UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

> Examination in: \quad MEK4300/9300 - Viscous Flow and Turbulence.

Day of examination: Friday, June 11, 2010.
Examination hours: 9.00-12.00.
This problem set consists of 3 pages.

Appendices:

Permitted aids:
None.
Rottmann: Matematische Formelsamlung, approved calculator.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

Figure 1 shows schematically the space between two planes $y=h, y=0$ referred to in the text. The leakage velocity $-V \mathbf{j}$ referred to in the text is indicated. The cartesian (x, y, z)-coordinate system used in the problem, is also shown in the figure.

A homogeneous newtonian fluid with constant density ρ and constant kinematic viscosity ν is flowing through the space between two planes $y=0$ and $y=h$ as indicated in figure 1 . The velocity of the fluid, $\mathbf{u}=\mathbf{i} u+\mathbf{j} v$, is induced by the following boundary conditions

$$
\begin{gather*}
u(x, y=0, z)=0 \tag{1}\\
u(x, y=h, z)=U \tag{2}\\
v(x, y=0, z)=v(x, y=h, z)=-V \tag{3}\\
w(x, y=0, z)=w(x, y=h, z)=0 \tag{4}
\end{gather*}
$$

The flow is fully developed. There is no other motion in the fluid than that induced by the given boundary conditions, and $V>0$. We consider a control volume bounded by the channel walls $y=0$ and $y=h$, and the
mathematically defined planes $x=0$ and $x=a, z=0$ and $z=b$. The stress tensor \mathcal{P} is given on the boundary of the control volume as the following

$$
\begin{gather*}
\mathcal{P}(0 \leq x \leq a, y=0,0 \leq z \leq b)=-p_{0} \mathcal{E}+(\mathbf{i j}+\mathbf{j i}) \tau_{0} \tag{5}\\
\mathcal{P}(0 \leq x \leq a, y=h, 0 \leq z \leq b)=-p_{0} \mathcal{E}+(\mathbf{i j}+\mathbf{j i}) \tau_{1} \tag{6}\\
\mathcal{P}(x=0,0 \leq y \leq h, 0 \leq z \leq b)=\mathcal{P}(x=a, 0 \leq y \leq h, 0 \leq z \leq b) \tag{7}\\
\mathcal{P}(0 \leq x \leq a, 0 \leq y \leq h, z=0)=\mathcal{P}(0 \leq x \leq a, 0 \leq y \leq h, z=b) \tag{8}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathcal{E}=\mathbf{i} \mathbf{i}+\mathbf{j} \mathbf{j}+\mathbf{k} \mathbf{k} \tag{9}
\end{equation*}
$$

and p_{0}, τ_{0} and τ_{1} are constants.
a) Find the x-component of the integral momentum balance equation using the given boundary conditions.
b) Find the velocity components u and v.

The temperature on the plane $y=0$ is T_{0} (constant). The temperature on the plane $y=h$ is

$$
\begin{equation*}
T(x, y=h, z, t)=T_{0}+\Delta T \sin (\omega t) \tag{10}
\end{equation*}
$$

where ΔT is a constant. The temperature equation is

$$
\begin{equation*}
\frac{\partial T}{\partial t}+\mathbf{u} \cdot \nabla T=\kappa \nabla^{2} T+\phi(y) \tag{11}
\end{equation*}
$$

c) Neglect the dissipation $\phi(y)$ and verify when using

$$
\begin{equation*}
T(y, t)=T_{0}+\Delta T \Theta(y, t) \tag{12}
\end{equation*}
$$

that the solution of $\Theta(y, t)$ can be written

$$
\begin{gather*}
\Theta(y, t)=\Re\left\{\left[A_{1} \exp \left(\alpha_{1} y\right)+A_{2} \exp \left(\alpha_{2} y\right)\right] \exp (i \omega t)\right\} \tag{13}\\
\alpha_{1}=\frac{-V+\sqrt{V^{2}+4 i \omega \kappa}}{2 \kappa} \tag{14}\\
\alpha_{2}=\frac{-V-\sqrt{V^{2}+4 i \omega \kappa}}{2 \kappa} \tag{15}
\end{gather*}
$$

Problem 2

Figure 2 indicate schematically the flat plate at $y=0$ and $0<x<L$, referred to in the text.

A fully developed viscous boundary layer flow is established along a flat plate, as indicated in figure 2 . The x-component of the velocity field in the boundary layer, $u(x, y)$, is approximated by

$$
\begin{equation*}
u(x, y)=U_{0}(1-\exp (-\alpha(x) y)) \tag{16}
\end{equation*}
$$

U_{0} is constant, and $\alpha(x)=\frac{1}{5} \sqrt{\frac{U_{0}}{\nu x}}$, where ν is the constant kinematic viscosity of the fluid.
a) Find y-component $v(x, y)$ of the velocity field in the boundary layer.
b) Find the displacement thickness $\delta^{*}(x)$ in the boundary layer.

Problem 3

In a newtonian fluid with constant density ρ and constant kinematic viscosity ν, a statistically stationary turbulent state of motion has been established. The velocity field is denoted $\mathbf{u}(\mathbf{x}, t)$, and the pressure field is denoted $p(\mathbf{x}, t)$. Reynolds decomposition of the fields should be introduced so that

$$
\begin{align*}
& \mathbf{U}(\mathbf{x})=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{0}^{T} \mathbf{u}(\mathbf{x}, t) d t\right] \tag{17}\\
& P(\mathbf{x})=\lim _{T \rightarrow \infty}\left[\frac{1}{T} \int_{0}^{T} p(\mathbf{x}, t) d t\right] \tag{18}
\end{align*}
$$

and thereby $\mathbf{u}(\mathbf{x}, t)=\mathbf{U}(\mathbf{x})+\mathbf{u}^{\prime}(\mathbf{x}, t)$, og $p(\mathbf{x}, t)=P(\mathbf{x})+p^{\prime}(\mathbf{x}, t)$.
a) Find the Reynolds averaged momentum equation and the Reynolds averaged continuity equation.
b) Find the equation for the mean flow kinetic energy pr mass unit $\frac{1}{2} U_{i} U_{i}$.
c) Verify that the equation for the kinetic energy of the turbulence $\frac{1}{2} \overline{u_{i}^{\prime} u_{i}^{\prime}}$ can be written

$$
\begin{align*}
U_{j} \frac{\partial}{\partial x_{j}}\left[\frac{1}{2} \overline{u_{i}^{\prime} u_{i}^{\prime}}\right]= & -\frac{\partial}{\partial x_{j}}\left[\overline{p^{\prime} u_{j}^{\prime}}+\frac{1}{2} \overline{u_{i}^{\prime} u_{i}^{\prime} u_{j}^{\prime}}-2 \nu \overline{u_{i}^{\prime} s_{i j}^{\prime}}\right] \\
& -\overline{u_{i}^{\prime} u_{j}^{\prime}} S_{i j}-2 \nu \overline{s_{i j}^{\prime} s_{i j}^{\prime}} \tag{19}
\end{align*}
$$

where $S_{i j}=\frac{1}{2}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)$ and $s_{i j}^{\prime}=\frac{1}{2}\left(\frac{\partial u_{i}^{\prime}}{\partial x_{j}}+\frac{\partial u_{j}^{\prime}}{\partial x_{i}}\right)$.
d) What does $\overline{u_{i}^{\prime} u_{j}^{\prime}} S_{i j}$ and $2 \nu \overline{s_{i j}^{\prime} s_{i j}^{\prime}}$ represent physically.

