MEK4350, fall 2016

Exercises I

First three exercises that are nice to review, but not necessary to do. In these three exercises f and g and h are complex vectors, α and β are complex scalars, $\langle f, g\rangle$ is an inner product, and $\|f\|=\sqrt{\langle f, f\rangle}$ is the norm associated with the inner product.

Recall the requirements to be an inner product:

1) $\langle f, g\rangle=\overline{\langle g, f\rangle}$
2) $\langle\alpha f+\beta g, h\rangle=\alpha\langle f, h\rangle+\beta\langle g, h\rangle$
3) $\langle f, f\rangle \geq 0$
4) $\langle f, f\rangle=0$ if and only if $f=0$

Recall the requirements to be a norm:

1) $\|f+g\| \leq\|f\|+\|g\|$
2) $\|\alpha f\|=|\alpha|\|f\|$
3) $\|f\| \geq 0$
4) $\|f\|=0$ if and only if $f=0$

Exercise 1 (see section 1.1 in Løw \& Winther)

Show that Cauchy-Schwartz inequality holds:

$$
|\langle f, g\rangle| \leq\|f\|\|g\|
$$

Hint: Start with $\langle f-\alpha g, f-\alpha g\rangle \geq 0$, where α is a complex scalar, and set $\alpha=\langle f, g\rangle /\langle g, g\rangle$.

Exercise 2

Show that the triangle inequality holds for the norm associated with the inner product $\|f\|=\sqrt{\langle f, f\rangle}$:

$$
\|f+g\| \leq\|f\|+\|g\|
$$

Hint: Start with $\|f+g\|^{2}=\langle f+g, f+g\rangle$, recall that the real value of a complex number is smaller than or equal to the absolute value of the number, and use Cauchy-Schwartz inequality.

Exercise 3 (see theorem 3.1 in Løw \& Winther)

Show that Bessel's inequality holds for a generalized Fourier series: If we represent f by a projection $P f$ into a subspace spanned by orthogonal basis vectors ϕ_{n}

$$
f \sim P f=\sum_{n} \hat{f}_{n} \phi_{n} \quad \text { where the Fourier coefficients are } \quad \hat{f}_{n}=\left\langle f, \phi_{n}\right\rangle /\left\|\phi_{n}\right\|^{2}
$$

then

$$
\sum_{n}\left|\hat{f}_{n}\right|^{2}\left\|\phi_{n}\right\|^{2} \leq\|f\|^{2}
$$

Hint: Start with $\|f-P f\|^{2}=\langle f-P f, f-P f\rangle \geq 0$.

Of the following exercises you should do 4 , at least one of $\{5,6,7\}$, at least one of $\{8,9\}$, and 10 :

As inner product for complex functions on the interval $a \leq x \leq b$ we use

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g^{*}(x) d x
$$

and for complex sequences with index j we use

$$
\langle f, g\rangle=\sum_{j} f(j) g^{*}(j)
$$

Find out if the following vector sets are orthogonal, and compute the norm of the vectors.

Exercise 4

The functions $\{1, \cos (n x), \sin (n x) ; n=1,2, \ldots\}$ on the interval $0 \leq x \leq 2 \pi$.

Exercise 5

The functions $\{1, \exp (i n x) ; n= \pm 1, \pm 2, \ldots\}$ on the interval $0 \leq x \leq 2 \pi$.

Exercise 6

The functions $\{\sin (n x) ; n=1,2, \ldots\}$ on the interval $0 \leq x \leq \pi$.

Exercise 7

The functions $\{1, \cos (n x) ; n=1,2, \ldots\}$ on the interval $0 \leq x \leq \pi$.

Exercise 8

The sequences $\left\{\exp \frac{2 \pi i n j}{N} ; n=1,2 \ldots N\right\}$ for $j=1,2, \ldots, N$.

Exercise 9

The sequences $\left\{\exp \frac{2 \pi i n j}{N} ; n=M, M+1 \ldots M+N-1\right\}$ for $j=J, J+1, \ldots, J+$ $N-1$ where M and J are arbitrary integers.

Exercise 10

Let $f(x)$ be a 2π-periodic function defined by

$$
f(x)= \begin{cases}1 & 0 \leq x<\pi \\ 0 & \pi \leq x<2 \pi\end{cases}
$$

Use the functions from exercise 4 to compute the truncated Fourier series

$$
P_{N} f(x)=a_{0}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Plot $f(x)$ and $P_{N} f(x)$ for $N=1,2,3,10,100$ in the same coordinate system.

