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Chapter 1

INTRODUCTION

It is di�cult to give a general, and at the same time, precise de�nition of what
wave motion is, but the following loose formulation can be a useful starting
point: A wave is a disturbance that can propagate from one part of a medium to
another with a characteristic speed. This requires the disturbance to be such that
its position can be determined at any given time. The disturbance can change
form, size, and propagation speed. Accordingly, both periodic disturbances (wave
trains) and isolated disturbances (pulses) that move through the medium can be
designated as waves.

Wave motion occurs in �uids, gasses, elastic media, and vacuums, but the
waves can have di�erent physical characteristics. Examples include surface waves
on water caused by the forces of gravity or surface tension, inertial waves in
the ocean and atmosphere caused by Earth's rotation, seismic waves caused by
elastic forces, and electromagnetic waves caused by electric and magnetic forces.
Even though the causes of wave propagation can be di�erent, the di�erent types
of waves share common characteristics and a lot of the mathematical methods
which are used in examinations of the various wave phenomena are the same.
One can therefore correctly speak of a generic wave theory for all wave forms.

The main purpose of this lecture series is to describe important forms of wave
propagation in �uids. We shall not seek to give a complete description of all wave
types. Instead, we shall make the selection so that we get to common traits in
di�erent types of waves, and we seek to select them such that we get to know the
essential mathematical methods in wave theory. For a more complete treatment
of the �eld, refer to the books by Lamb (1932), Stoker (1957), Tolstoy (1973),
Whitham (1974), and Lighthill (1978).
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6 INTRODUCTION

1.1 Elementary models and concepts

The simplest mathematical model for wave propagation is given by the equation

∂φ

∂t
+ c

∂φ

∂x
= 0 (1.1)

where x is a spatial coordinate, t is time c is a constant. This equation has the
solution

φ = f(x− ct)

where f is an arbitrary function that describes a disturbance that moves along
the x-axis with constant speed c.

Figure 1.1: One-dimensional wave propagation.

The three-dimensional wave equation

∂2φ

∂t2
− c2∇2φ = 0 (1.2)

can describe propagation of sound waves, seismic waves, and electromagnetic
waves in a medium with constant propagation speed c.

One solution of (1.2) is the spherically symmetric wave which can be written
as

φ =
f(r − ct)

r
+
g(r + ct)

r
(1.3)

where r is the distance from a �xed reference point O in space. Here f and g are
arbitrary functions describing disturbances that propagate out from or toward
O, respectively. Notice that this wave attenuates with a factor 1/r because the
energy is spread over continuously larger spherical shells (spherical attenuation)
as r increases.

Another solution of (1.2) is the plane wave which can be written as

φ = A exp{i(k · r − ωt)} (1.4)
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Figure 1.2: Spherically symmetric wave propagation.

where A can be called the complex wave amplitude. Sometimes we want the
solution to be real, then we can write

φ =
A

2
exp{i(k · r − ωt)}+ c.c. = |A| cos(k · r − ωt+ argA) (1.5)

where A is complex and c.c. denotes �complex conjugate of the previous expres-
sion�. Here |A| can be called the real wave amplitude and argA is a phase lag.

The other two constants ω and k above are related by the so-called dispersion
relation, which for the wave equation (1.2) is

ω2 = (kc)2. (1.6)

The vector r is a position vector relative to the reference point O, in a Carte-
sian coordinate system we have r = (x, y, z). The scalar

χ = k · r − ωt (1.7)

is called the phase function. The equation

χ = χ0 = constant

describes how locations of constant phase move through space and time. If the
phase function is held constant at a given time it de�nes a plane that can be
called a phase plane. A trough or a crest corresponds to �xed values of the phase
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Figure 1.3: Phase plane.

function. The vector k is the wavenumber vector, or simply the wave vector,
and the components along the axes x, y and z are, respectively, designated ki
(i = 1, 2, 3) or kx, ky and kz. It follows from (1.7) that

k = ∇χ (1.8)

which shows that the wave vector is orthogonal to the phase plane.
The wavelength λ is the distance between two phase planes for which the

phase function changes by 2π. We have

λ =
2π

k
(1.9)

where k = |k| is the wavenumber. The angular frequency is ω. The period T and
frequency f are given by

T =
2π

ω

f =
1

T

(1.10)

The ratio between angular frequency and wavenumber

c =
ω

k
(1.11)

is known as the phase speed. For the wave equation (1.2) it is seen that the phase
speed coincides with the speed c appearing in the equation (1.2). Since c is in
this case independent of k and ω, we say that these waves are non-dispersive or
dispersionless .

The phase speed is the speed that the phase plane moves in the normal direc-
tion, i.e. in the direction of the wave vector k. However, in a direction di�erent
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from k the phase plane moves faster than the phase speed (see relevant exercise
below). Thus the phase speed does not satisfy the principles of vector projection,
it is not a vector1 and should not be called a velocity.2

For the linear equations (1.1) and (1.2) the principle of superposition is valid:
A sum of the solutions of the form (1.4) or (1.5) is also a solution of the wave
equation. By means of Fourier series or Fourier transform we can derive waves
of arbitrary form.

The wave equation (1.2) appears quite frequently upon making simplifying
assumptions on the nature of wave propagation and the medium, typical as-
sumptions are:

1. Small amplitude such that the governing equations can be linearized.

2. Wave energy is conserved.

3. The medium is homogeneous and stationary.

In many applications these assumptions will not be ful�lled. Examples are
nonlinear waves and waves in inhomogeneous media � topics of great current
research interest. Through examples we shall show important properties of such
wave phenomena.

In elementary expositions of wave theory the impression is often given that
wave propagation is limited to hyperbolic equations of the type (1.1) or (1.2). This
is not correct. One of the most conspicuous forms of waves, namely surface waves
on water, are not of this type. Water waves belong to the class of dispersive waves,
and for these waves, the phase speed depends on the wavelength. Dispersive waves
can be plane waves like equation (1.4), but the dispersion relation is di�erent from
equation (1.6). In the general case ω is both dependent on the magnitude and
the direction of the wave vector, and we can write the dispersion relation as

ω = ω(k). (1.12)

In many cases the dispersion relation is isotropic. This entails that ω is inde-
pendent of the direction of the wave vector, and depends only on the wavenumber
such that

ω = ω(k). (1.13)

With isotropic dispersion, the phase speed is independent of the orientation of
the phase plane.

With anisotropic dispersion the phase speed will be di�erent depending on the
orientation of the phase plane. Examples of this are elastic waves in sedimentary
layers and ocean surface waves that propagate in areas of non-uniform currents.

1By velocity (Norwegian: hastighet) we mean a vector. By speed (Norwegian: fart) we mean
a scalar. For a quantity to be a vector, it must satisfy the principles of vector projection.

2Despite these concerns, some authors de�ne the phase velocity to be a vector with the same
direction as k, e.g. Whitham (1974) page 365.
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Exercises

1. The dispersion relation.

Which of these equations have solutions of the form η = A exp{i(k·r−ωt)}?
(In the last subproblem such an expression must be substituted for all of
η, u and v.) Find and describe the dispersion relation, i.e. the relation
between ω and k. Which of these equations support waves?

(a)
∂2η

∂t2
= c2

0

∂2η

∂x2

(b)
∂η

∂t
= c2

0

∂2η

∂x2

(c)
∂η

∂t
= c0

∂η

∂x
+ ε

∂3η

∂x3

(d)
∂2η

∂t2
+ a

∂η

∂t
= c2

0

∂2η

∂x2

(e)
∂4η

∂t4
− ∂4η

∂t2∂x2
+ ε

∂4η

∂x4
= 0

(f)
∂2η

∂t2
= ∇2η +

ε

3
∇2∂

2η

∂t2

(g)
∂2η

∂t2
=

∂

∂x
(x
∂η

∂x
)

(h)
∂

∂x
(
∂η

∂t
+
∂η

∂x
+
µ2

6

∂3η

∂x3
) +

1

2

∂2η

∂y2
= 0

(i)
∂u

∂t
= −∂η

∂x
,
∂v

∂t
= −∂η

∂y
,
∂η

∂t
= −∂u

∂x
− ∂v

∂y

2. Standard wave equations and initial conditions.

A function η is de�ned for all x and satis�es the equation given in exercise
1a. How many initial conditions are needed to ensure a unique solution?
Give an example of such a set of initial conditions. Find the solution at an
arbitrary later time. Repeat for 1c with ε = 0. Discuss the case ε 6= 0.

3. Standard wave equation in spherical coordinates.

Express the Laplace operator∇2 in spherical coordinates {r, θ, ϕ}, and show
that equation (1.3) is a solution of equation (1.2).

Hint: Avoid confusing the unknown φ and the azimuthal angle ϕ.

4. Practical exercise for phase speed.

Next time you go to the coast, �nd a long pier that does not obstruct the
water surface waves below. Suppose the waves are long-crested and have
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wave vector pointing in the x-direction, i.e., crests aligned in the y-direction.
Suppose the pier is oriented at an angle θ with the x-axis. You want to
run along the pier such that you follow one particular crest. Show that you
need to run at a speed c/ cos θ where c is the phase speed of the waves.
How fast would you have to run if the crest is parallel to the pier?

5. Standard wave equation in cylindrical coordinates.

Consider the wave equation (1.2) in cylindrical coordinates {r, θ, z} and
assume radial symmetry such that φ is only a function of r and t. Set
φ(r, t) = u(r)e−iωt and show that u satis�es the Bessel equation

ξ2 d2u

dξ2
+ ξ

du

dξ
+ (ξ2 − a2)u = 0

where ξ = ωr/c and where a = 0. The number a is called the order of the
Bessel equation.

Two independent solutions are the Bessel functions of the �rst and second
kind, Ja(ξ) and Ya(ξ), or alternatively the two Hankel functions H

(1)
a (ξ) =

Ja(ξ) + iYa(ξ) and H
(2)
a (ξ) = Ja(ξ) − iYa(ξ). For large real and positive ξ

we have the approximations

J0(ξ) ≈
√

2

πξ
cos(ξ − π

4
)

Y0(ξ) ≈
√

2

πξ
sin(ξ − π

4
)

H
(1)
0 (ξ) ≈

√
2

πξ
ei(ξ−π

4
)

H
(2)
0 (ξ) ≈

√
2

πξ
e−i(ξ−π

4
)

Show that J0(ξ) and Y0(ξ) correspond to standing waves, H
(1)
0 (ξ) corre-

sponds to an outgoing wave, and H
(2)
0 (ξ) corresponds to an incoming wave.

6. Standard wave equation in spherical coordinates.

Consider the wave equation (1.2) in spherical coordinates {r, θ, ϕ} and
assume radial symmetry such that φ is only a function of r and t. Set
φ(r, t) = u(r)e−iωt and show that u satis�es the equation

ξ2 d2u

dξ2
+ 2ξ

du

dξ
+ (ξ2 − n(n+ 1))u = 0

where ξ = ωr/c and where n = 0.
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Two independent solutions are the spherical Bessel functions of the �rst
and second kind, jn(ξ) and yn(ξ), or alternatively the two spherical Hankel

functions h
(1)
n (ξ) = jn(ξ) + iyn(ξ) and h

(2)
n (ξ) = jn(ξ)− iyn(ξ). In particular

we have

j0(ξ) =
sin(ξ)

ξ

y0(ξ) = −cos(ξ)

ξ

Show that j0(ξ) and y0(ξ) correspond to standing waves, h
(1)
0 (ξ) corresponds

to an outgoing wave, and h
(2)
0 (ξ) corresponds to an incoming wave.



Chapter 2

SURFACE WAVES IN FLUIDS

Surface waves caused by gravity or surface tension are well recognized day to day
phenomena. This form of wave motion has been studied in numerous scienti�c
works, and is known to share a multitude of properties with other forms of waves.
It is therefore justi�ed to let surface waves take a central place in the study of
wave theory.

Depending on whether surface tension or gravity dominates the wave motion,
we use the terms capillary waves or gravity waves . In some cases, wave motion
will by in�uenced just as much by surface tension as by gravity, we then use
the terms capillary�gravity waves or gravity�capillary waves . Both capillary and
gravity waves are in�uenced by viscosity in the �uid in such a way that the
shortest waves are dampened the most by the e�ect of friction. For wave motion
in deep water, the viscosity leads to substantial dampening only for waves with
a wavelength of less then about 1 cm. Compressibility in the �uid will generally
be insigni�cant for surface waves.

Surface waves are closely related to waves on the interface between �uids of
di�erent densities. Some examples of this will be given in the section on internal
waves.

13



14 SURFACE WAVES IN FLUIDS

2.1 Boundary conditions at the surface of the �uid

Figure 2.1: Orthogonal unit vectors on the surface

In the following, we often �nd use for the mathematical expression of boundary
conditions at the surface of the �uid, and initially, we will derive these. Here we
shall handle the case where a �uid borders an overlaying gas with much smaller
density than the �uid such that one can neglect the motion in the overlaying
gas. Because of that, we can expect the pressure over the �uid to be a constant
isotropic pressure, which we designate as pa.

We let z = η(x, y, t) de�ne the surface. The z-axis is in the vertical direction
pointing up and the x- and y-axes are horizontal. We view the �uid as �lling the
space under the surface. When the �uid is stationary, and in equilibrium, the
surface lies on the xy-plane. The unit normal vector n de�nes the surface normal
at point O. This is chosen such that the unit vector points up from the surface.
The unit vectors l and m lay in the tangent plane at point O, and the vectors
l, m and n constitute a set of orthogonal unit vectors. Such a set is given for
example by

l = (0, 1, ηy)/
√

1 + η2
y

m = (−η2
y − 1, ηxηy,−ηx)/

√
(1 + η2

x + η2
y)(1 + η2

y) (2.1)

n = (−ηx,−ηy, 1)/
√

1 + η2
x + η2

y

Here ηx = ∂η/∂x and ηy = ∂η/∂y.

Below a surface element with area dA which lies in the surface with point O
at its center (see �g. 2.1), forces act due to pressure and viscous stress in the
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�uid. With the assumptions we have made here there is also a pressure force
acting on top of the surface element. The sum of these forces can be written as

[(ps − pa)n− n ·P ]dA (2.2)

where P is the viscous stress tensor and ps is the pressure exerted by the �uid
on the underside of the surface.

Along the edge of the surface element, additional forces act due to surface
tension σ (force per unit of length), oriented along the tangent to the surface
at the edge of the surface element. Let the point O be contained in a simply
connected area Ω on the surface, limited by the edge Γ. The capillary force
which acts on a linear line segment ds can be written as −σn × ds, where n is
the surface normal for the line segment ds. The total capillary force acting on
the edge Γ of the surface element is

F = −
∮

Γ

σn× ds.

In the case that σ is constant on the surface, we can with the help of Stokes
theorem, and with a view that the area of Ω, dA, shrinks towards the point O,
show that the capillary force on the surface element is in the direction of the
normal vector n at O, and is given by

dF = n dFn = −σn∇ · n dA.

The magnitude of the resultant capillary force can alternatively be expressed
by the principal radii of curvature for the surface. In �gure 2.2, the surface ele-
ment is chosen such that the edges ds1 and ds2 fall along the principal directions
of curvature for the surface. In the �gure, we designate S1 and S2 the centers
of curvature and R1 and R2 the principal radii of curvature for the surface. The
angles dβ1 and dβ2 are given by the relations

dβ1 =
ds1

R1

and dβ2 =
ds2

R2

.

We �nd therefore that

Fn = −2σds2
dβ1

2
− 2σds1

dβ2

2
= −σ(

1

R1

+
1

R2

)dA (2.3)

where R1 and R2 are chosen positive when the corresponding curvature centers
are positioned inside the �uid. The quantity 1

2
( 1
R1

+ 1
R2

) is commonly called the
mean curvature.

To avoid that the particles at the surface obtain in�nitely or unrealistically
large accelerations, the sum of forces due to pressure, gravity, capillarity and
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Figure 2.2: Principal radii of curvature for the surface

viscosity must be zero. This leads to the dynamic boundary conditions at z =
η(x, y, t)

ps − n ·P · n− σ∇ · n = pa

n ·P · l = 0 (2.4)

n ·P ·m = 0

In addition to the requirements (2.4) we impose the kinematic boundary con-
dition at the surface. Normally, mass transport through the surface due to evapo-
ration or di�usive processes is insigni�cant, and one can with good approximation
assume that the particles at the surface should stay at the surface. Suppose a
particle is at position r = (x, y, z) at time t, we have z = η(x, y, t). Given the
�uid velocity v = (u, v, w), after a small time interval dt the �uid particle is at
the updated surface position

z + w dt = η(x+ u dt, y + v dt, t+ dt)

With Taylor expansion in powers of dt, we �nd the kinematic boundary condition
at the surface.

w =
∂η

∂t
+ v · ∇η (2.5)

The equations (2.4) and (2.5) are nonlinear in the variables u, v, w and η. In
the following we will show how the boundary conditions simplify by linearization.
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Given that one can assume the �uid motion is irrotational, the �ow velocity
can be deduced from a potential φ and

v = ∇φ (2.6)

If the �uid in addition is frictionless and homogeneous, the pressure in the �uid
is given by Euler's pressure equation

p = −ρ
(
∂φ

∂t
+

1

2
v2 + Φ(z)

)
+ f(t)

where ρ is the density of the �uid and Φ is the speci�c potential energy due to
gravity. In this expression there is some ambiguity as f(t) and the zero level
for Φ may be chosen freely. Di�erent choices then lead to velocity potentials,
φ, which di�er by a function of time only, and hence all correspond to the same
velocity �eld v through (2.6). For the following derivations it is convenient to
choose f(t) = pa and the zero level for Φ at z = 0. Then the gravity potential
becomes Φ = gz, where g is the acceleration of gravity, and the pressure under
the surface can be written

ps = −ρ
(
∂φ

∂t
+

1

2
v2

)
z=η

− ρgη + pa (2.7)

Combined with the normal component of (2.4) this relation yields the dynamic
surface condition

−ρ
(
∂φ

∂t
+

1

2
v2

)
z=η

− ρgη − σ∇ · n = 0

For small wave heights this relation may be simpli�ed through linearization. By
Taylor expansion of the expression in parenthesis in powers of η, we get

p = −ρ
[(

∂φ

∂t

)
z=0

+ gη

]
− ρ

[
∂2φ

∂t∂z
η +

1

2
v2

]
z=0

+ · · ·+ pa (2.8)

where · · · designates higher order terms.
Given that the wave amplitude is small enough, quadratic or higher order

terms of the �ow variables (η, φ,v) may be dropped in relation to the terms
which are linear in the �ow variables. After we have found the wave motion
that satis�es the linearized equations, we can set these linear solutions inside the
nonlinear terms. From this we can �nd an estimate for how small the amplitude
must be for the higher order terms to be dropped. We shall come back to this
later.

The linearized expression for pressure in the �uid at z = η can be written

ps = −ρ
[(

∂φ

∂t

)
z=0

+ gη

]
+ pa (2.9)
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One can proceed similarly to linearize the terms in the boundary conditions (2.4).
The expression where surface tension is included can be written

−σ∇ · n = σ
ηxx(1 + η2

y) + ηyy(1 + η2
x)− 2ηxηyηxy

(1 + η2
x + η2

y)
3/2

such that one by linearization can �nd

−σ∇ · n = σ

(
∂2η

∂x2
+
∂2η

∂y2

)
, (2.10)

which, combined with linearized expressions for the terms in ps, provides the
linear dynamic surface condition in (2.13).

Exercises

1. Consult any book on continuummechanics, e.g. the compendium in MEK2200,
to review the full expression for the viscous stress tensor P .

2. Find the linear expression for the viscous stress components in (2.4). As-
sume Newtonian �uids.

3. Find, by expansion, the linear and quadratic terms in the kinematic bound-
ary condition (2.5).

2.2 Dispersion relation for linear capillary and grav-

ity waves

We shall consider two-dimensional surface waves in a frictionless, homogeneous,
and incompressible �uid restricted by a �at and horizontal bottom. We place the

Figure 2.3: Two-dimensional wave

axes as shown in �gure 2.3 where the x-axis forms the surface when the �uid is
at rest and equilibrium. The depth of the �uid layer is then H.
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As the wave motion is supposed to be irrotational and the �uid is incompress-
ible the velocity potential satis�es the Laplace equation

∇2φ = 0. (2.11)

For linear waves the surface boundary conditions can, in accordance with (2.4),
(2.9), (2.10) and results from the exercise under point 3 above, be written

∂η

∂t
=
∂φ

∂z
(2.12)

∂φ

∂t
+ gη − σ

ρ

∂2η

∂x2
= 0 (2.13)

for z = 0. The boundary condition on the bottom, z = −H, is

∂φ

∂z
= 0. (2.14)

Equations (2.11) through (2.14) may for instance be combined with initial
conditions to describe temporal evolution of waves. We will return to this prob-
lem subsequently, but will start with the analysis of a simple wave component
(monochromatic solution) of the form

η = a sin(kx− ωt), φ = A(z) cos(kx− ωt),

where a and k may be chosen freely, while A and ω must be determined accord-
ingly. Such a simple solution is possible since the equation set is linear with
constant coe�cients. Using a sine function for η, equations (2.12) and (2.13)
require a cosine for φ. Substitution of the expression for φ into the Laplace
equation, (2.11), yields an ordinary di�erential equation for A, with a solution
containing two constants of integration. These and ω are then determined by the
three conditions (2.12), (2.13) and (2.14). The �nal result for η and φ can be
written

η = a sin(kx− ωt) (2.15)

φ = − aω

k sinh kH
cosh k(z +H) cos(kx− ωt) (2.16)

where a is the amplitude of the wave. The wavenumber and angular frequency
are connected by the dispersion relation

ω2 = (gk +
σk3

ρ
) tanh kH. (2.17)

The phase speed for capillary�gravity waves is therefore given by

c = c0

(
1 +

σk2

ρg

) 1
2
(

tanh kH

kH

) 1
2

(2.18)
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where c0 =
√
gH. Equation (2.18) is little a�ected by surface tension given

σk2

ρg
� 1. This entails that the surface tension can be neglected for waves with

wavelength much larger then λm where

λm = 2π(
σ

ρg
)
1
2 . (2.19)

On the other hand, surface tension dominates wave motion when the wave length
is much smaller then λm. For clean water at 20◦C we have σ = 7.4 · 10−2 N/m,
ρ = 103 kg/m3, and with g = 9.81 m/s2 we have λm = 1.73 cm.

In the case that the wavelength is much less than H and thereby kH � 1 we
can with good approximation set tanh kH = 1 and we �nd from (2.18) that

c =

(
g

k
+
σk

ρ

) 1
2

. (2.20)

In this case the phase speed has a minimum value

cm = 2
1
2 (
σg

ρ
)
1
4

for wavelength λm. For clean water at 20◦C is cm = 23 cm/s. Upon introducing
the magnitudes λm and cm we can write (2.20) as

c

cm
=

[
1

2
(
λ

λm
+
λm
λ

)

] 1
2

.

We notice that when the wavelength is larger than λm, the phase velocity is
larger for long waves than it is for short, but the opposite is true for wavelength
less than λm. Figure 2.4 shows c as a function of wavelength . Given that the
wavelength is much larger than H such that kH � 1, we can set

tanh kH = kH − (kH)3

3

and we �nd from (2.18) that

c = c0

[
1 +

(
σ

ρgH2
− 1

3

)
k2H2

2

]
. (2.21)

If σ = 1
3
ρgH2, which for clean water happens for H = 0.48 cm, then (2.21) shows

that the waves are non-dispersive, in analogy with acoustic waves. In this case
water waves can be used in experimental studies as an analogy of non-dispersive
sound waves.

With the solutions of the linear equations, which we have found, we are capa-
ble of giving complete conditions for the linearization to be valid. Looking back at
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Figure 2.4: Phase speed c as a function of the wavelength λ for waves in deep
water.

the expression (2.8), we see that (∂φ
∂t

)z=0 is a typical linear term and u2 = (∂φ
∂x

)2
z=0

is a typical second order nonlinear term. If we use the solution (2.15)�(2.16), we
�nd that the relation between linear and nonlinear terms is at most

ak

tanh kH
.

A necessary condition for justifying removal of nonlinear terms and keeping
only linear terms is that this ratio be much less than 1. This implies that lin-
earization is valid given that a/λ� 1 when kH � 1 and a/H � 1 when kH � 1.
In both cases, linearization would also be valid when the steepness of the wave is
adequately small.

Exercises

1. A plane wave has wavenumber vector k = (kx, ky) and angular frequency
ω. Give a geometrical/physical interpretation of ω/kx and ω/ky. Find the
wavenumber, wavelength, and phase speed for a gravity wave in deep water
with period 10 s. Find the wavenumber vector when the wave propagates
in a direction which is at a 30◦ angle with the x-axis.

