *



302 11. THE ADAMS SPECTRAL SEQUENCE

Hence

=P H(Yo) — I
is injective, with implies that o : H, (Y1) — H.(Yp) is zero and v.: IO — H,(XY)
is surjective, with kernel the image of 3., which also equals the kernel of

60 = By I — I}
Suppose inductively, for s > 1, that v.: I: =1 — H,(2°Y;) is surjective, with ker(v.)
equal to the kernel of

5 =By I — T2
Then B,: H.(X°Ys) — I must be injective, since a nonzero elements in its kernel
would make ker (65~ 1) strictly larger than ker(v,). From the long exact sequence we
deduce that a,: Hy(3°Y, 1) — H.(2°Y;) is zero, and that v, : I$ — H,.(2%t1Y, 1)
is surjective. Furthermore,
ker(y.) = im(B,) = im(B.7.) = im(8*) = ker(6°),

by the assumed exactness at I7. This completes the inductive step, and shows that
a, = 0 in all cases. Hence Y, is, indeed, an Adams tower. ([l

PROPOSITION 11.7.27. Let Y] and Y)" be projectively cofibrant Adams towers,
with convolution product Yy. The pairing

(Vi) @ me(V) = m (Y AV 5 e (YVara)
of E1-terms corresponds under the d-isomorphisms to the pairing
Hompg, (va H, (Ys/,l)) ® Hom 4, (va H, (Yqzl)) — Hompg, (va H, (Yeru,l)>

induced by applying Homa, (F,, —) = Pa,(—) to the pairing 'I$ @ "I* — ISt%.
Hence, the pairing of Eo-terms

Mo EQ(Y/) & EQ(YN) — EQ(Y)
is the internal product.

PRrROOF. This follows from the commutative diagram

Zs,u,l*

T (Vi) @ m (Vi) —— m (Y1 AY) o (Yopu,1)
lh@h lh J{h
Ho(YV!1) @ ma (V) — Ho (Y. AY) 280 H,(Vegan)

where the right hand mod p Hurewicz homomorphism factors as
h: 7 (Yon) —es Homa, (Fp, H, (Y1) — Ho(Yy1),
and similarly in the other columns. U

PrOOF OF THEOREM [IT.7.3l Letting Y/ and Y, be projectively cofibrant mod p
Adams resolutions of Y’ and Y, their convolution product YV, = (Y AY"), is a
projectively cofibrant mod p Adams resolution of Y = Y’ A Y”. The pairing of
Cartan-Eilenberg systems in Propositions [11.7.24] and [11.7.27] then gives the as-
serted pairings, in the case X’ = X” = X = S. For the general case, one replaces
m(Y") with [X’,Y’]., and so on, relying on the appropriate generalization of the
homotopy Leibniz rule from Proposition [9.8.17 ]
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((ETC: See Remark for the generalization. One might also compare the
Adams spectral sequence for X and Y to the one for (S and) F(X,Y), but these
are (probably) not generally the same.))

We return to the situation where (Y’ AY"), maps to Y, by a map of towers,
or by a (weak) map of associated resolutions, but Y, is not necessarily equal to the
convolution product (Y/ AY"),.

PROPOSITION 11.7.28. Let v: (Y], Y]) — Y, be a (strict or weak) pairing of
towers.
(a) There is a natural pairing of homotopy spectral sequences

v BE.(Y)® E.(Y") — E.(Y)
with abutment the pairing
V.01 T (Yy) @ e (Yy') — me(Yo) .

(b)) If Y], Y] and Y, are mod p Adams towers, then the pairing of Adams
FEs-terms

vat Exta, (Fp Ho(Yg)) @ Exta, (Fy, Ho(Yg) — Exta. (Fy, H.(Y0))

is the internal product.
(c) If, furthermore, Yy /p, Yy'/p and Yy /p are bounded below of finite type, then
the pairing of Adams Es-terms

vo: Exta(H*(Yy),Fp) ® Exta(H*(Yy'),Fp) — Exta(H.(Yo),Fp)
is the internal product.

PROOF. The pairing of spectral sequences is the composite of the pairing of
spectral sequences

b B (Y) @ E (Y") — E (Y AY")

associated to the convolution product (Y’ A Y"),, followed by the morphism of
spectral sequences
U E(Y'AY") — E.(Y)

associated to the (strict) map 7, : (Y/AY"), — Y, of towers of spectra, or the (weak)
map 7, of the associated resolutions in the stable category. The result then follows
from Propositions [11.7.24] and [T1.7.27} and functoriality of the homotopy spectral
sequence of Definition for (strict) maps of towers or (weak) morphisms of
resolutions. 0

11.8. Composition pairings
For spectra X, Y and Z the composition of morphisms defines a pairing
o: [V, Z], @ X, Y] — [X, Z]ntm
that takes g: ¥"Y — Z and f: ¥™X — Y to the composite
goxnf.yntmy —ynymy Xlsny 9, 5

It preserves Adams filtrations, in the sense that F*[Y, Z]. ® F“[X,Y]. is mapped
into F*T%[X, Z],, since the combined composite of s and u maps, each of which
induces zero in mod p homology, is obviously a composite of s + u such maps.
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For any algebra A and (left) A-modules L, M and N there is a natural Yoneda
composition product

o: Ext%(M,N)® Ext% (L, M) — Ext% (L, N).
DEFINITION 11.8.1. Let
RN RNy PSRNy RN RN VY
and
s Qe Qur = Q1 25 Q0 - L0
be projective A-module resolutions. Given cocycles
g:Ps— N and f:Q,— M

choose a chain map fi: Q1 — Pi of degree —u lifting f.

coo ™ Qstu Qu Qo L
/| o\
P, P, M
]
N

The composite g o fs is a cocycle, and its cohomology class
[g] 0 [f] = lgo fs] € Ext}{™ (L, N)

defines the composition product.

((ETC: Maybe it would be more consistent to write fsy,, in place of fq: Qsyy —
P;,. A chain map of odd degree anticommutes with the boundaries, since we suspend
(spectra and) chain complexes on the left.))

The comodule case is similar.

DEFINITION 11.8.2. There is a composition product
o: ExtL(M,N) ® Extg (L, M) — Exts (L, N).
for any coalgebra C' and (left) C-comodules L, M and N, defined for cocycles
g M —1I° and f:L—J"

by extending ¢ to a chain map g*: J* — I°T* of codegree s and using the diagram

L
|
J JY M
AT
B A I° 1° N

to form
[9] o [f] = 9" o f] € Ext&™ (L, N).

In the case of modules over a Hopf algebra B, the interior and composition
products are related as follows.
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PrOPOSITION 11.8.3 ([Yon58, Prop. 1]). For
2’ € Ext (M, N') y' € Bxts (L, M)
= Ethé' (M”, N//) y// c EXtIé,,(L”, M//)
the identity
(@ oy YA (2" oy = (=1 “ (2" Aa")o (y Ny")
holds in Ext3 v "+ (L' @ L' N' @ N").
PRrROOF. Let

—>P’,—>P’, oo PP S M 0

-%Q;,%Q;,_lﬁmﬁQ’l—l)QgéL’%O

,3//

o
=P, 25 P s P S PSS M =0

P
%Qu”%Qu,,le = QY Q) - L =0

be projective B-module resolutions, and choose cocycles
g: P, — N
Q. — M
g//, P s N"
. S’I
fQl, — M
representing x’, y', x”/ and 3", respectively. Lift f’ and f” to chain maps
fir Qopwr — P
QL — P!

of degrees —u’ and —u”. Then (P'®P"), = P/®@ P! — M'@M" and (Q'®Q"), =
Q. RQY — L'QL" are projective B-module resolutions, with the diagonal B-action,
and

i@ (Q ©Q")wwiur = Qhyy QL — PLO P = (P' @ P"),
is a chain map (f' @ ). of degree (—u' — u"), lifting
Q' ® Q) wrur = Qo @ QL 725 M@ M
The class of the composite
(g @g") o (f' @ f)syar = (g ®9") 0 (fo @ fi1)
then defines (2’ Az")o (3’ Ay"), and equals (—=1)*"* times the class of the composite
(g o fa) @ (9" o f&r),
which defines (z' o y') A (2" o y”'). O

COROLLARY 11.8.4. Let B a Hopf algebra over k. For x € Exty(k,N) and
y € Extg(L, k) the identity

xAy=(xAl)o(lAy)=zoy
holds in Ext}, " (k ® L, N ® k) = Ext3; (L, N), and the identity
(—D™yAx=(1Az)o(yAl)=x0y
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holds in Ext%™ (L @ k,k ® N) = Ext%"(L,N). In particular, the interior and
composition products

Ext%(k, k) @ Ext%(k, k) — Ext3 ™ (k, k)
agree, and make Exty(k, k) a graded commutative k-algebra.

PROOF. Apply Proposition [11.8.3 with " = ¢/ = 1 € Ext%(k, k) in the first
case, and with 2/ = ¢ = 1 € Ext}(k, k) in the second case. O

((ETC: The argument does not seem to assume that B is (co-)commutative,
since the twist isomorphism for tensor products of B-modules does not play a role.
This agrees with [Yon58| Prop. 5].))

((ETC: Similar results for interior product and composition product in comod-
ule Ext over a Hopf algebra.))

For spectra X, Y and Z consider the Adams spectral sequences

'By = Ext4(H.(Y), H.(Z)) = [Y, Z].
"By = Exta(H,(X), H.(Y)) = [X,Y].
E2 = EXtA(H*(X)aH*(Z)) = [X7 Z]* .

The interaction between the composition product in Ext and the composition in
the stable category was determined by Michael Moss.

