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Problem 1 (weight 20%)

The initial value problem
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has a periodic solution. We assume that ǫ is constant and small. Use a
perturbation method to find the solutions for y and the frequency of the
oscillations through order ǫ (the two first terms).

Problem 2 (weight 20%)
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A mathematical pendulum, in the gravity field, is defined in the figure.
Choose the angle of excursion, θ, as generalized coordinate.

(Continued on page 2.)
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2a (weight 10%)

Find the Lagrange function and the Lagrange equation in this case.

2b (weight 5%)

Does the Lagrange equations inherit any first integrals ? If that is the case,
give a physical interpretation.

2c (weight 5%)

Find the Hamiltonian.

Problem 3 (weight 30%)

A second order differential equation is given as

ǫ(y′′ + q(x)y′) +W (x)y = 0, (1)

where ǫ ≪ 1, both q and W are positive everywhere, and x is the free
variable. In this problem we will develop the WKB technique for (1).

3a (weight 20%)

A transformation applied to (1) yields the following Ricatti equation for k

ǫ(k′ + k2 + qk) +W = 0. (2)

Do this transformation. Then apply the technique of dominant balance to
find the first two terms in a perturbation series for k.

3b (weight 10%)

Use the results from the preceding sub-problem to find the full approximate
solution for y.

Problem 4 (weight 30%)

In a chemical reaction hydrogen bromide is produced from hydrogen and
bromine according to

H2 + Br2 → 2HBr

At t∗ = 0 we start with a concentration Cx of bromine (Br2), a concentration
Cy of hydrogen (H2) and no hydrogen bromide. Denoting the concentrations
of bromine, hydrogen and hydrogen bromide by x∗, y∗ and z∗, respectively,
the reaction is governed by the equations

2x∗ + z∗ = 2Cx, 2y∗ + z∗ = 2Cy,
dz∗

dt∗
= k

y∗(x∗)
3

2

x∗ +mz∗
,

where k and m are constants. The first two equations describe the
conservation of numbers of bromine and hydrogen atoms respectively, while
the last is due to a slightly complicated reaction mechanism. All the
concentrations have the same unit, we need not be concerned with the
appropriate definition. It is clear that 0 ≤ x∗ ≤ Cx, 0 ≤ y∗ ≤ Cy and
0 ≤ z∗ ≤ 2Cy. In the following we assume that Cy/Cx ≪ 1.

(Continued on page 3.)
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4a (weight 10%)

Rescale the problem and eliminate variables to obtain an equation set
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, z(0) = 0. (3)

where ǫ ≪ 1.

4b (weight 20%)

The differential equation in (3) is separable, but solving it as a separable
equation involves a cumbersome integral and we will abstain from using this
method. Instead you are asked to find the first two terms in a perturbation
solution for z.

THE END