2. Find the pressure in the �uid for gravity�capillary waves, and determine the
pressure at the bottom. How does the pressure vary with z when kH � 1?
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Which wave periods can be registered by a pressure sensor that lies on the
bottom at 100 m depth with a sensitivity limited to 1/10000 part of the
hydrostatic pressure? We let the wave steepness 2a/λ be 0.1.

3. Determine the kinetic energy density ρ
2
v2 for gravity waves in deep water.

Which conditions must we set for the wave amplitude a such that the max-
imum value of the nonlinear term ρ

2
v2 is less then 10% of a typical linear

term that occurs in Euler's pressure equation? Express this as a condi-
tion on the wave amplitude when it is required that the wavelength λ lies
between 1 m and 300 m.

2.3 Particle motion in surface waves

Consider a �uid particle that is at position r0 at time t0. We want to follow its
motion. The particle has by a later time t a new position r(t). The particle
velocity follows the velocity �eld of the �uid v, and so r(t) is determined by the
following integral equation:

r(t)− r0 =

∫ t

t0

v(r(τ), τ) dτ (2.22)

We introduce the particles' displacement R(t) such that

r(t) = r0 + R(t)

and set this expression into the integrand in (2.22). Series expansion in terms of
powers of R(t) gives

r(t) = r0 +

∫ t

t0

v(r0, τ) dτ +

∫ t

t0

(R(τ) · ∇)v(r0, τ) dτ + · · ·

Given that the displacement is small and the velocity gradient is small, higher
order terms can be neglected. By linearization we �nd therefore that

R(t) = r(t)− r0 =

∫ t

t0

v(r0, τ) dτ (2.23)

We shall use this equation to �nd the particle motion for two-dimensional capil-
lary and gravity waves. The velocity components in wave motion are according
to (2.6) and (2.16)

u =
∂φ

∂x
=

aω

sinh kH
cosh k(z +H) sin(kx− ωt)

w =
∂φ

∂z
= − aω

sinh kH
sinh k(z +H) cos(kx− ωt)
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We set r0 = (x0, z0) and r = (x, z), then it follows from (2.23) that

x− x0 =
a

sinh kH
cosh k(z0 +H) cos(kx0 − ωt) +K1

z − z0 =
a

sinh kH
sinh k(z0 +H) sin(kx0 − ωt) +K2

(2.24)

where K1 and K2 are integration constants.
Both here and later we will need the time-average of a function F (t), and we

de�ne this by

F (t0) =
1

T

∫ t0+T/2

t0−T/2
F (t) dt, (2.25)

where t0 is a constant. If the function F (t) is periodic with period T , the time
average F is independent of t0.

By averaging (2.24) over a period we �nd, since cos and sin are periodic
functions,

x̄− x0 = K1

z̄ − z0 = K2

where (x̄, z̄) is the average position of the particles. With the help of these
relations (2.24) can be written

x− x̄ = A cos (kx0 − ωt)
z − z̄ = B sin (kx0 − ωt) (2.26)

where

A = a
cosh k(z0 +H)

sinh kH
and B = a

sinh k(z0 +H)

sinh kH
.

From (2.26) it follows that

(
x− x̄
A

)2 + (
z − z̄
B

)2 = 1 (2.27)

which shows us that the water particles follow elliptical paths, and that the orbital
period is the wave period T = 2π/ω. The semi-axes of the ellipses are A and B.
For particles that are near the bottom (z0 → −H) it is seen that A→ a/ sinh kH
and B → 0, and the ellipses degenerate to straight lines. If H is much larger than
the wavelength such that kH � 1, then A = B = aekz0 . In this case, for waves in
deep water, the particle paths are circular as shown in �gure 2.5. The radius of
the circular paths decreases deeper in the water, and at depth z0 = −λ the radius
is a factor of e−2π ' 2 · 10−3 smaller than at the surface. The orbital direction
of the particle paths follows from (2.26), and for waves that propagate to the
right, the orbital direction is indicated with arrows in �gure 2.5. For comparison
the particle paths in long waves on shallow water H/λ = 0.15 are sketched in
�gure 2.6.
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Figure 2.5: Particle paths for waves in deep water a/λ = 0.06.

Figure 2.6: Particle paths for waves in shallow water a/H = 0.25.

2.4 The mechanical energy in surface waves

For wave motion periodic in time with period T , one can �nd a simple expression
for the average mechanical energy per surface area in the horizontal plane. For
surface waves, we shall use the term average energy density for this quantity.
(Normally the term is used for energy per unit of volume.) The energy consists
of kinetic and potential energy, and the potential energy in surface waves is
caused by surface tension and the force of gravity. When the surface deforms,
the surface tension performs work which is σ multiplied by the change in the
surface area. The average potential energy per surface area caused by surface
tension can therefore be written (�c� = capillary, overline = average)

Ec
p =

1

T

∫ t0+T

t0

σ

[√
1 + (

∂η

∂x
)2 + (

∂η

∂y
)2 − 1

]
dt

Taylor expansion of the integrand gives for small values of ∂η
∂x

and ∂η
∂y

Ec
p =

1

2T

∫ t0+T

t0

σ

[
(
∂η

∂x
)2 + (

∂η

∂y
)2

]
dt (2.28)

For the potential energy due to the force of gravity we can chose the zero-level
anywhere, it is most convenient to chose the quiescent water surface z = 0.
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Energy per volume unit is
ep = ρgz

and the average potential energy per surface area due to the force of gravity can
therefore be written as (�g� = gravity, overline = average)

Eg
p =

1

T

∫ t0+T

t0

∫ η

−H
ep dz dt =

ρg

2T

∫ t0+T

t0

η2 dt (2.29)

The total average potential energy per surface unit for surface waves is

Ep = Eg
p + Ec

p (2.30)

The kinetic energy per volume is

ek =
ρ

2
v2

and the average kinetic energy per surface area is

Ek =
1

T

∫ t0+T

t0

∫ η

−H
ek dz dt

By Taylor expansion in powers of η we �nd∫ η

−H
ek dz =

∫ 0

−H
ek dz + (ek)|z=0 η + . . .

For waves with small amplitude it is enough to take the �rst term in this series
expansion, and by introduction of the velocity potential, we can write

Ek =
ρ

2T

∫ t0+T

t0

∫ 0

−H
(∇φ)2 dz dt

With the help of Green's theorem and the boundary conditions at the bottom
(2.14) the expression can be changed, and we �nd

Ek =
ρ

2T

∫ t0+T

t0

(
φ
∂φ

∂z

)∣∣∣∣
z=0

dt (2.31)
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Now we set in the expressions (2.16) for velocity potential and surface dis-
placement in (2.28)�(2.31) we �nd after some simple manipulations

Ec
p =

1

4
σk2a2

Eg
p =

1

4
ρga2 (2.32)

Ep = Ek =
1

4
ρga2(1 +

σk2

ρg
)

The last equation shows that the average energy densities of potential and kinetic
energy are equal (equipartition of energy). Even if this seems to be valid for most
types of linear wave motion, it is possible to �nd examples of wave types where
one does not have equipartition of energy: Severdrup-waves, which are a type of
gravity�inertia waves, is such an example.

The sum of Ep and Ek is the average mechanical energy density and

E = Ep + Ek = 2Ep = 2Ek (2.33)

From the last equation in (2.32) it appears that for wavelengths λ� λm, where
λm is de�ned in (2.19), the energy density due to surface tension is insigni�cant
in proportion to the energy density due to gravity. We therefore have that for
λ� λm

E =
1

2
ρga2 (2.34)

which is the average mechanical energy density for gravity waves. For wavelengths
λ � λm the energy density due to gravity is insigni�cant, and we �nd that the
average mechanical energy density for capillary waves is

E =
1

2
σk2a2 (2.35)

We also want to calculate the energy �ow or energy �ux in surface waves. Let
us imagine that we limit an area at the water surfaceWS within a closed curve Γ.
Vertically under the surface WS lies a volume of water Ω, limited by the vertical
wall Π. The total energy in Ω and in WS is given by the expression∫

Ω

ep dV +

∫
Ω

ek dV +

∫
WS

σ dS

where ep is the potential gravitational energy per volume, ek is the kinetic energy
per volume, and the surface tension σ is the potential energy per surface area.
Under the assumption that energy is not created or destroyed in the domain we
shall set up an integrated energy equation of the form

d

dt

{∫
Ω

ep dV +

∫
Ω

ek dV +

∫
WS

σ dS

}
= −

∫
Γ

qΓ · n̂ ds−
∫

Π

qΠ · n̂ dS (2.36)
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where qΓ is the surface energy �ux density along the free surface WS, qΠ is the
energy �ux density in the volume Ω and n̂ is the unit normal vector to the vertical
side Π.

If we had included viscous e�ects a dissipative term would have appeared. A
nonconservative volume force would also have given rise to a source term in the
form of an integral over Ω.

We need a special case of Leibniz's rule

d

dt

∫
Ω

G dV =

∫
Ω

∂G

∂t
dV +

∫
WS

G|z=η
∂η

∂t
dA (2.37)

where dA is an in�nitesimal element in the horizontal xy-plane, and the last term
is due to time variation of the free surface. One can note that this term alone
gives the contribution to the change of ep because the gravity potential is time
independent.

We now set up the equations which control the motion and which we will
deduce the energy equation (2.36) from. Some of these are given earlier, but we
repeat them here for the sake of overview. First we have the equation of motion
for an ideal �uid

∂v

∂t
= −∇(

v2

2
)− 1

ρ
∇p−∇Φ (2.38)

where we have assumed irrotationality to restate the convective term. Instead of
introducing the acceleration of gravity explicitly, we use a general force potential
Φ. The �uid is incompressible and the continuity equation is then

∇ · v = 0. (2.39)

At the free surface we have the dynamic condition

p = σ∇ · n (2.40)

where n is the unit normal vector to the free surface WS. In addition, we have
the kinematic surface condition (2.5) which can be written in the form of

v · n dS =
∂η

∂t
dA (2.41)

where dA is the projection of dS down in the xy-plane.
Now following some manipulation we obtain the energy equation in the desired

form. We start by taking the dot product of (2.38) with the velocity vector and
integrate the result over Ω. Then we use Gauss' theorem to arrive at the equation∫

Ω

∂

∂t
(
1

2
ρv2) dV = −

∫
∂Ω

(p+
1

2
ρv2 + ρΦ)v · n dS (2.42)

where ∂Ω designates the edge of Ω, i.e. the union of the free surface WS, the
vertical side Π and the bottom. There is however no contribution from the bottom
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due to the kinematic bottom condition (2.14). The unit normal vector n points
outwards. We now use (2.37) to write the equation in a form which provides the
time derivative of the integrated kinetic and potential energy in a gravity �eld.
The kinematic surface condition (2.41) gives us that most of the terms in the
surface integral cancel and we end up with

d

dt

{∫
Ω

ep dV +

∫
Ω

ek dV

}
= −

∫
WS

pv · n dS −
∫

Π

(
p+

ρ

2
v2 + ρΦ

)
v · n̂ dV

(2.43)
Now using (2.40) and (2.41) the �rst term in the right side in (2.43) we write

−
∫
WS

pv · n dS = −
∫
WS

σ∇ · n∂η
∂t

dA. (2.44)

By further using n = (ez −∇η)/
√

1 + (∇η)2 we have the identity

∇ · (nηt) = ∇ · nηt + n · ∇ηt = ∇ · nηt −
∇η · ∇ηt√
1 + (∇η)2

and therefore we have, with use of both Leibnitz' rule and Gauss' theorem,

−
∫
WS

σ∇ · n∂η
∂t

dA = −d

dt

∫
WS

σ dS −
∫

Γ

σn · n̂∂η
∂t

ds (2.45)

where n̂ is the unit normal vector to Π and n is the unit normal vector to the
free surface WS, and ds is an in�nitesimal curve element along the projection of
Γ into the xy-plane. The �rst term on the right side is the change in total surface
energy, while the second term is the total energy �ux of the surface energy (both
advection of surface energy through Γ and the surface tension acting on the curve
Γ).

Let us sum up everything

d

dt

{∫
Ω

ρ

2
v2 dV +

∫
Ω

ρΦ dV +

∫
WS

σ dS

}
= −

∫
Γ

σn̂ · n∂η
∂t

ds−
∫

Π

(
p+

ρ

2
v2 + ρΦ

)
v · n̂ dS (2.46)

where the contributions on the left side are the change in kinetic energy, the
change in potential gravitational energy, and the change in surface energy. The
contributions on the right side are the �ux of surface energy through the curve Γ,
the action of pressure on the vertical wall Π, transport of kinetic energy through
Π and transport of potential gravity energy through Π. With the help of Euler's
pressure formula, the three terms in the brackets can be simpli�ed

d

dt

{∫
Ω

ρ

2
v2 dV +

∫
Ω

ρΦ dV +

∫
WS

σ dS

}
= −

∫
Γ

σn̂ · n∂η
∂t

ds+

∫
Π

ρ
∂φ

∂t
v · n̂ dS

(2.47)
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A simple illustration of the right side in (2.47) for the two-dimensional geom-
etry is given in �gure 2.7. For two-dimensional geometry n̂ · n = sinα where α
is the sloping angle to the surface that is de�ned in the �gure. Work per unit of
time which the �uid to the left of the section A�A performs on the �uid to the
right is

W = −σ∂η
∂t

sinα−
∫ η

−h
ρ
∂φ

∂t
u dz.

Figure 2.7: Illustration of energy �ux.

We shall now consider the energy �ux density integrated in the vertical direc-
tion, F , de�ned such that the right side of the equation (2.47) can be written in
the form

−
∫

Γ

n̂ · F ds

where the in�nitesimal curve element ds is along the projection of Γ into the
xy-plane. Taylor expansion of the horizontal energy �ux density for small values
of the derivative of η and φ now gives

n̂ · F = n̂ ·
[
σ∇η∂η

∂t
+

∫ 0

−h
ρ
∂φ

∂t
∇φ dz

]
.

In agreement with previous assumptions, only those terms for which the wave
amplitude occurs to quadratic order have been included. Introducing the velocity
potential and surface displacement (2.15)�(2.16), we therefore �nd, with the help
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of the relations (2.17)�(2.18) and with the time averaging (2.25) that the average
energy �ux density F (power per length along the wave) is

F = Ecg (2.48)

where the magnitude

cg =
c

2

[
1 + 3σk2

ρg

1 + σk2

ρg

+
2kH

sinh 2kH

]
k

k
(2.49)

is a vector in the same direction as the wave vector k, and which has the same
dimensions as velocity, and E is the energy density for gravity�capillary waves.
By di�erentiation of (2.17) we �nd that the group velocity is

cg =
∂ω

∂k
.

The vector cg de�nes the group velocity and we shall discuss this quantity in
the next section. So far we have noticed that the energy �ux density is equal
to energy density multiplied by the group velocity. This is valid for linear wave
motion.

For gravity waves in deep water (kH � 1) the energy �ux density (power per
length along the wave crest) is

F =
1

4
ρga2c. (2.50)

The table below shows the phase speed, period, and energy �ux density for
gravity waves with wavelengths from 1�150 m and amplitude 0.1 m. The water
depth is assumed to be much larger than the wavelength such that we can employ
the theory of in�nitely deep water.

λ(m) c(m/s) T (s) F (W/m)
5 2.79 1.79 69
10 3.95 2.53 97
25 6.25 4.00 153
50 8.84 5.66 217
75 10.82 6.93 265
100 12.50 8.00 307
150 15.30 9.80 375

Exercises
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1. We look at a sea basin with depth 10 m and with a straight coastline. A
buoy registers waves with period 7 s and amplitude 0.5 m. Assume that the
coast absorbs all incoming wave energy. Estimate the importance of �nite
depth and/or surface tension. Compute the wavelength, phase speed, and
group velocity. How much power is absorbed by a 500 m long coastline?
How long a coastline would be su�cient to cover the energy needs for a
household?

2. A tsunami has amplitude 2 m in 5000 m deep water. Determine the phase
speed and group velocity (km/h), energy density (kWh/m2) and energy �ux
density (kW/m). If you want to you may assume a wavelength of, say, 200
km. However, you should also explain why this is not important for the
quantities you have just calculated.
Assuming the tsunami to be periodic (it is not, but ...), �nd the maximum
horizontal velocities and the maximum particle motion when the period is
half an hour.
Next we assume periodic wind-generated waves, of length 200m, on the
same depth and with the same amplitude as the tsunami. Compare energy
density, phase speed and group velocity for the wind wave and the tsunami.

2.5 A simple kinematic interpretation of group

velocity. Group velocity for surface waves.

In the previous section we have seen that the velocity cg = dω
dk

is related to
the energy �ux in plane surface waves. In this section we shall give a simple kine-
matic interpretation of the magnitude cg which also justi�es the de�nition group
velocity. We add up two wave components η1 and η2 with the same amplitude
but with slightly di�erent values for wave number and angular frequency.

η1 =
1

2
a sin[(k + ∆k)x− (ω + ∆ω)t]

and

η2 =
1

2
a sin[(k −∆k)x− (ω −∆ω)t]

where 2∆k and 2∆ω are, respectively, the di�erences in wavenumber and angular
frequency. By the formula for the summation of two sine functions we �nd

η = η1 + η2 = a cos(∆kx−∆ωt) sin(kx− ωt). (2.51)

Equation (2.51) depicts a series of wave groups or wave packets where the ampli-
tude of the individual waves within a group varies from 0 to a. The length of the
wave group is λg = 2π/∆k, and the wavelength for the individual waves in the
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group is λ = 2π/k. The individual crests propagate with phase speed c = ω/k,
while the wave group propagates with velocity

∆ω

∆k
≈ cg =

dω

dk
. (2.52)

For wave motion in more spatial dimensions we �nd that the group velocity
is a vector de�ned as the gradient of the angular frequency ω with respect to
the wavenumber vector k, cg = ∂ω/∂k. For isotropic waves, i.e., when the
dispersion relation only depends on wavenumber and not the direction of the
wavenumber vector, we see that the group velocity vector has the same direction
as the wavenumber vector.

With the help of the relation ω = ck we can write

cg = c+ k
dc

dk
= c− λ dc

dλ
(2.53)

which shows that for dispersive waves, the magnitude of the group velocity is
di�erent from the phase speed. For nondispersive waves, the magnitude of the
group velocity is equal to the phase speed. The group velocity is larger or smaller
than the phase speed depending on the phase speed decreasing or increasing with
wavelength. For gravity waves cg < c, while for capillary waves cg > c. Since
individual crests propagate with a speed di�erent from the group velocity, an
observer following an individual wave in the group will see the wave propagate
through the group with varying amplitude. Waves will therefore be lost from sight
at the leading or trailing edge of the group depending on c being larger or smaller
than cg. Because the wave amplitude is zero at the leading and trailing edge of a
group, this suggests that energy within the group spreads with the group velocity.
We have already seen that this interpretation is correct for surface waves.

With the help of (2.53) it is possible to �nd cg graphically by drawing the
tangent to the graph c = c(λ). This method is shown in �gure 2.9. Group
velocity for surface waves is given by (2.49). By these expressions we see that for
surface waves in deep water, kH � 1, we have

cg =
1

2
c

1 + 3σk2

ρg

1 + σk2

ρg

(2.54)

where the phase speed c is known by (2.20). Depending on the wave length being
much larger or much smaller than λm (see equation 2.19) we �nd

cg =
1

2
c when λ� λm

cg =
3

2
c when λ� λm (2.55)

These are expressions for group velocity for gravity and capillary waves, respec-
tively, in deep water.
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Figure 2.8: Graph of the function η = a cos(∆kx − ∆ωt) sin(kx − ωt) with en-
velopes a cos(∆kx−∆ωt) at three di�erent times for a wave train with cg = c/2.
Forward movement of the wave group (G) and an individual wave (P ) are marked.

Figure 2.9: Phase speed and group velocity.
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For surface waves in shallow water , kH � 1, we �nd from earlier methods

cg = c = c0 when λ� λm

cg = 2c when λ� λm

See �gure 2.10 and 2.11.
In this section we have shown that a series of wave groups appear by the

interference of two harmonic wave components. In the exercises with section 2.7
it will become evident that a single wave group or wave packet can be composed
by a number of harmonic wave components.

Figure 2.10: Phase speed and group velocity for gravity waves.

Wave groups often appear in nature, and a typical example of this is swells.
Figure 2.12 shows wave groups registered in swells at Trænabanken. The seismo-
graph in �gure 3.1 in section 2.13 also shows wave groups.

2.6 The Klein-Gordon equation

As an example to illustrate the two previous sections we shall consider the Klein-
Gordon equation

∂2η

∂t2
− c2

0

∂2η

∂x2
+ c2

0q
2η = 0 (2.56)

where c0 and q are constant and η is a functions of x and t.
This equation describes, for example, the motion of an oscillating string where

in addition to tension in the string, spring forces pull the string in towards the
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Figure 2.11: Phase speed and group velocity for gravity and capillary waves.

Figure 2.12: Long periodic rising and sinking of the water surface (in meters)
registered on 24 January 1982 at 9 GMT by a buoy anchored at Trænabanken o�
the coast of Helgeland. The swells came from a storm-center in the North-Atlantic
east of New-Foundland (Gjevik, Lygre and Krogstad, 1984).
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equilibrium position. The Klein�Gordon equation furthermore describes phenom-
ena within relativistic quantum mechanics, and it occurs also for long gravity�
inertia waves in rotating �uids.

The equation allows for waves of the form

η = a sin k(x− ct)

where the phase speed is
c = c0(1 + q2/k2)

1
2

The group velocity is

cg =
d(ck)

dk
=
c2

0

c

The energy equation comes out by multiplying the Klein�Gordon equation by ∂η
∂t
,

and we �nd after reordering
∂E

∂t
+
∂F

∂x
= 0

where the energy density (per mass unit) is

E =
1

2

[
(
∂η

∂t
)2 + c2

0(
∂η

∂x
)2 + c2

0q
2η2

]
and the energy �ux is

F = −c2
0

∂η

∂x

∂η

∂t

With use of the wave solution we can estimate the average energy density and
energy �ux, and we �nd

E =
1

2
a2k2c2

F =
1

2
a2k2c2

0c

The average propagation velocity for the energy is therefore

F

E
=
c2

0

c
= cg

2.7 Surface waves generated by a local disturbance

in the �uid

When a stone is thrown into still and relatively deep water, a train of regular
waves which propagate radially out from the point where the stone hit the surface
is formed. If the stone is comparatively large, we will see long waves in the
front of the wave train and gradually shorter waves in towards the center of the
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motion. The cause of this is that the mechanical energy which is contributed to
the water by the stone will distribute itself into di�erent wave components, which
propagate out with a velocity which is dependent on wavelength. After a time, the
long waves will have outran the shorter, and the original disturbance is canceled
out into a regular wave train with gradually varying wavelengths. If the stone
is tossed into shallow water, then all of the wave components with wavelength
greater then the water depth will move with nearly the same velocity. In this
case the disturbance can extend over a long distance without noticeably altering
form. If an adequately small stone is released into the water, the long waves
generated will have a very small amplitude such that only the wave components
with wavelength λ ≤ λm are visible. In this case, a wave train will develop with
shorter waves in front and longer waves behind.

We shall now handle some of these phenomena mathematically. For simplicity
we shall limit to two-dimensional wave motion which can be thought of as arising
from an elongated disturbance. This case is mathematically easier to treat than
the case where the waves propagate in all directions and the wave amplitude
decreases because the energy constantly spreads out over a larger area. Here we
shall also handle the case where the motion starts from rest with an elevation or
depression of the surface. The initial conditions can therefore be written

φ = 0 for t = 0

η = η0(x) for t = 0 (2.57)

To solve the equations (2.11) with the boundary conditions (2.12)�(2.14) and the
initial conditions (2.57) we introduce the Fourier transform with respect to that
x which we de�ne as

f̂(k) =
1

2π

∫ +∞

−∞
f(x)e−ikx dx (2.58)

where f(x) is a function of x such that the integral (2.58) exists. The correspond-
ing inverse transform is

f(x) =

∫ +∞

−∞
f̂(k)eikx dk (2.59)

We assume that the Fourier transforms of φ and η and their derivatives exist,
and that they attenuate to zero as x → ±∞. By integration by parts we �nd
that

∂̂nφ

∂xn
= (ik)nφ̂ for (n = 1, 2, ...)

