
Suggested solution, exam MEK4320, spring 2021

1. Problem 1

1.a)

k =
2π

λ
≈ 0.63m−1

kh ≈ 1.9,
σk2

ρg
≈ 3.0 · 10−6, ka ≈ 0.063,

a

h
= 0.033

This is a �nite-depth gravity wave (tanh kh = 0.9549 is not 1.0
with two digits of accuracy). It is weakly nonlinear.

1.b) Full dispersion relation

ω2 = (gk + σk3/ρ) tanh kh, ω ≈ 2.4s−1, T ≈ 2.6s

Deep water without surface tension

ω2 = gk, ω ≈ 2.5s−1, T ≈ 2.5s

Finite depth without surface tension

ω2 = gk tanh kh, ω ≈ 2.4s−1, T ≈ 2.6s

Shallow water without surface tension

ω2 = ghk2, ω ≈ 3.4s−1, T ≈ 1.8s

Moreover, as the shallow water approximation is far o� from the
exact result, we may anticipate that �weakly dispersive� modi�ca-
tions of the pure shallow water approximation will not be useful.

Clearly, we desire ��nite depth without surface tension�

1.c)

c =
ω

k
≈ 3.9

m

s
, cg =

g

2ω

(
tanh kh+

kh

cosh2 kh

)
≈ 2.3

m

s

(Wrong answers:
Deep water c = 3.9 m/s, cg = 2.0 m/s. Shallow c = cg = 5.4 m/s)

1.d)

E =
1

2
ρga2A ≈ 4.9kJ ≈ 1.4Wh, F =

1

2
ρga2cgb ≈ 1.1kW

(Wrong answers: Deep water F = 0.97 kW. Shallow F = 2.7 kW)
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2. Problem 2

2.a)
ω2 = c20k

2 + q2

2.b)

c = c0

√
1 +

(
q

c0k

)2

, cg =
c0√

1 +
(

q
c0k

)2
c > c0 and cg < c0, both are asymptotic to c0 as k →∞.

cg goes to zero while c is asymptotic to in�nity as k → 0.
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2.c) Note: This is a one-dimensional version of the problem,

not a two-dimensional version, therefore we do not intro-

duce a general angle θ between the wavenumber vector k
and the x-axis, rather the wavenumber vector is parallel

to U , either in the positive or negative x-direction.

Stationary pattern for U = c provided U > c0 (this must be
shown).

k =
q√

U2 − c20
, ω = Uk =

qU√
U2 − c20

Due to cg < c the stationary pattern will be behind the moving
source.
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3. Problem 3

3.a)

ω = Ω(k, t) ≡
√
g(t)k

The ray equations are

dx

dt
=

∂Ω

∂k
=
g(t)

2ω
dk

dt
= −∂Ω

∂x
= 0

dω

dt
=

∂Ω

∂t
=

1

2

dg(t)

dt

√
k

g(t)

3.b) First we note that the second ray equation implies k is constant,
una�ected by the variation in g(t).

After this observation, we recognize that the third ray equation
becomes particularly easy to solve, since g(t) is the only quantity
on the right-hand side of the dispersion relation that depends on
time, and the solution is given by the dispersion relation

ω(t) =
√
g(t)k =

√
(g0 + α sin(βt))k

At the highest position g is minimum, sin(βt) = −1, and ω =√
(g0 − α)k.

At the lowest position g is maximum, sin(βt) = +1, and ω =√
(g0 + α)k.

3.c) The governing equations, Taylor-expanded around equilibrium sur-
face and linearized

∂η

∂t
− ∂φ

∂z
= 0 at z = 0

∂φ

∂t
+ g(t)η = 0 at z = 0

∂2φ

∂x2
+
∂2φ

∂z2
= 0 for z < 0

∂φ

∂z
→ 0 as z → −∞
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Introduce slow coordinates tslow = εtfast and xslow = εxfast, assum-
ing that the time variation of g(t) is precisely the slow time, we
get

ε
∂η

∂t
− ∂φ

∂z
= 0 at z = 0

ε
∂φ

∂t
+ g(t)η = 0 at z = 0

ε2
∂2φ

∂x2
+
∂2φ

∂z2
= 0 for z < 0

∂φ

∂z
→ 0 as z → −∞

where we for brevity have omitted the index �slow� on time and
horizontal position.

Assume a WKB-perturbation solution

η = (A0 + εA1 + . . .)eε
−1iχ

φ = (φ̂0 + εφ̂1 + . . .)eε
−1iχ

where ∂χ/∂x = k and ∂χ/∂t = −ω.
Problem at order O(ε0)

−iωA0 −
∂φ̂0

∂z
= 0 at z = 0

−iωφ̂0 + g(t)A0 = 0 at z = 0

∂2φ̂0

∂z2
− k2φ̂0 = 0 for z < 0

∂φ̂0

∂z
→ 0 as z → −∞

We �nd φ̂0 = − ig(t)
ω
A0e

kz and the dispersion relation ω2 = g(t)k.

Problem at order O(ε1)

−iωA1 −
∂φ̂1

∂z
= −∂A0

∂t
at z = 0

−iωφ̂1 + g(t)A1 = −∂φ̂
∂t

at z = 0

∂2φ̂1

∂z2
− k2φ̂1 = −ik

∂φ̂0

∂x
− i

∂

∂x

(
kφ̂0

)
for z < 0
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∂φ̂1

∂z
→ 0 as z → −∞

The problem at order O(ε1) is an inhomogeneous (forced) version
of the leading order homogeneous problem. As we have already
insisted on the dispersion relation in order to have a non-trivial
solution of the leading order problem, we know that this prob-
lem is singular. Therefore, according to the Fredholm alternative,
we must insist that a solvability condition is applied on the forc-
ing. We have seen several examples how this can conveniently be
achieved by application of Green's theorem∫ 0

−∞
φ̂1

(
∂2φ̂0

∂z2
− k2φ̂0

)
−φ̂0

(
∂2φ̂1

∂z2
− k2φ̂1

)
dz =

[
φ̂1
∂φ̂0

∂z
− φ̂0

∂φ̂1

∂z

]0
z=−∞

After some manipulation we arrive at the conservation law

∂

∂t

(
g(t)A2

0

ω

)
+

∂

∂x

(
g(t)

2ω

g(t)A2
0

ω

)
= 0

which can be rewritten as

∂

∂t

(
E

ω

)
+

∂

∂x

(
cg
E

ω

)
= 0

where E = 1
2
ρg(t)A2

0 and cg = g(t)
2ω

and the angular frequency ω is
a solution of the ray equations expressed previously.
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