THEOREM 11.8.5 (|[Mos68, Thm. 2.1]). (a) There is a natural pairing
o.: (E.,""E,) — E,
of Adams spectral sequences, with abutment the filtration-preserving pairing
o: [V, Z]. ® [X,Y]. — [X, Z].

mapping g @ f to go LI9If.
(b) The pairing of Ea-terms

o3t Bxta (H.(Y), Ho(Z)) ® Exta, (H.(X), H.(Y)) — Exta (H.(X), H.(Z))

is the composition product.
(c) If Y/p and Z/p are bounded below of finite type, then the FEo-pairing

og: ExtA(H*(Z),H*(Y)) @ Exta(H*(Y),H*(X)) — Exta(H*(Z), H* (X))
is the twisted composition product, mapping y@x to (—1)1*Wzoy, where x| = v—u
and [yl =t — s forxz € "EY" and y € 'ES*.
REMARK 11.8.6. When Y = S, this theorem of Moss can be deduced from that

for the smash product pairing, since the two pairings
[S, Z)n ® [ X, S]m — [X, Z)ntm Z[SAX, Z A Slntm
mapping g ® f to
goXf:yrtmx 9" 7
and
gAf:S"AYX — ZAS
are equal, and the two pairings

o, A+ Exta. (Fp, H.(Z)) ® Exta. (H.(X),F,) — Exta (H.(X), H.(Z))

also agree.
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COROLLARY 11.8.7. (a) There is a natural pairing
ori (Bo(S), Er(S)) — Er(S)
of Adams spectral sequences, with abutment the filtration-preserving pairing
o: T (S) @ me(S) — mi(S)
mapping g @ f to g o X191 f, which equals the smash product g A f.
(b) The pairing of Ea-terms
og: Exta, (Fp,Fp) @ Exta, (Fp,Fp) — Exta, (Fp,Fp)
is the composition product, which equals the (graded commutative) internal product.
(¢) The Es-pairing
og: Exta(Fp,Fp) @ Exty(F,,F,) — Exta(F,,Fp)
1s the twisted composition product, mapping yRx to (—1)|“|‘y‘aﬁoy, where |z| = v—u

and ly| = t — s for x € "Ey°(S) and y € 'Ey'(S), which equals the (graded
commutative) internal product.

((ETC: What can we deduce from
wF(Y,Z)on,F(X,Y) — m.(F(Y,Z) N\F(X,Y)) — n.F(X,Z)

in the cases where the Adams spectral sequence for X and Y agrees with the one
for S and F(X,Y), and so on?))

11.9. Products in Ext over the Steenrod algebra

In the case X =Y = S, Theorem [I1.7.3 or its corollaries shows that the mod p
Adams spectral sequence for the sphere spectrum is a graded commutative algebra
spectral sequence

Es(S)" = Ext5' (Fp, Fp) =>4 m—s(S))

with differentials
a3t EPH(S) — BFTOTTTTH(S).
The multiplication on the Fs-term is given by the internal product
A: Exty'(Fy, Fp) @ Ext'y" (Fp, Fy) — Ext’ " (F,,F,),
and converges to the smash product pairing

A: T (S)) @ T (S)) — Tngm(S))

that gives the graded commutative ring structure on m(S)Q. Yoneda’s Proposi-
tion [11.8.3] shows that the internal product pairing is equal to the composition
product in Ext, and that the smash product pairing is equal to the composition
product in 7, (S);.

For p = 2, Bruner’s program ext can calculate the Yoneda (composition) prod-
ucts in Ext, by lifting cocycles to chain maps and evaluating their composites. The
computation of products

hit Ext® (M, Fy) — Bxt5 2 (M, Fy)

with the Hopf-Steenrod classes h; is particularly simple, and can be read off from
the boundary homomorphism

as+1:135—‘,-1*>Ps
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12 o

FIGure 11.3. E;’t(S) = EXtZ’t(FQ,Fg) with ho-, hl-, hz— and h3-
multiplications and ds-differentials, for 0 <t—s <16 and 0 < s <
12

in a minimal resolution for M. ((ETC: Explain.)) In the case M = Fy, the
multiplications by h; for 0 <4 < 3 in Ext4(F3,F3) are shown in Figure with
the following graphical conventions.

e Each nonzero multiplication by hy € E21 o1 (S) is shown by a line connecting
x in bidegree (t — s, s) to hox in bidegree (¢t — s,s + 1), i.e., by a vertical
line of unit length.

e Each nonzero multiplication by h; € E,*(S) is shown by a line connecting
z in bidegree (t — s,s) to hix in bidegree (t — s+ 1,5+ 1), i.e., by a line
of slope +1.

e Each nonzero multiplication by he € E21’4(S) is shown by a dashed line
connecting « in bidegree (t — s, s) to hox in bidegree (t —s+3,s+1), i.e.,
by a dashed line of slope +1/3.

e Each nonzero multiplication by hsg € E2178(S) is shown by a dotted line
connecting  in bidegree (¢t — s, s) to hgz in bidegree (t —s+7,s+1), i.e.,
by a dotted line of slope +1/7.
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LEMMA 11.9.1. In the range t — s < 16, the Fay-algebra E5*(S) is generated by
the following classes.

x ‘ ho h1 hg hg Co Ph1 Ph2 d() h4 PCO
t-s| 0 1 3 7 8 9 11 14 15 16
s 11 1 1 3 ) 5 4 1 7

The relation c¢3 = hidy holds.

PrRoOOF. The h;-multiplications can be read off from the minimal resolution
(Px,0) of Fy calculated by ext, and is visible in Figure m The classes h; in
filtration s = 1 must be algebra indecomposable for filtration degree reasons. The
only other basis elements that are not h;-multiplies are the classes denoted cg, do,
Phy, Phs and Pcy, and these must then be algebra decomposable for topological
degree reasons, since these all lie in degrees ¢t — s > 8.

To calculate 0(2) = ¢p - ¢o, we instead call on ext to lift the cocycle f = 33: P3 —
YU, to a chain map fi: Piys — YU P, and then to evaluate the composite

Py 5 w1ipy L 52,

This turns out to map 65 to 1, hence equals the cocycle 65, which we have already
seen represents h2dj. (]

REMARK 11.9.2. The prefix P refers to the periodicity operator from [Ada66),
Thm. 1.2], and the notations ¢, dy, . .. stem from computations in the range t —s <
70 made by May (unpublished) and Tangora |[Tan70]. In his work on the Hopf
invariant one problem, Adams showed that there are no algebra indecomposables
in filtration s = 2 of E3"(S) = Ext’y"(F2,F2), and determined the multiplicative
relations satisfied by the generators h; in filtrations s < 3.

THEOREM 11.9.3 (JAda60, Thm. 2.5.1]). The relations

hihiz1 =10
hhive = iy
hih§+2 =0
hold in Ext 4 (Fa,F3), for each i > 0. The algebra homomorphism
Falh; | i > 0]

— Ext 4 (Fo, F
(hihis1, D3 hivo + 02y hibZyy) 4(F2:F2)

is an isomorphism in filtration degrees s < 2, and is injective in degree s = 3.
More explicitly,
Ext*(Fa,Fs) = Fo{1}
Ext!*(Fg, Fy) = Fo{h; | i > 0}
Ext}” (F2,F2) = Fa{hih; | 0<i < j—2} @ Fo{h] | j > 0}
and if we omit the generators h;h;1hi, hihjhji1, hihihiyo and hih;yohipo from
Fo{hihjhy | i < j <k}

then the remainder maps injectively to Ext%*(F2,Fy). The class ¢o (which is part
of a family of related classes ¢; for i > 0) shows that surjectivity fails for s = 3.
((ETC: References for the relations satisfied for s > 47))
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11.10. Adams differentials for the sphere spectrum
In view of the Leibniz rule
da(zy) = d2(2)y + zd2(y)

in E5(9), the ds-differential is determined by its values on a set of algebra generators
for this Eo-term. In the range ¢ — s < 16, it thus suffices to determine dy(z) for the
z in the table in Lemma [I1.9.1] which are marked in red in Figure [I1.3]

PROPOSITION 11.10.1. In the range t—s < 16, the ds-differential on the algebra
generators is given as follows.

x ‘ho h1 hg h3 Co Phl Ph2 do h4 PCO
daox)[ 0 0 0 0 0 0 0 0 hh} 0

PROOF. The ds-differentials on hg, ho, hs3, cg, Phy, Phs, dy and Pcy land in
trivial groups, hence are zero.

The relation hoh; = 0 and the Leibniz rule imply that 0 hy + hg - da(h1) =
d2(0) = 0, so that hoda(h1) = 0. Since hg-h3 = h§ # 0, it follows that do(h1) # hg,
and dz(h1) = 0 is the only possibility.

The final case, of da(h4), deserves to be stated as a separate theorem. O

THEOREM 11.10.2 ([Ada58) p. 184]). da(hs) = hohZ.

PROOF. The class hg € E'(S) detects the homotopy class 2 € mo(S)5.
((ETC: Explain?)) The class hs € E;*®(S) must survive to Eoo(S) since d,(hs)
lies in a trivial group for all » > 2. Hence it detects a homotopy class o € 77(S5)5%.
By multiplicativity of the Adams spectral sequence for S, it follows that 202 = 2-0-0
is detected by hoh3 = hg - hs - hs in F3m,(S)5/F4r.(S)) = E3*. However, by the
graded commutativity of 7, (S5)%, we have

0-0=—0-0,

since |o| = 7 is odd. Thus 202 = 0, which implies that hoh? = 0 in E(9).
This can only happen because hoh% € E5(S) is the boundary of a differential, and
da(hy) = hoh% is the only possibility. a

This recovers a result of Toda, first proved by secondary composition methods.

COROLLARY 11.10.3 (|Tod55|). There is no stable map S*® — S of Hopf-
Steenrod invariant one. Hence there is no map S>3 — S8 of Hopf invariant one,
no H-space structure on S5, and no division algebra structure on R'S.

