Suggested solution, exam MEK4320, spring 2021

1. Problem 1
1.a)
2
k= 7” ~ 0.63m"
ok? _6 a
kh ~ 1.9, — =~ 3.0-107°, ka =~ 0.063, — =0.033
Py h

1.b)

l.c)

1.d)

This is a finite-depth gravity wave (tanh kh = 0.9549 is not 1.0
with two digits of accuracy). It is weakly nonlinear.

Full dispersion relation
w? = (gk + ok®/p) tanh kh, w2451 T ~ 2.6s
Deep water without surface tension
w? = gk, w A 2.557L T ~ 2.5s
Finite depth without surface tension
w? = gk tanh kh, w R 24571 T ~ 2.6s
Shallow water without surface tension
w? = ghk?, w3457, T~ 1.8s

Moreover, as the shallow water approximation is far off from the
exact result, we may anticipate that “weakly dispersive” modifica-
tions of the pure shallow water approximation will not be useful.

Clearly, we desire “finite depth without surface tension”

m g kh
~ 3.9— = — | tanhkh + —— | = 2.3—
s’ 9= 9% ( o * cosh? kh) S

CcC =

w
k
(Wrong answers:
Deep water ¢ = 3.9 m/s, ¢, = 2.0 m/s. Shallow ¢ = ¢, = 5.4 m/s)
r ., Loy
E= 5P9a A=~ 49k]J ~ 1.4Wh, F= SPga cgb = 1.1kW
(Wrong answers: Deep water F' = 0.97 kW. Shallow F' = 2.7 kW)
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2. Problem 2

2.a)
W= cgk2 + q2

2
c— o H(ﬁ), S N
0

2
+ (3%)

¢ > ¢p and ¢4 < ¢y, both are asymptotic to ¢y as k — oo.

2.b)

cg goes to zero while ¢ is asymptotic to infinity as £ — 0.

4

—— phase speed
—— group velocity
— - asymptote

C/Co, Cy/Co
N

co k/q

2.c) Note: This is a one-dimensional version of the problem,
not a two-dimensional version, therefore we do not intro-
duce a general angle 6§ between the wavenumber vector k
and the z-axis, rather the wavenumber vector is parallel
to U, either in the positive or negative z-direction.
Stationary pattern for U = ¢ provided U > ¢q (this must be
shown).

U
k= L, w=Uk= 21
VU? — U2 — ¢t
Due to ¢, < c the stationary pattern will be behind the moving
source.



3. Problem 3

3.a)

3.b)

3.¢)

w=Q(k,t) =gtk
The ray equations are

dz o2 g(1)

dt ok 2w
dt 0Q
@& - oY
dw  0Q 1dg(t) | k
Fral mal a e

First we note that the second ray equation implies £ is constant,
unaffected by the variation in g(t).

After this observation, we recognize that the third ray equation
becomes particularly easy to solve, since g(t) is the only quantity
on the right-hand side of the dispersion relation that depends on
time, and the solution is given by the dispersion relation

w(t) = \/g(t)k = v/(go + asin(Bt))k

At the highest position ¢ is minimum, sin(ft) = —1, and w =
(90 — )k

At the lowest position ¢ is maximum, sin(ft) = +1, and w =
(90 + a)k.

The governing equations, Taylor-expanded around equilibrium sur-

face and linearized

on 0o B
E—g—o atZ—O
%+g(t}n:0 at z =10
02¢  0%¢
@‘i‘w—o for 2 <0
%%O as z — —o0
0z



Introduce slow coordinates tqow = €tpast aNd Tgiow = ETfast, ASSUM-
ing that the time variation of g(t) is precisely the slow time, we

get

on 09 _ _
65—&—0 at z =0

D¢ B B
GE—Fg(t)T]—O at 2 =0
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Ew—i—ﬁ—o for 2 <0
%—H) as z — —o0
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where we for brevity have omitted the index “slow” on time and
horizontal position.
Assume a WKB-perturbation solution

n = (A() + €A1 + .. .)ee_liX
gb = (QEO + 6&1 + .. .)eeilix
where Oy /0x = k and 0x/0t = —w.
Problem at order O(¢°)
)

9 =0 atz=0
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—iwgy 4 g(t)Ag =0 at z=0

926 X
8520—14:2%:0 for z < 0
%—HJ as z — —oo

0z

We find ¢y = —@Aoekz and the dispersion relation w? = g(t)k.
Problem at order O(e!)

. 091 DA B
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8¢ 9 _Dpy .0 ~
o — Ky = =ik i (k:gb()) for 2 < 0



5
ﬂ—>0 as z — —o0
0z

The problem at order O(e') is an inhomogeneous (forced) version
of the leading order homogeneous problem. As we have already
insisted on the dispersion relation in order to have a non-trivial
solution of the leading order problem, we know that this prob-
lem is singular. Therefore, according to the Fredholm alternative,
we must insist that a solvability condition is applied on the forc-
ing. We have seen several examples how this can conveniently be
achieved by application of Green’s theorem

0 aQQg R . 6%5 N A aqf; A 8& "
/_OO P1 ( 32,20 - k2¢0> — o < 8z21 o k2¢1) dz = [(/518—20 - 08_21]

Z=—00

After some manipulation we arrive at the conservation law

which can be rewritten as

O (EN, O (L EN_,
ot \w &'Ecgw_

where E = 1pg(t)A} and ¢, = % and the angular frequency w is
a solution of the ray equations expressed previously.



