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Wind-Generated Waves



Wind-Generated Waves

Ocean (gravity) waves are wind-generated waves.


That occur on the free surface of oceans, seas, lakes, etc. 


When directly being generated and affected by the local winds, a wind wave 
system is called wind sea.


When these waves propagate to other locations wind waves are called swell.


A wave field can be the result of a superposition of a wind sea and several swell 
systems.
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Wind-Generated Waves
Wind waves are not tsunamis, nor tidal waves, nor internal waves,....

Adapted from Pond and Pickard, 1983 
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Wind-Generated Waves
Wind waves play an important role in the energy transference mechanisms 
between the atmosphere and the ocean.


Not all the hydrodynamical mechanisms of wind waves are well understood. 


They can be extremely nonlinear. 


To improve the wave forecast.


To improve the design of vessels, off and onshore structures 


Oil platforms.


Breakwaters.


Coastal protection.
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There are still many open questions on the study of wave 
generation and propagation!!

8



How wind waves look like?
Oceanographic cruise of the German vessel FSS Gauss in 1992.


Part of the mission was to carry out field experiments to measure wind waves with 
marine radars during severe storm conditions. 

Filmed by Dr. Friedwart Ziemer 

(Helmholtz-Zentrum Geesthacht, Germany)
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Spectral Description of Wave Fields



Mathematical Description of Ocean Waves

Ocean surface waves are caused by the wind.


Interaction of two fluids: atmosphere-ocean


Ocean Waves are described by the spatio-temporal evolution 
of the vertical elevation of the free sea surface over the sea 
level

⌘(r, t)

r = (x, y)Horizontal sea surface coordinates:

tTime:

Vertical coordinate of the sea surface: z = ⌘(r, t)
This is the information 
we try to find or to 
measure!!
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ei↵ = cos↵+ i sin↵

Equivalent descriptions

Linearizing the hydrodynamic equations that describe the 
elevation of the sea surface:


The sea surface can be descr ibed as linear 
superpositions of several monochromatic waves


Those monochromatic waves (e.g. wave spectral 
components) take the form of


sinusoidal waves


cosinusoidal waves


complex exponential waves 

Linear solutions for the wind-generated waves
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Monochromatic wave in time

⌘(t) = a cos(!t+ ') aAmplitude [m]:

'Phase [rad]:

Angular frequency [rad/s]: ! = 2⇡f

Wave period [s]: T =
1

f

Crest

Trough

Amplitude

H
⌘ > 0

⌘ < 0

Wave Period

Time
a

t

T
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Monochromatic wave in space (1D)

aAmplitude [m]:

'Phase [rad]:

�Wave length [m]:

k =
2⇡

�
Wave number [rad/m]:

⌘(x) = a cos(kx+ ')

Mean Sea Level

Crest

Trough

Amplitude

H
⌘ > 0

⌘ < 0

�
Wave Length

Sea Surface Coordinates

(x, y)

a
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Monochromatic wave in space (2D)

k = |k| =
q
k2
x

+ k2
y

=
2⇡

�

k = (k
x

, k
y

)Wave number vector [rad/m]:

⌘(x, y) = a cos(k · r+ ') = a cos(k

x

x+ k

y

y + ')

k
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Monochromatic wave in space and time (3D)

⌘(x, y, t) = a cos(k · r� !t+ ')

k
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Monochromatic wave in space and time (3D) 
(complex notation)

⌘(x, y, t) = a cos(k · r� !t+ ')

⌘(x, y, t) = c e

i(k·r�!t) + c.c.

cos↵ =

1

2

�
ei↵ + e�i↵

�

c =
a

2
ei' Complex amplitude
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General solutions of the linear wave theory
Under the frame of the linear theory, the wave elevation of the  free sea surface can be 
expressed as a liner superposition of different monochromatic waves

Each wave component is characterized by its:


Wave number vector (e.g. wave length and propagation direction)


Frequency


Amplitude


Phase '

a

k = (k
x

, k
y

)