It follows that the Fourier transform of the Laplace equation (2.11) can be written

∂2φ̂

∂z2
− k2φ̂ = 0 (2.60)
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The transform of the �rst of the two boundary conditions (2.12) gives

η̂ = − 1

g(1 + σk2

ρg
)
(
∂φ̂

∂t
)z=0 (2.61)

and by elimination of η̂ with the help of the other conditions in (2.12) we �nd

∂2φ̂

∂t2
+ g(1 +

σk2

ρg
)
∂φ̂

∂z
= 0 for z = 0 (2.62)

The transform of the boundary conditions (2.14) is

∂φ̂

∂z
= 0 for z = −H (2.63)

Finally the Fourier transforms of the initial conditions (2.57) are

φ̂ = 0 and η̂ = η̂0 for t = 0 (2.64)

A solution of (2.60) that satis�es the boundary conditions (2.63) can be written

φ̂ = A(t) cosh k(z +H) (2.65)

where A(t) is an unde�ned function of t.
Substituting into (2.62) gives

d2A

dt2
= −ω2A

where ω is given by the dispersion relation (2.17). The initial conditions (2.64)
result in that A = 0 for t = 0, and the solution for the last equation can therefore
be written

A(t) = A0 sinωt (2.66)

where the constant A0 is determined with the help of (2.61), (2.65) and the initial
conditions (2.64) for η̂. We �nd that

A0 = −
g(1 + σk2

ρg
)

ω cosh kH
η̂0 (2.67)

The inverse of the transformed expression (2.65) with A(t) given by (2.66) and
(2.67) gives the velocity potential

φ = −g
∫ +∞

−∞

sinωt

ω

cosh k(z +H)

cosh kH
(1 +

σk2

ρg
)η̂0e

ikx dk (2.68)
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Setting the velocity potential (2.68) into the other condition in (2.12) we �nd
after integration that the surface displacement can be written

η =
1

2

(∫ +∞

−∞
η̂0e

i(kx+ωt) dk +

∫ +∞

−∞
η̂0e

i(kx−ωt) dk

)
(2.69)

To arrive at (2.69) we also have to use the dispersion relation (2.17). Since
η̂0(−k) is the complex conjugate of η̂0(k) and ω(−k) = ω(k) the integrals can
be converted such that one only integrates over positive values of k. Thereby we
�nd

η =

∫ ∞
0

|η̂0(k)|(cos(kx− ωt+ γ) + cos(kx+ ωt+ γ)) dk

where γ is the argument of η̂0(k). This expression shows that the motion can be
seen as consisting of a spectrum of harmonic wave components. We see that the
original disturbance splits up into wave components which move in the positive
or negative x-directions. The complex Fourier transform η̂0(k) determines the
amplitude and phase distribution for the various wave components. The modulus
squared |η̂0(k)|2 is proportional to the so-called wave spectrum, which in this case
is the wave number spectrum.

If the spectrum is such that only the wave components where λ� H are
substantial, we can, according to (2.21) with good approximation, set ω = c0|k|
and integrate over the long-wave portion of the spectrum. Then the Fourier
integral in (2.69) can be evaluated as

η =
1

2
η0(x+ c0t) +

1

2
η0(x− c0t)

This shows that the original disturbance will split into two identical pulses which
move with constant velocity and without changing form in the positive and neg-
ative x-directions respectively. The amplitude for each of the pulses is half of the
amplitude for the original disturbance (see �gure 2.13).

Figure 2.13: Wave motion excited from the original disturbance.

To be able to discuss the wave motion given by (2.69) in detail we shall use a
value of the function η0(x) which leads to a relatively simple integral by setting
in (2.68) or (2.69). We set

η0(x) =
Q

2L
√
π
e−(x/2L)2 (2.70)
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where Q and L are constants. The functions are sketched for di�erent values of
L in �gure 2.14. For the function (2.70) we have that∫ +∞

−∞
η0(x) dx = Q

and

η̂0(x) =
Q

2π
e−(kL)2 (2.71)

The modulus |η̂0| is also symmetric around k = 0, and since η̂0 is real, the phase
is the same for all values of the wave components.

If L → 0, then η̂0(x) degenerates to Qδ(x) where δ(x) is the Dirac delta
generalized function with the properties∫ +∞

−∞
δ(x) dx = 1 δ(x) = 0 for x 6= 0

and

δ̂(k) =
1

2π

The Dirac delta function has a spectrum with equal amplitude for all the wave
components (this is known as a �white� spectrum).

Figure 2.14: Gaussian start pro�le

For �nite L (2.71) shows that the wave components in the spectrum with a
wavenumber larger then 2π/L have vanishingly small amplitudes. This entails
that the substantial contribution to the integral (2.69) comes from the portion
of the spectrum where the wavelength is larger than L. We see, without further
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ado, that a disturbance of the form (2.70) will not generate capillary waves of
any signi�cance unless L < λm where λm is de�ned earlier.

When η̂0 is given by (2.71), surface displacement is symmetric around the
origin, and the surface displacement can be written

η =
Q

2π

∫ ∞
0

e−(kL)2 [cos(kx+ ωt) + cos(kx− ωt)] dk (2.72)

There are di�culties in discussing the full content of (2.72), and we shall limit
the discussion here to gravity waves in deep water. In this case ω2 = gk. We
introduce u which is a new variable of integration and set it in the �rst and second
terms in the integral (2.72) respectively

ω = (
g

x
)
1
2 (u∓ r)

k =
1

x
(u2 ∓ 2ur + r2)

kx± ωt = u2 − r2

where

r = (
gt2

4x
)
1
2

This now gives L→ 0

η =
2Q

π

r

x

∫ r

0

cos(u2 − r2) du (2.73)

The derivation of (2.73) implies some di�cult boundary transitions and a few
will perhaps prefer to go the route of the potential. One considers the potential
around z = 0 and undertakes further substitutions in this expression. After one
has found the converted expression for the potential, the surface displacement can
be found with the help of the boundary conditions. Details are given by Lamb
(1932). The equation (2.73) is an exact expression for surface displacement when
the motion starts from rest, and the surface displacement at t = 0 has the form
of a Dirac delta function at the origin. This shows that surface displacement can
be expressed by the Fresnel integrals

C(r) =

√
2

π

∫ r

0

cosu2 du

and

S(r) =

√
2

π

∫ r

0

sinu2 du

which are tabulated. Since (2.73) leads to large values for η near the origin, it
is clear that the solution in this case clashes with the stipulation for linear wave
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theory. Far from the origin will, nevertheless, (2.73) give values of η which ful�ll
the requirements and which describe wave motion with a good approximation.
With �nite values for L, one will, on the other hand, �nd that the solution (2.72)
gives reasonable values of η near the origin.

The surface displacement, equation (2.73), which is a function of t at a point
at the distance x = x0 from the origin is shown in �gure 2.15. It is evident from

Figure 2.15: Surface displacement at a point.

the �gure that the motion at every position starts with long periodic oscillations
followed by oscillations with gradually shorter periods. We notice that the motion
always starts at t = 0 even at points that are far away from the origin. This is
related to the fact that in deep water, the longest gravity waves are spread with
an in�nitely large velocity, and the disturbance will be detected immediately in
all points in the �uid. For r →∞

C(r) = S(r) =
1

2

and it follows from (2.73) that the surface displacement can be written

η =
Q

2
√
π

g
1
2 t

x
3
2

cos(
gt2

4x
− π

4
) (2.74)

The graph for the function (2.74) at an indeterminate point in time t = t0 is
sketched in �gure 2.16.

Let us now study the surface from a point in time t0, and again at point
x = x0. Taylor expansion of the phase function gives

gt20
4x

=
gt20
4x0

− gt20
4x0

(
x− x0

x0

) + ...
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Figure 2.16: Surface displacement at an indeterminate point in time.

The wavelength λ corresponds to the change in the phase function of 2π

λ = |x− x0| =
8πx2

0

gt20
(2.75)

In the vicinity of the point x = x0 the surface displacement will therefore be
approximately periodic with the wavelength given above.

A �xed phase of the wave train, which may be a the zero-point η = 0, will be
characterized by a �xed value for the phase function. This entails that the null
points I1, I2 , and I3 in �gure 2.17 propagate in the x-direction such that

gt2

4x
= constant

This means that the points propagate with velocity

ẋ =
2x

t

At a de�nite point in time, the velocity for I1 is larger then for I2, and the velocity
for I2 is again larger then for I3. The waves are as such continuously extending
in length.

Exercises
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Figure 2.17: Sketch of the surface displacement.

1. The narrow band spectrum.

We write the surface displacement, which is the sum of an in�nite number
of harmonic wave components.

η(x, t) = Re

∫ +∞

−∞
a(k)ei(kx−ωt) dk

with
a(k) =

a0

κ
√
π
e−(

k−k0
κ

)2

where a0, κ and κ0 are constants. Note that the wavenumber spectrum is
proportional to |a(k)|2. Show that at t = 0 the surface has the form of a
Gaussian wave packet given by

η(x, t = 0) = a0e
−(κx

2
)2 cos k0x

We assume that the wavenumber spectrum is narrowband (κ is small) such
that in the neighborhood of k = k0, where we �nd the contributions to the
integral, we can set

ω(k) ' ω(k0) + (
dω

dk
)k0(k − k0)

Show that

η(x, t) = a0e
−κ

2(x−cgt)2

4 cos(k0x− ω(k0)t)

where cg = (dω
dk

)k0 . Sketch the surface displacement for di�erent values of
the parameters. Explain why the next term in the series expansion for ω
will lead to the wave packet changing form by stretching out.

Hint: In an integral of the form
∫ +∞
−∞ e−au

2+bu du substitute u = v + b/2a.

The integral
∫ +∞
−∞ e−av

2
dv =

√
π
a
.
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2. Find the expression for the velocity potential φ and surface displacement
η in the case that the �uid at t = 0 contributes an impulse such that
φ(x, z = 0, t = 0) = φ0(x) while the surface η(x, t = 0) = 0.

2.8 Stationary phase approximation. Asymptotic

expressions of the Fourier integral.

In the previous section we have shown that if the disturbance in the �uid is
local, the velocity potential and surface displacement of the ensuing motion can
be expressed with a Fourier integral of the type∫ +∞

−∞
F (k)ei(kx±ω(k)t) dk

where F (k) is a function of k. It is, as we have seen, di�cult to discuss the
integral in general, and we shall �nd an asymptotic expression for the Fourier
integral valid for large values of t and x. This derivation was originally done by
Kelvin (1887). We shall treat the case where t→∞ subject to x/t having a �xed
value. We write the integral in the form

I(x, t) =

∫ ∞
−∞

F (k)eitχ(k) dk (2.76)

where
χ(k) =

x

t
k ± ω(k)

For large values of t, the principal contributions to the integral (2.76) will
come from values of k in a region around the values k = k0 where the derivative
of χ with respect to k is zero. Thus

χ′(k0) =
x

t
± ω′(k0) = 0

For other values of k the integrand will oscillate rapidly. If F (k) is a compar-
atively slowly varying function of k, the positive and negative contributions will
abolish each other. The net contribution to the integral from these values of k will
be negligible, and we can therefore limit the integral into a small neighborhood
of point k = k0 only

I(x, t) =

∫ k0+ε

k0−ε
F (k)eitχ(k) dk (2.77)

As the integral is restricted to a narrow region around k = k0 we can develop
the functions F (k) and χ(k) in Taylor series around that point,

F (k) ' F (k0)

χ(k) ' χ(k0) +
1

2
χ′′(k0)(k − k0)2
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where we assume that χ′′(k0) 6= 0. These series expansions are set into (2.77)
and we �nd

I(x, t) ' F (k0)eitχ(k0)

∫ k0+ε

k0−ε
e
i
2
tχ′′(k0)(k−k0)2 dk.

Since the integrand in this integral also oscillates rapidly for large values of |k−k0|,
we can without signi�cant error return to the original limits ±∞. From known
formulas we have that the integral∫ +∞

−∞
e±im

2u2 du =

√
π

m
e±i

π
4

where m is a positive constant. This gives

I(x, t) '
√

2πF (k0)√
t|χ′′(k0)|

ei(χ(k0)t±π
4

) (2.78)

where the upper or lower sign in the exponent is valid when χ′′(k0) is positive or
negative, respectively. This is the stationary phase approximation for the Fourier
integral.

If χ′(k) = 0 at several points k0 su�ciently spread from each other, we would
have to sum the contributions from each point, every term having the form of
equation (2.78). In the case that χ′′(k0) = 0 we would have to continue the Taylor
expansion to higher order until the �rst nonzero term.

Restricting to the case that χ′′(k0) 6= 0, we can include one additional term
in the series expansion for χ,

1

6
χ′′′(k0)(k − k0)3.

It is then seen that the formula (2.78) is valid when

|(k − k0)χ′′′(k0)/χ′′(k0)| � 1

in the region for k which contribution to the integral, that is when the integrand
oscillates slowly, see �gure 2.18. One therefore �nds the contribution to the
integrand for k-values where

t(k − k0)2χ′′(k0) ≤ 2πn

where n is a small integer. Therefor we must have

q = t−
1
2 |χ′′′(k0)|/|χ′′(k0)|3/2 � 1

for the approximation (2.78) to be valid.
Let us now use the stationary phase approximation to �nd an asymptotic

expression for the surface displacement for gravity waves in deep water generated
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Figure 2.18: Sketch of the principle for stationary phase.

by a surface displacement in the form of a Dirac delta function at the origin
(x = 0). The motion of the surface for x > 0 due to waves which propagate
in the x-direction, and the surface displacement for x > 0 can, according to the
results in section 2.7 be written

η(x, t) =
Q

2π

1

2

∫ ∞
−∞

ei(kx−ωt) dk.

We set the following

F (k) =
Q

2π
,

χ(k) = k
x

t
−
√
gk.

We have

χ′(k) =
x

t
− 1

2

√
g

k

and therefore the criterion χ′(k0) = 0 is satis�ed for

k0 =
gt2

4x2
and χ(k0) = − gt

4x

and we also have

χ′′(k0) =
2x3

gt3
and χ′′′(k0) = −12

x5

g2t5
.

By equation (2.78) we �nd an approximation for surface displacement identical
to the earlier expressions we found in (2.74). The magnitude q is proportional

to (2x/gt2)
1
2 which shows that this approximation is valid given that 1

2
gt2 � x.

This is also in agreement with what we have found earlier.

Exercises
1. Use the stationary phase approximation to �nd the surface displacement for

gravity waves in deep water when L 6= 0, see (2.70). Discuss the solution.
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2. Use the stationary phase approximation to �nd the surface displacement
for capillary waves in deep water. Let the initial disturbance have the form
of a Dirac delta function. Compare with the solution for gravity waves.

3. We have given the Klein�Gordon equation in the form:

∂2η

∂t2
− c2

0

∂2η

∂x2
+ qη = 0

which is valid for t > 0 and −∞ < x < ∞. Waves are generated from the
initial disturbance

η(x, 0) = A0e
−( xL)

2

,
∂η(x, 0)

∂t
= 0.

Find an approximate solution for large x and t and discuss where this is
valid.

2.9 Asymptotic generation of the wave front

If we assume in�nite depth, we will not have any clear limitation of the front of the
wave train generated from an initial disturbance except that the amplitude will
decrease gradually in accordance with the distribution of energy in the spectrum.
If we assume �nite depth, we have a limitation in the velocity of gravity waves
and we should expect that there is a clear limitation of the front of wave train.
This will be studied below.

The Fourier transform used for the initial value problem gives the inversion
integral

η(x, t) =
1

2

∫ ∞
−∞

η̂0eiχ dk; χ ≡ kx− ω(k)t (2.79)

for the portion of the wave train which propagates in the positive x-direction. For
large values of x and t, the dominant contribution will come from the stationary
point k = ks where

dχ(ks)

dk
= 0

which corresponds to

cg(ks) =
x

t
. (2.80)

If we limit to gravity waves, the group velocity is con�ned by cg ≤ c0 =
√
gH. We

therefore only �nd stationary points for x
t
≤ c0. For larger values of x/t we can

anticipate that waves have not yet had time to arrive. For the condition x
t

= c0,
we �nd a stationary point for ks = 0. This is a second order stationary point in
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z

Ai

Figure 2.19: The Airy function.

the sense that also χ′′(ks) = 0. We therefore continue the Taylor expansion to
the third term and �nd

χ ≈ kx− c0

(
k − H2

6
k3

)
t (2.81)

and the integral becomes

η(x, t) ≈ 1

2

∫ ∞
−∞

η̂0(0)e
i
(
kx−(c0k−H

2

6
c0k3)t

)
dk. (2.82)

The above integral can be expressed in closed form by the Airy function

Ai(z) =
1

π

∞∫
0

cos

(
1

3
s3 + zs

)
ds (2.83)

which is a solution of the Airy equation

d2F

dz2
− zF = 0. (2.84)

The Airy function plays an important role in applied mathematics, having an
exponential behavior for z > 0 and an oscillatory behavior for z < 0. The Airy
function often shows up as an approximation to the outer edge of a wave pattern
or wave front. The Airy function Ai is a solution of (2.84) that is exponentially
decreasing when z →∞ and that ful�lls the normalization condition

∫∞
−∞ F dz =

1. The Airy function is rendered in �gure 2.19.
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H
λ

L =
√
gHt

Figure 2.20: De�nition sketch of initial conditions and wave spreading.

Near x = c0t we �nd the asymptotic approximation

η ∼ πη̂(0)

(1
2
c0H2t)

1
3

Ai

(
x− c0t

(1
2
c0H2t)

1
3

)
(2.85)

where η̂(0) = 1
2π

∫∞
−∞ η(x, 0) dx.

When x−c0t
( 1
2
c0H2t)

1
3
→ −∞ we can use the asymptotic expression for Ai. This

can be used to match the asymptotic approximation with the normal stationary
phase approximation for x → c0t

−. We skip the details, but we see instead an
example of this sort of spreading in tsunamis (�gure 2.20). The mathematical
solution is presented in �gures 2.21 and 2.22. After the theory of long waves has
been worked through, it is a good idea to look closer at the relationship between
the results.

Exercises

1. In the range between gravity and capillary waves, there is one particular
wavenumber k0 at which the dispersion relation ω(k) has a turning point,
i.e. where ω′′(k0) = 0. Waves with this wavenumber k0 have the smallest
group velocity achieved in the wave train, therefore we can anticipate that
this wavenumber could represent the rear end of a wave train. Find an
approximate solution for such a rear end of a wave train.
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Figure 2.21: Spreading of surface waves generated by an earthquake (tsunami).
Surface displacement (meter) is drawn after t = 11.3 minutes which corresponds
to a distance L = c0t = 150 km when H = 5 km. The curve marked �full�
is an exact numeric solution of the Laplace equation with boundary conditions,
�Bouss� is a solution of the Boussinesq equation (for explanation of Boussinesq
equation see section 2.11.1), �hydr.� is a solution of the shallow water equations,
while �asymp� is the solution given by (2.85). We note that �hydr.� has results
of the same form as the initial conditions, but has half the amplitude.

Figure 2.22: Surface displacement (m) after t = 30 minutes, L = 400 km. We
note that the di�erence between the numeric results and the asymptotic results
are reduced in the second �gure 2.21.
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2.10 Long waves in shallow water

If the wavelength is large in comparison to the depth and the amplitude is suf-
�ciently small, the water particles move in long funnels of elliptical paths and
the horizontal velocity is much larger than the vertical velocity, then the waves
are considered to be long waves in shallow water. Then the pressure in the �uid
is approximately hydrostatic and determined by the pressure of the overlaying
�uid. These relationships can be exploited to derive the equation that describes
the propagation of long waves in shallow water.

It is convenient to introduce a notation that distinguishes between vertical
and horizontal components of the gradient and the velocity vector

v = vh + wiz, ∇ = ∇h + iz
∂

∂z
,

where

vh = uix + viy, ∇h = ix
∂

∂x
+ iy

∂

∂y
,

The actual depth is h(x, y, t), whereas H will denote a typical value of h.
In long wave theory we will employ a depth integrated version of the continuity
equation. To this end we de�ne a general vertical cylindrical volume, S, with a
footprint in the xy-plane denoted by Ω. The volume is con�ned by the bottom,
z = −h, and reach beyond the free surface η. The volume of �uid within S is
given by the integral

V =

∫∫
Ω

(η + h)dxdy,

While the total �ux of volume out through the boundary of S is

q =

∫
Γ

η∫
−h

vh · ndzds,

where Γ is the circumference of Ω, ds is arc length along Γ, and n is a unit normal
vector which is horizontal. Conservation of mass in S implies

dV
dt

= −q.

We now de�ne the depth integrated velocity

U = Uix + V iy =

η∫
−h

vhdz,
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Since n is independent of z, mass conservation may be expressed as∫∫
Ω

∂

∂t
(η + h)dxdy = −

∫
Γ

U · nds.

Use of Gauss theorem then yields∫∫
Ω

{
∂

∂t
(η + h) +∇h ·U

}
dxdy = 0.

This is valid for any Ω. Hence

∂η

∂t
+
∂h

∂t
= −∇h ·U. (2.86)

This is an exact depth integrated continuity equation, but it is applicable only if
we have some kind of expression for U.

Alternatively we may derive (2.86) by direct integration of the continuity
equation on the form

∂w

∂z
= −∇h · vh.

Integration from bottom to surface yields

w(x, y, η, t)− w(x, y,−h, t) =

η∫
−h

∂w

∂z
dz = −

η∫
−h

∇h · vhdz. (2.87)

The kinematic condition at the free surface

w(x, y, η, t) =
∂η

∂t
+ vh(x, y, η, t) · ∇hη,

and the kinematic condition at the bottom

w(x, y,−h, t) = −
(
∂h

∂t
+ vh(x, y,−h, t) · ∇hh

)
,

are invoked for the left hand side of (2.87). Then the rightmost integral in (2.87)
is rewritten

η∫
−h

∇h · vhdz = ∇h ·
η∫

−h

vhdz −∇hη · vh(x, y, η, t)−∇hh · vh(x, y,−h, t).

Recognizing the integral for U and inserting in (2.87) we observe that some terms
cancel out and

∂η

∂t
+
∂h

∂t
= −∇h ·U
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is again obtained.
The above derivation is valid for a moving depth. However, from this point

we will assume that the depth is independent of time, ∂h
∂t

= 0.
Euler's equations of motion (horizontal and vertical) read

Dvh
Dt

= −1

ρ
∇hp,

Dw

Dt
= −1

ρ

∂p

∂z
− g,

where D
Dt

= ∂
∂t

+ vh · ∇h +w ∂
∂z
. Integration of the z component from the surface

(where we let pa = 0) yields

p = ρg(η − z)− ρ
z∫
η

Dw

Dt
dz. (2.88)

The term gη balances the extra weight from surface elevation, while the last term
comes from vertical accelerations. In the linear case we may assess the vertical
acceleration term. First

ρ

z∫
η

Dw

Dt
dz ≈ ρh

∂w(x, y, 0, t)

∂t
≈ ρh

∂2η

∂t2
,

where we have invoked the kinematic condition at the surface in the last step.
For a harmonic wave mode we then have

h
∂2η

∂t2
= −hω2η.

The acceleration term in (2.88) is much less than ρgη if

hω2 � g ⇒ (kh)2 � gh

c2

For long waves c ≈
√
gh and this then corresponds to (kh)2 � 1.

We now assume

ρgη � ρ

z∫
η

Dw

Dt
dz,

also for variable depth and nonlinear waves. Then

p = ρg(η − z),

and the horizontal part of the momentum equation becomes

Dvh
Dt

= −g∇hη.
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Hence, the horizontal particle acceleration is independent of z which implies that
vh remains independent of z if initially so; for instance for waves propagating
into quiescent water. Consequences are

� vh = vh(x, y, t) → Dvh
Dt

= ∂vh
∂t

+ vh · ∇hvh

� U =
η∫
−h

vhdz = (h+ η)vh

Substitution of these into the horizontal component of Euler's equation of motion
and the depth integrated continuity equation give

∂vh
∂t

+ vh · ∇hvh = −g∇hη,

∂η

∂t
= −∇h · ((h+ η)vh) .

(2.89)

These are the nonlinear shallow water equations, generally named by the acronym
NLSW. In these equations the number of spatial free variables is reduced by one
in comparison with the Euler's equation and the standard continuity equation.
Moreover, the time dependence of the �uid domain, which is a challenge for
nonlinear solutions of the general equations, is now represented simply by the �eld
η(x, y, t). The NLSW equations are hyperbolic and e�cient numerical solution
procedures are available. These procedures may be extended to include bores,
Coriolis e�ects and bottom drag, but frequency dispersion is lost. Long wave
models are the tools of the trade in Ocean modeling, including tides, tsunamis
and storm surges.

For plane waves the NLSW equations reduce to

∂u

∂t
+ u

∂u

∂x
= −g ∂η

∂x
(2.90)

and
∂η

∂t
= − ∂

∂x
[u(h+ η)]. (2.91)

These equations will be discussed again in section 7.1.
If we delete the nonlinear terms in (2.89) we obtain

∂u

∂t
= −g ∂η

∂x
,

∂v

∂t
= −g∂η

∂y
,

∂η

∂t
= −∂(hu)

∂x
− ∂(hv)

∂y
.

