UNIVERSITY OF OSLO
 Faculty of Mathematics and Natural Sciences

Examination in: \quad MEK4300/9300 - Viscous flow og turbulence
Day of examination: Friday 14. June 2013
Examination hours: 9.00-13.00
This problem set consists of 4 pages.
Appendices: None
Permitted aids: Rottmann: Matematische Formelsamlung, certified calculator

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Turbulence (weight 35\%)

Fluid flow is often described mathematically through the Navier-Stokes equations:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \boldsymbol{u}+\boldsymbol{f} \tag{1}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{2}
\end{align*}
$$

where $\boldsymbol{u}, p, \rho, \nu$ and \boldsymbol{f} are the velocity vector, pressure, density, kinematic viscosity and volume forces respectively.

1a (weight 5\%)
Which two physical laws were used in the derivation of the Navier-Stokes equations? What other assumptions have been made?

1b (weight 10\%)
Introduce Reynolds decomposition of velocity and pressure and derive from (1) og (2) the Reynolds Averaged Navier-Stokes (RANS) equations.

1c (weight 10\%)
Turbulent flows are often 'defined' through a list of characteristic properties. Give at least 5 characteristic properties that define turbulence.

1d (weight 10\%)
Explain in words how it is possible to derive a transport equation for $\overline{u_{i} u_{j}}$ (Note, not $\left.\overline{u_{i}^{\prime} u_{j}^{\prime}}\right)$. Explain also how $\overline{u_{i}^{\prime} u_{j}^{\prime}}$ can be modelled through an algebraic expression.

Figure 1: Sketch of the flow between two plates located at $y=0$ og $y=h$. The thin lines illustrate how the flowfield evolves in time. The velocity is then plotted along the x-axis as a function of y.

Problem 2 Transient flow between two parallel plates (weight 25\%)

Consider a uniform, straight flow of an incompressible Newtonian fluid between two parallel plates of infinite extension in x and z-directions. The lower plate is located at $y=0$ and the upper at $y=h$. The velocity vector is $\boldsymbol{u}=(u(y, t), 0,0)$. The fluid between the plates is initially at rest. At $t=0$ the velocity of the lower plate is suddenly accelerated to $u(0, t)=U$, while the upper is kept still. The flow field is illustrated in Figur 1.

2a (weight 10\%)
Formulate the equations, including boundary and initial conditions for this problem.

2b (weight 15\%)
Find the velocity $u(y, t)$. (Hint: Introduce $v(y, t)=u(y, t)-U(1-y / h)$ and solve the homogeneous problem for $v(y, t)$ first. Also, $\int_{0}^{h} \sin ^{2}(n \pi y / h) d y=$ $h / 2$ and $\int_{0}^{h}(1-y / h) \sin (n \pi y / h) d y=h /(n \pi)$, for $\left.n=1,2,3 \ldots\right)$.

Problem 3 Laminar boundary layer (weight 40\%)

We consider a laminar boundary layer that evolves over a plate lying at position $y=0$ in the plane spanned by the x - and z-axes. The boundary layer evolves from the origin and grows in the positive x-direction. The boundary layer is generated by the outer flow $U \mathbf{i}$, where \mathbf{i} is the unit normal vector in the x-direction. The velocitycomponents in x and y directions are, respectively, u and v. Two common quantities often used in defining boundary layers are

$$
\begin{aligned}
\delta^{*}(x) & =\int_{0}^{y \rightarrow \infty}\left(1-\frac{u}{U}\right) \mathrm{d} y \\
\theta(x) & =\int_{0}^{y \rightarrow \infty} \frac{u}{U}\left(1-\frac{u}{U}\right) \mathrm{d} y .
\end{aligned}
$$

3a (weight 10\%)
What are the quantities δ^{*} and θ called and from which two physical laws are they derived?

3b (weight 10\%)

Assume that the velocity u is known and given as

$$
\begin{equation*}
u(y ; \delta)=U \sin \left(\frac{\pi y}{2 \delta}\right), \tag{3}
\end{equation*}
$$

where $\delta(x)$ is the actual boundary layer thickness (defined through $u(x, \delta)=$ $0.99 U)$. The skinfriction coefficient, C_{f}, is defined as

$$
\begin{equation*}
C_{f}=\frac{\tau_{w}(x)}{0.5 \rho U^{2}}=2 \frac{\mathrm{~d} \theta}{\mathrm{~d} x}, \tag{4}
\end{equation*}
$$

where $\tau_{w}(x)=\mu \mathrm{d} u / \mathrm{d} y$ at $y=0$. Use this to find δ^{*} and θ expressed in terms of x. Feel free to simplify the results using $\operatorname{Re}_{x}=\rho U x / \mu$.

3c (weight 10\%)
The laminar boundary layer equations can be derived from the Navier-Stokes equations by proper scaling and subsequent elimination of small terms in the limit of large Reynolds numbers $(\operatorname{Re}=\rho U L / \mu)$. Use the following normalizations

$$
\begin{array}{ccc}
\bar{x}=\frac{x}{L} & \bar{u}=\frac{u}{U} & \bar{v}=\frac{v}{U} \sqrt{R e} \\
\bar{y}=\frac{y}{L} \sqrt{R e} & \bar{t}=\frac{t U}{L} & \bar{p}=\frac{p}{\rho U^{2}}
\end{array}
$$

and show that the boundary layer equations can be written as

$$
\begin{gathered}
\frac{\partial \bar{u}}{\partial \bar{t}}+\bar{u} \frac{\partial \bar{u}}{\partial \bar{x}}+\bar{v} \frac{\partial \bar{u}}{\partial \bar{y}}=\frac{\partial^{2} \bar{u}}{\partial \bar{y}^{2}}-\frac{\partial \bar{p}}{\partial \bar{x}}, \\
\frac{\partial \bar{u}}{\partial \bar{x}}+\frac{\partial \bar{v}}{\partial \bar{y}}=0, \\
\frac{\partial \bar{p}}{\partial \bar{y}}=0 .
\end{gathered}
$$

3d (weight 10\%)
We introduce, like Blasius did in 1908, a similarityvariabel $\eta(x, y)$ and a similaritysolution $\psi(x ; \eta)$ defined as

$$
\begin{aligned}
\eta(x, y) & =y \sqrt{\frac{U}{2 \nu x}} \\
\psi(x, \eta) & =\sqrt{2 \nu U x} f(\eta)
\end{aligned}
$$

where $f(\eta)$ is an unknown function to be determined and ψ is the streamfunction defined as

$$
u=\frac{\partial \psi}{\partial y} \quad \text { og } \quad v=-\frac{\partial \psi}{\partial x}
$$

Derive, starting from the boundary layer equations, the Blasius equation

$$
f^{\prime \prime \prime}+f f^{\prime \prime}=0
$$

Formulate also the boundary conditions for these equations.
The End