✓ = tan�1

✓
k
y

k
x

◆
� =

2⇡

k

!
Comment: to avoid ambiguity of 180 degrees, the wave 
propagation direction should be computed numerically 
using atan2-type functions, e.g. atan2(ky, kx). 
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General solutions of the linear wave theory
Notations (I):

⌘(r, t) =
X

n

an cos(kn · r� !nt+ 'n)

⌘(r, t) =
X

n

cne
i(kn·r�!nt) + c .c.
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General solutions of the linear wave theory
Notations (II):

⌘(r, t) =
X

k

x

X

k

y

X

!

a(k
x

, k
y

,!) cos [k · r� !t+ '(k
x

, k
y

,!)]

⌘(r, t) =
X

k

x

X

k

y

X

!

c(k
x

, k
y

,!)ei(k·r�!t) + c .c.

and                   are estimated from the Fourier Transformc(k
x

, k
y

,!)
a(k

x

, k
y

,!)

'(k
x

, k
y

,!)
( )
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General solutions of the linear wave theory
Notations (III): continuous notation

�(r, t) =

Z

�k,�

ei(k·r��t)dZ(k,⇥)

dZ(k,�)Complex amplitude:

Spectral domain where ocean waves are defined: 


In practice the spectral domain is limited by the resolution of the sensor in space and 
time

�k = [�k
xc , kxc)⇥ [�k

yc , kyc)

�� = [��c,�c)

�k,� = �k ⇥ ��

T h i s e x p r e s s i o n 
normally includes the 
complex conjugates

21



Dispersion Relation
Ocean waves are dispersive.


The dispersion relation is given by

Current of encounter:

Water depth:

U = (U
x

, U
y

)

h

! =
p
gk tanh (kh) + k ·U

Intrinsic Frequency Doppler shift

The “current of encounter” is the combination of different effects:

- Relative motion between the observer and the wave field.

- Geophysical current: wind-, wave-induced current, Stokes 

drift, geostrophic flow, tides, etc.

22



Dispersion Relation

! =
p
gk tanh (kh) + k ·U

! < 0
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Dispersion Relation
General Case:


Phase velocity:


Group velocity:


Approximations (without current of encounter):


Deep water:


Shallow water:

vp =
!

k

vg =
d!

dk

vp 6= vg (dispersive)

(non dispersive)

kh � 1 =) tanh(kh) ⇡ 1 =) ! ⇡
p
gk

kh ⌧ 1 =) tanh(kh) ⇡ kh =) ! ⇡ k
p
gh

(dispersive)
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Dispersion Relation
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Dispersion Relation

Considering the dispersion relation the linear wave field can be expressed as

⌘(r, t) =
X

k

x

X

k

y

X

!

a(k
x

, k
y

,!) cos [k · r� !t+ '(k
x

, k
y

,!)]

!(k)

⌘(r, t) =
X

k

x

X

k

y

a(k
x

, k
y

) cos [k · r� !(k)t+ '(k
x

, k
y

)]
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Sea State (I)

The movement of the ocean free surface is complicated, even assuming the linear 
wave theory.


A way to improve the the sea surface description given by the linear wave theory is 
to assume that the wave elevation presents a stochastic behavior.


The parameters if the linear wave solutions are considered as random variables


The statistical properties of those parameters depend on the meteorological and 
geophysical conditions


 Under these considerations, the concept of sea state is defined from:


Temporal domain where the wave field is statistically stationary.


Area of the ocean where the wave field is statistically homogeneous.

27



Sea State (II)

Random parameters for different linear wave theory notations:

⌘(r, t) =
X

n

an cos(kn · r� !nt+ 'n)

⌘(r, t) =
X

n

cne
i(kn·r�!nt) + c .c.

�(r, t) =

Z

�k,�

ei(k·r��t)dZ(k,⇥)

is a stochastic process⌘
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Gaussian Sea States
The Gaussian sea is the simplest stochastic model to describe sea surface variability


It considers different components that are statistically independent 
(uncorrelated).