(2.92)

Velocities are eliminated by applying temporal derivation to the continuity equa-
tion. If h is independent of time the time derivatives of the velocities are replaced
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by means of the components of the momentum equation. De�ning c0 =
√
gh the

result is written
∂2η

∂t2
=

∂

∂x
(c2

0

∂η

∂x
) +

∂

∂y
(c2

0

∂η

∂y
). (2.93)

If the bottom is a plane (c0 independent of x and y), (2.93) reduces to the
normal two-dimensional wave equation for non-dispersive waves. A wave solution
of (2.92) can where c0 is constant, be written

η = a sin k(x− c0t),

u =
a

H
c0 sin k(x− c0t),

v = 0.

With the help of this solution, we can easily �nd the conditions for the linearized
solutions to be valid. Linearization implies, for example, that the term u∂u

∂x
is

removed in comparison with ∂u
∂t
. The relationship between the �rst and last of

these terms is maximum at a/H. The nonlinear term can therefore be easily cut
away from the relation when a/H � 1. This is in good agreement with what we
have found earlier in section 2.2.

We shall now see how the linearized shallow water equation can be used to
study the propagation of waves over a sloping bottom. When plane waves and
and a plane bathymetry, meaning h = h(x), are assumed (2.93) simpli�es to

∂2η

∂t2
− ∂

∂x

(
gh(x)

∂η

∂x

)
= 0,

Since the coe�cients depend only on x we may �nd standing waves on the form
(separation of variables)

η(x, t) = η̂(x) sin(ωt+ ∆),

where ω is given and ∆ may chosen freely. Substitution into the wave equation
given above then gives

d

dx

(
h(x)

dη̂

dx

)
+
ω2

g
η̂ = 0.

In general this equation cannot be solved in closed form, but analytic solutions
do exist for special h(x). Most studied is the plane slope

h = αx

where α = tan θ, and θ is the angle of inclination of the bottom with respect to
the horizontal plane (x-axis). In fact, some other bottom pro�les yield simpler
solutions, but the linear one is much used in the literature.
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θ

beach

h = αx

LSW dubious ? →
x

z

Figure 2.23: Linear pro�le h = αx

With the linear pro�le we obtain the following equation for η̂

∂

∂x
(x
∂η̂

∂x
) + κη̂ = 0 (2.94)

where κ = ω2/αg. Ordinary second order equations with low order polynomials as
coe�cients may often be transformed to equations of standard form with known
solutions. For (2.94) the substitution s = 2

√
κx yields

s
∂2η̂

∂s2
+
∂η̂

∂s
+ sη̂ = 0

which is known as the Bessel equation of zeroth order and the general solution is

η̂ = AJ0(s) +BY0(s). (2.95)

Here J0 and Y0 are the Bessel and Neumann functions, respectively. These func-
tions are described in mathematical handbooks and are available in software
libraries for computation. For small s we have the Fröbenius series (see, for
instance, Bender & Orzag: Advanced mathematical methods for scientists and
engineers.)

J0(s) =
∞∑
n=0

(
−1

4
s2
)n

(n!)2
, Y0(s) =

2

π
(log(

1

2
s) + γ)J0(s) +

1

π

∞∑
n=0

ans
2n,

where γ and an are constants. We observe that J0 is analytic at s = 0, while Y0

is singular there. For large s we have the asymptotic approximations

J0(s) ∼
√

2

πs
cos(s− π

4
), Y0(s) ∼

√
2

πs
sin(s− π

4
).

The Bessel and Neumann functions are depicted in �gure 2.24.
If we stay away from the shoreline, meaning that x = 0 is excluded from the

domain, both A and B may be non-zero in (2.95). Using the the asymptotic
approximations for large s = 2

√
κx we may rewrite the corresponding approxi-

mation for η̂ as

η̂ ∼ a0 (κx)−
1
4 cos(2

√
κx+ δ) ≡ a(x) cosχ,
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J0 Y0

asym.

s

y

Figure 2.24: The Bessel and Neumann functions of zeroth order. Also the asymp-
totic approximation to the Bessel function is included.

where a0 and δ are related to A and B. The amplitude part of η̂, a, is proportional
to h−

1
4 . This is a special case of Green's law. The rate of change of the phase

part (dχ
dx
) decreases with x, while d2χ

dx2
decreases even faster. Hence, we may de�ne

a local wave length for large x through λdχ
dx

= 2 which gives

λ = 2π

√
x

κ
.

Hence, the wave-length increases with x (and thus h).
The solutions for large x (large s) are nearly periodic in x with slow variations
of amplitude and wave length. In a later chapter we will return to such solutions
in the more general context of ray theory.

In the preceding expressions a0, δ and ∆ may be chosen freely. Each choice
then gives a standing wave. Restoring the time dependence and using trigono-
metric formulas we may combine such standing waves to a general solution for
propagating waves

η = a1(κx)−
1
4 cos(2

√
κx− ωt+ δ1) + a2(κx)−

1
4 cos(2

√
κx+ ωt+ δ2),

where a1, a2, δ1 and δ2 are arbitrary. It is stressed that this is still an approxi-
mation for large

√
κx.

When x = 0 (the beach) is included we must expect that the solution is a
standing wave consisting of an incident and a re�ected wave. Now, since Y0(s)
is singular at s = 0 (x = 0) we must require B = 0 in (2.95) to avoid singularity
in η̂. Hence the solution becomes

η̂ = AJ0(2
√
κx), η = AJ0(2

√
κx) cos(ωt+ ∆),
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which is a simple solution for runup of period waves on a sloping beach. Away
from the shoreline, we may again invoke the asymptotic expression for J0. The
solution is depicted in �gures 2.25 and 2.26.

η̂ as.

κx

η̂
A

Figure 2.25: The incident and re�ected waves from the shore combined to a stand-
ing wave at a time for maximum runup. The use of the asymptotic expression
for J0 produces the curve marked as.

Exercises

1. Derive (2.93) from (2.92).

2. In an in�nitely long canal with a plane bottom and side walls which are
parallel to each other, the water depth is H when the water is at rest, and
the width of the canal is B. We set the x-axis along the middle of the canal
and the y-axis perpendicular to this at the sidewalls. Assume that kH � 1,
and show that waves with surface displacement

η = η̂(y)ei(kx−ωt)

are valid under the given conditions. Determine η̂(y), and show that the
wave motion can be thought of as waves that are re�ect from the side walls.

3. We assume two-dimensional wave motion in a �uid layer where the bot-
tom is a horizontal plane and the depth is H. On the bottom there lies a
submerged block with height h and length L. Towards the block a sinu-
soidal wave is approaching with amplitude a and wavelength λ. Find the
amplitude of the wave that is re�ected by the block, and the wave that
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η̂ as.

κx

η̂
A

Figure 2.26: Near-shore blow-up of the solution in �gure 2.25. The deviation
between the full and the asymptotic solution is slightly visible near x = 0.

propagates into the area behind the block. We assume that the linearized
hydrostatic shallow water theory is valid for the entire area. Find the max-
imum force that acts on the block in the horizontal direction. Insert values
characteristic for the foundation for the oil platform Statfjord C: h = 60m,
L = 150m and long period swell λ = 800m and a = 1m. The water depth is
H = 150m. Determine the force on the foundation. What are the primary
reasons why this estimate must be presumed to be laden with large errors?

4. Re�ection from a shelf.

A bottom pro�le is given as

h =

{
h1 x < 0

h2 x > 0

We assume that linear hydrostatic shallow water theory is applicable both
to the right and to the left of the shelf (x = 0). At the shelf we assume
that the surface displacement and the mass �ux are continuous.

A sinusoidal wave with amplitude A and frequency ω arrives towards the
shelf from the left. Find the re�ected and the transmitted waves.

5. Re�ection from a slope.
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We have given a depth function

h =


h1 x < 0

h1 − x
L

(h1 − h2) 0 < x < L

h2 x > L

We assume that a linear hydrostatic shallow water theory is applicable for
all x. A sinusoidal wave with amplitude A and frequency ω is approaching
from the left, x < 0. Find the resulting wave system.

You will have to di�erentiate the two linearly independent solutions of
Bessel's di�erential equations:

∂J0

∂x
= −J1,

∂Y0

∂x
= −Y1.

To approximate di�erent asymptotic behaviors you will need the equations

Jn(x) ∼
√

2

πx
cos(x− π

4
− nπ

2
), Yn(x) ∼

√
2

πx
sin(x− π

4
− nπ

2
),

for large x and

J0(x) ∼ 1, J1(x) ∼ 1

2
x, Y0(x) ∼ 2

π
lnx, Y1(x) ∼ − 2

πx
,

for small x.

6. Re�ection of a pulse from a shelf.

A bottom pro�le is given as

h =

{
h1 x < 0

h2 x > 0

We assume that linear, hydrostatic shallow water theory is applicable on
both sides of the jump (x = 0). A wave pulse approaches from the left and
is given as

η(s) =


0 s < −L

A cos2(π s
2L

) −L < s < L

0 L < s

where s = x−c1t. We assume that the pulse will be split into a transmitted
and a re�ected pulse. We further assume that both of these have a form
similar to the original pulse, but with other values for L and A. Which
lengths should these pulses have? Find the amplitudes by insisting on
conservation of mass and energy.
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7. Energy transfer in long waves in shallow water.

In this we shall exercise assume non-linear long wave theory (NLSW).

(a) Find the energy density E per horizontal surface unit by direct calcu-
lation. (Energy in vertical columns of water.)

(b) Find, correspondingly, the horizontal components of the energy �ux
F integrated over the entire depth.

(c) What mathematical relation must exist between E and F ? Show that
this is correct by use of the NLSW equations.

(d) We now assume a �at bottom, linear equations and a harmonic, pro-
gressive wave. Show how the averaged E and F now can be related
by the group velocity.

2.11 Derivation of dispersive long wave equations

2.11.1 Derivation of Boussinesq equations

We assume two-dimensional motion with the x-axis horizontal and the z-axis
vertical. The bottom is variable and described by z? = −h?(x?), where ? denotes
magnitudes with dimension. We can make the equation dimensionless with the
following considerations:

� A typical depth, H, is used to scale vertical magnitudes.

� A typical wavelength, `, is used to scale horizontal magnitudes.

� A typical amplitude, a, characterizes the vertical displacement of the sur-
face elevation. The small dimensionless parameter α = a/H is used to
characterize the smallness of all �eld quantities.

Linearization requires that α is small. The long wave approximation requires

ε ≡ H2

`2
(2.96)

is small. These parameters will appear in the derivation below. In the following
we will not introduce a formal perturbation expansion for the unknowns, rather
we will iterate the governing equations.

We employ the following scalings:

z? = Hz x? = `x t? = `(gH)−
1
2 t

h? = Hh(x) η? = αHη u? = α(gH)
1
2u

w? = ε
1
2α(gH)

1
2w p? = ρgHp
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At the surface z = αη we have the dynamic and kinematic boundary conditions

p = 0, ηt + αuηx = w. (2.97)

At the bottom we have the kinematic boundary condition

w = −hxu. (2.98)

Within the �uid we have Euler's equations of motion

ut + αuux + αwuz = −α−1px (2.99)

ε(wt + αuwx + αwwz) = −α−1(pz + 1) (2.100)

and the continuity equation
ux + wz = 0. (2.101)

Eliminating terms of order ε we obtain the hydrostatic description. Equation
(2.100) then gives the pressure

p = αη − z +O(αε) (2.102)

which implies that px = αηx+O(αε), and therefore the horizontal pressure gradi-
ent is independent of z to the leading order of ε. It follows that all of the particles
in a vertical cross-section, x=constant, have the same horizontal acceleration. If
they start out with the same horizontal velocity, e.g. starting from rest, they nec-
essarily have the same horizontal velocity at all later times, to the leading order
in ε. We can now write

uz = O(ε) (2.103)

or u ≈ u(x, t). Equation (2.99) gives

ut + αuux = −ηx +O(ε). (2.104)

We will now derive a higher order equation by assuming that both ε and α
are small. This means that we retain the terms of order α and ε, but the terms
which contain products of these or ε2 can be dropped. We start by de�ning a
vertical average

u = (h+ αη)−1

αη∫
−h

u dz. (2.105)

A consequence of (2.103) is that u(x, t) − u(x, z, t) = O(ε). An average depth
continuity equation can now be written

ηt = −{(h+ αη)u}x (2.106)

which is exact.
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A correction to the hydrostatic pressure can be found from (2.100). We can
make a correction of the order ε and α into the parenthesis in the left side, without
that, the pressure �nds the relative corrections of the lower orders in αε and ε2.
First we must �nd an expression for w. From (2.97), (2.103) og (2.101) follows

w = ηt − zux +O(α, ε). (2.107)

Setting these into (2.100) we �nd

p = αη − z − εα(zηtt −
1

2
z2uxt) +O(αε2, α2ε). (2.108)

From (2.106) we have ηtt = −(hu)xt + O(α) which can be used to write the
expressions for p. The next step is to average the horizontal components of the
equation of motion (2.99) over the �uid depth. Averaging the �rst term in the
left side gives

(ut) = (h+ αη)−1

αη∫
−h

ut dz = ut + α(h+ αη)−1(u− u|z=αη)ηt. (2.109)

Equation (2.103) now gives the last terms of order αε which can be dropped. For
the next term in (2.99) we �nd equivalently

(
1

2
α(u2)x) = α

1

2

(
(u2)

)
x

+O(α2ε). (2.110)

A consequence of (2.103) is that we can write u = u+ εu1 where u1 is of order 1,
but the average is zero. A simple calculation gives

1

2

(
(u2)

)
x

=
1

2
(u2 + 2εuu1)x +O(ε2) = uux +O(ε)2. (2.111)

The last contribution to acceleration in (2.99) can be dropped immediately; this
follows from (2.103). We set in p from (2.108) in the left side, and by averaging
these we �nd

ut + αuux = −ηx + ε{1

2
h(hut)xx −

1

6
h2uxxt}+O(ε2, αε). (2.112)

These together with (2.106) constitute a set of two equations in x and t for the
unknowns η and u. The equations can be presented in many di�erent forms by
rewriting the higher order terms, or by introducing U = (h + αη)u as unknown.
Notice that (2.112) is valid for variable depth. In relation to the NLSW equations
the important new feature of (2.112) is that the new term on the right-hand side
gives dispersion. If we delete the nonlinear terms, assume constant depth, and
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insert a harmonic mode in (2.112) and (2.106) we �nd the dimensionless dispersion
relation

ω2 =
k2

1 + ε
3
k2
.

Restoring the dimensions we may recast this into

ω2 =
c2

0k
2

1 + 1
3
(kh)2

,

where c0 =
√
gh.

The relative importance of nonlinear relative to dispersion e�ects in (2.112)
and (2.106) is measured by the Ursell parameter

Ur =
α

ε
.

If Ur is small dispersion e�ects dominate over nonlinear e�ects, while nonlinearity
dominates for large Ur. If we insert the harmonic wave mode from the linear
solution into the di�erent terms of the equations it is seen that nonlinear and
dispersive terms are of comparable magnitude when Ur ≈ 10.

2.11.2 Derivation of KdV-equation

If waves are propagating in one direction on constant depth, the Boussinesq-
equations can be replaced by the KdV (Korteweg�de Vries) equation. This equa-
tion can be derived in several ways:

1. Use a nonlinear term from hydrostatic nonlinear theory and the leading
dispersive term from the linear dispersion relation. These can be combined
directly.

2. Change the coordinate system such that it propagates with the linear shal-
low water speed c0. For one-directional waves all scalars will change slowly
in time in this system.

3. Find corrections for the Riemann-invariants within the framework of Boussinesq-
equations.

Method 1 will be scrutinized later, but here method 2 will be derived in detail.
We will do two things: We modify the description such that η is the only

unknown, and we will reduce the order of the equation. First, the change of
coordinates

ξ = x− t, τ = εt. (2.113)

The wave propagates towards increasing x and the small factor ε in front of t
denotes the slow time variation in the new coordinate system.
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We could have chosen α instead of ε for rescaling of the time as these pa-
rameters are assumed to be of the same order. The change of coordinates in the
continuity equation, (2.106), gives

εητ − ηξ = −(1 + αη)uξ − αuηξ (2.114)

where we have limited the depth to be constant, h ≡ 1. To the leading order:
ηξ = uξ + O(α, ε). If η and u are equal somewhere, e.g. outside a �nite wave
disturbance, they will be similar to this order everywhere. The equation above
can therefore be rewritten within the accuracy used herein

εητ − ηξ = −uξ − 2αηηξ +O(ε2, αε). (2.115)

Using this, most of u can be eliminated in the transformed equation of motion.
Equation (2.112) can be rewritten as

uξ = ηξ + εητ + αηηξ +
1

3
εηξξξ +O(ε2, αε). (2.116)

Equation (2.115) can now be rearranged as a variant of the KdV equation

εητ +
3

2
αηηξ +

1

6
εηξξξ = O(ε2, αε). (2.117)

This equation expresses the balance between slow time variation, nonlinearity
and dispersion. If we introduce the coordinates x and t in (2.117) we �nd

ηt + (1 +
3

2
αη)ηx +

1

6
εηxxx = O(ε2, αε), (2.118)

which is the same as will be presented later. This can be rewritten in di�erent
ways. For example we can use the leading order balance in (2.118), ηt + ηx =
O(ε, α), to rewrite the dispersive term

ηt + (1 +
3

2
αη)ηx −

1

6
εηxxt = O(ε2, αε), (2.119)

which is better to solve numerically. The di�erent variants of the KdV equation
will not give the same answer, but they should give solutions that are consistent
within the common order of accuracy.

It is possible to generalize the KdV-equation such that a slowly varying depth,
hx = O(ε, α), can be included.

2.12 The e�ect of viscosity on surface waves

So far we have dealt with an ideal �uid, without friction, and thereby neglected
the e�ect of viscosity on the wave motion. Even though we may do this with
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good approximation for many wave phenomena, the viscosity can in some cases
have a dominant e�ect on the wave motion. We should therefore take a closer
look at the e�ect of friction on surface waves.

We shall here su�ce by considering long-crested surface waves in a homo-
geneous and incompressible Newtonian liquid of in�nite depth. The linearized
governing equations are

∂u

∂t
= −1

ρ

∂p

∂x
+ ν∇2u (2.120)

∂w

∂t
= −1

ρ

∂p

∂z
+ ν∇2w − g (2.121)

and the continuity equation
∂u

∂x
+
∂w

∂z
= 0.

In these equations, and in the following equations in this section, the symbol ∇2

denotes the two-dimensional Laplace operator

∇2 =
∂2

∂x2
+

∂2

∂z2
.

ν is the kinematic viskosity.
We introduce the potential φ and the stream function ψ and write

u =
∂φ

∂x
− ∂ψ

∂z
, w =

∂φ

∂z
+
∂ψ

∂x
. (2.122)

Both the vorticity equation, which can be found by eliminating the pressure from
(2.120) and (2.121), and the continuity equation are satis�ed if

∂ψ

∂t
− ν∇2ψ = 0 (2.123)

and
∇2φ = 0. (2.124)

Thereby it follows from (2.120) and (2.121) that the pressure p can be written

p = −ρ(
∂φ

∂t
+ gz) + f(t)

where f(t) is an arbitrary function of t which we can merge into φ by the well-
known integral technique. If we employ the results from section 2.1, the linearized
surface conditions take the form

∂u

∂z
+
∂w

∂x
= 0

∂φ

∂t
+ gη + 2ν

∂w

∂z
− σ

ρ

∂2η

∂x2
= 0 (2.125)

∂η

∂t
= w
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where all three equations are to be evaluated at z = 0. The �rst of these equations
expresses that the shear stress vanishes at the surface, the next equation is the
condition for the normal stress, and the last equation is the kinematic condition.
The surface elevation can be eliminated from the last two equations, and we get

∂2φ

∂t2
+ gw + 2ν

∂2w

∂z∂t
− σ

ρ

∂2w

∂x2
= 0 (2.126)

for z = 0.
Equations (2.123) and (2.124) have solutions

ψ = Aemzei(kx−ωt)

φ = Bekzei(kx−ωt) (2.127)

where A, B, k and ω are constants, and

m = (k2 − iω

ν
)
1
2

For the motion to die out when z → −∞ we insist that the real part of m is
positive. The corresponding velocity components can be found by substituting
the expressions (2.127) into (2.122). The �rst surface conditon in (2.125) together
with equation (2.126) leads to a homogeneous set of equations for the constants
A and B. If this set is to have non-trivial solutions for A and B, the determinant
must be zero, and this requires the following condition to be satis�ed

(
c

cs
+ iβ)2 − 1 + β3/2(β − 2i

c

cs
)
1
2 = 0 (2.128)

where cs = ( g
k
+k σ

ρ
)
1
2 is the phase speed for gravity�capillary waves in a frictionless

liquid (ν = 0) and c denotes as before the phase speed ω/k.
The parameter β that appears in equation (2.128) is given by

β =
2νk

cs
.

For liquids with little viscosity β is very small except for very short wavelengths.
Table 2.1 shows some values of β for clean water (σ = 7.4 · 10−2N/m, ν =
10−6m2/s).

With the exception of very short wavelengths one, one can eliminate the term
that has β3/2 as factor in equation (2.128), and we get

c = cs(1− iβ).

For a real wavenumber we see that the phase speed is complex. The real part
of c is the phase speed of the waves, while the imaginary part corresponds to an
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λ β × 103 ze
cm cm
1 5.01 0.01
10 0.31 0.03
100 0.01 0.05
1000 0.0001 0.09

Table 2.1: Damping at di�erent wavelengths.

exponential damping. By employing these results, the surface elevation can be
written

η = ae−2νk2t cos k(x− cst).
This expression shows that the propagation speed is not a�ected by friction,
but the friction causes the wave amplitude to be damped and this damping is
strongest for short waves. The e-folding time is

te =
1

2νk2
=

λ2

8π2ν
.

Since the period fo the waves is T = 2π/kcs we see that the e-folding time is a
number of periods

te
T

=
1

4π
(
cs
νk

) =
1

2πβ
.

Even for as short waves as λ = 1cm the e-folding time in water is about 30
periods. In other words, after the waves have propagated a distance of 30λ the
amplitude has been reduced by a factor e−1.

For su�ciently small values of β we have

m = ± k

β
1
2

(1− i).

The potential ψ which describes how the irrotational velocity �eld is deformed
by the action of friction, will in this case contain a damping factor exp( z

ze
) where

ze =
β

1
2λ

2π
.

The velocity �eld is therefore only noticably a�ected by the friction in a thin zone
of thickness ze near the surface. Some numerical values for ze for surface wave in
water are given in table 2.1. The above computations show that the friction has
little in�uence on long waves, and the e-folding time te grows without bound when
k → 0. If the depth of the liquid is limited, the longest waves will have appreciable
velocities near the bottom. Due to friction there will also be a boundary layer
near the bottom a�ecting the damping of the waves. It is possible to estimate
the e�ect of this damping, but we will not do it here.
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2.13 Oscillations in a basin

For linear wave motion the principle of superposition guarantees that a sum of
wave compontents is also possble solution. Standing waves appear by adding wave
components propagating in opposite directions. If we add the wave component
given by (2.15)�(2.16) to another with wavenumber −k and amplitude a, we get

η = A cos kx sinωt

φ =
Aω

k sinh kH
cosh k(z +H) cos kx cosωt

where A = −2a. If we furthermore require that the horizontal velocity shall be
zero at vertical planes at x = 0 and x = L, the motion is only possible when the
wavenumber has certain discrete values kn given by

knL = nπ

where n = (1, 2, 3, . . .). The corresponding value for the angular frequency ωn is
found by setting k = kn in the dispersion relation (2.17). For gravity wave we
get

ωn = [g
nπ

L
tanh(

nπH

L
)]

1
2 .

Thereby one can determine the frequency and the period for standing oscillations
in a container with horizontal bottom and vertical walls. The surface elevation
at the time t = 0 for the two lowest modes, the �rst harmonic n = 1 and the
second harmonic n = 2, are sketched in �gure 2.27. If H

L
� 1, the lowest modes

can be approximated by tanh (nπH
L

) ' nπH
L

, and the period for the oscillations
becomes

Tn =
2L

nc0

.

This demonstrates that the longest oscillation period (n = 1) corresponds to the
time it takes for a wave to move back and forth in the basin.

Figure 2.27: Two lowest eigenmods in basin.
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Standing oscillations can also appear in a basin where the depth is not uni-
form. From the solutions of equation (2.94) one may for example �nd the period
for standing oscillations in a basin with linearly sloping bottom. It is left as an
exercise to do this. More complicated shapes of basins can present mathematical
di�culties for the determination of the period, but there are a number of calcu-
lations for various geometries. Interested reader are referred to a review paper
by Miles (1974).