PROOF. Such a map would be detected by h4, which would have to survive to
the E.-term, but the nonzero differential da(hy) = hoh3 shows that this is not the
case. [l

REMARK 11.10.4. It follows that all do-differentials are h;-linear for 0 < 7 < 3.
In particular, the class of the cocycle 25 factors as hihs, so that da(hihs) =0-hs+
hy -0 = 0. This resolves one differential that was left open in Example

Passing to cohomology with respect to the do-differential, we can calculate
E5(S) in our range, and determine its algebra indecomposables.
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FIGURE 11.4. Eg’t(S) with hg-, hi-, ho- and hsz-multiplications,
and dz-differentials, for 0 <t —s <16 and 0 < s <12

LEMMA 11.10.5. For t — s < 16, the Fy-algebra E3"(S) is generated by the
following classes.
X ‘ ho hl h2 h3 Co Phl Ph2 do h0h4 h1h4 PCO
t—s| 0 1 3 7 8 9 11 14 15 16 16
S 11 1 1 3 5 5 4 2 2 7

The h;-multiplications are visible in Figure[I1.]}, and the remaining products in this
range are zero.

Note that hohg and hyhg were decomposable on Es(.S), but are indecomposable
in E3 (S)

PrOPOSITION 11.10.6. In the range t—s < 16, the ds-differential on the algebra
generators is given as follows.

x ‘ ho hl h2 h3 Co Phl Ph2 do h0h4 hl h4 PCO
ds(x) [ 0 0 0 0 0 0 0 0 hdy O O

PROOF. The ds-differentials on hg, ho, hs, cg, Phy, Phs, dy and Pcy land in
trivial groups, hence are zero. In particular, d3 commutes with multiplication by
any of these elements.
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The differential on hy vanishes by hg-linearity, since

hods(h1) = ds(hoh1) = ds5(0) =0,
while hohd # 0, so ds(hy) # hg.

By ho-linearity, ds(hihy) is ho-torsion, hence lies in {0, hidp}. By calculating
Ext4(F2,F2) in a larger range, we can show that dy - h1hy = 0, while dg - hidy =
hid3 = 99 # 0 in E29’9+29(S). Moreover, we claim that h;d3 remains nonzero in
E5(S). This follows from da(k) # 0, which implies da(hok) # 0, da(r) = 0 and
da(hor) = 0. Hence

do - d3(h1hy) = d3(do - h1hg) = d3(0) =0
and do - hidg # 0 in E5(S) imply that ds(hihs) # hidp. The only remaining
possibility is d3(h1hs) = 0. (This can also be deduced from the strict commutativity
of the product on S, using the quadratic construction on o to obtain a map %7 P2 =

The final case, ds(hohs) = hodp, deserves a separate theorem. [l

THEOREM 11.10.7. d3(hohs) = hodp.

Proor. ((ETC: This can be proved by comparison with the Adams spectral
sequence for C'o, or using the split surjectivity (Adams conjecture) of the Adams
e-invariant e: m15(5)5 — m15(4)5 = Z/32 based on real K-theory.)) O

The Leibniz rule for d3 implies that dz(h3hs) = h2do, as indicated in Fig-
ure[I1.4] Passing to cohomology with respect to the ds-differential, we can calculate
E,(S) in our range, and determine its algebra indecomposables.

LEMMA 11.10.8. For t — s < 16, the Fy-algebra E;*(S) is generated by the
following classes.

x ‘ h,o h,l hg hg Co Phl Phg do h8h4 hl h4 PCO
t—-s| 0 1 3 7 8 9 11 14 15 16 16
s 11 1 1 3 5 5 4 4 2 7

The h;-multiplications are visible in Figure and the remaining products in this
range are zero.

ProroSITION 11.10.9. All d,.-differentials for r > 4 are zero in the range t—s <
16. Hence E4(S) = Ex(S) in this range.

PRrROOF. This is clear for all of the algebra generators other than h; and hqhy.
We see that d,.(h;) = 0 in each case by ho-linearity, since hi™ # 0 in E,.(S) by
induction. Likewise, d,(h1h4) = 0 for r € {4, 5} by ho-linearity. The only remaining
case is dg(h1hs) € {0,hlhs}. ((ETC: This can be deduced by Maunder’s theorem,
or by the construction of a homotopy class nn* detected by hihy, using the quadratic
construction Dy(S7).)) O

11.11. Homotopy of the sphere spectrum
We adopt the following notations from Toda’s book [Tod62], sce Figure

DEFINITION 11.11.1.

e Let n € m1(S) be the stable class of the complex Hopf fibration, detected
by h1 € Ex(S) in bidegree (t — s,s) = (1,1).
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12 o

FIGURE 11.5. EJY(S) = E%'(S) with ho-, hi-, ho- and hs-
multiplications, for 0 <t —s <16 and 0 < s <12

e Let v € m3(S) be the stable class of the quaternionic Hopf fibration,
detected by he € Eo(S) in bidegree (t —s,s) = (3, 1).

e Let o € m7(S) be the stable class of the octonionic Hopf fibration, detected
by h3 € Ex(S) in bidegree (t — s,s) = (7,1).

e Let € € m5(S5)4 be the unique homotopy class detected by ¢y € Eoo(S) in
bidegree (t —s,s) = (8, 3).

e Let p1 € m9(S)4 be the unique homotopy class detected by Ph; € Eoo(S)
in bidegree (t — s,s) = (9,5).

e Let ¢ € m1(S5)5 be detected by Phy € Ex(S) in bidegree (t — s,s) =
(11,5). This determines ¢ up to an odd multiple. (A definite choice can
be made using the J-homomorphism.)

e Let k € m14(S)5 be the unique homotopy class detected by dy € Eoo(5)
in bidegree (t — s,s) = (14,4).

e Let p € m5(5)% be detected by hihs € Eo(S) in bidegree (t — s,s) =
(15,4). This determines p up to an odd multiple, modulo nx. (A definite
choice can be made using the J-homomorphism.)

e Let n* € m6(5)% be detected by hihy € Es(S) in bidegree (t — s,s) =
(16,2). This determines n* modulo np. (A definite choice can be made
using the Adams e-invariant.)

Let E be a ring spectrum and M an E-module spectrum, and suppose that
the Adams spectral sequences E,.(E) and E,.(M) converge to m.(E) and . (M),
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12 o

FIGURE 11.6. The associated graded of m,(S) for 0 < n < 16

respectively. For instance, we may consider any spectrum Y as an S-module, so
that F,.(Y) is an E,(S)-module spectral sequence.

DEFINITION 11.11.2. Let o € m,(E) be detected by a € Foo(E), and consider
nonzero classes b and ¢ € Eo(M). We say that there is an a-extension from b to ¢
if there exists a § € m, (M) such that g is detected by b and af is detected by c,
and such that there is no class 8’ € m.(M) of higher Adams filtration than j for
which a3’ is detected by c. This is a hidden a-extension if ab = 0.

((ETC: In this definition, ¢ should be viewed as being defined modulo the classes
(in the same bidegree) detecting products a8’ with 8’ of higher Adams filtration
than §.))

(ETC: Generalize a-extensions to maps f: X — Y, comparing the filtrations
fo(FPm (X)) and F¥m,(Y) to form the bifiltration &% = f, (F*m. (X)) N F'm.(Y)
of .(Y). Consider ®%4/(®stLu 4 gsutl)))

PROPOSITION 11.11.3. 1p € m16(S)9 is detected by Pcy € Eo(S) in bide-
gree (t — s,8) = (16,7), while n*k = 0. Hence there is a hidden n-extension from
h8h4 to PCQ.

PRrOOF. ((ETC: This can be deduced using the e-invariant to the image-of-
J spectrum, or perhaps by a comparison with the Adams spectral sequence for
Cn.)) O
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DEFINITION 11.11.4. When a spectral sequence (E,,d,) converges to G, and
a € E5 is a nonzero class, we write {a} C G for the set of a € G that are
detected by a. This is the coset of F*T1G in F*G that corresponds to a under the
isomorphism F*G/F*T1G = ES,. When F*"1G = 0 in the total degree of a, this
is a single element and we write o = {a}.

We can now summarize these initial findings about the graded commutative
ring . (S)5, in degrees * < 16. We write Z/n{a} for the cyclic group of order n
generated by a class a.

THEOREM 11.11.5.

(0) m0(8)2 = Zs;
2% € {h§} for s > 0.

(1) m(9)y = Z/2{n};
n={h}.

(2) m2(8)s = Z/2{n’};
n? = {hi}.

(3) m3(S)y = Z/8{v};
Ve {hg}, 2 € {hohg}, dy = {hghg},
N3 = 4v.

(5) m5(8)2 = 0.
5 =1Z/2{v*};
v? = {h3}.
(7) m2(S)3 = Z/16{c};
S {hg}, 20 € {hohg}, 4o € {hghg}, 80 = {h%hg}

(8) ms(9)y =Z/2{e} & Z/2{no};
no € {hihs}, e = {co}.

(9) m9(S)s = Z/2{u} ® Z/2{ne} @ Z/2{n0};
n?c € {h2h3}, ne € {hico}, p = {Phi};

V3 = ne + 7720.
(10) m10(S)y = Z/2{nu};
np = {h1Ph1};

n%e=0, vo =0.

(11) m11(S)5 = Z/8{¢};
C < {Phg}, 2C S {hQPhg}, 4C = {h%PhQ},
n?p = 4¢, ve = 0.

(12) 7T12(S)é\ = 0
(13) 7T13(S)é\ =0.
(14) m4(S)y = Z/2{r} ® Z/2{c?};

k= {do}, 0 € {h3};
v( =0.
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(15) m15(5)3 = Z/2{nr} & Z/32{p};
p € {hiha}, 2p € {hgha}, 4p € {h3ha}, 8p € {hGha}, 16p = {h{ha},
nK € {hldo};
no? =0, oe = 0.

(16) me(S)s = Z/2{np} ®Z/2{n"};
np = {Pco}, n* € {hiha}; °k =0, op = np, € = 0.