Statistical symmetry between crests and troughs.


    is a zero-mean Gaussian stochastic process:


Variance: 

⌘ E[⌘] = 0

Var[⌘] = �2

an is Rayleigh distributed

'n is uniformly distributed in [�⇡, ⇡)

cn is complex-Gaussian distributed

dZ(k,!) is complex-Gaussian distributed
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E[⌘] = 0 Var[⌘] = �2

Gaussian Sea States

Considering that the spectral components are statistically independent: 

�2 = E
⇥
⌘2
⇤
=

1

2

X

n

E
⇥
a2n

⇤

�2 = E
⇥
⌘2
⇤
= 2

X

n

E
⇥
|cn|2

⇤

�2 = E
⇥
⌘2
⇤
=

Z

⌦k,!

E
h
|dZ(k,!)|2

i
due to c.c.
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Spectral Representation of Sea States

Using the continuos representation of sea states:

�(r, t) =

Z

�k,�

ei(k·r��t)dZ(k,⇥)

(it could be done with the discrete notations as well)

Spectral random measure
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Spectral Representation of Sea States

This spectral representation corresponds to the Eulerian description of the sea 

surface.


Different individual wave components are uncorrelated (statistically independent).

E [dZ(k,�)dZ⇤(k0,�0)] = 0

8k 6= k08! 6= !0

E [dZ(k,�)] = 0

E [⌘] = 0
Zero-mean Gaussian process

(for the Eulerian description)
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Three-dimensional Wave Spectrum

F (3)(k,�)d2kd� = E
h
|dZ(k,�)|2

i

F (3)(k,�) = F (3)(�k,��)

Zeroth-order 

moment

Variance of the sea 
surface

�2 = Var [⌘] =

Z

⌦k,!

F (3)(k,!) dk
x

dk
y

d! = m0
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Location of the wave spectral components

For real-valued wave elevation field the spectrum is an even 
function


For linear wave theory, the observed spectrum (and similarly the 
spectral amplitude) will be supported on a modified dispersion shell

F (3)(k,�) = F (3)(�k,��)

⌦ =
n

(k,!)
�

�

�

! = ±
p

gk tanh(kh) + k ·U
o
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Location of the wave spectral components
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Alternative Wave Spectral Descriptions

Different spectral density functions can be derived by integrating the 3D wave 
spectrum over different subsets of the spectral domain.


All these spectral density functions must preserve the total energy (e.g. the 
variance of the wave elevation process).


The transformations of the spectral density functions assume:


The dispersion relation.


The wave field is statistically homogeneous in space.


The wave field is statistically stationary in time.


The sea surface elevation is assumed to be an Ergodic process.
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Alternative Wave Spectral Descriptions: 
Frequency Spectrum

This spectral density is obtained integrating over all the wave number domain.


It represents the spectrum obtained from a point measurement.


E.g. a record of a buoy moored at a fixed ocean location.

S(�) = S(��)

S(�) ⇤�⇥ 2 · S(�) 8� > 0,

S(!) =

Z

⌦k

F (3)(k,!) dk
x

dk
y
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Alternative Wave Spectral Descriptions: 
Directional Wave Number Spectrum

Integrating over all the frequency domain:

F (2)(k) =

Z

�!

F (3)(k,�)d�

This spectrum presents symmetric dependence on the wave propagation direction

F (2)(k) = F (2)(�k)

There is an ambiguity of 180 degrees.
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Alternative Wave Spectral Descriptions: 
Unambiguous Directional Wave Number 

Spectrum

Integrating over the positive frequency domain:

This spectrum resolves the directional ambiguity

F (2)
+ (k) = 2

Z !c

0
F (3)(k,�)d�

F (2)
+ (k) 6= F (2)

+ (�k)
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Alternative Wave Spectral Descriptions: 
3D spectrum from 2D spectrum

Assuming the dispersion relation the three-dimensional wave spectrum can be 
obtained from the unambiguous wave number spectrum as

F (2)(k) =
1

2

h
F (2)
+ (k) + F (2)

+ (�k)
i

F (3)(k,!) =
1

2

n

F (2)
+ (k)� [! �$(k)] + F (2)

