MEK4350, fall 2016

Exercises VIII

Complex stochastic variables

Notice that we have not defined the concepts "smaller than" or "greater than" for complex numbers!

A complex stochastic variable, $Z=X+\mathrm{i} Y$ is understood to consist of the two simultaneous real stochastic variables X and Y. In order to discuss the distribution of a complex stochastic variable we therefore discuss the joint distribution of the real and imaginary parts.

The cumulative distribution function of Z is

$$
F_{Z}(z)=F_{X Y}(x, y)=P\{X \leq x, Y \leq y\}
$$

The probability density function of Z is

$$
f_{Z}(z)=\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y}
$$

The expected value of Z is

$$
\mu_{z}=E[Z]=E[X]+\mathrm{i} E[Y]=\mu_{x}+\mathrm{i} \mu_{y} .
$$

The variance of Z is
$\operatorname{Var}[Z]=E\left[\left(Z-\mu_{z}\right)\left(Z-\mu_{z}\right)^{*}\right]=E\left[\left(X-\mu_{x}\right)^{2}\right]+E\left[\left(Y-\mu_{y}\right)^{2}\right]=\operatorname{Var}[X]+\operatorname{Var}[Y]$.
There is also a different kind of variance, called the complementary variance, given by

$$
\begin{aligned}
E\left[\left(Z-\mu_{z}\right)^{2}\right] & =E\left[\left(X-\mu_{x}\right)^{2}\right]-E\left[\left(Y-\mu_{y}\right)^{2}\right]+2 \mathrm{i} E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right] \\
& =\operatorname{Var}[X]-\operatorname{Var}[Y]+2 \mathrm{i} \operatorname{Cov}[X, Y] .
\end{aligned}
$$

Notice that the variance is real and non-negative, while the complementary variance is complex.

The covariance of two complex stochastic variables A and B is

$$
\operatorname{Cov}[A, B]=E\left[\left(A-\mu_{a}\right)\left(B-\mu_{b}\right)^{*}\right]
$$

The covariance of two real stochastic variables X and Y this reduces to

$$
\operatorname{Cov}[X, Y]=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]
$$

Statistically independent and uncorrelated variables

Two real stochastic variables X and Y are said to be statistically independent if their joint probability density function can be factored

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Two stochastic variables A and B are said to be uncorrelated if their covariance is zero, $\operatorname{Cov}[A, B]=0$.

Problem 1

Show that if the real stochastic variables X and Y are statistically independent then they are uncorrelated.

Problem 2

Show that if the complex stochastic variable Z has uncorrelated real and imaginary parts then the complementary variance is real.

Problem 3

Let X and Y be statistically independent uniformly distributed real stochastic variables on the domain $0 \leq x \leq 1$ and $0 \leq y \leq 1$.

Let $Z=X+\mathrm{i} Y$ be a complex stochastic variable.
Find the probability density function, the cumulative distribution function, the expected value, the variance, and the complementary variance, of Z.

