UNIVERSITY OF OSLO

 Faculty of Mathematics and Natural

 Faculty of Mathematics and Natural Sciences

Examination in: MEK4300/9300 - Viscous flow og turbulence
Day of examination: Wednesday 15. June 2011
Examination hours: 9.00-13.00
This problem set consists of 4 pages.

Appendices:

Permitted aids:

None
Rottmann: Matematische Formelsamlung, certified calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Poiseuille flow (weight 36\%)

A viscous flow in a duct of arbitrary cross-section (see figure) is driven by a pressure change along the duct. The cross section is parallel to the $x y$ plane and is denoted by A, while the z axis is aligned along the duct. The fluid is incompressible, the dynamic viscosity coefficient is μ, gravity is directed in the negative y direction and the duct wall is impenetrable. Moreover, we assume that the flow is stationary and uniform in the z direction.

1a (weight 6\%)

Write down the equations and the boundary conditions for this problem.
1b (weight 6\%)
Assume a velocity on the form

$$
\mathbf{v}=w(x, y) \mathbf{k}
$$

and find an expression for the pressure. Furthermore, show that

$$
\begin{equation*}
\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)=-\beta \tag{1}
\end{equation*}
$$

and state how the constant β relates to the pressure.

1c (weight 6\%)
Find the wall stress τ_{w} expressed by derivatives of w. Show also that the dissipation in this case becomes

$$
\Phi=\mu\left\{\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right\}
$$

1d (weight 6\%)
Find w, expressed by β, when the duct perimeter is elliptical and defined as

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1=0 .
$$

Hint: observe that the Laplacian of the left hand side of this expression is constant.

1e (weight 6\%)

In this sub-problem we assume $a=b$. Find the total volume flux, Q, along the duct. Do also determine the wall stress τ_{w} expressed by the pressure gradient and other parameters of the problem.

1f (weight 6\%)

We again assume a duct of general shape. Use (1) to show the energy equation on the form

$$
Q \frac{\partial p}{\partial z}=-\iint_{A} \Phi d x d y
$$

where Q is the volume flux in the duct, and explain the physical content of this relation. Hint: you need to manipulate the integrals to obtain the right hand side.

Problem 2 Turbulence (weight 28\%)

2a (weight 10\%)
Derive the Reynolds averaged Navier-Stokes (RANS) equations for an incompressible, Newtonian fluid and identify the Reynolds stress tensor. You may use, without proof, that $\mathbf{v} \cdot \nabla \mathbf{v}=\nabla \cdot(\mathbf{v v})$ for any divergence-free velocity field \mathbf{v}.

2b Turbulent duct flow (weight 10\%)

We assume fully developed pressure-driven duct flow between two planes at $y=-h$ and $y=h$. The mean velocity will then be reduced to $\overline{\mathbf{v}}=\bar{u}(y) \mathbf{i}$. Find the pressure variation across the duct from the RANS equations. Show that

$$
0=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x}+\frac{1}{\rho} \frac{\partial \tau}{\partial y},
$$

where the shear stress is

$$
\tau=\mu \frac{\mathrm{d} \bar{u}}{\mathrm{~d} y}-\rho \overline{u^{\prime} v^{\prime}},
$$

ρ is the density and $\frac{\partial \bar{p}}{\partial x}$ is a constant.
2c (weight 8\%)
Why must there be a viscous sublayer close to a no-slip boundary? The velocity profile in the sublayer may be approximated by a linear function. Find this expressed by the wall stress τ_{w} and the other relevant parameters.

Problem 3 Stagnation flow (weight 36\%)

An inviscid solution for stagnation flow at a wall (see figure) is

$$
\psi^{*}=B x^{*} y^{*}, \quad u^{*}=B x^{*}, \quad v^{*}=-B y^{*},
$$

where ψ^{*} is the stream function, and u^{*} and v^{*} are the velocity components. The star indicates quantities with dimension. We seek the modification of this flow due to the no-slip condition at the wall and viscosity.

3a (weight 9\%)

We denote the density by ρ and the dynamic viscosity coefficient by μ. Dimensionless variables are then introduced according to

$$
\begin{array}{ccc}
x^{*}=L x, & y^{*}=H x, & t^{*}=B t, \\
u^{*}=L B u, & v^{*}=H B v, & p^{*}=\hat{p} p,
\end{array}
$$

where L is some length scale in the x direction and $H=\sqrt{\frac{\mu}{\rho B}}$ is a scale related to the boundary layer. Determine the pressure scale, \hat{p}, such that the non-dimensional equations become

$$
\begin{aligned}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}}+\gamma \frac{\partial^{2} u}{\partial x^{2}}, \\
\gamma\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right) & =-\frac{\partial p}{\partial y}+\gamma\left(\frac{\partial^{2} v}{\partial y^{2}}+\gamma \frac{\partial^{2} v}{\partial x^{2}}\right),
\end{aligned}
$$

where $\gamma=H^{2} / L^{2}$. For any sensible choice of L the parameter γ is small. However, we seek exact solutions of the equations and will not discard terms of order γ as such.

3b (weight 9\%)

We assume that v is independent of x

$$
v=-F(y)
$$

where F is some function that must be determined. Show that this implies that the other velocity component is on the form

$$
u=x F^{\prime}(y)
$$

and that F must fulfill the boundary conditions

$$
F(0)=0, \quad F^{\prime}(0)=0, \quad \lim _{y \rightarrow \infty} F^{\prime}(y)=1
$$

3c (weight 9\%)
Show that the pressure must be on the form

$$
p=-\gamma\left(F^{\prime}+F^{2}\right)+p_{0}(x)
$$

3d (weight 9\%)
Show that F must solve the equation

$$
F^{\prime \prime \prime}+F F^{\prime \prime}-\left(F^{\prime}\right)^{2}=-1
$$

The End