+ (�k)� [! +$(�k)]
o
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Alternative Wave Spectral Descriptions: 
3D spectrum from 2D spectrum

F (3)(k,!) =
1

2

n

F (2)
+ (k)� [! �$(k)] + F (2)

+ (�k)� [! +$(�k)]
o
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Alternative Wave Spectral Descriptions: 
Directional Spectrum (I)

Transforming the coordinate system from Cartesian to polar coordinates

(k
x

, k
y

) 7�! (k, �)

k =
q
k2
x

+ k2
y

� = tan�1

✓
k
y

k
x

◆

Jacobian from 
Cartesian to polar 

coordinates

F̃ (2)(k, �) = F (2)
+ [k(k, �)] · k

Wave 
propagation 
direction

Comment: to avoid ambiguity of 180 degrees, the wave 
propagation direction should be computed numerically 
using atan2-type functions, e.g. atan2(ky, kx). 
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Alternative Wave Spectral Descriptions: 
Directional Spectrum (II)

Transforming from wave number to frequency:


The dispersion relation is assumed

(k, �) 7�! (⇥, �)

E(⇥, �) = F̃ (2)[k(⇥), �] · dk
d⇥

Jacobian:

Group Velocity
-1

vg =
d!

dk
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Alternative Wave Spectral Descriptions: 
Directional Spectrum (III)

The frequency-direction spectrum is factorized as

Frequency 
Spectrum

E(⇥, �) = S(⇥)D(⇥, �)

D(⇥, �)

S(⇥) =

Z ⇡

�⇡
E(⇥, �)d�

Directional spreading function:

D(!, ✓) � 0 , 8(!, ✓)
Z ⇡

�⇡
D(!, ✓)d✓ = 1 , 8! } directional probability 

density distribution
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Alternative Wave Spectral Descriptions
F (3)(k,�)

F (2)
+ (k) = 2

Z !c

0
F (3)(k,�)d�

F̃ (2)(k, �) = F (2)
+ [k(k, �)] · k

E(⇥, �) = F̃ (2)[k(⇥), �] · dk
d⇥

S(⇥) =

Z ⇡

�⇡
E(⇥, �)d�

S(!) =

Z

⌦k

F (3)(k,!) dk
x

dk
y
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Examples of Wave Spectra

Wave number spectrum F (2)
+ (k)

wave frequency [Hz]

Frequency spectrum S(f)
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Statistical and spectral estimation of sea state parameters

Assuming the concept of sea state different parameters related to the wave 
elevation of the free sea surface can be retrieved.


Those parameters can be derived from… 


Statistical analysis of the data in the temporal, spatial, or spatio-temporal domains


Spectral analysis of the data: frequencies and/or wave number domains.


Under the Gaussian wave field assumptions, both approaches are equivalent.


With real data sets, the two different approaches give different and complementary 
descriptions.
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Statistical estimation of sea state parameters

Domain Example Dimension Variables

Temporal
Buoy Record 
(punctual 

measurement)
1D

Spatial
Measurements 
along a wave 

channel
1D

Spatial
Video or radar 

image 2D

Spatio-temporal
Temporal 

sequences of video 
or radar images

3D

(x, y)

(x, y, t)
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Spectral estimation of sea state parameters

Domain Example Dimension Variables

Frequency
Buoy Record 
(punctual 

measurement)
1D

Wave number
Measurements 
along a wave 

channel
1D

Wave number
Video or radar 

image 2D

Wave number 
and frequency

Temporal 
sequences of video 
or radar images

3D

!

k
x

(k
x

, k
y

)

(k
x

, k
y

,!)
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Statistical estimation of sea state parameters

(1D)

This analysis considers the definition of a wave taking into account 
when the elevation of the sea surface cross the mean sea level

Part of a buoy measurement record

Comment: “practical” indication 
that the wave record is not 

exactly a narrow-banded process
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Statistical estimation of sea state parameters

(1D)

Two criteria to define waves can be considered:


Zero-up crossing.