Standing wave of the type described here can appear in lakes and harbors. In
lakes it is usually the wind that provokes the oscillations, but they may also be
caused by avalanches or earthquakes. For example, after an earthquake in India
in 1950 there were observed oscillations in varous Norwegian lakes and �ords
(Kvale 1955).

For oscillations in harbor basins the analysis is complicated by the fact that
the basin is open to the ocean and some of the energy can leak out through the
opening. As an example of how the oscillation period can be determined for open
basins we refer to one of the following exercises. This type of oscillation has a
clear analogy to acoustic oscillations in organ pipes.

The oscillations in harbors, (Norwegian mariners call it �drag�), usually arise
under certian weather conditions, and the oscillations probably get their energy
from periodic disturbances in the ocean outside the basin. The oscillations in-
�uence the harbor conditions and have therefore great practical interest. Inves-
tigations of the oscillations in two Norwegian harbors, Sørvær in Finnmark and
Sirevåg in Rogaland, are described by Viggosson and Rye (1971) and by Gjertveit
(1971). In �gure 2.28 we see observations of oscillations in Sørvær harbor. The
amplitude of the oscillations are up to 0.8 m, and the oscillation time is about 6
min.

Exercises

1. A two-dimensional model of a harbor consists of a shallow part of length

Figure 2.28: Measurement of oscillations in Sørvær harbor. Reproduced from
Viggosson and Rye.
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b with uniform depth h and an unlimied deep ocean with uniform depth
H. We shall investigate the possibility for long periodic oscillations in
the harbor at the same time as waves propagate out into the deep ocean.
We assume that the oscillations are long periodic and use the linearized
hydrostatic shallow water theory. Within the harbor the surface elevation
is set to

η = η̂(x)e−iωt

where x is oriented outward from the coast and ω is the angular frequency
and η̂(x) is a function of x. In the deep ocean we have

η = aei(kx−ωt)

where the wavenumber k = ω/c2 and the amplitude a are determined by
the oscillations in the harbor. Show that ω is determined by

tan(
ωb

c1

) = i
c2

c1

where c1 =
√
gh and c2 =

√
gH. Find the oscillation time when h/H � 1,

and show that one in this case has a node for the oscillations at the entrance
of the harbor.

2. Show that the velocity potential

φ = a[sinh ky sin kz + sin ky sinh kz] cosωt

describes transversal oscillations in a canal where the sidewalls are straight
lines forming an angle of 45◦ with the vertical. The origin is placed at the
deepest point of the canal with the y- and z-axes horizontal and vertical,
respectively. Also show that for the lowest mode we have

φ = ayz cosω1t

and hte angular frequency is determined by

ω1 =

√
g

H

H denotes the height of the water surface above the origin at equilibrium.

3. Oscillations in a basin

A basin has length L and constant depth h. The wave motion in the basin
is assumed to be well described by linear potential theory. At the endpoints
of the basin η has zero derivative. (What does this mean physcially?)



Oscillations in a basin 73

The initial condition is given by

η(x, 0) =
A

f 4
(x+ f)2(x− f)2

for −f < x < f , η(x, 0) = 0 in the rest of the basin. The motion starts
from rest.

(a) Sketch the initial condition and �nd a suitable Fourier representation
for η(x, t). (The Fourier coe�cients should be computed).

(b) Set L = 200 and f = 10. Compute and plot the shapes of the surface
at t = 0.25 L√

gh
for h = 0.1, h = 1.0, h = 10.0 and h = 100.0. Repeat

for t = 0.75 L√
gh
.

(c) Set L = 0.03, h = 0.01 and f = 0.001. Study the solution for various
times. How is the pulse broken up?

(d) Can this solution method be generalized to three dimensions? Explain
how.
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Chapter 3

GENERAL PROPERTIES OF

PERIODIC AND NEARLY

PERIODIC WAVE TRAINS

Previously we have seen examples of wave trains where the characteristics of
the individual waves such as wavelength, frequency, and amplitude change very
little from one wave to the next. The gradual changes arose from dispersion
because of inhomogeneity in the medium. We have also seen that the viscosity
can lead to gradual changes in the wave train.

Nearly periodic wave trains of this type often appear in nature, and these
phenomena are, of course, not just tied to waves in �uids. To show this, we
will look at an earthquake registered from �ve sensors at the seismic registration
installation NORSAR (�gure 3.1). The center of the installation is at Kjeller,

Figure 3.1: Seismograph

outside of Oslo, and the sensors were places over the south-eastern part of Norway.

75
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These waves are seismic waves (Rayleigh waves) which propagate along the earth's
surface, and the waves, in this case, are due to an earthquake at the Azores. The
regular wave train mainly arises from the dispersion.

3.1 Wave kinematics for one-dimensional wave

propagation

We assume that at least one parameter (velocity, pressure, displacement, etc)
which describes wave motion can be written in the form

A(x, t)eiχ(x,t). (3.1)

This implies that either the real or the imaginary parts of the equation above
represent the physical magnitude. From the phase function χ we can determine
k and ω by

k =
∂χ

∂x
ω = −∂χ

∂t
. (3.2)

k, ω and A are assumed to be slowy varying functions of x and t in the sense
that they vary little over a distance comparable to a wavelength or over a time
comparable to a period. k and ω thus represent local values for the wavenumber
and angular frequency. The relation to the corresponding quantities for a single,
uniform and harmonic modes may be demonstrated by a Taylor expansion

χ(x, t) = χ(x0, t0) + k(x− x0)− ω(t− t0) + ...

From this, it is reasonable to assume that ω and k are locally connected by the
dispersion relation. In an inhomogeneous medium the dispersion relation involves
x and t, in addition to k. Hence, we can write

ω = W (k, x, t).

While ω is to be considered as function of x and t, W is a function of k, x and
t as de�ned by the dispersion relation. For example, for long waves in shallow
water the frequncy is k

√
gH. In case of a slowly variable depth x and t may enter

the dispersion relation explicitly through H. Hence, we write

W (k, x, t) = k
√
gH(x, t).

Generally, a bottom will only have spatial, and not temporal, variations. Ex-
plicit time dependence in the dispersion relation is more likely to appear due to
interaction with currents such as tides or large scale eddies.

It follows from (3.2) that
∂k

∂t
+
∂ω

∂x
= 0 (3.3)



Wave kinematics for one-dimensional wave propagation 77

Since k/2π is the number of waves per unit of length and ω/2π is the number of
waves per unit of time, k and ω can be interpreted respectively as wave density
and wave �ux. Equation (3.3) therefore expresses that the number of waves within
a certain interval changes due to the net �ux of waves through the interval's end
points. Di�erentiating the dispersion relation, ω = W , with respect to x while
holding t constant, we �nd

∂ω

∂x
=
∂W

∂k

∂k

∂x
+
∂W

∂x
.

Substitution into (3.3) then gives

∂k

∂t
+ cg

∂k

∂x
= −∂W

∂x
(3.4)

where cg = ∂W
∂k

is the group velocity.
In a homogeneous medium, the dispersion relation will not depend explicitly

on x and ∂W
∂x

= 0. In this case, (3.4) simpli�es to

∂k

∂t
+ cg

∂k

∂x
= 0. (3.5)

This shows that in a homogeneous medium, an observer that moves with the
group velocity will follow a wave with �xed wavenumber. If we consider a point
with coordinate x which moves with the group velocity, then

dx

dt
=
∂W

∂k
= cg. (3.6)

This de�nes a curve in the x, t plane that is a characteristic. Introducing the
temporal di�erentiation along a characteristic according to

d()

dt
=
∂()

∂t
+ cg

∂()

∂x
,

equation (3.4) can be rewritten as

dk

dt
= −∂W

∂x
(3.7)

which expresses the change in k with time at a point which moves with velocity
cg.

Di�erentiation of ω = W with respect to t yields

∂ω

∂t
=
∂W

∂k

∂k

∂t
+
∂W

∂t
.

Removing the derivative of k by means of (3.3) and introducing the temporal
di�erentiation along a characteristic we may write

dω

dt
=
∂W

∂t
. (3.8)
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If the medium does not change in time, W is not explicitly dependent on t and

dω

dt
= 0.

The last equation shows that ω is constant when one moves with the group
velocity. In other words: A wave with a de�nite period moves with a velocity
that corresponds to the group velocity for this wave. This makes it feasible to
determine the group velocity by observation. For the earthquake waves shown
in �gure 3.1, one can identify waves with periods from 15 to 35 seconds. If the
occurrence time for the quake is known, the transit time, tg, (i.e. the time the
waves have used to get to the observation point from the epicenter) for the various
wave periods can be determined. The waves will follow a path which lies close to
a great circle through the epicenter and the observation place. If one knows the
length, L, of the path, then the group velocity for the waves is

cg = L/tg.

It must be emphasized that since the group velocity can vary along the path, this
method will �nd an average group velocity for the path.

We notice that equations (3.4) and (3.5) only give information on frequency
and wavenumber, and thereby the phase function, but the wave amplitude is
undetermined. For this reason, the term wave kinematics is often used for this
theory and the results obtained with it.

For a homogeneous medium where cg is a function of k, equation (3.5) has a
solution such that k is determined by

cg =
x

t
. (3.9)

This is correctly realized by di�erentiation of the last equations with respect to x
and t such that the magnitudes ∂k

∂t
and ∂k

∂x
appear. The equation expresses that

a wave component with a �xed wavenumber k which at time t = 0, starts from
the origin x = 0, has propagated a distance x in the time t.

The expression (3.9) can be used to derive the results we have derived earlier
after comprehensive analysis. This is valid for wave forms at a large o�set from
the disturbance that created the waves.

For gravity waves in deep water is

cg =
1

2

√
g

k

and with the help of (3.9), we �nd that

k =
gt2

4x2
.
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The corresponding value for ω is

ω =
gt

2x
.

This gives a phase function corresponding with what we have found for waves
generated by an isolated disturbance (see equation 2.74).

With an equivalent method, we can �nd wavenumber, angular frequency, and
phase function for capillary waves generated by an isolated disturbance. For
capillary waves in deep water is

cg =
3

2

√
σk

ρ

and (3.9) gives

k =
4

9

ρ

σ

x2

t2
.

It must be emphasized that this expression for k is valid when one is a long
distance away from the initial disturbance.

As an example of the solution of equation (3.4) when ∂ω
∂x

is nonzero, we shall
look at long gravity waves over a sloping bottom, see equation (2.94). In this
case

W =
√
αgxk.

We assume the stationary state is ∂k
∂t

= 0, and thereby

∂k

∂x
= −1

2

k

x
.

This equation has the solution

k = k0x
− 1

2

where k0 is a constant. We �nd that the results are in agreement with what we
have found earlier.

Exercises
1. Wave generator; counting of crests

In one end of a wave tank, a wave is generated with length λ = 1 m. The
wave generator has been on for 100 seconds. Estimate the number of wave
crests in the channel in the three cases where the water depth is h = 4 m,
h = 0.5 m and h = 0.1 m. Assume that the wave channel is long enough
that re�ection from the opposite end does not happen.
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3.2 Hamilton's equations. Wave-particle analogy

Readers who have knowledge of classical mechanics will immediately recognize
equations (3.6)�(3.8). Hamilton's equations of motion are

dq

dt
=

∂H

∂p
dp

dt
= −∂H

∂q
(3.10)

dH

dt
=

∂H

∂t

where q is the generalized coordinate, p is the generalized momentum, and H is
the Hamiltonian function.

In the case that the Hamiltonian function does not depend on time, the system
is autonomous and is called a conservative system. For a conservative system,
the value of H is conserved.

We see that the set of equations in (3.10) is of the same form as equations
(3.6)�(3.8). Therefore there exists a formal analogy between particle motion and
wave motion such that

x corresponds to q

k corresponds to p

ω corresponds to H

It was Einstein (1905) who �rst gave physical content to the formal analogy
between particle motion and wave motion by setting the energy and momentum
for light particles (photons) to, respectively, H = ~ω and p = ~k, where ~ is
Planck's constant. This is the foundation for the two complementary descriptions
of light as particle motion and wave motion.

3.3 Wave kinematics for multi-dimensional wave

propagation. Ray theory.

In the general case, the phase function will be dependent on the position vector
r such that χ = χ(r, t). Corresponding to what we have used in section 2.13, we
can determine the local values for the wavenumber and angular frequency

k = ∇χ and ω = −∂χ
∂t
.

We assume that k and ω are slowly varying functions of the space and time
coordinates. For a given point in time the equation

χ(r, t) = constant
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will represent a phase surface and the vector k is normal to the surface. Because
of the assumption that the functions vary slowly, the phase surface will bend
faintly, see �gure 3.2. The spatial curve that arises by setting

Figure 3.2: Rays and phase surface.

k × dr = 0

where dr is a vectorial arch element for the curve, denotes a ray. The wavenum-
ber vector is also tangent to the ray. As in the one-dimensional case, k and ω
are related by the dispersion relation, which we in this case assume to be time
independent

ω = W (k, r). (3.11)

The explicit dependence on r is an expression for spatial inhomogeneity in the
medium. The change over time of k and ω at a point with coordinate r, which
moves with the group velocity, will be given by the equations for all of the coor-
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dinate directions

dxi
dt

=
∂W

∂ki
dki
dt

= −∂W
∂xi

(3.12)

dω

dt
= 0

where the indices i = 1, 2, 3 denote the vector components along the three axial
directions. Equations (3.11) and (3.12) together with the initial conditions for
xi, ki and ω designate a wave path (or particle path) r(t). The form of these
equations is particularly well suited for numerical computations. In a medium
with isotropic dispersion whereW is a function of k = |k|, but not of the direction
of k, we �nd that

∂ω

∂ki
=
∂W

∂k

∂k

∂ki
=
∂W

∂k

ki
k
.

This shows that for media with isotropic dispersion, the group velocity has the
same direction as the wavenumber vector, and the wave paths coincide with the
rays.

We shall look at two examples in order to show explicit solutions of (3.12).
The �rst deals with refraction of long waves in shallow water. We assume that
the bathymetry is such that the water depth, H, is a function of x given by

c(x) =
√
gH(x).

The dispersion relation can be written

W = c(x)k.

Since the propagation velocity depends on depth, the waves will refract. If the
water depth increases with x, the rays will be as sketched in �gure 3.3. We
designate the wavenumber vector components along the x- and y-axes with kx
and ky respectively. From equation (3.12) we �nd that along the ray is

ω = constant

ky = constant

kx = ±(
ω2

c2(x)
− k2

y)
1
2

For this case, which is sketched in the �gure, one must select the minus sign in
front of the square root in the last expression.

If the angle between the x-axis and the wavenumber vector is designated by
θ, we �nd

sin θ

c
=
ky
kc

=
ky
ω

= constant
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Figure 3.3: Refraction in shallow water.

which shows that the refraction obeys Snell's law. The equation for rays is

dy

dx
=
ky
kx
.

For special values of the function H(x), one can �nd simple analytic expressions
for rays. With refraction of this type, one can notice when the waves propagate
in towards a straight coast in shoaling depth. One will see that waves which
come in on the slope relative to the bottom are de�ected such that the crests are
eventually parallel to the coast.

The next example of refraction is of seismic waves in a symmetric sphere. We
assume that the velocity for the waves is a function of distance r = |r| from the
sphere's center and that waves grow without dispersion such that

W = c(r)k.

This dispersion relation is valid within a good approximation for seismic waves
that propagate along the earth. We �nd that this dispersion relation implies

∂W

∂xj
=
dc

dr

xj
r
k,

∂W

dkj
= c

kj
k
.
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From equation (3.12) it follows therefore that

dr

dt
= c

k

k
,

dk

dt
= −dc

dr

r

r
k,

where r is the coordinate for a point which moves along the ray with velocity c.
We multiply the �rst of these equations vectoraly with k and the other with r,
we �nd that

d

dt
(r × k) = 0.

This implies that

r × k = constant

along the same ray. If the angle between the two vectors denotes i (see �gure 3.4),
we �nd that

p =
r sin i

c
= constant

along the same ray. The quantity p is designated the wave parameter, and this
parameter plays an important role in seismology.

Figure 3.4: Seismic ray on a sphere.
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3.4 Eikonal-equation and equations for amplitude

variation along the rays

Previously we have assumed that there exists wave motion such that the wavenum-
ber, wave amplitude, and angular frequency are slowly varying functions in space
and time. Under these requirements we have derived the fundamental results of
wave kinematics and ray theory.

Wave motion of this type is possible in inhomogeneous or non-stationary me-
dia where the physical properties change little over a distance comparable to a
wavelength or a time comparable to a wave period. Once can therefore see that
the requirements are ful�lled if the wavelength and period are su�ciently short.

As an example, we shall solve the wave equation (2.93) in the case that the
propagation speed, c0 =

√
gH, is a function of x and y. We assume that the scale

for inhomogeneity in the wave �eld is equal to the scale for inhomogeneity for
the propagation speed, c0. We assume that the solution of (2.93) can be written
in the form

η = A(x, y, t)eiχ(x,y,t) (3.13)

where the frequency and the wavenumber vector are de�ned by

ω = −∂χ
∂t
, k = ∇χ.

The presumption of slowly varying wave �elds means that the ratio between
the wavelength, λ = 2π/k, and the scale for inhomogeneity, L, must be a small
number. Correspondingly the ratio between a wave period, 2π/ω, and the scale
for non-stationarity T must be a small number. We therefore introduce an or-
dering parameter such that

ε =
1

kL
=

1

ωT
� 1. (3.14)

If we use the slowly varying scale for inhomogeneity and non-stationarity
as references we can explicitly describe the rapid wave phase by the ordering
parameter such that

η = A(x, y, t)eε
−1iχ(x,y,t). (3.15)

It will now be natural to assume that the amplitude, A, can be developed in
a perturbation expansion in terms of the same ordering parameter

η =
(
A0(x, y, t) + εA1(x, y, t) + ε2A2(x, y, t) + . . .

)
eε
−1iχ(x,y,t). (3.16)

Taking the time derivative of the series expansion gives

∂η

∂t
=

(
−iε−1ωA0 − iωA1 +

∂A0

∂t
+O(ε)

)
eε
−1iχ(x,y,t).
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The series expansion (3.16) shall now be substituted into (2.93). It can be realized
that the complex exponential function is common for all terms and can be factored
out. The expression that remains must then be ful�lled to all orders in ε. This
gives a hierarchy of equations for the determination of χ, A0, etc.

The �rst of these equations is called eikonal-equation. In this case the equation
is

ω2 = c2
0k

2 (3.17)

where k = |k|. We recognize this as the dispersion relation. If we can assume a
stationary wave �eld we can write

χ = S(x, y)− ωt (3.18)

and the phase line is determined by

S(x, y)− ωt = const.

The wavenumber vector
k = ∇χ = ∇S

is oriented normal to the phase line.
The other equation is often called the transport or amplitude or evolution

equation. It is a conservation equation for the so-called wave action, which is
the wave energy divided by the so-called intrinsic frequency. It describes how the
wave action is transported along a ray. In the present case, we have

ω
∂A0

∂t
+
∂

∂t
(ωA0) + c2

0k · ∇A0 +∇ · (c2
0kA0) = 0. (3.19)

If we multiply the equation with A0 and integrate once we �nd

∂

∂t
(ωA2

0) +∇ · (cgωA2
0) = 0. (3.20)

As an exercis show that the by means of the ray equation for the frequency (3.8)
this can be rewritten as a conservation equation for energy or for wave action,
keeping in mind that the medium does not depend on time.

Equation (3.20) describes amplitude variation along the rays. Let us assume
a stationary wave �eld and let us consider a domain (see �gure 3.5) restricted
to the rays a and b where the cross-sections σA and σB are normal to the ray
segments which lie between the rays. We assume that rays a and b lay so near to
each other that c0, A0 and ∇S can be set constant over the cross-sections σA and
σB. We integrate equation (3.20) over the area and use Gauss' theorem. Since
the group velocity is parallel with the wavenumber vector, the contribution to
the integral disappears along the rays and we �nd

σA(c0A
2
0)
∣∣
A

= σB(c0A
2
0)
∣∣
B
. (3.21)
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A0 represents the amplitude for the leading term in the series expansion (3.16),
and the magnitude c0A

2
0 is therefore a measure of the energy �ux. Equation (3.21)

also expresses that in this case, the energy �ux is constant along a ray. This is
an important result, and this entails that there is no re�ection of wave energy
along the rays. This shows that the wave kinematics that we have developed
above requires that the changes in the medium are so gradual that the waves are
refracted without any of the energy being re�ected.

Figure 3.5: Sketch for the calculation of amplitude along a ray tube.

Notice that the application of Gauss' theorem was especially simple because
the group velocity was parallel with the wavenumber vector in this case, and
thereby the contribution vanishes when integrating along the rays. In the case
where the group velocity is not parallel with the wavenumber vector, the contri-
bution along the rays would be integrated. In such cases, it can be simpler to use
wave paths instead of rays like those sketched in �gure 3.5.

To end, we show an application of the results from this section. Consider sur-
face waves propagating toward a coast with a coast line and bottom topography
as sketched in �gure 3.6. For a wave which has a straight phase line far out in
deep water, the rays are indicated in the �gure. We choose a ray tube A − B
outside of the headland and the ray tube A′ − B′ outside of the inlet such that
the cross-sections at A and A′ are equally large. We furthermore assume that the
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wave amplitude is equally large at A and A′. Since the cross-sections for the ray
tubes are smaller at B than at B′, it follows from (3.21) that the wave amplitude
is larger at B than at B′. The fact that wave energy is focused towards headlands
and spreads in bays is often observed in Nature. This is best seen from the air,
and the aerial photograph in �gure 3.7 shows many such e�ects.

Figure 3.6: Sketch for waves approaching coast.

3.5 Amplitude variation in nearly peridoic wave

trains

In the previous section, we integrated (3.20) with the help of Gauss' law for
waves with �xed frequency (monochromatic waves). For nearly periodic wave
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Figure 3.7: Aerial photograph from an area near Kiberg on the coast of Finnmark.
The photo was taken 12. June 1976 by Fjellanger Widerøe A.S.
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trains that arise from dispersion, the amplitude variation cannot be found by a
simple application of Gauss' law, but rather equation (3.20) must be integrated
in both space and time.

We know that for linear waves, the average energy �ux, F , is given by the
average energy density, E, and the group velocity cg

F = cgE.

Indeed, we have only seen this for a single wave component, but it is reasonable
to assume that the same relation is valid, with a good approximation, in the case
of slowly varying wave trains. If there is no energy input to the waves by outside
in�uences such as wind, and the medium is stationary in time, we can write

∂E

∂t
+∇ · (cgE) = 0. (3.22)

For a non-stationary medium (waves interacting with currents, wave experiments
carried out the the elevator) the conserved quantity is the wave action which is
the energy divided by the so-called intrinsic frequency.

A generalized equation containing the source term and coupling term which
respectively express the generation of waves caused by wind and the interaction
between waves and currents, is often used for wave forecasting (Kinsman 1965).

The energy density is proportional to a2 where a is the wave amplitude, and
for plane gravity waves in deep water we have E = 1

2
ρga2. From equation (3.22)

we thus �nd
∂a2

∂t
+∇ · (cga2) = 0. (3.23)

We illustrate this by studying two simple solutions.
For long surface waves which propagate over a smooth �at bottom with slope

α, the group velocity is cg =
√
gH =

√
gαx (see section 2.7). If the wave train is

periodic in time such that ∂a2

∂t
= 0, it follows from (3.23) that the energy �ux is

constant and we therefore must have that the wave amplitude is

a = const. · x−
1
4 .

This is in agreement with what we have found in section 2.10.
For waves generated by a concentrated disturbance at t = 0 and x = 0, the

group velocity will be given by

cg =
x

t

where t is the transit time to a point at distance x. The wave amplitude can be
found from (3.23)

a = const. · x−
3
2 t

By comparion with expression (2.74), the constant can be determined.
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Exercises
1. We assume that the phase speed for seismic waves is a function of depth z,

which can be written as c(z). The speed at the surface z = 0 is c0. Find
the path for a wave with angular frequency ω0 which goes out from a point
O at the surface in a direction de�ned by an angle θ with the surface. We
assume that the waves propagate towards a �nite area such that the surface
can be considered to be a plane. Find the distance from O to the point A
where the rays come up to the surface. c(z) is a monotonously increasing
function of z. Determine the transit time as a function of the distance OA,
and �nd the deepest point of the rays.

Figure 3.8: The �gure is so far missing!

