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A derivation of Darcy’s law is given. Darcy’s law forms the basis for flow in porous media at
low Reynolds number. It represents an important generalisation and simplification of Stokes
flow. The formulation has wide applications including simulations of reservoir modeling (oil,
gas), simulation of the flow of ground water and water supply, and flow and evaporation in the
blades (biology). Darcy’s law is also widely used as model for flow of disolutions in the brain
and in tissues as well. Darcy’s law has formed the basis for quite extensive analyses in ocean
engineering applications where breakwaters composed by rocks or man-made slotted structures
are modelled. Modeling of the flow at and forces on fish cages for applications in aquaculture
is another example. In the latter examples the flow does not take place at small Reynolds
number. Thus a quadratic law of the pressure drop across the thin structures, including flow
separation effects should be taken into account.

The derivation is based on the outline of E. Palm and J. E. Weber of 1971, published in Preprint
Series, Dept. of Mathematics, University of Oslo.

In this derivation the flow and pressure gradient are linear. The Newtonian fluid motion takes
place within a porous material. We assume that this material consists of small spheres of the
same (small) radius. Consider a part of the porous material included in a cube of volume V
and edge L′. This length is much greater than the diameter d of the of the spheres. However,
the length L′ is much smaller than the length scale L of the gradients of the average fluid flow,
i.e.,

d << L′ << L. (1)

We assume that the fluid is Newtonian and incompressible. The mass and momentum equations
read:

∇ · v = 0, (2)

ρ
∂v

∂t
+ ρv · ∇v = −∇p+ µ∇2v. (3)

We shall now perform a spacial average of these equations over the box of volume V . The
averaged velocity and pressure are defined by

nV v̄ =

∫

V

vdV, (4)

nV p̄ =

∫

V

pdV, (5)

1



Figure 1: Illustration of a porous medium (right) and averaging cube of volume V and edge L′

(left)
.

where a bar denotes spatial average and n the volume porosity, defined by the ratio between
the volume occupied by the fluid and the volume occupied by the porous material. We may
then write

v = v̄+ v′, p = p̄+ p′, (6)

where v̄′ = 0 and p̄′ = 0 by definition.

We first perform the average of the r.h.s. of the momentum equation obtaining
∫

V

(

−∇p+ µ∇2v
)

dV = nV (−∇p̄+ µ∇2v̄) +

∫

V

(

−∇p′ + µ∇2v′

)

. (7)

The integral on the r.h.s. of (7) may be rewritten using Gauss’ theorem, obtaining

−F =

∫

V

(

−∇p′ + µ∇2v′

)

= −

∫

i

(

− p′n+ µ
∂v′

∂n

)

dS, (8)

where in the latter integration is over the collective surface i of all of the spheres in the volume
V , and n denotes the unit surface normal vector of the spheres pointing into the fluid volume.

The Reynolds number of the flow defined by

Re =
|v̄|d

ν
, (9)

is assumed small. If only one sphere is included in the box volume, the force in (8) is simply
given by Stoke’s resistance formula, i.e.,

F0 = λµdv̄, (10)
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where λ = 3π for the single sphere. In the case when several spheres exist in the volume, we
may assume a resistance taking the similar form as (10), obtaining

F = NF0 = Nλµdv̄, (11)

where N is the number of spheres of the cube. The permeability is then introduced by

k =
nV

Nλd
, (12)

obtaining for F:

F =
nV µ

k
v̄. (13)

We note that while λ = 3π for a single sphere, λ is much greater for a densely packed cube of
small spheres, where typical values of n and k may be n = 0.37 and k = 1.8 · 10−5d2.

The l.h.s. of the momentum equation is then averaged. Dividing by a factor nV we obtain

ρ
∂v̄

∂t
+ ρv̄ · ∇v̄ = −∇p̄+ µ∇2v̄−

µ

k
v̄. (14)

In the next step the magnitude of the individual terms in (14) are compared. The analysis
employs that the diameter d of the spheres is much less than the length scale L of the averaged
fluid flow. We obtain

|∇2v̄| ∼
|v̄|

L2
<<

|v̄|

k
, (15)

where we have used that k ∼ d2 × factor where ”factor” is a very small number. Further we
find

ρ|v̄ · ∇v̄| ∼ Re
µ|v̄|

Ld
<<

µ|v̄|

k
. (16)

A similar justification applies to the term ρ∂v̄/∂t. The momentum equation (14) then simplifies
to

∇p̄+
µ

k
v̄ = 0, (17)

which is Darcy’s law from 1856, initially formulated on empirical reasoning following a set of
experimental measurements.

In the case when the Reynolds number is moderate or large, the force will assume a quadratic
relation in the fluid velocity, i.e.

F ∼ |v̄|v̄. (18)

We then consider the averaged mass conservation equation obtaining

∇ · v̄ = 0. (19)
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Introducing (17) one obtains

∇ · (k∇p̄) = 0, (20)

where the permability k in general is function of the spatial coordinates, while the dynamic
viscosity of the fluid is constant in space. The pressure field satisfies the Laplace equation, in
the case of k = constant. The velocity field is obtained from (17) (when the pressure p̄ has
been obtained).

Example. Water flow through a lock.

The water flow through a porous lock may illustrate Darcy’s law. The porous lock is filled
with spheres of common diameter d. On the right hand side of the lock, the water depth is ∆h
higher than on the left hand side. The gravity force acts in along the vertical. The pressure on
each side of the lock is obtained by

p+ = p0 + ρg(∆h− y), x > x+, (21)

p+ = p0 − ρgy, x < x−, (22)

obtaining the pressure gradient by dp/dx = (p+ − p−)/(x+ − x−), where ρ is the density, g
acceleration of gravity, y vertical coordinate and p0 the atmospheric pressure. The lock and
flow configuration are illustrated in figure 2.

The average velocity of the flow through the lock is obtained by Darcy’s law giving

dp

dx
i+

µ

k
wni = 0, (23)

where i = ∇x and wni the flow through velocity, obtaining

wn = −
k

µ

dp

dx
= −

k g∆h

ν (x+ − x−)
. (24)

Using the value of k = 1.8 · 10−5d2 given below eq. (13) and ν = 10−6 m2s−1 (fresh water at
20◦C) we obtain

wn ≃ −1.8
(10d

m

)2 ∆h

x+ − x−
ms−1 . (25)

We put ∆h/(x+ − x−) = 1. Eq. (25) then predicts a flow-through velocity of 1.8 cm s−1 for
spheres of diameter 1 cm, and 0.18 mms−1 for spheres of diameter 1 mm.
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Figure 2: Illustration of a vertical porous lock filled with small spheres of diameter d.
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