Zero-down crossing.


For Gaussian stochastic processes both criteria are equivalent.


In practice the sea state parameters obtained from the different 
criteria are slightly different.


The zero-up crossing criterium has been chosen as the standard 
for practical and engineering purposes.
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Statistical estimation of sea state parameters (1D)

Zero-up crossing Zero-down crossing
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Statistical estimation of sea state parameters (1D)

Wave #1 Wave #2 Wave #3 Wave #4 Wave #5 Wave #6

Tz1 Tz2 Tz3 Tz4 Tz5 Tz6

Hz1

Hz2 Hz3
Hz4

Hz5
Hz6
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Statistical estimation of sea state parameters (1D)

For each individual wave a wave height and a wave period is 
identified


For wave channel measurements wavelengths are measured.


From those data different parameters can be extracted:


Mean wave height


Mean wave period                  ,     : number of individual waves


Mean wave steepness


PDFs distributions of wave heights or/and periods


…

Tz =
1

N

NX

i=1

Tzi
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Statistical estimation of sea state parameters (1D)

One important parameter is the so-called significant wave height


This parameter is the mean of the one-third of the highest waves in the record


Each individual wave height within the record is sorted from the lowest to the highest

Sorted 

Wave Heights

Hs ⌘ H1/3
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Statistical estimation of sea state parameters (1D)

For a Gaussian sea state the mean of the one-third of the highest 
waves is related to the standard deviation of the wave elevation as


Or, as a function of the variance of the wave elevation,

H1/3 ⇡ 4�

H1/3 ⇡ 4
p
�2
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Sea state parameters derived from the wave spectra

mj =

Z
f jS(f)df (j = . . . , �1, 0, 1, 2, . . .)

Spectral moments: ! = 2⇡f

Significant wave height                         ;     Hs = 4
p
m0

Mean period estimations:
Te =

m�1

m0

Tm01 =
m0

m1

Tm02 =
q

m0
m2

m0 = �2

Used for designs of wave 
energy extraction systems

Used as spectral

estimation of the zero-up 

crossing mean period
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Estimation of sea state parameters (2D and 3D)

Wave elevation field 
r e t r i e v e d f r o m a 
temporal sequence of 
marine radar images
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Estimation of sea state parameters (2D and 3D)

There is not a clear extension of the zero-up crossing method for 
2D and 3D sea surface data sets.


In fact, the definition of wave height is not yet well understood 
for these cases.


Discussion about the necessity of taking into account proper 2D 
and 3D wave descriptions:


Paul C. Liu et al., “From single point gauge to spatio-temporal measurement of 
ocean waves - prospects and perspectives”. OMAE 2014.


However, it is easy to estimate sea state parameters from the 
different spectral density functions.
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Spectral sea state parameters (2D and 3D)

Mean wave propagation direction depending on the frequency


Mean wave direction over all frequencies

MDIR = tan

�1

 R
! S(!) sin ¯✓(!)d!R
! S(!) cos ¯✓(!)d!

�
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Spectral sea state parameters (2D and 3D)

Mean wave lengths and wave crest


They are computed from the wave number spectrum


A way is to use the covariance matrix

F (2)
+ (k

x

, k
y

)

⇤ =

0

@
k2
x

k
x

k
y

k
x

k
y

k2
y

1

A

i, j = 1, 2

k1 ⌘ k
x

k2 ⌘ ky

kikj =

Z

⌦k

kikj F
(2)
+ (k1, k2) dk1dk2

m0
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Spectral sea state parameters (2D and 3D)

Mean wave lengths and wave crest


The two eigenvalues of the covariance matrix are computed

(⇠21 , ⇠
2
2)

⇤ =

0

@
k2
x

k
x

k
y

k
x

k
y

k2
y

1

A ⇤d =

0

@
⇠21 0

0 ⇠22

1

A
Matrix 


diagonalization
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Spectral sea state parameters (2D and 3D)

Mean wave lengths and wave crest


These values are derived from the two eigenvalues 


Mean wavelength


Mean wave crest


Mean wave size

(⇠21 , ⇠
2
2)

� =

2⇡p
max(⇠21 , ⇠

2
2)

�c =
2⇡p

min(⇠21 , ⇠
2
2)

WS = �̄ · �̄c
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Sea state parameters derived from the wave spectra

Other parameters can be derived as


Peak period,


Significant steepness,


Stability parameters,


Wave grouping parameters,


etc.


