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The non-stationary boundary layer equations read:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+ ν

∂2u

∂y2
, (1)

∂u

∂x
+
∂v

∂y
= 0, (2)

where the first equation expresses conservation of momentum in the x-direction, and the second
conservation of mass. The motion is assumed to be two-dimensional. The velocities are function
of x, y, t as follows: u = (x, y, t) and v = (x, y, t). The velocity field U = U(x, t) outside the
boundary layer is given and drives the motion of the boundary layer.

The boundary conditions read u = v = 0 at y = 0 and u = U for y → ∞.

We note, however, that a function of the boundary layer is to set up an additional, constant
horizontal velocity outside the boundary layer. This means that u = U + const. outside the
boundary layer where the time-independent velocity is a steady, secondary streaming. This
varies according to the x-coordinate. The purpose in this lecture is to calculate this streaming.

We assume that the motion outside the boundary layer is represented by the velocity field
U(x, t). The pressure gradient within the boundary layer is then given by

∂U

∂t
+ U

∂U

∂x
= −

1

ρ

∂p

∂x
. (3)

Combining (3) with (1) gives

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
∂U

∂t
+ U

∂U

∂x
. (4)

The method of successive approximations is used to solve the boundary layer equations. We
assume that the velocity vector (u, v) may be obtained by

u = u0 + u1 + u2 + ...+, (5)

v = v0 + v1 + v2 + ...+, (6)

where u0 >> u1, u1 >> u2, ..., v0 >> v1, v1 >> v2. The first approximation to the equation of
motion reads

∂u0
∂t

− ν
∂2u0
∂y2

=
∂U

∂t
, (7)

which together with the continuity equation determines the leading approxiation of the velocity
field. The boundary conditions read: u0 = v0 = 0 at y = 0, and u0 = U for y → ∞.
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The next approximation gives

∂u1
∂t

− ν
∂2u1
∂y2

= U
∂U

∂x
− u0

∂u0
∂x

− v0
∂u0
∂y

, (8)

which together with the continuity equation determines u1 and v1. The boundary conditions
read: u1 = v1 = 0 at y = 0. Further, u1 is bounded outside the boundary layer.

The latter equation (8) may be rewritten using conservation of mass where ∂u0/∂x+∂v0/∂y = 0
giving,

∂u1
∂t

− ν
∂2u1
∂y2

= U
∂U

∂x
−

∂

∂x
(u0u0)−

∂

∂y
(u0v0). (9)

The method is valid provided that

∂U

∂t
>> U

∂U

∂x
. (10)

Periodic boundary layer

We assume that U(x, t) = Re
(

U0(x)e
iωt

)

= 1
2
U0(x)e

iωt + c.c. where c.c. means complex con-

jugate. We introduce the dimensionless coordinate η = y/δ where δ =
√

2ν/ω and assume
that

u0(x, y, t) = Re
(

U0(x)ζ
′

0(η)e
iωt

)

. (11)

We further introduce the stream function such that u0 = ∂ψ0/∂y and v0 = −∂ψ0/∂x. We
obtain

ψ0 = Re(δU0(x)ζ0(η)e
iωt), (12)

v0 = Re
(

− δ
dU0

dx
ζ0(η)e

iωt
)

. (13)

The function ζ0 is determined by the following equation

ζ
′′′

0 − 2iζ ′0 = −2i. (14)

The solution of this equation, satisfying the boundary conditions ζ ′0 = 0 for η = 0 and ζ ′1 = 1
for η → ∞, reads

ζ ′0 = 1− e−(1+i)η. (15)

Another integration determines ζ0 by

ζ0 = η −
ζ ′0
κ
, (16)
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where ζ ′0 = 1− e−κη, κ = 1+ i and we have used the boundary condition v0 = 0 at y = 0 giving
ζ0 = 0 at η = 0. Use of (15) gives

u0(x, y, t) = Re
(

U0(x)[1− e−(1+i)η]eiωt
)

. (17)

In the case with U0(x) real we obtain

u0(x, y, t) = U0(x)
(

cosωt− e−η cos(ωt− η)
)

. (18)

Acoustic streaming. Steady, secondary streaming.