PROOF. In many cases, this is immediate from the algebra structure of the F .-
term, keeping in mind that if @ and 8 are detected by a and b, respectively, then
af is detected by ab if ab # 0, and has higher Adams filtration than this product
if ab = 0. See Remark The following cases require additional argments.

(9) The spectral sequence algebra structure shows that v is detected by h3 =
h2h3, hence equals n?c modulo Adams filtration > 4, i.e., modulo Fa{u,ne}. The
K O-theory d- and e-invariants, which combine to a map e: S — j to the image-of-J
spectrum, show that we must have v® = n?0 + ne.

(10) The map to the image-of-J detects nu, but not n%e or vo, so the latter
two products are zero.

(11) The image-of-J detects ¢, 2¢ and 4¢ but not ve, so the latter product is
7Zero.

(14) The product v¢ has Adams filtration > 1+ 5 = 6, hence is zero, since the
FE.-classes in total degree 14 all have lower Adams filtration.

(15) The image-of-J shows that no? and ce lie in Fo{0,nx}. ((ETC: Justify
no? =0 and oe = 0.))

(16) The relations 7%k = 0, o = np and €2 = 0 are all detected in the image-
of-J spectrum. Since they all lie in Adams filtrations greater than that of n*, they
also hold in the homotopy of S. O

REMARK 11.11.6. The relation v - v? = n?c + ne shows that the (hidden or
visible) a-extensions do not completely determine the multiplicative action by a,
since there may be higher filtration terms that are not seen by the a-extension. In
this case there is a v-extension from h3 to h3 = h3h3, and ne is the higher-filtration
term.
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CHAPTER 14

The sphere spectrum and the projective planes

14.1. The (FE5,dy)-term for S
The Es-term
By (8) = Ext}{' (F2, F2)
for the Adams spectral sequence converging to m_s(5)% has been calculated for

t < 200 using ext. A set of algebra generators for t —s < 48 are listed in Table[14.1]
and the (B2, d2)-term in this range is shown in Figure [T4.1]

Table 14.1: Algebra generators for Eo(S) with t — s < 48

t—s s g| = do(x)
0 1 0] hg 0 (i)
1 1 1| Iy 0 (2)
3 1 2| hy 0 (i)
7 1 3| hg 0
8 3 3| ¢ 0
9 5 1| Ph 0
11 5 2| Phy 0 (i)
14 4 3| do 0 ()
15 1 4| hy hoh3 ()
16 7 3| Pc 0
17 4 5] e hido (9
17 9 1| P 0
18 4 6| fo hieo  (9)
19 3 9| ¢ 0 ©
19 9 2| P2%h, 0 (),
20 4 8| ¢ 0
22 8 3| Pd 0
23 7 5| i | hoPdy
24 11 3| P3¢ 0
25 8 5| Pey | h3Pdy
25 13 1| P3hy 0 (i)
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Table 14.1: Algebra generators for Eo(S) with t — s < 48 (cont.)

t—s g T da(x)

26 7 6| j | hoPeo
27 13 2| P3hy 0
29 7| k| hod
30 6 10| r 0
30 12 3| P2dy 0 (1)
31 1 hs hohi ()
31 5 13| n 0
32 4 13| 4y 0
32 6 12| ¢ 0
32 7 10| ¢ hodoeo
32 15 3| P 0 ()
33 4 14| p 0 (3)
33 12 5| P2 | h3P2%d,
33 17 1| P'h 0
34 11 7| Pj | hoP%e
35 7 12| m | hodogr
35 17 2| P*hy 0 ()
36 6 14| ¢ 0 @)
37 5 17| =z 0 (1)
38 4 16| e 0
3326 16| vy hix
38 16 3| P3d, 0
39 9 18| w 0
39 15 5| P2% | hoP3dy (1)
40 4 19| f 0 (1)
40 19 3| Ple 0
41 3 19| o ho f1
41 10 14| =z 0
41 16 5| P3¢y | h2P3d,
41 21 1| P°hy 0 ()
42 9 19| w hoz  (13)
42 15 6| P%j | hoPde
43 21 2| Pohy 0
44 4 22| ¢ 0 ()
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Table 14.1: Algebra generators for Eo(S) with t — s < 48 (cont.)

t—s s g| = da(x)

45 9 20| w 0
46 7 20| B 0
46 8 20| N 0
46 20 3| P*dy 0

47 13 14| Q hoi?
47 13 15| Pu 0
48 7 22| By
48 23 3| Poc

=l=lelE

Fy-algebra generators are chosen as follows:

The generators hg, cg, do, €9, g = g1, P, , T, q, t, 1, j, k, £, m, By, N, u,
v, w and z are the unique nonzero classes in their respective bidegrees.
The generator fy = Sq'(co) equals 4¢ and the generator y = S¢*(fo)
equals 616, both by [BNT].

e The generator n = 513 is characterized by hon = 0.
e We set By = 729, which may differ by 723 = h3hseo from the generator of

the same name in [Tan70].

e The generator @ = 1314 is characterized by ho@ # 0 and h1Q # 0.
e The generators a; for larger ¢ with a € {h, ¢, d, e, f, g}, are iteratively given

The

by Ai+1 = Sqo(az)
The generators Pa lie in (hs, hg,a), and the generator P2a (for a = i) lies
in <h4, hg, (L>.

do-differentials are determined as follows:

The differentials on h,o, hg, h37 Co, do, g1, fl, g2, 1:)i117 Phg, Z, PCO, BQ,
Pdo, N, P2h1, chg, w, PQCo, PQdo, P3h1, P3h2, PSCO, Pgdo, P4h1,
P*hy, P*cy, P*dy, P°hy, P°hy and P°cy are zero because the target
bidegrees are trivial.

The differentials on hq, di, e1, n, ¢, t and Pu are zero by hg-linearity.
The differential on p is zero by hi-linearity.

The differentials on r and z are zero by ho-linearity, since hor = hiq.
Since h3 survives to E., and detects o € 77(S), and 202 = 0 by graded
commutativity, the detecting class hoh3 must be a boundary. This estab-
lishes the first Adams differential, da(hy) = hoh3.

Since hy - hs = 0 and hoh3 - hs = 423 # 0 the Leibniz rule da(hshs) =
da(ha)hs + hada(hs) and case imply da(hs) # 0. The only alternative
is dg(h5) = hohi

Since hy - i = 0 and hoh% - i = 1012 # 0 the Leibniz rule da(hgi) =
da(h4)i + hada(i) and case imply da(i) # 0. The only possibility is
da(i) = hoPdp.

The differentials on Pey, j, k, £, m and y follow from case by hg-, h1-
and hg-linearity. ((ETC: Note that hyda(y) = hada(t) = 0.))
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(9) The differentials on ey, fo and ¢; follow from case (8]) by do-linearity, since
dofo = hoé with dg(hog) 7é 07 so that dg(fo) 7é 0 must be h%@o.
(10) The differentials on Pj and PZeq, follow from case by dg-linearity,
since hodgi = haPj, so that do(Pj) # 0 must be hoP?e.
(11) The differentials on P?i, P?j and P3eq, follow from case by Pdy-
linearity, since hoPdgi = haP?j, so that da(P?2j) # 0 must be hoP3e.
(12) The relation do . B1 = 1122 = h1 . 1024 and d2(1024) =0 1Inp1y that
do . dQ(Bl) =0. HOWGVGI‘, do W = 1122 7£ O, SO dQ(Bl) 7& w.
(13) The relation hogy - Pj = 1617 = h3hs - Q and hqggy - da(Pj) # 0 implies
that da(Q) # 0 must be hgi?.
(14) The H, ring structure on S implies da(ca) = hoSq'(c1) = ho f1, cf. [ BMT70,
Cor. 3.3.6], [Mil72} Cor. 6.5.2] or [BR], Thm. 11.52(4)].
(15) We show in Table[14.5] cf. case (12), that d2(D) = hoZ+i(dok) in Ea(Cn).
Mapping by j: Cn — S? it follows that do(v) = hoz in Ex(S).
((ETC: Alternatively, the unit map ¢: S — tmf to topological mod-
ular forms shows that da(v) # 0, so hgz is the only possible value,
cf. [MT67, Prop. 6.1.5] or [BRL Thm. 11.52(5)].))

14.2. The (E3,ds)-term for S

The Es-term of the Adams spectral sequence for S is calculated as the homology
subquotient
E3(S) = H(E2(5),d2) .
A set of algebra generators for t — s < 48 are listed in Table and the (Fs,ds)-
term in this range is shown in Figure[14.2] ((ETC: d3’s complete from t — s < 29.))

Table 14.2: Algebra generators for E3(S) with t — s < 48

t—s s g x ds(z)
0 1 0] ho 0
1 1 1| M 0
3.1 2| h 0 ()
7 1 3| hs 0 )
8 3 3| o 0 ()
9 5 1| Ph 0
11 5 2| Phy 0
14 4 3 do 0
15 2 7| hohy hodo  (T0)
16 2 8| hihy 0 ()
16 7 3| P 0 ()
17 9 1| P’my 0
18 2 9| hohy 0
19 3 9| 0
19 9 2| P2h 0 ()




Table 14.2: Algebra generators for E3(S) with t — s < 48 (cont.)

