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Problem 1 Turbulence

Splitting of v and p
v = v + v

′, p = p+ p′.

The continuity and Navier-Stokes equations

∇ · v = 0,

∂v

∂t
+ v · ∇v =

1

ρ
∇p+ ν∇2

v

Averaging then gives

∇ · v = 0,

∂v

∂t
+ v · ∇v =

1

ρ
∇p+ ν∇2

v.

We need to work more on the convective term only:

v · ∇v = ∇ · vv,

and

vv = vv + vv′ + v′v + v′v′ = vv + v′v′,

since the terms which are linear in the fluctuations are nihilated by the
averaging. Insertion in the averaged momentum equation then gives

∂v

∂t
+ v · ∇v =

1

ρ
∇p+ 1

ρ
∇ · τ,

where
τ = µ(∇v +∇v

∗) + S, S = −ρv′v′.

The term S = {Sij} = {−ρu′iu′j}, which stems from the convective term, is
re-interpreted as the Reynolds stress tensor.

(Continued on page 2.)
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Problem 2 Gravity driven viscous flow (weight xx%)

2a (weight xx%)

We align the z-axis vertically downwards and employ cylindrical coordinates.
Due to the symmetry and informaton given in the text we assume

v = vr(r)ir + vz(r)k.

From the formula sheets we then find the continuity equation

1

r

∂(rvr)

∂r
= 0.

while the components of the Navier-Stokes equation become

ir : vr
∂vr
∂r

= −1

ρ

∂p

∂r
+ ν

{

1

r

∂

∂r

(

r
∂vr
∂r

)

− vr
r2

}

,

k : vr
∂vz
∂r

= −1

ρ

∂p

∂z
+ g +

ν

r

∂

∂r

(

r
∂vz
∂r

)

.

At the cylinder we have the no-slip condition

vz(a) = vr(a) = 0.

On the free surface, r = b we have the dynamic condition for the stress

~p = ir · P = −p0ir,

which means zero shear stress.

2b (weight xx%)

The continuity equation gives

vr =
A

r
,

which corresponds to a line source at r = 0. The boundary condition
vr(a) = 0 the implies that vr is zero throughout the fluid. To find an
expression for the stress at the surface we start with

∇v =

(

ir
∂

∂r
+ k

∂

∂z

)

vz(r)k =
dvz
dr

irk.

The stress tensor then becomes

P = −pI + µ(∇v +∇v
∗) = −pI + µ

dvz
dr

(irk+ kir),

and the condition at r = b

−p0ir = ir · P = −pir + µ
dvz
dr

k,

which imply p = p0 and dvz
dr = 0 at the surface.

(Continued on page 3.)
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The ir component of the momentum equation now simply states

∂p

∂r
= 0,

which imply p = p(z). Combined with p = p0 at r = b this gives p = p0
throughout the fluid. Then the equation set for vr becomes

0 = g +
ν

r

d

dr

(

r
dvz
dr

)

,

vz(a) = 0, dvz(b)
dr = 0.

Integration of the momentum equation

r
dvz
dr

= − g

2ν
r2 + C,

vz = − g

4ν
r2 + C ln(r/a) +D,

where C and D are integration constants. The boundary conditions give

− g

4ν
a2 +D = 0,

− g

2ν
b+

C

b
= 0.

The expresssion for vz then becomes

vz =
g

4ν

(

a2 − r2 + 2b2 ln(r/a)
)

.

2c (weight xx%)

Since the downward acceleration is zero the drag per height must equal the
weight of the fluid per height. Also, since the kinetec energy is constant the
rate of loss of potential energy per height must equal the dissipation per
height.

Problem 3 Boundary layer (weight xx%)

3a (weight xx%)

We assume a constant density. Then conservation of mass implies
conservation of volume. There is no transport of volume through either
(ii) or (iii). For boundary (iv) we have a transport into the volume (per
width)

Q(iv) = HU.

At (ii) we have

Q(ii) = −
Y
∫

0

u(x, y)dy,

where the minus sign appears because fluid is leaving the volume through
(ii) when u > 0. Since y = H is outside the boundary layer the flux Q(ii)

may be rewritten

Q(ii) ≈ −
H
∫

0

u(x, y)dy −
Y
∫

H

u dy = −
H
∫

0

u dy − Uδ∗.

(Continued on page 4.)
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Zero net influx then implies

0 = Q(ii) +Q(ii) = QH −
H
∫

0

u(x, y) dy − Uδ∗ =

H
∫

0

(U − u) dy − Uδ∗.

Rearrangement then gives

δ∗ =
1

U

H
∫

0

(U − u) dy ≈
∞
∫

0

(

1− u

U

)

dy.

Comment: This calculation is asymptotically valid for large H, as indicated
by the occasional ≈.

3b (weight xx%)

The boundary layer equations in this case read

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
.

At the plate we have a no-slip slip condition

u(x, 0) = 0, v(x, 0) = 0, for x ≥ 0,

while the boundary layer flow is matched to the outer flow through

lim
y→∞

u = U.

There is no matching condition on v. The above set is simplified in relation
to the Navier-Stokes equations in the following manners

� The pressure is adapted from the outer solution and is treated as
known and constant through the boundary layer. For the Blasius
profile the pressure is constant in the outer solution, hence no pressure
gradient in the equation.

� Since the pressure is not unknown the y component of the momentum
equation may be disregarded.

� The ν∂2u/∂2x term is neglected, since variations along the boundary
layer are small than the transverse ones.

3c (weight xx%)

To find an expression for v it is slightly simpler to introduce the stream
function, ψ, than to employ the continuity equation directly

∂ψ

∂y
= u⇒ ψ =

∫

Uf ′(η) dy = ∆Uf(η) + ψ0(x).

(Continued on page 5.)
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We may choose ψ = 0 at the streamline y = 0 and an f such that f(0) = 0.
Then ψ = ∆Uf and

v = −∂ψ
∂x

= ∆′U
(

ηf ′ − f
)

.

substitution into the momentum equation implies

Uf ′
(

−U∆′y

∆2
f ′′

)

+∆′U
(

ηf ′ − f
) U

∆
f ′′ =

νU

∆2
f ′′′,

which is re-arranged into

−U∆∆′

ν
ff ′′ = f ′′′.

Since the first factor on the left hand side dependens only on x (while the

rest depends only on η) it must be a constant. This implies ∆∆′ =const. and
∆ = B

√
x. B is arbitrary and conveniently chosen such that ∆ =

√

2νx/U .
The equation for f then becomes

f ′′′ + ff ′′ = f ′′′.

Boundary conditions are

f(0) = 0, f ′(0) = 0, f ′(∞) = 1.

The End

3d

From point (a) the boundary layer thickness is given by

δ∗ =

∞
∫

0

(

1− u

U

)

dy = ∆

∞
∫

0

(

1− f ′(η)
)

dη = ∆ lim
η→∞

(η − f(η)).

From the graph and table in figure 2 η = 7.475 appears to be way outside
the boundary layer and η − f(η) = 1.217 for this η value. Hence

δ∗ = 1.217

√

2νx

U
= 1.721

√

νx

U
.

The shear stress is

τw = µ
∂u(0)

∂y
=
µU

∆
f ′′(0) = 0.33

√

ρµU

x
.

The drag then is
D
∫

0

τw dx = 0.66
√

ρµUx.

Results are not valid near the leading edge (δ∗ is singular, for instance) and
the solution becomes unstable for large Rex = Ux/ν.