An important effect of the oscillatory boundary layer is a steady, secondary streaming that be-
comes introduced outside the boundary layer. The streaming is a consequence of the oscillatory
boundary layer at the wall. The streaming is obtained by evaluating the next term u1 of the
velocity expansion, see eq. (9). We first evaluate the r.h.s. of (9).

With U(x, t) = Re
(

U0(x)e
iωt

)

we obtain for the term U∂U/∂x in (9):

U
∂U

∂x
= 1

4

(

U0U
′∗

0 + c.c.
)

+ 1
4

(

U0U
′

0e
i2ωt + c.c.

)

, (19)

where a star and c.c. denote complex conjugate.

The product u0u0 in (9), with u0 given in (11), gives

u0u0 =
1
4

(

U0U
∗

0 ζ
′

0ζ
′∗

0 + c.c.
)

+ 1
4

(

U2
0 ζ

′

0ζ
′

0e
i2ωt + c.c.

)

. (20)

The second term on the r.h.s. of (9) becomes

−
∂

∂x
(u0u0) = −1

2

(

U0U
′∗

0 ζ
′

0ζ
′∗

0 + c.c.
)

− 1
2

(

U0U
′

0ζ
′

0ζ
′

0e
i2ωt + c.c.

)

. (21)

The product u0v0 in (9), with u0 given in (11) and v0 in (13), gives

u0v0 = −1
4

(

δU0U
′∗

0 ζ
′

0ζ
∗

0 + c.c.
)

− 1
4

(

δU0U
′

0ζ
′

0ζ0e
i2ωt + c.c.

)

. (22)

Evaluating the derivative −∂/∂y = −(1/δ)(d/dη) we obtain

−
∂

∂y
(u0v0) =

1
4

(

U0U
′∗

0 (ζ
′

0ζ
∗

0 )
′ + c.c.

)

− 1
4

(

U0U
′

0(ζ
′

0ζ0)
′ei2ωt + c.c.

)

. (23)

Our primary interest is to calculate the steady part of the horizontal velocity component u1.
Because of the form of the terms (19), (21) and (23) it is tempting to write the steady part of
u1 on the form

u1,steady = u1s =
1

2

(U0U
′
∗

0

ω
ζ ′1b + c.c.

)

. (24)
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Putting this into (9), noting that

−ν
∂2u1s
∂y2

=
ν

δ2
∂2u1s
∂η2

= −
νω

2ν

1

2

(U0U
′
∗

0

ω
ζ

′′′

1b + c.c.
)

, (25)

we obtain the following equation for ζ
′′′

1b:

0 = U0U
′
∗

0

[

1
4
ζ

′′′

1b +
1
4
− 1

2
ζ ′0ζ

′
∗

0 + 1
4
(ζ ′0ζ

∗

0 )
′

]

+ c.c., (26)

where the paranthesis must be zero, giving for ζ
′′′

1b:

ζ
′′′

1b = −1 + 2ζ ′0ζ
′
∗

0 − (ζ ′0ζ
∗

0 )
′. (27)

Boundary conditions for u1s and ζ
′

1b

The boundary conditions for u1s and ζ
′

1b are:

u1s(y = 0) = ζ
′

1b(η = 0) = 0, (28)

at the wall. Further the velocity u1s and its variant ζ
′

1b must be finite for y → ∞ (or η → ∞),
i.e.

|u1s| <∞, y → ∞; |ζ
′

1b| <∞, η → ∞. (29)

Integration of (27)

Integration of the first term on the r.h.s. of (27) gives

−1
2
η2 + aη + b, (30)

where a and b are constants. Integration of the second term on the r.h.s. of (27), using that
ζ ′0 = 1− e−κη, and that ζ ′0ζ

′
∗

0 = 1− e−κη − e−κ∗η + e−2η, gives

2

∫

ζ ′0ζ
′
∗

0 dη = 2η +
2e−κη

κ
+

2e−κ∗η

κ∗
− e−2η + const., (31)

where κ = 1 + i, κ∗ = 1− i and κ+ κ∗ = 2. Another integration gives

η2 −
2e−κη

κ2
−

2e−κ∗η

κ∗2
+
e−2η

2
+ const. × η. (32)