14.2. THE (FE3,ds3)-TERM FOR S

t—s s g x ds(z)

20 4 8| @i 0
22 8 Pdy 0
23 4 10| huco 0
23 9 hdi 0
24 11 P2 0 (1)
25 13 P3hy 0 (),
27 13 2| Phy 0
30 10| n? 0
30 6 10| 7

30 12 3| P2 0
31 4 12| hihs

31 5 13| n 0 ()
31 8 10| doeo

32 2 12| hihs 0
32 4 13| d 0
32 6 12| ¢ 0
32 15 3| P 0 ()
33 4 14| p 0 @
33 17 1| P'm 0 ()
34 2 13| hohs

35 17 2| Plhy 0
36 6 14 t 0
37 5 17 x 0
37 8 15| eoqp 0 ()
38 2 14| hshs 0 (6)
38°.4 16| e hat
38 16 3| P3dy 0
39 4 18| hsco 0
39 18| w 0
39 12 Pdgeq 0 @
39 17 h3P?i 0 ()
40 4 19| f 0
40 18 | Phihs 0
40 19 3| Pl 0 @

325
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Table 14.2: Algebra generators for E3(S) with t — s < 48 (cont.)

t—s s g T ds(x)

41 10 14 z

41 21 1| Pm 0
42 6 20| Phohs 0
43 21 2| P°hy 0
44 4 22| ¢ 0 ()
45 5 24| hsdy 0 ()
45 9 20 w 0
46 7 20| B 0
46 8 20| N 0
46 11 12| do? 0
46 14 10| 2 | hi(Pdo)?* (14)
46 20 3| Pd, 0 ()
A7 8 21| Phseo 0 ©
47 10 16| eor 0
47 13 15| Pu 0
A7 16 10 | P2dgeq 0
47 18 10| h3Q

48 7 22| By 0 (&)
48 23 3| Poc ()

The ds-differentials are determined as follows:

(1)

(7)

The differentials on hg, ho, hsz, hi, co, C1, do, g1, haco, P, hsco, g2, Phy,
Phg, x, h5d0, Phg, f)CO7 Bl, ]Dd()7 €0J1, N, P2h1, P2h2, h%l, u, w, egr,
PQC(), doe, Pzdo, Pdoeo, 1’:)3]7,17 Pghg, Pu, PBCO, P3d0, PQdoeo, P4h1,
P%hy, h3P%, Picy, P*dy, P°hy, P°hy and P°cy are zero because the
target bidegrees are trivial.

The differentials on hy, dy, n and g are zero by hg-linearity.

The differential on hihy is zero or hidy by ho-linearity. It cannot be hidy
by do-linearity, since hid? # 0 while hyhadg = 0.

The differental on hohy is zero since hihy = h3 is a dz-cycle.

The differential on hyhs is zero or n by hg-linearity. It cannot be n by
ho-linearity, since hon # 0 while hy - hihs = 0.

The differential on hghs cannot be x by hqhg-linearity, since hihg-h3hs = 0
and dz(hihg) = 0 imply hyhg - d3(hshs) = 0, while hihg - © = Tgg cannot
be a da-boundary, hence is nonzero in E3(S).

The differential on ¢ cannot be hidggs = 915 by 2’ = 101s-linearity, since
2’ - hidpgr = 1942 cannot be a dy-boundary, while 2’ - t = 0.
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(8) The differential on By cannot be egr by dg-linearity, since dg - egr = 1499

cannot be a dy-boundary by hg-linearity, while dg - Bo = 1137 = hoBoy
with Ba; = 1094, and da(Bs1) and d3(Bs1) are trivially zero.

(9) The differential on Phscy cannot be dof by dg-linearity, since dy-dof = 1517
cannot be a ds-boundary by hg-linearity, while do - Phsco = 0.

(10) We use the exact sequence

7T7(S) L) 7714(3) —l> 714(00') L} 7T6(S) L) 7T13(S).

In F3(Co) we have da(h3hs) = i(hodp), so m4(Co) has order dividing
four. Since 76(S) = Z/2{v?} and v?¢ = 0, the image of i has order divid-
ing two. Since m7(S) = Z/16{c} and 20% = 0 by graded commutativity,
m14(5) has order dividing four. Hence hody and hidy must be boundaries,
and d3(hohs) = hodp is the only possibility.

(11) The H, ring structure on S implies dz(e1) = Sq*(da(eo)) + h1S¢?(eg) =

hit, see |Bru84l Thm. 4.1] or [BR, Thm. 11.54(11)].

(12) The H,, ring structure on S implies d3(f1) = Sq?(dz(c1))+h15¢3(c1) = 0,

see IMT67, §8.7] and [BR), Thm. 11.54(12)].

(13) The H,, ring structure on S implies d3(hihsPhy) = Sq*(d2(g)) = 0, so

ds(hsPhy) = 0 by hq-linearity, see [BR, Thm. 11.54(13)].

(14) The H ring structure on S implies d3(i%) = Sq¢®(hoPdo) = hi(Pdp)?,

see |[BR), Thm. 11.54(15)].

14.3. The (Es,ds)-term for S/2

We define S/2 by the homotopy cofiber sequence

S -2 5 -1 572 L St

The FEs-term

E3*'(S/2) = Ext%" (M, F)

for the Adams spectral sequence converging to m:_4(S/2) has been calculated for
t < 150 using ext. A set of F5(S)-module generators for ¢t — s < 48 are listed in
Table and the (B2, dz)-term in this range is shown in Figure [[4.3]

Table 14.3: E5(S)-module generators for Ey(S5/2) with t — s < 48

t—s s g x do(z)
0 0 0 i(1) 0
2 1 1 hy 0
72 3 h3 0 (@
8 4 0| Pi1) 0 (i)
9 3 2 & o @
10 5 1 Phy 0
15 3 5|  hohl 0
15 6 2 P2 0
16 8 0| P%(1) 0 (i)
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Table 14.3: F»(S)-module generators for E2(S/2) with ¢t — s < 48
(cont.)

t—s s g x do(x)

7 7 2 Péy 0 ()
18 9 1 P2h, 0 @
20 3 9 1 0
23 10 2| P} 0
24 12 0 P3i(1) 0
25 11 2 P2 0
2 13 1 P3h, 0 @
31 5 11 hih2 0 @
31 14 2 P3h2 0 ()
32 5 13 n 0
32 16 0 Pi(1) 0
33 4 13 dy 0
33 6 11 q 0
33 15 2 P3¢ 0 (i)
34 17 1 Pihy 0 @
37 6 15 t 0
33 8 9 eomgx 0
39 4 17 €1 i(hiz)  (6)()
39 18 2|  Ping 0
40 9 11 u 0
40 20 0 P%(1) 0 ()
41 8 11 7 i(hiw) @)
41 19 2 P*¢ 0
42 21 1 Pohy 0
43 9 13 v hiu
45 6 23 h2gs 0
45 10 13 dor 0 ()
46 9 15 ] 0 ()
46 12 9 P(eog/ljr/hgx) 0 (m
AT T 19 B 0
47 8 14 N 0
47 11 11 dot 0
AT 22 2 P52 0 @
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Table 14.3: F»(S)-module generators for E2(S/2) with ¢t — s < 48
(cont.)

t—s s g x da(z)

48 6 26 hohaga 0 (@)
48 10 15 eor 0 (i)
48 13 11 P 0
48 24 0 PYi(1) 0 (),

The E3(S)-module generators are chosen as follows:

e The generators (1), i, h3, 7, G, t, h3ga, hohaga, eogr + hiz, gN%, U, v, W,

dor, egr and dof are the unique nonzero classes in their respective degrees,
and j(a) = a each case.

e We choose ¢y = 32, rather than 33 + 33, as the lift of co.

e We choose dy = 413, rather than 413 + 414, as the lift of d;.

e We choose @\f 4,7, rather than 417 + 44g, as the lift of e;.

e We choose h3h? = 511, rather than 511 + 512, as the lift of h3h3.

e We choose ,B: = Tq9, rather than 719 + 729, as the lift of Bj.

e We choose N = 814, rather than its sum with 815, 814 or 815 + 814, as the
lift of V.

e The generators Pa lie in (h3, h, a).
The ds-differentials are determined as follows:

(1) The differentials on i(1), R, hg, & Pi(1), 575, h3h2, i, Ph2, G, T, h2gs,
,PCAE)7 P2Z( ) €og1 + h N P2 h1, u, w P2 h%, dor, 6/67", P2C~0, d()g, P3i(1),
P(6091 + h3x), P3hy, P, P3h§, P3¢y, P*i(1), P4hy, Ph2, Pcy, PPi(1),
P5h1, P5h2 and P%(1) are zero because the target bidegrees are trivial.

(2) The differentials on ¢;, v and By are determined by the results for S
and naturality with respect to j: S/2 — S!. ((ETC: For v, note that
hoz = h2u.))

(3) The relations hy - d; = 0 and hoh3 - d; = 0 imply that hy - d2(d;) = 0. On
the other hand hy - 619 # 0, so da(dy) # 619.

(4) The differential dz(h302) = hohsfi = hohags lifts over j to da(hsca) =
hohggg, SO dg(h0h2g2) = 0 since d2d2 =0.

(5) Wlth = 1018; R1 = 1019 and Ql = 1022 m EQ(S), we have the relation
x g1 = 1853 = Q- (6091 +hd ) Here da(2') = 0 and da(epg1 + hdz) =0,
so z’ dg(gl) = do(Q1) - (6091 + h3z) in F5(S/2). From da(P?j) # 0 we
deduce da(Ry) = hz' and dg(Ql) = hiz' in Ey(S), by ho-, h1 and ho-
linearity. Since h?z’ - (eggr + hix) = 2042 # 0 in E2(S/2), it follows that
da(g?) # 0. ((ETC: This detects a hidden 2-extension from g7 to hju.))

(6) The relation hq-€; = 599 = hsz-d; and case shows that da(é1) € {0, 617}.
According to a recent “secondary Steenrod” calculation by Dexter Chua,
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dy(€1) = 617 = i(h1x) is nonzero. ((ETC: This is subtle, since d3(e1) =
hit # 0, as was proved by Bruner.))

14.4. The (Es,ds)-term for S/2

The Es-term of the Adams spectral sequence for S/2 is calculated as the ho-
mology subquotient
E3(5/2) = H(E2(5/2),d2) .
A set of E5(S)-module generators for t — s < 48 are listed in Table and the
(E3,ds)-term in this range is shown in Figure [[4.4] ((ETC: d3’s complete from
t—s<25.))

