Ex. 1 . Using the P.L. method; $\tau=\omega t$.

$$
\omega^{2} y^{\prime \prime}+y=\epsilon y\left(1-\omega^{2}\left(y^{\prime}\right)^{2}\right), \quad y(0)=1, \quad \frac{\mathrm{~d} y(0)}{\mathrm{d} t}=0
$$

where $y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} \tau}$ etc. Perturbation series

$$
y=y_{0}+\epsilon y_{1}+\ldots, \quad \omega=\omega_{0}+\epsilon \omega_{1}+\ldots
$$

Requirement:

* All y_{j} has period 2π in τ.

$$
\begin{array}{lll}
O(1): & \omega_{0}^{2} y_{0}^{\prime \prime}+y_{0}=0, & y_{0}(0)=1, \\
O(\epsilon): & y_{0}^{\prime}(0) y_{1}^{\prime \prime}+y_{1}=-2 \omega_{1} \omega_{0} y_{0}^{\prime \prime}+y_{0}\left(1-\left(y_{0}^{\prime}\right)^{2}\right), & y_{1}(0)=0, \\
y_{1}^{\prime}(0)=0 .
\end{array}
$$

Solution $O(1)$
ODE and B.L: $y_{0}=\cos \left(\tau / \omega_{0}\right)$. The requirement $*$ yields

$$
\omega_{0}=1, \quad y_{0}=\cos \tau .
$$

Solution $O(\epsilon)$

$$
y_{1}^{\prime \prime}+y_{1}=2 \omega_{1} \cos \tau+\cos ^{3} \tau=\left(2 \omega_{1}+\frac{3}{4}\right) \cos \tau+\frac{1}{4} \cos (3 \tau) .
$$

Fulfillment of $*$ (avoid secular terms that cause linear growth in y_{1})

$$
\omega_{1}=-\frac{3}{8},
$$

and solution of ODE + initial conditions:

$$
y_{1}=\frac{1}{32}(\cos \tau-\cos (3 \tau)) .
$$

Ex. 2 .

a) Position is $\vec{r}=\ell \vec{\imath}_{r}$. Then

$$
\vec{v}=\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}=\ell \dot{\theta} \vec{\imath}_{\theta}, \quad \Rightarrow T=\frac{1}{2} m(\vec{v})^{2}=\frac{1}{2} m \ell^{2} \dot{\theta}^{2} .
$$

Potential energy

$$
V=m g y=-m g \ell \cos \theta .
$$

Lagrangian

$$
L=T-V=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}+m g \ell \cos \theta .
$$

Lagrange equation

$$
0=\frac{\partial L}{\partial \theta}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=-m g \sin \theta-m \ell^{2} \ddot{\theta} .
$$

b) Yes, since $\frac{\partial L}{\partial t}=0$ we have the first integral

$$
\text { const. }=\dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L
$$

Moreover

$$
\dot{\theta} \frac{\partial L}{\partial \dot{\theta}}=\dot{\theta} m \ell^{2} \dot{\theta}=2 T
$$

Hence

$$
\text { const. }=\dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L=2 T-(T-V)=T+V
$$

Conservation of energy!
c) Generalized momentum

$$
p=\frac{\partial L}{\partial \dot{\theta}}=m \ell^{2} \dot{\theta} \quad \Rightarrow \quad \dot{\theta}=\frac{p}{m \ell^{2}}
$$

Hamiltonian

$$
H=\dot{\theta} p-L=\frac{p^{2}}{2 m \ell^{2}}-m g \ell \cos \theta
$$

(We also see that $H=$ const.=energy.)
Ex. 3 .
a) The transformation is

$$
y=e^{\int k(x) d x}
$$

Substitution into the ODE yields

$$
\left.\left(\epsilon\left(k^{\prime}+k^{2}+q k\right)+W\right)\right) y=0
$$

Since y is nonzero this implies the Ricatti equation

$$
\begin{align*}
& \epsilon k^{\prime}+\epsilon k^{2}+\epsilon q k+W=0 \tag{1}\\
& (1)+(2)+(3)+(4)=0
\end{align*}
$$

When $\epsilon \rightarrow 0$ we must expect that $|k| \rightarrow \infty$ is required to obtain a dominant balance. Then $(2) \gg(3)$ and we also expect that $(2) \gg(1)$. Then (2) and (4) dominates, and

$$
\epsilon k_{0}^{2}=-W \quad \Rightarrow k_{0}= \pm i \epsilon^{-\frac{1}{2}} W^{\frac{1}{2}}
$$

This will give two independent solutions for y and substitution shows that the terms (1) and (3) are indeed sub-dominant.

