MEK4350, fall 2016 Exercises V

We shall look at the two functions

$$f(x) = x$$
 and $g(x) = \cos(x)$ for $0 \le x < 2\pi$

Let the truncated Fourier series be

$$P_N f(x) = \sum_{n=-N}^{N} \hat{f}_n e^{ik_n x}$$

- a) Compute \hat{f}_n and \hat{g}_n analytically
- b) Demonstrate with computer graphics that $P_N f(x)$ suffers from Gibbs phenomenon as $N \to \infty$, therefore there is no uniform convergence of $P_N f(x)$ to f(x).

Hint: If you are clever you can figure out how to produce this computer graphics with fft and/or ifft rather than brute force computation of the sum.

- c) Demonstrate analytically that $P_N g(x)$ does not suffer from Gibbs phenomenon and does indeed converge uniformly to g(x).
- d) Compute analytically the derivative $\frac{d}{dx}(P_N f(x))$ by termwise differentiation of the sum. Compare this with the analytically computed truncated Fourier series $P_N \frac{df}{dx}$.
- e) Repeat for g(x).

If there is any difference between $\frac{d}{dx}P_N$ and $P_N\frac{d}{dx}$ make sure you investigate with computer graphics!

We have previously shown that the Fourier transform of $\frac{d^m f(x)}{dx^m}$ is $(ik)^m \hat{f}(k)$ for any positive integer m. We can now generalize this defining the

fractional derivative
$$\frac{d^{\alpha}f(x)}{dx^{\alpha}}$$

for any number α (it could be rational or real or even complex) in terms of the Fourier transform $(ik)^{\alpha} \hat{f}(k)$.

- f) Let us amuse ourselves by computing and plotting $\frac{d^{\alpha}f(x)}{dx^{\alpha}}$ as α changes continuously from 0 to 1.
- g) Repeat with g(x).