Table 14.4: E5(S)-module generators for E5(S5/2) with t —s < 48

t—s s g x ds(x)

0 0 0 i(1) 0 [
2 1 1 h1 0 ()
T 2 3 h2 0
8 4 0 Pi(1) 0
9 3 2 ¢ 0
0 5 1 Phy 0
15 1 4 i(hy) 0 @)
15 3 5 hoh2 0 @
15 6 2 Ph2 0 )
6 8 0 P2i(1) 0
17 2 8 hahy 0
17 7 2 Pé; 0
18 9 1 P2hy 0
20 3 9 a 0 ()
2 3 11 hah3 0 ()
23 10 2|  P2h} 0
24 4 11 haco 0
24 6 eohl hyi(Pdo)  ([@()
24 12 0 P3i(1) 0
25 11 2 P2¢ 0 (1)
2% 7 5 i(5)

26 13 1 P3hy 0
31 1 5 i(hs) 0
31 5 11|  h3h2 0
31 14 2 P32 0 [




Table 14.4: FE3(S)-module generators for E3(S/2) with ¢t — s < 48

(cont.)

14.4. THE (Es,d3)-TERM FOR S/2

t—s s g x ds(z)

32 5 13 7

32 10 eoPh3

32 16 Pi(1)
33 12 hshy 0
33 13 dr

33 11 q 0
33 15 2 P3¢ )
34 11 5 i(Pj)

34 17 1 Pihy ()
37 15 t
38 17 hsh?
38 8 9| cogr + hiz

39 18 hsPi(1) ()
39 18 2 P2 i
40 20 hisco

40 11 u

40 14 eoP2h3

40 20 P5i(1) 0
41 20 i(cg) 0
41 20| hsPhy 0
41 19 2 P 0 ()
42 15 5 i(P25)

42 21 1 P5hy 0
5 6 23 h2gs
45 10 13 dor

46 24 | hshoh2
46 17 hsPh3 )
46 15 @

46 12 9 P(eog/ljr/hga:)

47 19 B, 0 ()
47 14 N

47 11 11 dot

AT 22 2 P5h2 0 @
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Table 14.4: FE3(S)-module generators for E3(S/2) with ¢t — s < 48

(cont.)
t—s s g x ds(z)
48 8 17 hs Pég 0 B
48 10 15 eor
48 13 11 Pu
48 18 6| eoPPh2
48 24 0|  PSi(1) 0 )

The d3-differentials are determined as follows:

(1) The dlfferentlals on i(1), 71\;, i(hs), ;L; o, l;;/_z/%, a1, Pi(1), h5i:(_)\f_t/§, Pa,
Wk, PR3, G, hgs, Pé, Bi, P¥i(1), P*hy, P*h3, P*c, PYi(1), P*hy,
P312, P3G, PYi(1), P*hy, P*h3, P*G, P%(1), Pohy, P5h2 and P%i(1)
are zero because the target bidegrees are trivial.

(2) The differential on i(cg) is zero by hi-linearity.

(3) The differential on h5;L\1/ is zero by hs-linearity.

(4) The differentials on i(h4), hahy and hycg are zero by do-linearity.

(5) The differentials on h5h§, t, hsPhy, h5Ph2 and hsPcy are zero by natu—
rality with respect to j: S/2 — S, using information /f_{(_)in Table

(6) We have d3(j(hsPi(1))) =0 by hl—lineariwd j(eogi+hd) = eogn ;é 0,
so the differential on hsPi(1) cannot be eogl—i—hg, hence is zero.

(7) From dg(hgfo) = i(Pdp) in E3(Cn) we deduce that Pdy detects n?F in
E+(9), cf. [BRL, Thm. 11.71], so that hy Pdy detects 3k = 4vi, where 2vk
is detected by hghsg1 in Adams filtration 6. The hidden 2-extension from
hoh2g1 to hy Pdp lifts to Se (in a minimal Adams resolution S, for S), and
shows that hq1i(Pdy) must be a d,.-boundary in E,.(5/2) forr < 9—6 = 3.
Hence dg,(eoﬁg) = h1i(Pdp). ((ETC: Clarify, or avoid, the use of Sg.))

(8) ((ETC))

14.5. The (Es3,ds)-term for S/n

We define S/n by the homotopy cofiber sequence
Sty 8ty Sy L S2.
The Es-term
By (S/n) = Ext} (Ms, Fy)
for the Adams spectral sequence converging to m:_s(S/n) has been calculated for

t < 140 using ext. A set of F5(S)-module generators for ¢t — s < 48 are listed in
Table [14.5] and the (Ey,ds)-term in this range is shown in Figure [14.5]




Table 14.5: FE5(S)-module generators for Eo(S/n) with t — s < 48

(cont.)

14.5. THE (Es, d2)-TERM FOR S/n

‘t—s

T

dg(il?)

Table 14.5: E5(S)-module generators for Eo(S/n) with t —s < 48

t—s s g x da(z)

0 0 o i1 0 )
2 1 1| ho 0
5 1 3| h 0
11 4 4| hie 0
13 5 4| Phy 0
16 2 10| &2 0 @)
19 8 4| Phic 0 (@
20 4 11| fo hoeoho (6
21 3 14| & 0
219 P2h, 0
25 7 i Pdyhg @
27 12 4| P%hico 0
28 7 10| J Peghg ()
29 13 4| P%hy 0 m
31 7 13| k &2ho
32 6 18 7 i(doeo) ©
33 3 20| hhl 0
33 5 22| @ 0
34 7 18| 7 doeoho @)
35 4 2| p 0 ()
35 16 4| P*hico 0 ()
36 11 12| Pj P2eghg (@)
37 7 21| dogiho @)
37 17 4| Phy 0
41 15 2h P3doho ()
42 30| o2 i(2) (@) ()
43 29| & fiho (@)
43 10 23 z i(d3) (O]
43 20 4| P'hico 0
449 30| 5 | heZ+i(dok) (@)()
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Table 14.5: FE5(S)-module generators for Eo(S/n) with t — s < 48

(cont.)

t—s s g x da(z)

4 15 10| P?j P3egho ()
45 21 4| Pohy 0
47 37 hlgg 0
479 32| © i(dol) @3 ()
47 12 21| d2eo i(i2) ([@5) (1)
48 8 34| N 0 (1)

The E3(S)-module generators are chosen as follows:

The generators (1), ho, h2, h3, Ca, h1007 P, z ], ( g17 v, w, z and d%eo
are the unique nonzero classes in their respective degrees, and j(a) = a
each case.

e We choose ¢; = 314, rather than 314 + 315, as the lift of ¢;.
e Calculation with ext shows that 399 is the unique lift of hyh3.
e (Calculation with ext shows that 41 is a lift of fj, together with 4194411,

and we choose the former.

Calculation with ext, or hg-linearity considerations, show that the unique
lift of n is 5&

We choose higs = 537, rather than 537 + 53g, as the lift of hqgo.

We choose 7 = 615, rather than 6,5 + 619, as the lift of 7.

We choose k = 713, rather than 713 + 714, as the lift of k.

We choose m = Ta1, rather than 751 + 722, as the lift of m.

We choose N = 834, rather than 834 + 835, as the lift of N.

The generators Pa lie in (hs, h§,a), and the generator P2a (for a =7) lies
in <h4, hg, (L>.

The ds-differentials are determined as follows:

The differentials on i(1), ho, ha, hico, Pha, Phico, P2ha, P2hico, P3ha,
P3h/1;0, P‘%; P4h/1;0 and PS?L; are zero because the target bidegrees are
trivial. -

The differentials on h, n are zero by ho- or h3-linearity.

The differential on ¢; is zero by hg-linearity, naturality with respect to
j: S/n— 8% and dic\l) =0 # ho fo.

The differential on hih? is zero by j-naturality.

The Leibniz rule and the relations hyp = 0 and hsp = 0 imply hs - da(p) =
0 while h5 thL = 758 # O SO d2( ) # hlﬁ

The differentials on ¢3, fo, z 7, K m, P], P% and PQJ follow from those
for S by j-naturality.

The differential on k follows from that on 3 by ho- and hs-linearity.
Since x’~l@ =0and 2'-i(B;1) = 17106 # 0, where 2’ = 1015 is a da-cycle,
we cannot have dg(l@) =i(By).
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(9) The differential on 7 follows from that on 7 by hy- and ho-linearity, com-
bined with j-naturality and hp-linearity. ((ETC: This is subtle, since
dg(r) =0 and dg(doeo) # 0))

(10) From dao(r) = 0 and da(7) = i(doeo) we deduce do(r7) = 1433 # 0. Here
T = glg/\f + 1243, where d2(1243) = 0 by ho-linearity. Hence ds (glg/%) #0,
which implies dy (g?) # 0 by g;-linearity. ((ETC: This detects a hidden
n-extension from g% to 2.))

(11) Since do-N = 0 and do-i(eor) = 1433 # 0 we cannot have dy(N) = i(eor).

(12) From do(r) = 0 and do(k) = d2ho we deduce da(rk) = 1559 # 0. Here
rk = el + 1338, where d3(1335) = 0 by hp-linearity. Hence da(eqd) =
h2dov + egda (D) # 0. Since h10 = 0, it follows that d2(?) # 0, and by
ho-linearity, its value must be 1117 = hoZ +1i(dpk). ((ETC: This is subtle,
since d2(v) = hoz and da(dok) # 0.))

(13) From da(r) = 0 and da(k) = d%ﬁg we deduce da(rk) = 1539 # 0. Here
Tiﬂ\ = do’l/lj + 13387 where d2(1338) =0 by ho—linearity. Hence d2 (d(ﬂ/ﬁ) 7§ 0,
which implies do (@) # 0. ((ETC: This detects a hidden n-extension from
w to dol.))