2. In a sea with uniform depth H0 there is a shoal with depth given by

H = H0(1− αe−
x2+y2

L2 )

where α and L are constants. Find the rays for plane waves with wavelength
λ = βL (where β is a constant) coming in towards the shoal along the x-
direction.

3. Self-focusing wave generator

In one end of a wave channel, a wave is generated with frequency f(t).
The frequency is 10 Hz when the wave generator is turned on, and it is
turned o� 100 seconds later. We wish to concentrate as much wave energy
as possible at a prescribed point in the wave channel. Use ray theory to
�nd the optimal form of f(t). Find the point where the energy concentrates
and the time when this happens. Assume that the channel is long enough
that there is no re�ection from the opposite end and that it is much deeper
than the length of the generated waves.

Does ray theory work well here?

4. Waves over a parabolic bottom

A bottom topography (bathymetry) is given by h(x) = h0(x
l
)2. We assume

that linear, hydrostatic shallow water theory is valid and that the waves
are monochromatic in time (only one frequency).
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(a) Use ray theory to determine the phase function χ.

(b) Give an interpretation of the expression 1
c
∂c
∂x
λ. Which requirement

must we impose on ωl√
gh0

for ray theory to be valid?

(c) Find a solution of the shallow water equation of the form η = e−iωtxq.
Compare this with the results we found with the help of ray theory.

5. Slowly varying wave sources

We consider plane, nearly periodic waves in a homogeneous medium. We as-
sume linear conditions, and the waves propagate in the positive x-direction.
The dispersion relation is given by ω = 1

3
k3. At t = 0 the local wave length

is given by λ = a(2 + tanh(bx)).

(a) We shall use ray theory, which conditions must then be imposed on
the parameters a and b?

(b) Use ray theory and the method of characteristics to estimate the local
wave length for all x at a later time. A di�cult algebraic equation will
pop up here, and this should not be solved.

6. Waves with oblique incidence

The given depth is independent of the y-direction, i.e. depth h = h(x). We
shall study how long harmonic waves behave over this bottom. The waves
shall have an oblique incidence, which means that the wavenumber has a
component in the y-direction.

a Find the amplitude varies according to physical optics (the transport
equation). Is it correct that a wave will always be ampli�ed when it
comes into shallower water?

b Discuss what happens with the amplitude when the wave propagates
into deeper water.

7. Waves from an initial disturbance 2. We consider the Klein-Gordon
equation

∂2η

∂t2
− ∂2η

∂x2
+ qη = 0.

At t = 0, assume a point disturbance at x = 0. Use ray theory to determine
the phase function at large x and t. Compare with the stationary phase
solution.



Chapter 4

TRAPPED WAVES

For surface waves on deep water the motion decays quite fast downwards. At a
depth comparable to a wavelength or more, the motion is negligible. The wave
energy is therefore associated with a zone close to the surface, and the energy is
bound to this zone while the waves propagate forward at the surface. We may say
that the waves are trapped at the surface and the surface acts as a wave-guide.
Trapped waves and wave-guides play an important role in many types of wave
motion. In the ocean and in the atmosphere the strati�cation of density may
result in horizontal layers with low sound speed. Thereby this layer can act as a
wave-guide, and sound of certain frequencies may propagate over long distances
with little attenuation. When sound waves propagate in this manner along a
horizontal layer, the energy will be spread over cylindrical shells of increasing
radius r and the wave amplitude will attenuate as 1/

√
r. This is signi�cantly

less attenuation than a spherical spreading for which the amplitude attenuates
as 1/r. Low geometric attenuation is a characteristic property of wave-guides.
The mathematical descriptions of various wave-guides are rather similar. In the
following we shall study some examples of trapped gravity waves.

4.1 Gravity waves trapped by bottom topography

As long gravity waves propagate faster on deep water than on shallow water, the
waves will be refracted due to di�erences in water depth. At a straight coastline
where the water depth is linearly increasing outwards, waves propagating towards
the coast will be refracted toward the coast. If the waves are re�ected at the
shore, the waves will be refracted on their way out, and that refraction may
be large enough that they turn and propagate towards the coast again. After
a new re�ection this phenomenon can of course happen again, and by periodic
re�ections and refractions along the coast the waves may be trapped. A sketch
of the rays is shown in �gure 4.1.

There exists a simple solution of Laplace equation (2.11) with boundary con-

93



94 TRAPPED WAVES

Figure 4.1: Rays for trapped waves.

ditions (2.12) and (2.13) (with σ = 0) that describes trapped gravity waves along
a coastline where the depth increases linearly with the distance from the coast.
The bottom topography and the choice of coordinate system are shown in �gure
4.2.

Together with the boundary conditions (2.12) and (2.13) at the free surface,
we have the kinematic bottom condition

∂φ

∂x
tan θ +

∂φ

∂z
= 0

at the sea �oor z = −x tan θ. The velocity potential is

φ = −ag
kc

e−k(x cos θ−z sin θ) cos k(y − ct) (4.1)
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Figure 4.2: Geometry of the coast.

and

c = ±(
g

k
sin θ)

1
2 .

The corresponding surface elevation is

η = ae−kx cos θ sin k(y − ct).

We see that the waves propagate along the coast with a speed that depends
on the inclination of the sea �oor, and that the amplitude decays exponentially
from the coast. The waves will be able to propagate in both directions along
the coast. The coast and the bottom topography therefore constitute a two-
way wave guide. This type of wave phenomenon can be observed for instance in
channels with edges of uniform inclination. These waves are called edge-waves,
and the particular solution (4.1) represents the �rst mode of several solutions
(Ursell 1952). Similar simple solutions for other bathymetries are not known.

In order to study the phenomenon more carefully, we assume that the waves
are su�ciently long that we can employ the shallow water equations. We put the
coordinate axes as in �gure 4.1, and let the depth H be an increasing function of
x. At the shore we imagine there is a vertical wall and that the depth is much
greater than the wave amplitude. We write the surface elevation η in the form

η = η̂(x) sin k(y − ct)

where η̂(x) is a function of x to be determined. From (2.93) we then have

d

dx
(H

dη̂

dx
) = k2(H − c2

g
)η̂. (4.2)
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At the coast line x = 0 the volume �ux in the x-direction is zero, and this implies

dη̂

dx
= 0 for x = 0. (4.3)

For trapped wave we must have

η̂ → 0 as x→∞. (4.4)

Equation (4.2) with boundary conditions (4.3) and (4.4) is an eigenvalue problem
of known type which for given values of k gives certain permissible values for c.

We introduce
η̂ = H−

1
2ψ

and substitute into (4.2). This gives

d2ψ

dx2
= −k2(W (x)− 1)ψ (4.5)

where

W (x) =
c2

gH
+

1

4

H ′2 − 2HH ′′

(kH)2
.

Here ′ means di�erentiation with respect to x. The boundary conditions for ψ
become

dψ

dx
=

1

2

ψ

H

dH

dx
at x = 0

ψ → 0 as x→∞. (4.6)

This eigenvalue problem is of similar type as those involving the solution of the
Schrödinger equation in quantum mechanics. If H is a slowly varying function of
x, then W can be approximated by

W =
c2

gH
. (4.7)

As the factor 1/(kH)2 appears in the term that is truncated, we expect that the
approximation will be better the shorter the wavelength. In agreement with this
approximation the �rst of the boundary conditions in (4.6) is modi�ed as

dψ

dx
= 0 at x = 0. (4.8)

The solution of (4.5) changes character according to W > 1 or W < 1. When
W > 1 (i.e. H < c2

g
) the solution for ψ has oscillatory behavior, while for W < 1

(i.e. H > c2

g
) the solution is exponentially attenuated.

We now consider the case when H is a monotonically increasing function of x,
and H approaches a constant value as x→∞ such that W > 1 for 0 < x < x0,
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and W < 1 for x > x0. For certain values of k and c we can therefore have
solutions for ψ behaving like trapped waves where the motion is exponentially
damped for x > x0. Depending on the number of nodes for the oscillations in the
domain x < x0 one can have di�erent modes for the wave motion. In �gure 4.3
we see a sketch of the 1st and 2nd modes for ψ(x).

Figure 4.3: The two lowest trapped modes.

The phenomenon of trapped waves in harbors is especially important for long
waves. Such waves with wavelength 100 km and more will be more or less unaf-
fected by small irregularities in bathymetry and coastline and more a�ected by
large scale modi�cations of bathymetry. Therefore the simple models we have
discussed here often are applicable.
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4.2 The WKB method

Without resorting to numerical methods it can be di�cult to determine the solu-
tions of (4.5) that satisfy the boundary conditions. We shall here show a method
to �nd an approximate solution. We set

f(x) = W (x)− 1

where W is given by (4.7). Equation (4.5) can then be written

d2ψ

dx2
= −k2f(x)ψ. (4.9)

For simplicity we assume as before that H is a monotonously increasing function
of x and that H goes to a constant value for x → ∞. For large values of k we
can �nd an approximate solution of (4.9) by using the same method as in (3.4).
We therefore write ψ by an expansion

ψ = eikS[P0(x) +
P1(x)

ik
+ · · · ]

where S, P0 and P1 are functions of x. The expansion is substituted into (4.9),
and the coe�cient in front of each term in the resulting series should be zero.
Thereby one gets

(
dS

dx
)2 = f(x),

d

dx
(P 2

0

dS

dx
) = 0.

This leads to

S = ±
∫
fD

1
2 dx

and
P0 = const./f

1
4 .

If we consider only the leading term in the expansion then ψ can be written

ψ = Af−
1
4 sin(k

∫
f

1
2 dx) +Bf−

1
4 cos(k

∫
f

1
2 dx). (4.10)

where A and B are constants. The solution (4.10) is known as the WKB solution,
where the acronym is composed of the initials of Wentzel, Kramers and Brillouin
who found the solution independently of each other around 1926. It is clear that
(4.10) is not valid in the neighborhood of and at the point x = x0 where f = 0.
A solution of (4.9) valid in this region can be found by the following procedure.
We write

f(x) ' −|f ′(x0)|(x− x0) (4.11)
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where f ′(x0) denotes the derivative of f at the point x ' x0, and we introduce ξ
as a new variable such that

x− x0 = k−
2
3 |f ′(x0)|−

1
3 ξ.

Equation (4.9) can thereby be written in the form

d2ψ

dξ2
= ξψ. (4.12)

This is the Airy di�erential equation, which by a special transformation can be
brought into a Bessel equation. The Airy equation has two linearly independent
solutions Ai(ξ) and Bi(ξ) known as Airy functions. One of these, Ai(ξ), oscillates
for ξ < 0, while for ξ > 0 it is exponentially damped such that Ai(ξ) → 0 for
ξ →∞. (See Abramowitz and Stegun 1972, or the more modern Digital Library
of Mathematical Functions). We notice that since k is supposed to be large, then
|ξ| can be large even if |x−x0| is so small that the expansion (4.11) is valid. Since
we assume that ψ → 0 for x→∞, we must select as the solution of (4.12)

ψ = DAi(ξ) (4.13)

where D is a constant. For large values of ξ we have the following asymptotic
expression for Ai(ξ)

Ai(ξ) ' 1

2
√
π
ξ−

1
4 e−

2
3
ξ
3
2 for ξ > 0

and

Ai(ξ) ' 1√
π
|ξ|−

1
4 sin(

2

3
|ξ|

3
2 +

π

4
) for ξ < 0.

If the expressions (4.10) and (4.13) for ψ match for large values of |ξ|, this implies

that A = B and k
∫
f

1
2 dx = 2

3
|ξ| 32 . This leads to the following WKB solution for

x < x0

ψ = Af−
1
4 sin(k

∫ x0

x

f
1
2 dx+

π

4
) (4.14)

where A is an arbitrary constant.
Since f has been assumed to be a slowly varying function of x, we have

dψ

dx
= −Ak f

1
4 cos(k

∫ x0

x

f
1
2 dx+

π

4
)

in the approximation being used here. The boundary condition at x = 0 given
by (4.8) implies that

k

∫ x0

x

f
1
2 dx+

π

4
= (2n+ 1)

π

2
(4.15)
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where n = 0, 1, 2. Equations (4.15) determine the eigenvalues for k or c. It turns
out that the WKB method often gives eigenvalues with good approximation even
for moderate or even small values of k. It is tempting to mention a quote by
a well known applied mathematician: A good formula is characterized by being
useful far beyond its domain of validity.

4.3 Waves trapped by rotational e�ects. Kelvin

waves

The Coriolis force is important for very long gravity waves and this force will
modify the wave motion. These waves are called gravity-inertia waves and have
di�erent properties than ordinary gravity waves. In this section we will study
how the Coriolis force is able to trap waves even if they propagate on constant
depth. We will only investigate the wave motion in a �uid layer limited by a
horizontal bottom at z = −H and a straight coastline x = 0. (See �gure 4.4).

Figure 4.4: Coastal geometry.

The �uid layer rotates with a constant angular velocity 1
2
f around the vertical

axis. For su�ciently long waves, such that the pressure is essentially hydrostatic,
the wave motion is described by equations similar to (2.86) and (2.92). However,
the Coriolis force must be included in the equations of motion together with the
pressure force. If the elevation and volume �ux in the x- and y-directions are still
denoted η, U and V , we get the following system of equations:
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∂η

∂t
= −∂U

∂x
− ∂V

∂y
∂U

∂t
− fV = −c2

0

∂η

∂x
∂V

∂t
+ fU = −c2

0

∂η

∂y

These equations have a solution of the form

η = ae
− f
c0
x

sin k(y + c0t)

U = 0

V = −c0ae
− f
c0
x

sin k(y + c0t)

This is a wave with amplitude a and wavenumber k that propagates in negative y-
direction. The motion decays exponentially from the coast, the e-folding distance
being c0/f . Waves of this type are called Kelvin waves. Note that with a choice
of direction of rotation that is made here, (see �gure 4.4), the Kelvin waves
only propagate such that the coast is to the right compared to the direction of
propagation. The coast is therefore a one-way wave guide for the Kelvin waves.

The tidal waves close to the coast are usually Kelvin waves, but in this case
the wave motion is often modi�ed by the shape of the coast and bottom topog-
raphy. The simple model we have studied has only the purpose to illustrate the
physical principles of this wave motion. Trapped waves like those discussed in
this chapter have many applications; e.g. tidal motion, �ood waves and tsunamis.
For further reading see Mysak and Le Blond (1978) and Gill (1982). Kelvin and
edge waves and their importance for �ooding and tides along the Norwegian coast
are discussed in Martinsen, Gjevik and Røed (1979).

Exercises

1. Trapped waves on a ridge

Consider the e�ect of a submarine ridge given by the bottom z = −h(x)
with depth contours parallel to the y-axis. Let the depth be slowly varying
in comparison to a local wavelength.

For this problem we neglect earth-rotational e�ects and capillary e�ects.

The geometry of the submarine rigde may be given by the bell shape

h(x) = h0 + (hm − h0)e−
x2

l2

where h0 is the uniform depth far away from the ridge and hm < h0 is the
minimum depth on the top of the ridge.

On top of such a ridge we can have trapped waves.
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a Write down the ray equations. Explain why the angular frequency
ω and the y-component of the wavenumber vector are constants of
motion.

b For a given wavenumber component in the y-direction, �nd the limi-
tation on possible frequencies ω for trapped modes.

c Find the corresponding locations of the turning points and sketch the
rays.



Chapter 5

WAVES ON CURRENTS.

DOWNSTREAM AND

UPSTREAM WAVES.

SHIPWAKES. WAVE

RESISTANCE.

In applications one often encounters the situation that the wave motion occurs
at the same time as there is a current in the liquid. The wave motion can in
such cases be modi�ed by the current, and current can give rise to special wave
phenomena.

A stationary current past some kind of obstacle, for example a rock on the
bottom of a river, can give rise to stationary wave patterns on the downstream
or upstream side of the obstacle. These stationary wave patterns are called
downstream waves or upstream waves. Similar wave phenomena can occur when
a disturbance, for example a ship or an insect, is moving with constant velocity
along the liquid surface. In the following we shall �rst treat down- and upstream
waves in the case that the current is uniform and stationary. In that case there
is a direct analogy between the wave pattern generated by a �xed obstacle in
the current and the waves generated by a disturbance that moves with constant
velocity along the water surface.

In those cases where the current is not stationary or uniform, the current alone
can modify the wave motion. Waves that propagate into a region with horizontal
shear currents can for example have their wavelength and amplitude modi�ed due
to the e�ects of the current. This phenomenon can often be observed for example
near river estuaries. Similarly, vertical shear currents can modify wave motion,
and the e�ect will depend on the wavelength. Wave motion that is a�ected by
non-uniform currents is di�cult to treat mathematically, and we shall in the
following su�ce by studying a simple example. The e�ect of currents on wave
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motion is an active and interesting �eld of research. Peregrine (1976) has in a
review article given a good introduction to mathematical methods and problems
within this �eld.

5.1 Downstream and upstream waves

In Norwegian these are called �le-bølger� and �lo-bølger�.
For simplicity we start by considering two-dimensional wave motion generated

by some disturbance that moves along the surface with constant speed U . Similar
wave patterns will arise if the liquid moved with uniform and stationary speed U
past a �xed obstacle.

The dispersive properties of gravity�capillary waves on deep water can be
summarized in the following diagram (�gure 5.1) where cm is the smallest phase
speed that can occur and λm the corresponding wavelength (see section 2.2). If
U > cm the we have two wave components with wavelengths λk and λt, respec-
tively, and phase speed c = U . These wave components can therefore compose
a stationary wave pattern in front of or behind the disturbance. We know that
for wavelengths greater than λm the group velocity is less than the phase speed
(cg < c), but the opposite (cg > c) is the case for wavelengths shorter than λm.
We also know that the energy of the waves propagates with the group velocity.

Figure 5.1: Dispersive properties for gravity�capillary waves.

The wave energy for waves with length λt > λm will therefore not keep up with
the disturbance, while wave energy for waves with length λk < λm will run away
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from the disturbance. We will therefore get two stationary wave trains as shown
in �gure 5.2, gravity waves with wavelength λt behind the disturbance (down-
stream waves), and capillary waves with wavelength λk in front of the disturbance
(upstream waves). If U < cm then no waves can follow the disturbance, and in
this case we will not have either downstream or upstream waves associated with
the disturbance. Similarly, downstream waves will not exist if U exceeds the
velocity

√
gH where H is the water depth. The amplitudes for downstream and

upstream waves will depend on the disturbance. Even though both types of waves
may be possible, it may occur that some disturbance only provokes one type with
appreciable amplitude while the other type has insigni�cant amplitude.

Figure 5.2: Downstream and upstream waves.

5.2 The amplitude for two-dimensional downstream

waves

When we compute the amplitude of the downstream and upstream waves, we
may end up with mathematical di�culties if we seek the stationary wave mo-
tion directly. The equations for the stationary wave motion will usually lead to
ambiguity, such that it is not immediately clear which of the waves are on the
downstream and upstream side of the disturbance. If we let the wave motion
develop gradually into a stationary state, we may avoid this di�culty. Here we
shall for simplicity carry out the analysis by letting the disturbance develop in a
special manner (Whitham 1974). We consider a pressure disturbance

p0(x, t) = f(x)eεt ε > 0 (5.1)

on the surface of a liquid layer of thickness H, which �ows with uniform and
stationary velocity U in the direction of the x-axis over a plane horizontal bottom
z = −H, see �gure 5.3.

We let the pressure disturbance be concentrated around x = 0 such that
p0 → 0 for x → ±∞, and such that the pressure has developed from zero at
t = −∞ to the value p0 at t = 0. After a certain time t > 0 it is clear that
we will have an unrealistically high pressure such that the linearizations we are
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Figure 5.3: Downstream waves.

going to do are not valid. For su�ciently small values of p0 the solution will be
valid during a limited time t = O(1

ε
) after the initial time t = 0. Letting ε → 0

we will �nd the stationary wave motion provoked by the pressure disturbance p0.
We assume the liquid is inviscid, homogeneous and incompressible and that

the motion is irrotational. We shall furthermore neglect surface tension such that
we limit to downstream waves. The velocity potential φ satis�es the Laplace
equation

∇2φ = 0.

The linearized boundary conditions at the surface can be written

∂η

∂t
+ U

∂η

∂x
=

∂Φ

∂z
∂Φ

∂t
+ U

∂Φ

∂x
+ gη = −p0

ρ
(5.2)

for z = 0. We have rede�ned the potential in the usual way such that the
constant ρ

2
U2 in Euler's pressure equation has been merged into the potential

together with the function f(t) (see section 2.1). The boundary condition at the
bottom z = −H is

∂Φ

∂z
= 0.

We seek a solution of these equations of the form

Φ(x, z, t) = φ(x, z)eεt

η(x, z) = η0(x)eεt (5.3)

If we substitute these expression into the Laplace equation and the boundary
conditions (5.2), the factor eε can be eliminated, and we are left with a set of
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equations for φ and η0. We assume that the Fourier transform in x for the
functions f(x), φ(x, z) and η0(x) exist, and we denote these by f̃ , φ̃ and η̃0 (see
section 2.7). We get the solution

η̃0 =
f̃k tanh kH

ρ[(kU − iε)2 − gk tanh kH]
.

By the inverse transform (2.59) we �nd that the surface deformation due to the
pressure disturbance can be written

η(x, t) =
eεt

2πρ

∫ ∞
−∞

f̃k tanh kHeikx

(kU − iε)2 − gk tanh kH
dk. (5.4)

We shall compute the integral (5.4) in the special case that the depth is in�nite,
and we have that

k tanh kH → |k|

for H →∞. We shall also for simplicity choose a pressure disturbance such that

f(x) = Qδ(x)

where δ(x) is the Dirac delta function previously discussed in section 2.7, and Q
is a constant. This implies that

f̃(k) = Q

such that f̃ can be placed outside the integral in (5.4). Then we can write the
integral in (5.4) as a sum of two integrals such that

η(x, t) =
Qeεt

2πρ
[I1 + I2] (5.5)

where

I1,2 =

∫ ∞
0

e±ikx

kU2 ∓ 2iεU − g
dk.

Index 1 and 2 correspond respectively to the upper and lower sign choices in the
integrand. Assuming that ε is a small quantity we have eliminated contributions
of order ε2. In the complex k-plane the integrals I1,2 have poles for

k1,2 =
g

U2
± 2ε

U
i

respectively.
In order to compute the integral I1 we must distinguish between the cases

x > 0 and x < 0. In the �rst case (x > 0) we integrate along the real k-axis to
k = ∞, then along a circular path at in�nity where the integrand → 0, to the
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imaginary axis, and then back to the origin along the latter axis (see �gure 5.3).
This closed curve contains the pole, and the integral along the curve is therefore
equal to 2πi times the residue. In the other case x < 0, we choose a corresponding
integration path in the fourth quadrant. This will therefore not contain the pole.
In �gure 5.4 the poles are indicated, and the two di�erent integration paths for
I1 are sketched. We compute the integral I2 in a similar manner, but with the
path in the �rst quadrant for x < 0 and in the fourth quadrant for x > 0.

Figure 5.4: Integration contour.

The result of these computations gives for ε→ 0

I1 + I2 = −4π

U2
sin ksx+

2

U2

∫ ∞
0

ke−kx

k2 + k2
s

dk x > 0

and

I1 + I2 =
2

U2

∫ ∞
0

kekx

k2 + k2
s

dk x < 0

where the wavenumber is ks = g/U2. We note that this wave has phase speed
c = U such that it is stationary with respect to the disturbance. If we go far
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from the disturbance the integrals in the expression for I1 +I2 will only give small
contributions, and we will have a stationary surface shape η = ηs(x) which is well
approximated by

ηs(x) = − 2Q

ρU2
sin ksx x > 0

ηs(x) ' 0 x < 0 (5.6)

Finally we note that the introduction of the quantity ε was needed to get a unique
solution for ε → 0. If we had set ε = 0 in (5.5), the poles would be on the inte-
gration path and then there would be ambiguity in the solution. This ambiguity
would imply that the stationary wave could be upstream or downstream of the
disturbance. There are also other ways to avoid the ambiguity, one approach is
to introduce a small arti�cial friction proportional to the velocity (Lamb 1932,
p. 242). The problem of ambiguity is discussed by Palm (1953) in a paper on
downstream waves in the atmosphere.

Exercises

1. Determine the stationary surface shape caused by a point pressure distur-
bance in the case that H is �nite. Discuss in particular the cases U <

√
gH

and U >
√
gH.

2. Determine similarly the stationary surface shape for capillary waves on deep
water.

5.3 Ship wake

Up to now we have studied the wave pattern resulting from disturbances with
in�nite extension in the transversal direction. If the disturbance has a �nite
transversal extension, there will be a two-dimensional wave pattern on the sur-
face. Such stationary wave patterns can be observed behind a ship moving with
steady velocity (�gure 5.5), or in connection with a twig touching the surface
of a brook �owing with constant velocity. Satellite images have shown similar
wave patterns in the atmosphere when wind blows past an isolated mountain. It
has recently been discovered that Beerenberg at Jan Mayen creates such wave
patterns (�gure 5.6).

