UNIVERSITY OF OSLO

 Faculty of Mathematics and Natural

 Faculty of Mathematics and Natural Sciences

 Sciences}

Examination in: MEK4300/9300 - Viscous flow og turbulence
Day of examination: Friday 15. June 2012
Examination hours: 9.00-13.00
This problem set consists of 3 pages.
Appendices: Formula sheet
Permitted aids: Rottmann: Matematische Formelsamlung, certified calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Turbulence (weight 15\%)

Derive the Reynolds averaged Navier-Stokes (RANS) equations for an incompressible, Newtonian fluid and identify the Reynolds stress tensor. You may use, without proof, that $\mathbf{v} \cdot \nabla \mathbf{v}=\nabla \cdot(\mathbf{v v})$ for any divergence-free velocity field \mathbf{v}.

Problem 2 Gravity driven viscous flow (weight 35\%)

A film of liquid is flowing down at the outside of a vertical cylinder of radius a, under the action of gravity. We assume that the thickness of the fluid film, $b-a$, is constant along (and around) the cylinder and that the flow is stationary and radially symmetric. At the surface of the fluid there is an external pressure, p_{0}, while the shear stress is negligible. The cylinder is at rest.

2a (weight 10\%)
Formulate equations and boundary conditions, invoking the simplifying assumptions.

2b (weight 20\%)
Find the pressure and the velocity distribution.
2c (weight 5\%)
Calculate the drag (D) on the cylinder per height. Show that D obeys

$$
D=\rho g A,
$$

Figure 1: A control volume for mass balance analysis. The upper boundary of the volume, $y=Y(x)$, is a streamline outside the boundary layer. Also the line $y=H$ is outside the boundary layer, which is indicated by the bold dashes.
where A is the cross-sectional area of the fluid. Explain this relation physically. Correspondingly, the total dissipation per height and the volume flux, Q, through the cross-sectional area, fulfill the relation

$$
\iint_{A} \Phi d x d y=\rho g Q,
$$

where Φ is the dissipation pr volume. Do not (!) calculate Φ and Q, but explain the relation physically.

Problem 3 Boundary layer (weight 50\%)

In this problem we consider the Blasius boundary layer, which develops along a semi-infinite plate, corresponding to the positive x-axis, with the leading edge at the origin. The fluid is homogeneous and incompressible and the background flow is $U \mathbf{i}$, where \mathbf{i} is the unit vector in the x direction. Moreover, the y-axis is aligned normal to the plate and the velocity components in the x and y directions are u and v, respectively.

3a (weight 10\%)

A control volume is depicted in figure 1. The sides are numbered (i), (ii), (iii) and (iv). The boundary (iii) corresponds to a streamline outside the boundary layer. Use the mass balance argument to show that the displacement thickness is given by

$$
\delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y
$$

3b (weight 20\%)
Give the boundary layer equations and boundary conditions for the Blasius flow. A derivation is not required, but the main differences from the full Navier-Stokes equations should be listed.

η	f	f^{\prime}	$f^{\prime \prime}$
0.000000	0.000000	0.000000	0.469600
0.500000	0.058643	0.234227	0.465030
1.000000	0.232990	0.460633	0.434379
1.500000	0.515032	0.661474	0.361805
2.000000	0.886797	0.816695	0.255669
2.500000	1.322440	0.916808	0.147475
3.725000	2.509840	0.994972	0.014234
4.975000	3.758240	0.999929	0.000283
7.475000	6.258220	1.000000	0.000000

Figure 2: The form function of the Blasius profile.

3c (weight 10\%)

We assume the existence of a similarity solution

$$
u=U f^{\prime}(\eta), \quad \eta=\frac{y}{\Delta(x)}
$$

where the functions f and Δ are to be determined. Find a corresponding expression for v, show that we may employ $\Delta=\sqrt{2 \nu x / U}$ and find an ordinary differential equation, with boundary equations, for f. The solution for f is depicted and tabulated in figure 2. However, a discussion of its computation is not required.

3d (weight 10\%)

Use the preceding results to find explicit expressions for the displacement thickness, the shear stress at the plate and the drag (per width) of a section of length D from the front of the plate. Discuss briefly the validity of these expressions.