From the de directional spectra (wave number, etc.) additional parameters are:


Mean, peak wave length,


Mean, peak wave propagation direction,


etc.
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Wave grouping

Waves propagate in the ocean in form of wave packages of consecutive high waves


These packages of waves are known as wave grouping or wave groups


Wave groups are dangerous for marine systems (e.g. ships, platforms, etc.) not only 
because there are high waves within each group, but those waves present similar 
periods and can cause problems of resonance in the marine system.


Although the existence of a power spectrum predicts wave groups, experiences in 
laboratories, as well as measurements indicate that this phenomenon is still not 
well understood.


Wave groups are responsible of the wave energy propagation.


Affected by wave breaking effects during the wave propagation.
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Wave grouping

Traditionally wave groups have been analyzed in the temporal domain (1D).


New results have been developed to analyze wave groups in 2D and 3D.


Example of wave grouping measured by a buoy:
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Analysis of wave groups in time

There are different approaches to analyze the number of waves within a group


Correlation between consecutive wave heights


Statistical behavior of the groups


Mean number of waves within a group


Study of the envelope properties


Statistical behavior of the groups


Hydrodynamic information of the wave grouping


Wave energy propagation
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Correlation between consecutive wave heights

This method (Kimura, 1980; Longuet-Higgins, 1984) considers that wave heights evolve in time 
as a memory stochastic process. 


It derives the statistical properties thought a Markov chain approach.


Concept of run: number of consecutive waves that are higher than a given threshold height.


Typical threshold heights:


Significant wave height


Mean wave height


Median wave height


Parameters used for this approach


Run length: number of waves within a run.


Total run length: number of waves between two wave groups.
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Definition of runs

Wave

Heights Threshold


Height

Consecutive Wave heights

run length = 4
run length = 6

total run length = 8

1

2
3

4

5

6
7

8

1 2

3

4

5

6
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Correlation between consecutive wave heights

Parameters derived from this approach


Mean run length.


Mean total run length.


Probability of number of waves during two wave groups


Correlation between two wave heights

� =
E()� (1� 2)K()/2� ⇡/4

1� ⇡/4

E() : complete elliptic integral of 1st kind

: complete elliptic integral of 2nd kind

: Kimura parameter
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Correlation between consecutive wave heights

The Kimura parameter is the important parameter in this wave grouping description


This parameter can be derived from the spectrum using the Markov chain 
approach (Rice, 1944; Battjes and Vledder, 1984; Longuet-Higgins, 1984)

 =

����
1

m0

Z
S(!)ei!⌧d!

����

is a characteristic time of the wave field, e.g. Tm01
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Analysis of wave groups from the envelope

Definition of the envelope


The envelope as a stochastic process


Numerical computation of the envelope


Hilbert transform
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Definition of the envelope (I)

Gaussian wave elevation at a fixed position:


Consider a characteristic frequency where most of the energy is concentrated:


Examples:


Peak frequency:


Mean frequency:


the wave elevation field is factorized as:

⌘(t) =
X

n

an cos (!nt+ 'n)

!

! ⌘ !p

! ⌘ 2⇡/Tm01

⌘(t) = ⌘c(t) cos(!t)� ⌘s(t) sin(!t)

⌘c(t) ⌘
X

n

an cos [(!n � !)t+ 'n]

⌘s(t) ⌘
X

n

an sin [(!n � !)t+ 'n]

Low frequency oscillations

!n � !
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Definition of the envelope (II)

⌘c(t) ⌘
X

n

an cos [(!n � !)t+ 'n] ⌘s(t) ⌘
X

n

an sin [(!n � !)t+ 'n]

A(t) ⌘
p
⌘2c (t) + ⌘2s(t) �(t) ⌘ tan�1


⌘s(t)

⌘c(t)

�

⌘c(t) = A(t) cos�(t) ⌘s(t) = A(t) sin�(t)

⌘(t) = A(t) cos [!t+ �(t)]
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Definition of the envelope (III)

Instantaneous amplitude or envelope:


Instantaneous phase:


If the wave elevation field is a stochastic process, the envelope is a stochastic process too.