The most characteristic property of the ship wake pattern is that the wave
motion only appears inside a certain sector radiating out from the ship. If the
ship moves on deep water, the angle of this sector is 39◦, independent of the speed
of the ship.

Suppose that a ship moves with constant velocity U along a straight course.
After a time t the ship has moved a distance Ut from position B to position A
(see �gure 5.7).
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Figure 5.5: Ship wake pattern in the Geiranger fjord. (Photo Røstad).
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Figure 5.6: Satellite image showing a �ship wake pattern� in the cloud cover over
Jan Mayen on the 1st of September 1976.
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Figure 5.7:

At each location along its course the ship creates waves that propagate out
in all directions and that interfere with each other. We seek a wave pattern that
appears stationary as observed from the ship. We therefore consider waves sent
out when the ship was at B along a ray BQ forming an angle θ with AB. The
condition for these waves to be stationary is that

c(k) = U cos θ (5.7)

where c(k) is the phase speed for a wave component with wavenumber k. The
energy propagates with the group velocity cg, and for gravity waves we have
cg ≤ c. Waves propagating from B along the ray BQ are therefore to be found
somewhere along the ray between the points B and Q. For gravity waves on deep
water we have cg = 1

2
c, thus these waves will have arrived at a point P half way

between Q and B. The stationary waves sent out from B will therefore lie on a
circle through P and B with radius 1

4
Ut.

We can construct similar circles characterizing the wave fronts of stationary
waves radiating from all points along AB. This is sketched in �gure 5.8.

The circles delimit a sector where the half opening angle θs is determined by

sin θs =
1
4
Ut

3
4
Ut

=
1

3
.

The stationary wave pattern behind a ship moving with constant velocity on
deep water therefore lies inside a sector with opening angle 2θs = 39◦. If the ship
moves on shallow water then

1

2
c < cg < c

and this causes the angle θs to achieve a value between 19.5◦ and 90◦ such that
θs → 90◦ when cg → c.



Ship wake 113

Figure 5.8:

The above simple explanation gives no information about the visual impres-
sion of the waves or their amplitudes. It turns out to be a formidable task to
determine this for a ship hull of arbitrary shape. In the following we limit the dis-
cussion to wake pattern generated by a point disturbance on the surface. In the
following we present di�erent possible methods, otherwise the reader is referred
to Newman (1977).

Method I

Let the disturbance (S) be at rest and let the water be moving with constant
velocity U in the x-direction (�gure 5.9). The wave pattern is described by a phase
function φ where a curve of constant phase, φ = constant, could for example be
a wave crest. The wavenumber vector is then

k = ∇φ. (5.8)

Figure 5.9:
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A wave component, which in still water would have propagated with phase
speed c0(k), will be swept by the current such that the phase speed relative to a
�xed frame becomes

c = c0(k) + U · k
k
. (5.9)

For stationary waves we have c = 0, and by setting (5.8) into (5.9) we get a
di�erential equation for φ. We will solve this di�erential equation by introducing
characteristic curves such that the wavenumber components kx = ∂φ

∂x
and ky = ∂φ

∂y

are constants along these curves. This method is described by Whitham (1974).
With c = 0 equation (5.9) becomes an equation for kx and ky which can be
written

F (kx, ky) = 0 (5.10)

where F denotes a function of the wavenumber components. This means that kx
can be expressed by a function of ky, and we write

kx = f(ky). (5.11)

From equation (5.8) it follows that ∇× k = 0 such that

∂ky
∂x
− ∂kx

∂y
= 0.

Substituting kx from (5.11) the last equation can be written

(
∂

∂x
− f ′(ky)

∂

∂y
)ky = 0.

This means that ky is constant on a characteristic curve y = y(x) such that

dy

dx
= −f ′(ky).

It follows from (5.11) that also kx is constant along this characteristic curve. We
integrate the last equation and choose the constant of integration such that the
characteristic curve goes through the origin

y = −f ′(ky)x. (5.12)

By di�erentiating (5.10) with respect to ky we �nd

∂F

∂ky
+
∂F

∂kx
f ′(ky) = 0

such that (5.12) can be written

y

x
=
∂F

∂ky
/
∂F

∂kx
. (5.13)



Ship wake 115

By means of (5.10) we can �nd kx and ky as functions of x and y. By integrating
∇φ along the characteristic curves where kx and ky are constants, we �nd that
the phase function is φ = kxx+kyy. Curves of constant phase are therefore given
by

φ = kxx+ kyy = −A (5.14)

where A is a constant. The choice of sign for A and for kx determines if the wave
pattern is upstream or downstream.

As an example of how this theory can be used, we shall determine the phase
lines for gravity waves on deep water. In this case we can write

F (kx, ky) = Ukx +
√
gk = 0.

We introduce the angle θ (see �gure 5.8) de�ned by

cos θ = −kx
k

sin θ = −ky
k

and limit −π
2
< θ < π

2
. Thereby we �nd that

k =
g

U2 cos2 θ

and
∂F

∂kx
= U(1− 1

2
cos2 θ),

∂F

∂ky
=
U

2
sin θ cos θ.

Inserting into (5.13) and (5.14) we �nd a parameter representation for the lines
of constant phase

x = A
U2

g
cos θ(1 + sin2 θ)

y = A
U2

g
cos2 θ(1 + sin θ) (5.15)

where A is a constant. If we choose A = 2πn where n = 1, 2, . . ., we �nd a
collection of phase lines behind the ship separated by a distance corresponding
to the local wavelength. Such a collection of phase lines are shown in �gure 5.10.
The phase lines form a cusp for values of θ such that y, for a given A, has a
maximum or a minimum. At these points we have sin2 θ = 1

3
, and therefore

|y
x
| = 1

4

√
2.

We have arctan(1
4

√
2) = 19.5◦, thus the wave pattern is inside a sector with

opening angle 39◦.
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Figure 5.10:

The wave pattern consists of two wave systems. One has crests oriented in the
transversal direction of the velocity of the ship. These are known as transversal
waves.1 The wavelength of the transversal waves behind the ship is λ = 2πU2/g.
The crests of the other wave system forms a fan that spreads out from the ship.
These waves are called diverging waves.2

The method we have employed to compute the phase lines for the ship wake
pattern is general and can be applied to other wave types. Gjevik and Marthinsen
(1978) employed the same method to compute the phase lines for downstream
waves in the atmosphere. They found good agreement comparing the computed
wave pattern with satellite images (�gure 5.6).

For a point disturbance it is also possible by relatively simple methods to
determine the amplitude of the waves. Such computations for ship wakes can be
found in Lamb (1932) and Newman (1977).

Method II

A point disturbance moving at the surface with velocity −U = −Ui generates a
stationary and slowly varying wave train. This can be treated by ray theory as
described in chapter 3. In a frame moving with the liquid we have an isotropic
dispersion relation with corresponding phase speed c = c0(k) where k = |k|. We
change coordinate system such that the disturbance is at rest. We then get the

1Norwegian: tverrbølger, hekkbølger
2Norwegian: divergerende bølger, baugbølger
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frequency
ω = c0(k)k + U · k ≡ W (kx, ky) (5.16)

where kx and ky are components of the wavenumber vector. W de�ned as above
corresponds to F employed earlier. We note that (5.16) gives anisotropic disper-
sion due to the last term which is often denoted Doppler shift. The wave pattern
being stationary means that in this coordinate system ω = 0. The dispersion
relation (5.16) immediately gives an equation for kx and ky

W (kx, ky) = 0. (5.17)

The group velocity is now given by

cg =
∂W

∂kx
i +

∂W

∂ky
j. (5.18)

As the medium is uniform, the ray equations give

dk

dt
= 0,

dr

dt
= cg (5.19)

where
d

dt
≡ ∂

∂t
+ cg · ∇. (5.20)

It immediately follows that k, and therefore cg, are constants along the charac-
teristic curves, such that these become straight lines. Only those characteristic
curves that go through the disturbance can carry energy. Without loss of gener-
ality we place the disturbance at the origin. Each ratio y/x therefore corresponds
to a characteristic curve and everywhere in the medium we have the equation

y

x
=

∂W
∂ky

∂W
∂kx

(5.21)

which together with (5.17) implicitly de�nes kx and ky as functions of x and
y. In order to �nd explicit expressions we may proceed in di�erent ways. One
possibility is to employ (5.17) to express the components of the wavenumber
vector in terms of c0. Substitution into (5.21) gives a biquadratic equation for
c0. Another possibility is to introduce the angle θ between k and the negative x
direction. We can then set

kx = −k cos θ, ky = k sin θ. (5.22)

From (5.17) we immediately have

k =
g

U2 cos2 θ
. (5.23)
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We notice that this is a rewriting of U = c0/ cos θ. Substitution into (5.21)
followed by elimination of k gives

y

x
=

cos θ sin θ

1 + sin2 θ
≡ f(θ). (5.24)

The right hand side, f(θ), has a maximum for sin θ =
√

1/3, i.e. θ = θc ≈ 35.3◦.

This corresponds to y/x =
√

2/4 which is identical to the outer limit of the
wave pattern found earlier. For y/x <

√
2/4 we �nd two solutions for θ, one

smaller than and one greater than θc. These two branches de�ne two di�erent
wave �elds. The �rst de�nes the so-called transversal waves (hekkbølger), while
the second gives the diverging waves (baugbølger). Equation (5.24) can easily be
written as a biquadratic equation for sin θ,(

1 +
(y
x

)2
)

sin4 θ +

(
2
(y
x

)2

− 1

)
sin2 θ +

(y
x

)2

= 0, (5.25)

which has four solutions for (y/x)2 < 1/8, corresponding to the two wave �elds
de�ned for positive and negative y.

For the phase function we can set up the integral

χ(r) = χ0 +

∫
C(r)

k · dr (5.26)

where χ0 is the phase at the origin and C(r) denotes an arbitrary curve starting
at the origin and ending in r. In this case we get a trivial computation if we
integrate along the characteristic curves

χ(r) = χ0 + kxx+ kyy (5.27)

where kx and ky are known functions of x and y. Each value of χ de�nes a phase
line. We express the wavenumbers by means of θ also in (5.27). The equations
(5.21) and (5.27) can then be solved with respect to x and y and we �nd a
parameter representation of the phase lines (χ = −A = constant)

x =
(A+ χ0)U2

g
cos θ(1 + sin2 θ), (5.28)

y =
(A+ χ0)U2

g
cos2 θ sin θ. (5.29)

For |θ| < θc we get transversal waves, while for |θ| > θc we get diverging waves.
As these two �elds are independent, they do not need to have the same value
for χ0. The ray theory breaks down at the outer edge of the wave pattern, for
θ ≈ ±θc.
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Figure 5.11: Phase diagram for the two wave systems behind a point disturbance
on in�nite depth. We have sketched the phase lines corresponding to χ = −2nπ,
n = 1, 2, . . . , 5.

Ray theory does not tell us how to determine the phase χ0. For a point
disturbance it can be shown that, e.g. using the method of stationary phase after
Fourier transform, that χ0 = 1

4
π,−1

4
π for respectively transversal and diverging

waves (see e.g. Newman (1977)). These values are used in �gure 5.11. In �gure
5.3 we have also sketched the geometrical location reached by the group velocity
from a chosen point. The �gure also shows the �energy transport paths� up to
the crossing points with the phase lines.

Exercises

1. Determine the phase lines for stationary capillary waves on deep water
generated by a point disturbance moving with constant velocity.

2. Determine the phase lines for gravity waves on water of �nite depth gen-
erated by a point disturbance moving with constant velocity. Sketch the
phase lines in the two cases U <

√
gH and U >

√
gH.

5.4 Wave resistance

When a disturbance moves along the surface such that a stationary wave pattern
arises, then the wave �eld will be constantly added energy in such a way that the
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Figure 5.12: Phase diagram for Kelvin ship wake. The dashed half-circle denotes
the geometric location where the group velocity brings us from the location where
the half-circle crosses the x-axis toward the right. This means that the energy
contributed by the disturbance when it passes this point now is along the dashed
circle (and its mirror image under the y-axis). The arrows from the point to
the wave crest intersection with the circle then corresponds to wave paths in the
coordinate system of the moving disturbance. We note that the wave paths are
at right angles to the crests.
In the lower half plane two characteristic curves have been sketched. Along the
upper (scaled) wavenumber vectors corresponding to transversal waves is indi-
cated, while along the lower we have sketched wavenumber vectors for diverging
waves.
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Figure 5.13:

size of the region a�ected by the wave motion increases. This energy must be
transferred by the work done by the disturbance, and this has the consequence
that one has to exert a force R to move the disturbance with constant velocity.
This force is denoted wave resistance. We shall �nd an expression for this force
for plane (two-dimensional) wave motion behind a disturbance that moves with
constant velocity U . The stationary wave pattern has amplitude a, and according
to (2.34) the average wave energy for gravity waves per unit of length along the
surface is

E =
1

2
ρga2

where ρ is the water density. In front of and behind the disturbance we construct
vertical control planes, respectively I and II (�gure 5.13). We then look at the
increase in energy within the liquid volume delimited by the planes I and II
within a time interval ∆t. The work done by the propulsion force R is RU∆t.
The increase in wave energy within the liquid volume due to the wave train
becoming longer, is Ec∆t. There is also a �ux of wave energy cgE∆t into the
volume at the plane II. The energy balance for the liquid volume within the
control planes is therefore

RU∆t+ cgE∆t = Ec∆t.

Thereby we �nd that the wave resistance on the disturbance can be written

R =
c− cg
c

E.

For gravity waves on deep water cg = 1
2
c and

R =
1

4
ρga2.
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If one uses the computed amplitude for a stationary wave behind a point pressure
disturbance (section 5.2), we �nd that in this case the wave resistance decreases
with increasing velocity.

Methods for computing wave resistance when one accounts for the three-
dimensional structure of the ship wake pattern are described by Newman (1977).

5.5 Surface waves modi�ed by variable currents

We shall here brie�y show how surface waves are modi�ed when they propagate
into a region with gradual changes in current velocity in the horizontal direction.
This phenomenon can be observed in Nature where bathymetry or river estuaries
lead to horizontal variations of current velocity. Figure 5.14 suggest part of this
situation where a wave is propagating along the x-direction on a current with
velocity U(x) which is a function of x.

Figure 5.14:

Notice that the �gure does not suggest the full story, since a variable current
can produce up-welling or down-welling which can cause the surface displacement
ζ due to the current to not be horizontal. Our goal is to describe the surface
displacement η due to a wave disturbance relative to the background surface
displacement due to the current. If we assume the current to be stationary, we
can recall the Bernoulli equation for a stationary current

p

ρ
+ gz +

1

2
U2 = constant along a streamline

Choosing the streamline to be the free surface in the absence of waves, but in the
presence of the current, then the surface elevation z = ζ(x) is given by

ζ = C − U2

2g

where C is a constant.
We assume the current is slowly varying such that

| λ
U

dU

dx
| � 1
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where λ is the wavelength. We can then apply ray theory and WKB theory to
compute the details of the wave evolution.

Under quite general conditions it is found that the dispersion relation becomes

ω = σ + k ·U

where σ is the so-called intrinsic frequency, i.e. the angular frequency we would
have had in the absence of the current. On the left-hand side we have the physical
frequency ω. The last term is called the Doppler shift. Taking the analysis to the
next level in the WKB theory it can be shown that the wave action de�ned with
the intrinsic frequency is conserved

∂

∂t

(
E

σ

)
+∇ ·

(
(cg + U)

E

σ

)
= 0

where cg = ∂σ/∂k is the group velocity due to the intrinsic frequency.
Weak frequency modulation of long swell due to time-varying tides has been

observed in Nature, see �gure 5.15.

Figure 5.15: Modulations of the period of swell due to tidal currents. Three
episodes observed at the coast of Cornwall, England. (After Barber 1949)

Exercises

1. Determine the frequency modulation for gravity waves that propagate against
a uniform current U(t) = U0 sin Ωt. The period 2π/Ω is assumed to be much
longer than the average period T0 of the waves. Find a simple expression
for the period when the current velocity U0 is much smaller than the phase
speed c0 of the waves in quiescent water. Employ the data in �gure 5.15 to
determine the strength of the tidal currents.
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2. For waves on a slowly varying background current, U , we can assume that
the dispersion relation is of the form

ω = σ + k ·U

where σ is the frequency we would have had without current, the so-called
intrinsic frequency. The last term is called the Doppler shift.

In this problem we look at long, linear surface waves on shallow water and
assume the background current is given by U ≡ U(x)j where j is a unit
vector in the y-direction. Further we assume U has a bell shape

U = −Ume−
x2

l2

In such a current we can have trapped waves.

a Give a physical explanation of the trapping mechanism.

b Suppose that we have a given wavenumber in the y-direction. Find
limitations on possible ω for trapped modes by ray theory.

c Set up the full linear eigenvalue problem determining the eigenmodes.

3. From point (c) in the previous problem we have that the wave motion in a
unidirectional background current is governed by the equation(

η̂x
P

)
x

+ (1−
k2
y

P
)η̂ = 0; P ≡ (ω − Uky)2/(gh)

where the background current U varies with x, and where η̂ is related to
the surface according to

η(x, y, t) = Re
(
η̂(x)eı(kyy−ωt)

)
Use the WKBJ method to �nd approximations to η̂. Where are they valid?
Does the result correspond to the conservation of energy of the wave mo-
tion?



Chapter 6

INTERNAL GRAVITY WAVES

Internal gravity waves can appear in the atmosphere, the ocean and in lakes,
and are due to the force of buoyancy due to the vertical density strati�cation.
Even though the density strati�cation can be due to di�erent reasons, such as
variations of temperature, salinity or concentration of dissolved substances, many
of the properties of the internal waves are similar. The primary reason for the
internal waves is the force of buoyancy, but the wave motion will in many cases
be modi�ed for other reasons, primarily compressibility and di�usion processes.
Long internal waves in Nature will often be substantially a�ected by the Coriolis
force. For relatively short internal waves in water or the ocean the liquid can be
considered incompressible, and the wave motion can be practically una�ected by
variations of density due to slow di�usion of heat or salt.

There is in particular one parameter which has fundamental importance for
the description of internal waves. This is the buoyancy frequency or the Väisälä�
Brunt frequency. We shall start by de�ning this quantity and give it a simple
physical interpretation. At equilibrium the density is ρ0 constant along horizontal
surfaces, and ρ0 is a function of the vertical coordinate z which may represent
the depth.

A liquid particle which is displaced in the vertical direction a distance ∆z from
equilibrium, see �gure 6.1, will be a�ected by a force of buoyancy per volume

−g[ρ0(z + ∆z)− ρ0(z)] ' −gdρ0

dz
∆z

which tries to move the particle back to the equilibrium position. The mass per
volume times the acceleration is

ρ0
d2

dt2
(∆z).

If we neglect the pressure force, the motion of the particle can be written

d2

dt2
(∆z) = −N2∆z (6.1)
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Figure 6.1:

where the quantity

N = (
g

ρ0

dρ0

dz
)
1
2 (6.2)

is the buoyancy frequency. Equation (6.1) says that the liquid particle performs
vertical oscillations with frequency N . Otherwise this simple model, neglect-
ing pressure forces, does not give information about the properties of the wave
motion.

6.1 Internal waves in incompressible liquids where

di�usion can be neglected. Dispersion and

particle motion.

The wave motion leads to velocity perturbations that can be expressed by the
vector v with components u, v and w respectively along the x-, y- and z-axes.
The former two axes are in the horizontal plane, while the z-axis denotes the
depth as mentioned above. The motion causes the density to be modi�ed in
comparison to its value at equilibrium. We denote the change in density by ρ,
and the total density at a particular location by ρ0 + ρ. We assume the changes
of density are only due to motion of �uid particles associated with the wave
motion, and we thus neglect changes of density due to di�usion. We furthermore
assume that the wave amplitude is su�ciently small that we can linearize the
equations describing the motion. Since ρ depends on the wave amplitude, the
linearization also implies that we omit products between for instance ρ and v.
Under these conditions the equation of motion, the equation of state and the
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continuity equation can be written

∂v

∂t
= − 1

ρ0

∇p+
ρ

ρ0

g (6.3)

∂ρ

∂t
= −wdρ0

dz
(6.4)

∇ · v = 0 (6.5)

where p is the change of density due to the wave motion, and the vector g oriented
in the direction of the z-axis denotes the acceleration of gravity.

Between equations (6.3)�(6.5) we can eliminate p, u, v and ρ such that we are
left with an equation for the vertical velocity

∂2

∂t2
(∇2w) +

1

ρ0

dρ0

dz

∂3w

∂t2∂z
= −N2∇2

hw (6.6)

where

∇2
h ≡

∂2

∂x2
+

∂2

∂y2
.

In order to derive (6.6) we can proceed as follows: The vector equation (6.3) gives
three equations for the velocity components

∂u

∂t
= − 1

ρ0

∂p

∂x
∂v

∂t
= − 1

ρ0

∂p

∂y
∂w

∂t
= − 1

ρ0

∂p

∂z
+

ρ

ρ0

g

By di�erentiating the �rst two, respectively, with respect to x and y, and add,
we get

∂

∂t
(
∂u

∂x
+
∂v

∂y
) = − 1

ρ0

∇2
hp.

Due to (6.5) this can be written

∂

∂t
(
∂w

∂z
) =

1

ρ0

∇2
hp.

Di�erentiating with respect to z gives

∂

∂t
(
∂2w

∂z2
) = − 1

ρ0

∇2
hp(

1

ρ0

dρ0

dz
) +

1

ρ0

∇2
h

∂p

∂z
.

If we now apply the operator ∇2
h on the last of the three component equations, we

can eliminate the pressure from the equation above such that we get an equation
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where only w and ρ appear. Using (6.4) we can also eliminate ρ. Thus we arrive
at equation (6.6).

We expect that the most important e�ect of the density strati�cation is asso-
ciated with the buoyancy which is now represented by the term on the right-hand
side of equation (6.6). When the density modi�cations from equilibrium are small,
the second term on the left-hand side in the same equation can be omitted. This
corresponds to keeping the dynamic e�ect of the density strati�cation, but omit-
ting the kinematic e�ect. This is known as the Boussinesq approximation, and
it is in many cases a good approximation. The validity is discussed later in this
section. In light of this we can therefore write (6.6)

∂2

∂t2
(∇2w) = −N2∇2

hw. (6.7)

For constant N we seek wave solutions of the form

w = A sin(k · x− ωt) (6.8)

where A is a constant. The corresponding velocity components in the horizontal
direction are

u = − kxkz
k2
x + k2

y

A sin(k · x− ωt)

and

v = − kykz
k2
x + k2

y

A sin(k · x− ωt)

where kx, ky and kz denote respectively the x-, y- and z-components of the
wavenumber vector.

Setting the expression in (6.8) into equation (6.7) we �nd the dispersion rela-
tion

ω2 = N2
k2
x + k2

y

k2
(6.9)

This shows us that internal gravity waves of the form (6.8) have an angular
frequency

ω ≤ N

and that the buoyancy frequency is an upper limit for the feasible frequencies.
Setting ω = N causes the wave motion to be independent of z and that the vertical
component of the wavenumber vector to vanish kz = 0. The liquid particles move
in this case in vertical planes (u = v = 0), and the oscillation period is according
to what we found at the beginning of this chapter. For given values of ω and N
the wavenumber vector has an angle

θ = arcsin(
ω

N
)
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with the vertical. When the motion is periodic in x, y and z, it follows from the
continuity equation (6.5) that

k · v = 0

This shows that the particle motion for the internal waves is oriented normally to
the wavenumber vector. The particle motion therefore happens in planes parallel
to the phase planes, see �gure 6.2.

Figure 6.2:

In the dispersion relation (6.9) there is reference to the magnitude and the
direction of the wavenumber vector. This means that we have anisotropic disper-
sion and that the propagation velocity depends on the direction. For anisotropic
dispersion the group velocity is not along the direction of the wavenumber vector,
and for internal gravity waves describe by the dispersion relation (6.9), the group
velocity is oriented along the phase planes. The group velocity has components

cg = (
∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz
)

respectively along the three coordinate directions x, y and z. With the relation
(6.9) we �nd

cg =
c

k
{kx cot2 θ, ky cot2 θ,−kz} (6.10)

We �nd

cg · k = 0.
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This shows that the group velocity is oriented normally to the wavenumber vector.
From (6.10) we see that the horizontal components of cg and k have the same
direction and that the vertical components are oriented in opposite directions.
This means that the vertical energy transport due to internal gravity waves is
oriented in the opposite direction of the vertical displacement of the phase planes.
In �gure 6.2 corresponding directions for wavenumber vector, group velocity and
particle motion are indicated.