(14) From h(]'/Z\: ]-]-18 = f() '/Z.\WG calculate that h()'dz(g) = dg(fo)/l\—l-fodg (/Z\) =
1317, s0 do(2) = 1216 = i(d3). ((ETC: This detects a hidden n-extension
from 2z to d}.)) -

(15) The relation hq - d2eg = 1322 = i(Q) and the differential d»(Q) = hoi?

imply ho - da(d2eg) = i(hoi%) = 1512 # 0, so da(dZeq) # 0. ((ETC: This is
subtle, since dy(d3eo) = doP%dy # 0.))

14.6. The (Es5,ds)-term for S/n

The Es-term of the Adams spectral sequence for S/7 is calculated as the ho-
mology subquotient
E3(S/n) = H(E2(S/n),d2) .
A set of E5(S)-module generators for ¢t — s < 48 are listed in Table and the
(E3,d3)-term in this range is shown in Figure [[4.6] ((ETC: d3’s complete from
t—s<25))

Table 14.6: E5(S)-module generators for E5(S/n) with t — s < 48

t—s s g T dS(JU)
0 0 0 i(1) 0
2 1 1 ho 0 (@
5 1 3 hy 0 ()
11 4 4 hico 0 @
13 5 4 Phsy 0
16 2 10 h3 0 @
17 2 11 haho doho ()
17 4 7 i(eo) 0o @O
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Table 14.6: E3(S)-module generators for E3(S/n) with t — s < 48
(cont.)

t—s s g x ds(x)

19 8 4 Phico 0 )
20 2 13 haha 0 @)
21 3 14 a 0 (B!
21 9 4 P2hy 0
23 5 14 ha fo i(Pdo)  (@)()
2 5 17 hahico

27 12 4 P2hco 0 @
20 13 4 P3hy 0 ()
33 3 20 Tk o (@
33 5 22 f 0
34 9 22 h2l

35 4 22 P 0
35 16 4 P3hyco
36 2 18 hsha

37 17 4 Ph, 0 )
39 13 15 hohsPj

40 9 28 hoha

41 4 29 i(hocs)
2 5 31 hshico
42 13 18 h2Pj

43 20 4 P*hico )
4 6 31 hsPhs
45 21 4 P5hy [
A7 3 31 hsh2

AT 5 37 hiigz

A7 17 16 | hoho P%j +i(hiQ)

48 5 39 i(hseo)

48 8 34 N 0 (i)

The ds-differentials are determined as follows:

(1) The differentials on i(1), ko, ha, hico, Pha, Phico, Pha, P2hico, P3ha,
hih2, B, PPhyco, PYha, i(hocs), hshico, P*huco, hsPhs, PPhy and N are
zero because the target bidegrees are trivial.

(2) The differentials on i/zg and 7 are zero by hg-linearity.
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(3) The differentials on h47L87 h4}/L; follow by naturality with respect to j: Cn —
S$? and known differentials in E3(9).

4) See |BR] Lem. 11.72] for a proof that ds(i(eg)) =

) See [BR), Lem. 11.73] for a proof that ds(¢1) = 0.

) See [BR), Lem. 11.74] for a proof that ds(hafo) = i(Pdy).

) ((ETC))

( 0.
(5
(6
(7
14.7. The (Es,ds)-term for S/v
We define S/v by the homotopy cofiber sequence
R SN VAN L
The FEs-term
E3'(S/v) = Bxt}{ (My, )
for the Adams spectral sequence converging to m;_s(S/v) has been calculated for

t < 140 using ext. A set of F5(S)-module generators for ¢t — s < 48 are listed in
Table and the Es-term in this range is shown in Figure [14.7

Table 14.7: E5(S)-module generators for Fo(S/v) with t — s < 48

t—s s g x da(x)
0 0 0| (1) 0
4 3 1| K 0
5 1 2] M 0 2
702 3| hoha 0 ()
1 1 4 hs 0 (),
12 3 6| 0
13 5 41 Ph 0
15 6 5| Phohy | O
20 7 7| Pg 0 ()
21 9 4| P’y 0 ()
23 10 5 | P2hohy 0 (1)
26 4 14 | hocy 0
27 8| P%hs 0
28 11 7| P 0
29 13 4| Py 0
30 6 13| h2gr 0 (i)
31 14 5| P3hohy | 0O (1)
342 16 | K3 i) BO
3407 15| hor 0
36 6 19 7 0
36 15 7| P 0 ()
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Table 14.7: E5(S)-module generators for Eo(S/v) with t — s < 48

(cont.)

t—s S q x dz(x)

37 4 22 p 0 (4)
37 17 4| P*hy 0 ()
39 18 5| Phoha | 0
i1 5 27| = 0
418 19| g | i(hau) @)
2 6 25+2| 7 hiT
43 9 22 u 0 ()
43 17 8| P'hs 0 ()
4 4 31+32| fi 0 ()
4 8 23| 42 0
4419 7| Pl | 0
453 29 & | hofi @)
45 10 23 z 0 ()
45 21 4| PShy 0 (1)
46 9 24 ] hoz (&)
46 12 15| & 0
A7 11 20 | dok | hod}
47 22 5 | Pohohy
48 10 25 | dor (2

The E3(S)-module generators are chosen as follows:

The generators Z(l)v hfh h737 hizzla hfg’ Co, h2C1, D, 7, Wa Ea u, v, 7, W?
dok and d} are the unique nonzero classes in their respective degrees, and
j(@) = a each case.

e We choose hghy = 23, rather than 23 4 24, as the lift of hghs.
e We choose ¢35 = 329, rather than 329 + 339, as the lift of cs.
e Calculation with ext shows that 435 is a lift of f1, together with 437 + 432,

and we choose the latter.

e We choose h2g; = 613, rather than 614, as the lift of h3g;.
e We choose § = 619, rather than 6,5 + 619, as the lift of q.
e (Calculation with ext shows that 625 maps to y + hix and 626 maps to

hiz, while 697 = i(hsPhsy), and we choose § = 625 + 626, rather than
625 + 626 + 627, as the lift of y. ((ETC: Alternatively, we might choose 6295
as the lift of y + hyx.))

e Calculation with ext shows that €9g1 = 819 is the unique lift of egg1.
e The generators Pa lie in (h3, hi, a), and the generator P?a (for a = h3)

lies in (hy, hS, a).
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The ds-differentials are determined as follows:

(1) The differentials on (1), hs, hohz, hi, hac1, fi, Ph1, T, Phoha, g3, P%hy,
P%hg, u, P?hoha, z, d3, P3hq, h3h1, P3hoha, P*hy, P*hs, P*hoha, P°hy
and P°hohy are zero because the target bidegrees are trivial.

(2) The differentials on hy, ¢, g, Pco, dor, P?¢, P3¢ and Py are zero by
ho-linearity.

(3) The relation hgz - h3 = i(c2) and the differential da(ca) = ho f1 for S imply
d2(h3) # 0, and 419 = i(p) is the only possible value. ((ETC: This detects
a hidden v-extension from h3 to p.))

(4) By hy-linearity, d2(p) € {0,i(¢)}. Since g1 -p =0 and ¢y - i(t) = 1032 # 0,
we must have da(p) # i(t).

(5) Linearity with respect to j: S/ — S* determines the differentials on 7,
hor, T and dyk.

(6) The relation hy-€5g1 = h3-y and da(y = h37T implies da(eggr) # 0. ((ETC:
This is subtle, since dz(egg1) = 0.))

(7) Since do(ca) = hofi we have do(€3) € {532,531 + 532} This is ho fi or its
sum with i(hogs). According to a recent “secondary Steenrod” calculation
by Dexter Chua, hg - do(f1) = hi - 5a9, where 5og = dlﬁg = ela, o)

d2(¢2) = b31 + 532 = ho f1.

14.8. The (Es5,d;)-term for S/v

The Es-term of the Adams spectral sequence for S/v is calculated as the ho-
mology subquotient
Eg(S/V) = H(EQ(S/V), dg) .
A set of E5(S)-module generators for ¢t — s < 48 are listed in Table and the
(E3,ds)-term in this range is shown in Figure [[4.8] ((ETC: d3’s complete from
t—s<28.))

Table 14.8: E5(.S)-module generators for F5(S/v) with t — s < 48

t—s s g x ds(z)
0 0 0 (1) 0 ()
4 3 1 3 0
5 1 2 hy 0
702 3|  hohs 0
11 1 4 hs 0 (1)
12 3 6 &) 0 (Z)
13 5 4| Ph 0 ()
15 6 5| Phohs 0
19 4 10 | hahi 0
20 2 12| hahy 0
20 7 P&y 0
21 9 P%h; 0 (1)
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Table 14.8: E3(S)-module generators for E5(S/v) with t — s < 48
(cont.)

t—s s g x ds(x)

22 3 14 | hghohs 0 @)
23 8 7| i(hoi) 0 (i)
23 10 5| P?hohs 0
24 6 11| eohohs | hii(Pdo) (B)(!)
26 4 14 hacq 0
27 4 15 | hscy 0
27 9 8| P2%hs 0 ().
28 11 7| P’ 0 2)
29 7 11 i(k)

29 13 41 Pdhy 0
30 6 13| g
31 14 5| P3hoha
32 10 13 | Peghohy

34 4 20 | h2h2 ()
34 7 15 hor 0 (1)
35 4 21 | hshd

36 2 17| hshy 0
36 6 19 [ 0
36 15 7| P 0
37 4 22 P 0 (i
37 11 14 | i(doi)

37 17 4| P*h 0
38 3 23 | hshohs

38 7 20 | i(hoy)
39 16 7| i(hoP%)
39 18 5| Phohg ()
40 14 11 | P?eghohy

41 5 27 z

42 2 19|  hshs

43 4 30 hsco 0 (12)
43 9 22 u

43 17 8| P'hs 0 ()
44 4 31+32 i
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Table 14.8: E3(S)-module generators for E5(S/v) with t — s < 48

(cont.)
t—s s g x ds(z)
44 8 23 el
44 19 71 Pl 0 (2
45 10 23 z
45 15 11| i(Pdyi)
45 21 4| P°hy 0 (i)
46 7 28 | hsPhohso
46 12 15 a3
47 22 5| PShoha 0 (1)
48 4 36 | i(hscy) 0 ()
48 10 25 dor
48 18 13 | P3eghohy

The ds-differentials are determined as follows:

(1)

(6)

The differentials on i(1), hg, hoha, hs, Ph1, Phoha, hyhd, P?hq, i(hoi),
P2hohs, haci, P?hy, Phi, h3g1, PPhoha, hih3, hor, B, P*hi, i(hoy),
i(hoP2i), P*hohy, P*hz, P°hy, P°hohs and i(hscy) are zero because the
target bidegrees are trivial.