Integration of the third term on the r.h.s. of (27), using that ζ∗0 = η − ζ
′
∗

0 /κ
∗, and ζ ′0ζ

∗

0 =
ζ ′0η − ζ ′0ζ

′
∗

0 /κ
∗, gives

−

∫

ζ ′0ζ
∗

0dη = −ζ0η +
1

2
η2 −

ζ0
κ

+
1

κ∗

(

η +
e−κη

κ
+
e−κ∗η

κ∗
−
e−2η

2

)

+ const. (33)
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Collecting the terms in (30), (32) and (33) we obtain

ζ ′1b = η2 −
(

η +
1

κ

)(

η −
ζ ′0
κ

)

+ η
(

a+
1

κ∗

)

+ b

−
2e−κη

κ2
−

2e−κ∗η

κ∗2
+
e−2η

2
+

1

κ∗

(e−κη

κ
+
e−κ∗η

κ∗
−
e−2η

2

)

. (34)

The boundary condition (28) is then used to determine the constant b. Evaluating (34) at η = 0
obtains

0 = ζ ′1b(η = 0) = b−
2

κ2
−

2

κ∗2
+

1

2
+

1

κ∗

(1

κ
+

1

κ∗
−

1

2

)

= b+
3

4
+

i

4
, (35)

giving that

b = −
3

4
−

i

4
. (36)

Letting η → ∞ in (34) we obtain

ζ ′1b ∼ η
(

a+
1

κ∗

)

+ b+
1

κ2
. (37)

The integration constant a is chosen such that a+ 1/κ∗ = 0, giving

ζ ′1b → b+
1

κ2
= −

3

4
(1 + i), η → ∞. (38)

The resulting streaming velocity obtains the following form:

u1(x,∞) = −
3

4
Re

(U0

ω

dU∗

0

dx
(1 + i)

)

. (39)

In the case when U0(x) is real, the result is

u1(x,∞) = −
3

4

U0

ω

dU0

dx
. (40)

Example 1. Steady, secondary streaming and flow cells at
a cylinder in lateral oscillation.

Consider a long circular cylinder of radius R. The cylinder is oscillating with lateral motion of
frequency ω and velocity amplitude U∞ in otherwise calm fluid. The section-wise velocity along
the boundary is given by U0(x) = U∞ sin θ = U∞ sin(x/R) where θ is the angle between the
oscillation direction at time t = 0 and the position along the boundary. The steady, secondary
streaming becomes

u1(x,∞)

U2
∞
/ωR

= −
3

8
sin 2θ, (41)

where we have used that sin θ cos θ = (1/2) sin 2θ. The streaming velocity at the wall is neg-
ative in the first and fourth quadrants, and positive in the second and third. The boundary
layer induced streaming velocity sets up closed flow cells as illustrated in figure 1. The cells
become unstable to the Honji instability, a particular mushroom shaped pattern, if the motion
amplitude gets sufficiently large, more precisely, for β = (2R)2/(ν(2π/ω)) ∼ 200 − 300 and
KC = U∞(2π/ω)/(2R) ∼ 2. This kind of instability was first obtained experimentally by
Honji (1981) and later calculated by Rashid, Vartdal and Grue (2011), see figure 2.
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Figure 1: Oscillating cylinder. Convective cells of steady, secondary streaming.

Figure 2: Honji instability in the boundary layer of an oscillating cylinder. Experiments by
Honji (1981) (left) and calculation by Rashid et al. (2011) (right).
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Example 2. Steady, secondary streaming and flow cells at
the sea bed below a standing water wave.

Consider the boundary layer at a sea bed below a standing wave of elevation η = 2A sin kx sinωt
where k is the wavenumber and ω the frequency. The horizontal velocity at the bottom is given
by

U(x, t) = U0(x) cosωt, where U0 = U∞ cos kx. (42)

The bottom boundary layer below the standing wave induces a streaming velocity above the
bottom given by

u1(x,∞)

U2
∞
/(ω/k)

=
3

8
sin 2kx. (43)

The flow pattern is illustrated in figure 3 where particles at the sea bed are collected at 2x/R =
±π/2,±3π/2, ... This explains a mechanism for systematic erosion of the sea bed, as well as
formation of period sand bars below the waves.

Figure 3: Convective cells of secondary streaming at the sea bed below a standing wave.
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