We are now able to describe under which conditions we can omit the second
term on the left-hand side of equation 6.6. By means of 6.8 we �nd that the ratio
between the second and the �rst terms in the equation is

| 1
ρ0

dρ0

dz

kz
k2
|

This shows that the second term can be omitted in comparison to the �rst when
the relative variation of density over a distance corresponding to kz/k

2 is su�-
ciently small.

6.2 Internal waves associated with the strati�ca-

tion layer

In the ocean and in lakes one often �nd situations with strati�cation of water in
a surface layer and a bottom layer where the density is approximately uniform
in each of the layers. In a thin layer between the layers the density changes
relatively fast in the vertical direction. This layer is called the pycnocline,1 and
arises through mixing of the di�erent waters from the surface and the bottom
layers. The variation of density in the pycnocline is due to di�erences in salinity
or temperature. In fjords there is often a pycnocline in situations with large
in�ux of fresh water at the surface, and in lakes it appears due to heating of the
surface layer.

Figure 6.3 shows a characteristic temperature distribution in the upper part
of a deep lake during the summer season. The temperature shown in the �gure is
the mean value for a given range of time. We see that the surface layer is 15�20
m thick and that the temperature is about 14◦. The thermocline extends from
20 to 30 meter depth, and the water under the thermocline shows little variation
of temperature with the depth. Based on these temperature observations one
can compute the density ρ0, the buoyancy frequency N and the period 2π/N .
The latter two quantities are also shown as function of depth in �gure 6.3. In

1The English word cline corresponds to the Norwegian word sprangsjikt, meaning that some
property changes rapidly across a thin layer. This can be a pycnocline if we refer to density, a
halocline if we refer to salinity, a thermocline if we refer to temperature, or a chemocline if we
refer to some chemical substance.



Internal waves associated with the strati�cation layer... 131

the surface layer and the bottom layer the buoyancy frequency is small, while
the pycnocline is associated with a large value for N . Under such conditions
a strong wind in the longitudinal direction of the lake can transport the warm
surface layer in the direction of the wind such that the pycnocline is lifted up at
the up-wind end and lowered at the down-wind end. When the wind calms, this
displacement of the pycnocline can propagate as internal waves. Observations of
such waves in Mjøsa are described by Mørk, Gjevik and Holte (1980). Similar
phenomena are known from many other lakes, including Loch Ness in Scotland
(Thorpe et al. 1972).

Figure 6.3: Measurement from Hamarbukta in Mjøsa 4�9 September 1974.

In fjords the variations in tidal currents over fjord thresholds can give rise to
internal waves. This was observed in measurements of the Herdlefjord west of
Bergen by Fjeldstad already during the 30's. The observations were subsequently
published in Fjeldstad (1964). Internal tidal waves have been observed at several
locations and under di�erent circumstances. See for instance the survey paper
by Farmer and Freeland (1983). Stigebrand (1979) found that such waves are
generated at the Drøbak threshold in the Oslo fjord.

In the atmosphere one can sometimes �nd weather situations with tempera-
ture inversions or isothermal layers, while the layers over and under are in neutral
equilibrium. The buoyancy frequency as a function of the height over the ground
changes under such conditions in a similar way as the pycnocline in the ocean.
This can give rise to internal gravity waves, and the ship wake pattern near Jan
Mayen (�gure 5.6) typically arises in such situations. In the atmosphere we also
have to take into account the compressibility and variation of winds with the
height. These problems are treated by Miles (1969), Gill (1983) and in GARP
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publication series (1980).
We shall here show some characteristic properties for internal waves associated

with the pycnocline. We suppose N is a function of z and seek solutions of (6.7)
describing plane waves propagating horizontally

w(x, z, t) = ŵ(z) sin(kx− ωt) (6.11)

and we �nd
d2ŵ

dz2
= −k2(

N2

ω2
− 1)ŵ. (6.12)

Solutions of this equation for di�erent models of the pycnocline are described by
Krauss (1966) and Roberts (1975). The equation is of the same form as (4.5),
and for large k the WKB method can be employed to �nd approximate solutions.
For ω < N the solution of (6.12) is similar to harmonic oscillations, while for
ω > N the solution will correspond to exponential attenuation (or increase).
In the pycnocline we can therefore have wave motion with vertical velocity as
indicated in �gure 6.4.

Figure 6.4:

The higher modes (mode 3, 4 etc.) are characterized by multiple oscillations
within the region where ω < N . For a certain value of ω there is a certain
value of the wavenumber (eigenvalue) such that the lowest mode has the smallest
wavenumber and the largest wavelength. The wavelength decreases gradually for
the other modes. Waves in mode 1 have the largest propagation velocity in the
horizontal direction. To modes 1 and 2 there there is a corresponding deformation
of the pycnocline as suggested in �gure (6.5).

The largest vertical velocities in the wave motion can be found near the py-
cnocline, and the vertical velocity is negligible at the surface. The displacement
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Figure 6.5:

of the surface will therefore be negligible even though the displacement of the
pycnocline can be several meters.

In cases of a shallow pycnocline the internal waves can provoke relatively
strong current variations on the surface. Such currents can modify short sur-
face waves, with the consequence that under light winds the small waves have a
tendency to gather in bands suggesting the internal waves below. These bands
can sometimes be visible for the bare eye. Since the the re�ection of radar waves
from the sea surface strongly depends on the roughness of the surface, these bands
are especially easy to see by radar. An example of such a radar image showing
internal waves can be seen in �gure (6.6).

Exercises

1. In cases with strong pycnocline of small vertical extent, the layered structure
can be approximated by a two-layer model with constant density ρ0 −∆ρ0

and ρ0 respectively in the upper and lower layer. The thickness of the
upper and lower layers are denoted by h and H, respectively. Determine
the dispersion relation and the velocity �eld for plane waves in this model,
and show that the motion has two modes: a surface wave mode and an
internal mode associated with the internal interface. Show that for long
waves the phase speed for the surface mode and the internal mode are,
respectively,

c =
√
g(H + h) and c =

√
g∗Hh

H + h
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Figure 6.6: Radar echo from the sea surface in an area 10�15 km from shore south-
east of Ryvingen between Grimstad and Arendal. The picture was taken on the
7th of September 1983 by a plane used for surveillance of oil pollution. The band
structure suggests internal waves with wavelengths from 0.5 to 1 km. Further
discussion is found in a paper by Gjevik and Høst (1984). (Photo Fjellanger
Widerøe A/S).

where

g∗ =
∆ρ

ρ0

g

2. Determine the vertical velocity, and �nd the dispersion relation for internal
gravity waves in a horizontal liquid layer with uniform depthH. The density
at equilibrium increases exponentially with the depth (z)

ρ0(z) = ρse
−βz

where ρs is the density at the surface. We suppose that the vertical velocity
is zero both at the surface and at the bottom.

3. Long waves on a pycnocline

We have a frictionless liquid with two immiscible layers. We suppose that
the pressure in the liquid is hydrostatic, with zero pressure at the free
surface, and that the motion happens in a vertical plane. At t = 0 the
horizontal component of the velocity is independent of the vertical coordi-
nate. We let h1 and h2 be the thicknesses of the upper and lower layers
at equilibrium. η1 and η2 are the vertical displacements of the free surface
and the internal interface, while u1 and u2 are the horizontal components
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of the velocities in the upper and lower layers. The acceleration of gravity
is g, and the relative density di�erence between the layers is ε = ρ2−ρ1

ρ2
. The

motion will then be governed by the following equations:

∂u1

∂t
+ u1

∂u1

∂x
= −g∂η1

∂x
,

∂u2

∂t
+ u2

∂u2

∂x
= −g(1− ε)∂η1

∂x
− gε∂η2

∂x
,

∂

∂t
(η1 − η2) = − ∂

∂x
((h1 + η1 − η2)u1) ,

∂η2

∂t
= − ∂

∂x
((h2 + η2)u2) .

(a) Derive these equations. What is the implication of the assumption of
hydrostatic pressure?

In the rest of this problem we assume the bottom is �at and the displace-
ments from equilibrium are small.

(b) Find the harmonic wave solutions of the set of equations. Show that
they fall in two classes, and discuss the properties of these two modes.

(c) The set of equations have solutions that are pulses that propagate
with permanent shape. Show that we have two modes of these pulses,
corresponding to the modes in (b). Show by means of simple sketches
how the displacement of the surface and the internal interface depend
on the parameters of the problem. Illustrate graphically how the wave
velocity depends on these parameters.
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Chapter 7

NONLINEAR WAVES

Until now we have focused on linear wave solutions, which are found by assuming
that the amplitude, a, is small. Previously we have found that for periodic deep
water waves the nonlinear terms are small provided the wave steepness, ak, is
small. For long waves in shallow water, on the other hand, the requirement for
removing nonlinear terms is a/H � 1, where H is a typical equilibrium water
depth. If the nonlinear terms are taken into account some features are changed
and new features added in relation to the linear solutions.

1. The wave celerity will depend on the amplitude.

2. We may have steepening and, eventually, breaking of waves.

3. Even periodic waves may produce a net volume transport in the direction
of wave advance.

4. The principle of super-positioning of waves is no longer valid. Di�erent
harmonic components may interact and exchange energy.

Nonlinear wave theory is a large �eld which is still evolving. Below we will
study a few nonlinear wave solutions and e�ects.

7.1 Nonlinear waves in shallow water. Riemann's

solutions. Wave breaking.

If the Ursell parameter is large, a
H

( λ
H

)2 � 10, say, nonlinear e�ects will domi-
nate over dispersion and we may employ the nonlinear shallow water equations
(NLSW). We will transform the NLSW equations to characteristic form (ex-
plained below) and to this end we introduce the new dependent variable

c2 = g(H + η). (7.1)

137
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Figure 7.1:

Replacing η in (2.90) and (2.91) by c, and assuming constant depth we obtain

∂u

∂t
+ u

∂u

∂x
= −2c

∂c

∂x
,

∂

∂t
(2c) + c

∂u

∂x
+ u

∂

∂x
(2c) = 0.

Adding and subtracting these equations we �nd

[
∂

∂t
+ (c+ u)

∂

∂x
](2c+ u) = 0 (7.2)

[
∂

∂t
− (c− u)

∂

∂x
](2c− u) = 0 (7.3)

These equations are expressed in terms of temporal di�erentiation along curves
in the (x, t) plane, as explained below. This is an example of Riemann's method.
Riemann (1892) applied a similar transformation to the nonlinear acoustic equa-
tions, which are of the same form as (7.2) and (7.3).

Equation (7.2) expresses that

P ≡ 2c+ u = constant (7.4)

along characteristics, C+, in the (x,t) plane de�ned according to

C+ :
dx

dt
= c+ u. (7.5)

Correspondingly, (7.3) implies that

Q ≡ 2c− u = constant (7.6)
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along characteristics de�ned according to

C− :
dx

dt
= −(c− u) (7.7)

The quantities P and Q are generally denoted as Riemann invariants.
Any point in the (x, t) plane corresponds to an intersection of one C+ and

one C− characteristic. If u and η were given as initial conditions and we knew
where the two characteristics passing through a point (xs, ts) crossed t = 0 we
would know the values of P and Q along C+ and C−, respectively, and hence
the values of P and Q at (xs, ts). Then u and η at the point are readily found
from P and Q. Unfortunately, before the characteristics reach (xs, ts) their path
is in�uenced by all other characteristics they encounter for t < ts. Hence, the
intersections with the x-axis are not easy to �nd.

The characteristics C+ and C− describe wave propagation in positive and
negative x-direction, respectively. Thus, for a unidirectional wave information
of deviation from equilibrium is conveyed along only one type of characteristics.
In this case the description simpli�es substantially, as described in the follow-
ing. We assume that at t = 0 a disturbance is localized to a con�ned region

Figure 7.2:

AB. In this case the characteristics passing through A and B can be depicted
as in �gure 7.2. Naturally, there are an in�nite number of other characteristics
which are not depicted. At tp the C− characteristic from B intersects the C+

characteristic from A. Hence, for t > tp the waves are split into two unidirec-
tional waves propagating in the positive and negative x-direction, respectively.
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We now look closer at the wave propagating in the positive direction. Informa-
tion from the initial condition is then transported along the C+ characteristics
which are between those originating from A and B. For t > tp these will meet
C− characteristics originating from points at the x-axis with initial equilibrium.
Therefore, these C− characteristics all carry the equilibrium value of Q, namely
Q0 = 2c0 = 2

√
gH. As a consequence Q equals Q0 everywhere in the region of

right-going waves. That yields a relation between u and c

Q = Q0 = 2c0 ⇒ c = c0 +
1

2
u,

that may be inserted into P and the equation for the C+ characteristics

C+ :
dx

dt
= c0 +

3

2
u, P = 2c0 + u = constant.,

Which means that u is constant along C+ which in turn implies that the charac-
teristic is a straight line as indicated in �gure 7.2. Moreover, since Q = Q0 it also
follows that c and η are constant along C+. Using Q = Q0, the characteristic
speed may be rewritten

dx

dt
≡ cf = c0 +

3

2
u = 3c− 2c0 = c0[3

√
1 + η/H − 2]. (7.8)

If η/H � 1 we then have

cf ' c0[1 +
3

2

η

H
]. (7.9)

Equations (7.8) and (7.9) show that the wave propagation speed increases with
η/H. When η/H > 0 the wave peak will propagate faster than the rest. As a
consequence the wave will steepen at the front as illustrated in �gure 7.3. At
a time, tb, the tangent at the wave front will be vertical. This can be taken
as an indication of wave breaking. For t > tb the front will be multi-valued
corresponding to intersection of two, or more, C+ characteristics. Naturally, the
solution is then invalid. We should also be aware that a very steep front, prior
to breaking, may challenge the long wave assumption. In fact, if the amplitude
is small, ηmax/H < 0.35, say, dispersion will check the steepening and an undular
bore will evolve. In section 7.3 we will investigate the waveform that will appear
for larger amplitudes, namely a hydraulic shock.

7.2 Korteweg-de Vries equation. Nonlinear waves

with permanent form. Solitons.

Important properties of long waves in shallow water can be summarized by three
simple model equations. We choose to look at waves propagating in the x-axis
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Figure 7.3:

direction. Then the equation

∂η

∂t
+ c0

∂η

∂x
= 0 (7.10)

where c0 =
√
gH, describes linear non-dispersive waves. The equation has the

solution η = f(x − c0t) where f is an arbitrary function. The wave moves with
constant velocity and unchanging form. The equation

∂η

∂t
+ c0

∂η

∂x
+
c0H

2

6

∂3η

∂x3
= 0 (7.11)

describes in the �rst approximation, linear dispersive waves. The equation has

the solution η = Aeik(x−ct) where c = c0(1 − (kH)2

6
). This is in agreement with

what we have found in section 2.1 for long waves in shallow water after having
corrected for the deviation from the hydrostatic pressure distribution. Further,
the equation

∂η

∂t
+ c0(1 +

3

2

η

H
)
∂η

∂x
= 0 (7.12)

will in the �rst approximation describe nonlinear waves propagating with a veloc-
ity which depends on amplitude in correspondence with what we have found in
section 7.1. Equation (7.12) expresses therefore that the wave form changes and
develops a steep front if η/H > 0. By combining equations (7.11) and (7.12), in
the �rst approximation, one gets an equation that incorporates both dispersion
and non-linear e�ects. This is the Korteweg-de Vries equation (KdV equation).

∂η

∂t
+ c0(1 +

3

2

η

H
)
∂η

∂x
+
c0H

2

6

∂3η

∂x3
= 0. (7.13)
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In section 2.11.2 the KdV equation was derived by a formal expansion in the
parameters a/H and (H/λ)2. A di�erential equation of the KdV type will be
valid for all wave types where nonlinearity and dispersion are of the special form
described here. The KdV equation for waves in shallow water was �rst derived
by Korteweg and de Vries (1985). It has been also shown that the equations can
emerge from long waves in other media such as plasma in a magnetic �eld.

In section 2.10 we found that the dispersion term which comes from deviations
from the hydrostatic pressure distribution is of the same order of magnitude as
the dominant nonlinear term if the Ursell parameter a

H
( λ
H

)2 is around 10. In this
case, we can expect that nonlinearity and dispersion may balance each other such
that nonlinear waves can propagate with constant velocity and permanent form.
To investigate this we seek a solution of the KdV equation of the form

η = Hζ(ψ)

where ζ is a function of ψ = (x−Ut)/H. Setting into the KdV equation we �nd

ζ ′′′ + [6(1− U

c0

) + 9ζ]ζ ′ = 0

where the mark ′ denotes the di�erentiation with respect to ψ. By integrating

ζ ′′ + 6(1− U

c0

)ζ +
9

2
ζ2 = constant

we shall now assume that ζ, ζ ′ and ζ ′′ → 0 for ψ → ∞. The constant of
integration can be set to zero, and by multiplying the last equation with ζ ′ and
integrating we �nd

ζ ′
2

= 3ζ2(α− ζ) (7.14)

where

α = 2(
U

c0

− 1) (7.15)

Equation (7.14) has the solution

ζ = α sech2[(
3α

4
)
1
2ψ] (7.16)

where sechz = 1/ cosh z. The surface displacement corresponding to (7.16) is
sketched in �gure 7.4 for α = 0.5. The �gure shows a symmetric wave form
established by a single wave crest. The wave has the amplitude αH, and moves
with velocity

U = c0(1 +
α

2
).

Because of this, waves of this form are called solitary waves. They can be
generated in a wave channel, propagate with permanent form for long distances,
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Figure 7.4:

and re�ect from the end wall in the channel. The KdV equation also has a
periodic wave solution propagating with permanent form and constant velocity.
These waves are called cnoidal waves. They consist of steep wave crests separated
by extended wave troughs.

The solitary wave and the cnoidal wave have been known for a long time,
both as solutions of the KdV equation and from experiments. Recently there
have been a series of discoveries that have renewed interest in these wave phe-
nomena. Through theoretical work, the KdV equation has been successfully
transformed into a form which makes it possible to discuss other solutions of the
equation. One has, among another discoveries, that two solitary waves propa-
gating toward each other will collide and then reappear as solitary waves moving
from each other. There are other important wave phenomena described by the
KdV equation within quantum mechanics, optics, and in crystal lattices. Also
for equations di�erent from the KdV equation, solitary waves similar to the one
described above have been found. The common designation for such waves is
soliton.

7.2.1 More about solitons

Simple and idealized wave solutions play an important role in wave theory. This is
partly because these are building blocks for more complex wave patterns. Another
reason is that the study of special solutions can give general insight about the
behavior of waves and the physical mechanisms involved.

In the literature wave of permanent form are important. As the name suggests
these are waves propagating with permanent form and constant velocity. Such so-
lutions are exact only in uniform media, but often they give a good approximation
when the medium is slowly varying. The simplest and most important example
of waves of permanent form is the simple harmonic mode (the sine wave) which
we �nd in linear theory. There are also some nonlinear waves of permanent form,
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such as the Stokes wave which is a generalization of the harmonic mode, shocks
of �nite extent in di�usive media and solitary waves which we will discuss here.
As the name suggests, a solitary wave consists of a single wave crest. Strictly
speaking it does not have in�nite extent, but the strength (deviation from equi-
librium) disappears when we move away from the crest. If solitary waves satisfy
certain interaction relations they are called solitons. These relations typically
require that the solitons survive collisions without loss of identity or total energy,
etc.

Solitary waves were �rst described by J. Scott Russel in his groundbreaking
investigation �Report on Waves� which was written upon request from The Royal
Society of London in 1842. Scott Russel was a British waterway engineer and did
many observations of waves in canals, including observations of a single (solitary)
wave crest propagating over long distances without noticeable change of shape or
splitting. He managed to recreate such a wave in the laboratory and measured
it velocity to be

√
g(h+ A) where g is the acceleration of gravity, h is the depth

at equilibrium and A is the amplitude.
The �rst who gave a complete theoretical description of the solitary wave was

J. Boussinesq in 1871. It was in connection with this work that he derived the
original Boussinesq equation. Later more accurate expressions for the solitary
wave have been found from perturbation expansions applied directly on the full
set of equations for an ideal liquid. Totally di�erent types of solitary waves have
also been found. Those solitary wave that are of the same kind as the long surface
waves are today often called Boussinesq solitons.

Research on solitary waves was popular during the 60's. Based on the simple
KdV equation a comprehensive theory on such waves was developed. Remarkable
interaction properties between solitary waves were found, analogous to collision
between particles, which gave a connection to quantum mechanics. By the so-
called inverse scattering theory one could predict much about how solitons could
develop from initial conditions of general form. Later one has found some other
special phenomena where solitary waves are, or can be, involved. We will not
treat these topics here.

7.3 Bores. Hydraulic jumps.

After breaking, a steep front with strong turbulence and aeration may evolve.
This front may propagate as a wave or be steady on a current. The former may
be observed for tsunamis entering shallow water while the latter is often seen in
rivers or canals with rapid �ow and are the often generated by a sill or boulder
at the bottom.

We will outline a model of a simple, stationary bore, or hydraulic jump. The
jump is idealized as a discontinuity between to di�erent �ow depths, namely h1

and h2, where we have chosen h1 < h2, as shown in �gure 7.6.
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Figure 7.5:

Figure 7.6:

At each side of the jump we assume constant �ow depths and velocities, denoted
by u1 and u2, respectively. We assume that nonlinear shallow water theory is
valid on each side of the jump. Then u1 and u2 are independent of z and the
volume �ux becomes

Q = u1h1 = u2h2. (7.17)

Next we invoke conservation of horizontal momentum in the volume between the
two vertical transects I and II, as marked in �gure 7.6. The net out-�ux of
momentum from the volume and the net pressure force at the transects must
then counterbalance each other. Due to the hydrostatic pressure distribution we
obtain

ρu2
2h2 − ρu2

1h1 = −1

2
ρgh2

2 +
1

2
ρgh2

1,

where ρ is the density of the �uid. This relation may be rewritten by means of
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(7.17). We �nd

Q(u2 − u1) =
g

2
(h2

1 − h2
2). (7.18)

From (7.17) and (7.18) we �nd Q, u1 and u2 expressed in terms of h1 and h2,

Q2 =
g

2
h2h1(h1 + h2),

u1 = c1

√
1

2

(
h2

h1

)(
1 +

h2

h1

)
, (7.19)

u2 = c2

√
1

2

(
h1

h2

)(
1 +

h1

h2

)
,

where c1 =
√
gh1 and c2 =

√
gh2. From (7.19) it follows that h1 < h2 implies

u1 > c1 and u2 < c2. The upstream velocity is larger than the linear shallow
water speed (supercritical), whereas the downstream velocity behind the jump
is smaller that the shallow water speed (subcritical). A hydraulic jump occurs
when a supercritical �ow changes to a subcritical �ow.

Next we investigate the energy budget of the hydraulic shock. In terms of
the volume �ux, Q, the power (work per time) exerted by the pressure at the
transects I and II are, respectively,

WI =
1

2
ρgh1Q and WII =

1

2
ρgh2Q.

The mechanical energy advection, per time, into the control volume at I is

fI = (
1

2
ρu2

1 +
1

2
ρgh1)Q,

whereas the corresponding �ux rate at II is

fII = (
1

2
ρu2

2 +
1

2
ρgh2)Q.

In the present context the zero level for potential energy in the gravity �eld is at
z = 0. This choice is now convenient, but is di�erent from the zero level applied
in the sections on wave energy. We may the express the net energy supplied to
the control volume, per time, as

Ė = WI −WII + fI − fII =
ρ

2
Q[u2

1 − u2
2 − 2g(h2 − h1)].

Rewriting this expression by means of (7.19) we obtain

Ė =
ρg

4

Q

h1h2

(h2 − h1)3. (7.20)
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Hence, h2 > h1 implies Ė > 0. Since, the �ow is stationary there is no change of
kinetic energy in the control volume. Thus Ė is the total dissipation rate due to
the turbulence associated with the jump. It is noteworthy that the simple model
of the hydraulic shock enables us to determine the total dissipation rate, even if
we have no detailed description of the bore front or the turbulence distribution
there.

In fact, production of hydraulic shocks in waterways may be an e�cient tool
for current reduction in waterways.

From (7.20) we observe that for h1 > h2 mechanical energy must be supplied
to the �uid to sustain the jump. If this is not possible then this type of hydraulic
shock cannot exist.

If we enter a frame of reference where the �uid in the front of the shock is
at rest and the shock propagates, we must add −u1 to all velocities in the above
description. The hydraulic jump will then move with celerity u1, in the negative
x-direction.

Finally we mention that the hydraulic shocks is a shallow water analogy to
shock waves in gases.
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