The differentials on h1, ¢y, Pég, P%¢g, hshi, G, P3¢, hscy and P*¢y vanish
by ho-linearity.

The differential on hyh; vanishes by naturality with respect to j: Cv —
S,

The differentials on hyhohs and hyco are zero by dg-linearity. In the first
case, do . dom = 1015 # 0 in Eg(Cu), while do . h4m = 0. In the
second case, dy - doCg = 1115 # 0 in E5(Cv), while d - hycg = 0.

From ds(hafo) = i(Pdy) in E3(Cn) we deduce that Pdy detects 2% in
E«(S), cf. [BRL Thm. 11.71], so that hyPdy detects 73k = 4vk, where
4% is detected by h3g; in Adams filtration 6. ((ETC: The hidden v-
extension from h3g; to hy Pdp lifts to Ss (in a minimal Adams resolution
S, for S), and shows that hyi(Pdy) must be a d,.-boundary in F,.(S/v)
for r < 9 — 6 = 3. Hence ds(eohohz) = hii(Pdy).)) Since i(4vk) = 0
in m.(Cv) it follows that hii(Pdp) is a boundary. From case and
hi-linearity the only possible source of this differential is eghghs.

((ETC))

14.9. The (E3,ds)-term for S/o

We define S/o by the homotopy cofiber sequence

ST 758 -5 /o Ly S8,
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The Es-term
Ey"(S/0) = Ext}" (M, F2)
for the Adams spectral sequence converging to m;—(S/o) has been calculated for

t < 140 using ext. A set of Ey(S)-module generators for ¢t — s < 48 are listed in
Table and the (Es, d2)-term in this range is shown in Figure [14.9]

Table 14.9: E5(S)-module generators for Es(S/o) with ¢ —s < 48

t—s s g x da(x)

0 0 0 i) 0 [
s 4 1w | o
11 1 3| hy 0
15 3 4| h3hs | i(hodo) @)
16 2 7| hihs 0
6 3 6| & 0
19 5 9| Phy 0 [
22 3 11| hoh2 0 @
2 4 11| do 0 ()
23 1 hs | hoh2 (@)
24 7 Co 0
26 4 15| fo | hohodo  (B)
27 3 15| & 0
27 9 9| PRy, 0 ()
28 4 17| T 0 [
30 8 12| Pdy 0 ()
32 11 8| P’y 0
33 8 16| Pe, | h2Pd,  (6)
34 7 16| j | hoPey ()
35 13 9| Phy| 0
37 7 18| k| hododo ()
38 12 12| P%d, 0 (@)
10 7 2| 7 | hoeods  (©)
40 15 8| P% 0
41 12 16 | PPeq | h2P%dy ()
42 11 16| Pj |hoPPey (6)
43 7 26| W | hogido
43 17 9| Pihy 0 ()
4 6 29| 1 0 ()
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Table 14.9: E3(S)-module generators for Eq(S/0) with t — s < 48
(cont.)

t—s s g x da(x)
45 6 30| hox 0
46 7 29| hoy | hihox
46 16 12| P3dy 0

A7 5 36| hie 0

] 0
0

=

El=l=]=

47 9 34 u
48 19 8| Pl

=

The E3(S)-module generators are chosen as follows:

e The generators i(1), h:2, h:4, o, Kh% c1, hi‘é, 71, hiel, L, 7, z M, Peg and T
are the unique nonzero classes in their respective degrees, and j(a@) = a
each case.

e We choose hih3 = 27, rather than 27 4 2g, as the lift of hihs.

e We choose % = 34, rather than 34 + 35, as the lift of h%hg.

e We choose d:() = 441, rather than 41; + 412, as the lift of dp.

e Calculation with ext shows that fo = 415 is the unique lift of fo.

e We choose @ = 630, rather than 639 + 631, as the lift of hgx.

e We choose Ej 718, rather than 71g + 719, as the lift of k.

e We choose hgy = Tag, rather than 729 + 730, as the lift of hoy.

e The generators Pa lie in (h3, h},a). ((ETC: Note that Peg is not an
instance of this, but PPey is.))

The ds-differentials are determined as follows:

(1) The differentials on (1), h:2, h:é, d:(), 91, Ph:27 ﬁ, Pd:(), P2h:27 P2d:0, P3h:2,

P3d:0 and P4h:2 are zero because the target bidegrees are trivial.

(2) The differentials on hihs, €1, t are zero by hg-linearity.

(3) The differential on hie; is zero by h3-linearity.

(4) From hg . %ills = ’L(fo) and dg(fo) = h%@o with Z(h%eo) = 66 ;é 0
we deduce dy(h2hs) = 54 = i(hodo). ((ETC: This intervenes before the
image of ds(hohs) = hodp.))

(5) The differential on ¢ is zero by g;-linearity, since g - 55 = 999 # 0 while
g1 - ¢g = 0, and similarly for P'cy with 7 > 1.

(6) The differentials on hy, fo ((ETC: Using haodg = hoeo)), j, k, £ ((ETC:
using hi-linearity)), Peqg, Pj, PPeq are given by naturality with respect
to j: S/o — S8.

(7) Tt follows from case @ that ds (m) = 0, since dads = 0.

(8) By j-naturality, do(m) = hogidp mod i(v), and the relations hoh3-m = 0,

hy-m =0, h4-h0g1d:0 = 0 and h4-i(v) = 1035 # 0 imply that the summand
1(v) is not present in this differential.
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(9) By j-naturality, da(hoy) = h3hor mod i(w), and the relations n-hoy = 0,
n-h3hor = 0 and and n - i(w)) = 1455 # 0 imply that the summand i(w)
is not present in this differential.

(10) The relation dou = 1335 = udy implies do - do(u) = 0, while dy - i(dol) =
1594 # 0, so da(T) # i(dpf) must be zero.

14.10. The (Es,ds)-term for S/c

The Es-term of the Adams spectral sequence for S/o is calculated as the ho-
mology subquotient
E3(S/o) = H(E2(S/0),d2).
A set of E5(S)-module generators for t — s < 48 are listed in Table and the
(B3, ds)-term in this range is shown in Figure ((ETC: ds’s complete from
t—s<24))

Table 14.10: E3(S)-module generators for F3(S/o) with ¢ —s < 48

t—s s g x ds(x)

0 0 0| (1) 0 ()
8 4 T o @
111 3 2 0
15 1 4| i(hy) 0
16 2 7| hihs 0
16 3 6 % 0
17 4 6| ileo) |i(Pco)
19 5 9| Phy 0 (i)
22 4 11 b 0
23 3 12| h2hy | h2do  (6)
24 7 8 o 0
25 3 13| h2hy

25 8 7| i(Peo)

26 2 12| hohy 0 @
27 3 15 =

27 9 9| Phy
28 4 17 7
30 8 12|  Pdy
31 4 20| cohy

32 11 P 0 @)
33 12 i(P2ep)

35 13 P3hy 0 ()
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Table 14.10: E3(S)-module generators for F3(S/o) with ¢ —s < 48

(cont.)
t—s s g x ds(x)
38 2 17| hahg itx) @)
38 12 12| P2, 0 [
39 8 24| eodo
40 15 8| P% 0 (2)
41 16 7| i(P3eo)
42 4 30 | h2hshy
43 17 9| Py 0 [
44 6 29 i
45 6 30| oz )
45 8 31+432| eoq1
46 5 35 | hohsh2hs
46 16 12| P3d, 0
47 3 28 | hshihs
47 4 33| hsa 0 (&)
47 5 36| hie
47 9 34 T
47 12 23 | Peody [
A7 14 17 | i(hoQ)
48 5 37 | i(hseo)
48 19 8| Po 0 @)

The ds-differentials are determined as follows:

(1)

9)

The differentials on (1), hd, h:2, Ph:2, d:(), chzg, 7, Pd:(), P3h:2, P2d:0,
P4h:27 hozm, €01, P3d:0, % and Peod:() are zero because the target bidegrees
are trivial.

The differentials on ¢g, Péy, P%¢o, P3¢ and P*¢y are zero by hg-linearity.
The differential on hscg is zero by hi-linearity.

The differential on i(hy) is zero by ho-linearity, since h3 - i(dg) # 0.

The differential on hqhg is zero by ho- and dy-linearity, since dg -i(h1dy) #
0.

The differential d3(h3hs) = hidy # 0 in E3(S) lifts over j to show that
dg(h%h:4) # 0, and h%dzo is the only possible value.

The differential on hgh:4 is zero by j-naturality, since dz(hahq) = 0 # hodp.
The product op = np is detected by Pcy, so i(Pcg) must be a boundary
in E,.(Co). By hy-linearity it can only be supported on i(e).

The proof of [BR, Thm. 11.56(5)] shows that ds (h4h:4) =i(z) in E5(S/0).
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(10) ((ETC))
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FIGURE 14.1. (E3(S),d2) = m.(S)
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36

FIGURE 14.2. (E5(S),ds) = m.(S)
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FIGURE 14.3. (E3(S5/2),ds) = 7.(S/2)
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FIGURE 14.4. (E5(5/2),d3) = 7.(S/2)
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FIGURE 14.10. (E3(S/0),d3) = m.(S/o)
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FIGURE 14.11. E5(S)
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