Second order term is introduced as $k=k_{0}+k_{1}, k_{1} \ll k_{0}$. Substitution in (1)

$$
\epsilon\left(k_{0}^{\prime}+k_{1}^{\prime}+k_{0}^{2}+2 k_{0} k_{1}+k_{1}^{2}+q\left(k_{0}+k_{1}\right)\right)+W=0
$$

Canceling of leading order $\epsilon k_{0}^{2}+W=0$ and use of $k_{1} \ll k_{0} \Rightarrow$

$$
k_{0}^{\prime}+2 k_{0} k_{1}+q k_{0}=0
$$

with solution

$$
k_{1}=-\frac{1}{2} \frac{k_{0}^{\prime}}{k_{0}}-\frac{1}{2} q=-\frac{W^{\prime}}{4 W}-\frac{1}{2} q
$$

. Since $k_{1} \sim 1$ we do have $k_{1} \ll k_{0}$ and the ignored terms are small.
b) The transformation

$$
y=e^{\int k d x}=e^{-\frac{1}{4} \ln W+\int\left(\pm i \epsilon^{-\frac{1}{2}} W^{\frac{1}{2}}-\frac{1}{2} q\right) d x+C}
$$

where C is a constant. This may be written

$$
y=A W^{-\frac{1}{4}} e^{\int\left(\pm i \epsilon^{-\frac{1}{2}} W^{\frac{1}{2}}-\frac{1}{2} q\right) d x} .
$$

Combining the solutions corresponding to \pm :

$$
y=W^{-\frac{1}{4}} e^{-\frac{1}{2} \int q d x}\left(A_{+} e^{i \epsilon^{-\frac{1}{2}} \int W^{\frac{1}{2}} d x}+A_{-} e^{-i \epsilon^{-\frac{1}{2}} \int W^{\frac{1}{2}} d x}\right)
$$

where A_{+}and A_{-}are independent constants.

Ex. 4 .

a) First we eliminate x and y.

$$
\frac{\mathrm{d} z^{*}}{\mathrm{~d} t^{*}}=k \frac{\left(C_{y}-\frac{1}{2} z^{*}\right)\left(C_{x}-\frac{1}{2} z^{*}\right)^{\frac{3}{2}}}{C_{x}+\left(m-\frac{1}{2}\right) z^{*}}
$$

Guided by $0 \leq z \leq 2 C_{x}$ we attempt the scaling

$$
z^{*}=C_{y} z, \quad t^{*}=t_{c} t .
$$

where z then is between 0 and 2 and t_{c} is still undetermined. The ODE becomes

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=t_{c} k C_{x}^{\frac{1}{2}} \frac{\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{2} \frac{C_{y}}{C_{x}} z\right)^{\frac{3}{2}}}{1+\frac{C_{y}}{C_{x}}\left(m-\frac{1}{2}\right) z} .
$$

Then $\epsilon=C_{y} / C_{x}$, which is small, and $t_{c}=1 /\left(k C_{x}^{\frac{1}{2}}\right)$. By the way, k must have dimension concentration ${ }^{-\frac{1}{2}}$, divided by time, while m is without dimension.
From the statement that there is no hydrogen bromide initially, $z(0)=0$ follows.
b) Naive approach is attempted

$$
z=z_{0}+\epsilon z_{1}+\ldots
$$

First the right hand side of the ODE is expanded in powers in ϵ

$$
\left(1-\frac{1}{2} \epsilon z\right)^{\frac{3}{2}}=1-\frac{3}{4} \epsilon z+O\left(\epsilon^{2}\right), \quad \frac{1}{1+\left(m-\frac{1}{2}\right) \epsilon z}=1-\left(m-\frac{1}{2}\right) \epsilon z+O\left(\epsilon^{2}\right)
$$

and

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\frac{\left(1-\frac{1}{2} z\right)\left(1-\frac{1}{2} \epsilon z\right)^{\frac{3}{2}}}{1+\left(m-\frac{1}{2}\right) \epsilon z}=\left(1-\frac{1}{2} z\right)\left(1-\frac{3}{4} \epsilon z\right)\left(1-\left(m-\frac{1}{2}\right) \epsilon z\right)+O\left(\epsilon^{2}\right)=1-\frac{1}{2} z-\epsilon\left(m+\frac{1}{4}\right) z\left(1-\frac{1}{2} z\right)+O\left(\epsilon^{2}\right) .
$$

Inserting the power series for z we obtain

$$
\begin{array}{ll}
O(1): & \frac{\mathrm{d} z_{0}}{\mathrm{dt}}+\frac{1}{2} z_{0}=1,
\end{array} z_{0}(0)=0, ~\left(m+\frac{1}{4}\right) z_{0}\left(1-\frac{1}{2} z_{0}\right), \quad z_{1}(0)=0 .
$$

Solution $O(1)$
The problem is standard.

$$
z_{0}=2-2 e^{-\frac{1}{2} t} .
$$

z_{0} remains in the interval $[0,2)$. Solution $O(\epsilon)$

$$
\frac{\mathrm{d} z_{1}}{\mathrm{~d} t}+\frac{1}{2} z_{1}=-\left(m+\frac{1}{4}\right) z_{0}\left(1-\frac{1}{2} z_{0}\right)=\left(2 m+\frac{1}{2}\right)\left(e^{-t}-e^{-\frac{1}{2} t}\right) .
$$

A particular solution is assumed on the form

$$
z_{1}^{(p)}=A t e^{-\frac{1}{2} t}+B e^{-t},
$$

where the factor t is needed since $e^{-\frac{1}{2} t}$ is an homogeneous solution. Formula or integrating factor may also be used. Result

$$
z_{1}^{(p)}=-\left(2 m+\frac{1}{2}\right)\left(t e^{-\frac{1}{2} t}+2 e^{-t}\right) .
$$

Homogeneous solution and initial condition

$$
z_{1}=\left(2 m+\frac{1}{2}\right)\left(2 e^{-\frac{1}{2} t}-t e^{-\frac{1}{2} t}-2 e^{-t}\right) .
$$