⌘(t) = A(t) cos [!t+ �(t)] = A(t) cos�(t)

�(t) ⌘ !t+ �(t)

A(t)
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Definition of the envelope (IV)

Example of envelope:

Wave Elevation

Envelope
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⌘(t) Gaussian zero-mean process

8
<

:

⌘c(t)

⌘s(t)

9
=

;
Gaussian zero-mean


processes

E[⌘] = 0

E[⌘c] = 0

E[⌘s] = 0

Var[⌘] = E[⌘2] = �2

Var[⌘c] = E[⌘2c ] = �2

Var[⌘s] = E[⌘2s ] = �2

Envelope as a stochastic process (I)

E[⌘c ⌘s] = 0

8
<

:

⌘c

⌘s

9
=

;
Independent 

Gaussian

processes
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Envelope as a stochastic process (II)

Joint probability density function of two independent Gaussian processes with same 
variance:


Change to polar coordinates:


Integrating over all the angles

p(⌘c, ⌘s) =
1

2⇡�2
exp


�⌘2c + ⌘2s

2�2

�

(⌘c, ⌘s) 7! (A, �) d⌘cd⌘s 7! AdAd�

p(A,�) =
A

2⇡�2
exp


� A2

2�2

�

p(A) =
A

�2
exp


� A2

2�2

�
�

Rayleigh

distribution
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Hilbert Transform (I)

⇣(t) =
1

⇡
P
Z

R

⌘(⌧)

t� ⌧
d⌧ =

1

⇡
lim

"!0+

2

4
t�"Z

�1

⌘(⌧)

t� ⌧
d⌧ +

1Z

t+"

⌘(⌧)

t� ⌧
d⌧

3

5

From the Hilbert transform the so-called analytic signal is defined:

⇠(t) = ⌘(t) + i ⇣(t) = A(t)ei�(t)

: Cauchy’s principal value

A(t) =
p

⌘2(t) + ⇣2(t) �(t) = tan�1


⇣(t)

⌘(t)

�

⌘(t) = Re[⇠(t)] = A(t) cos�(t)
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Hilbert Transform (II)
For practical applications the Hilbert transform is computed using the Fourier transform

⌘(t) ⇣(t)
HT

Z(!) = �i sgn(!)H(!)

Transfer

Function

FT FT-1
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Hilbert Transform (III)

The Hilbert transform is the analytical solution of the Lagrangian horizontal 
displacement of a wave under the frame of the linear theory (Krogstad and 
Trulsen, 2010).


The envelope can be understood as the modulus of the wave elevation and the 
horizontal wave displacement during a wave cycle.
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Analysis of wave groups from the envelope (I)

From the estimated envelope different studies of wave grouping can be achieved


Correlation time of the envelope


Mean persistence time of the envelope over a given threshold.


Mean number of waves within groups.


Spectral density of the envelope


It is related to the spectral density of the wave field.


The envelope is directly related to the propagation of wave energy features:


Wave energy per unit of area


Energy flux

82



Analysis of wave groups from the envelope
In general two envelopes are defined:


Upper envelope:


Lower envelope:


For linear narrow-banded wave fields:


Under these conditions the wave height is regarded as twice the envelope


For other cases: 


Non linear waves: crests higher above mean sea level than troughs deep below


Linear but non narrow banded waves: neighboring crests and troughs are not 
statistically symmetrical around the mean sea level

A+(t)

A�(t)

A+(t) = �A�(t) ⌘ A(t)

H ⇠ 2A

A+(t) 6= �A�(t)

A+(t) 6⇡ �A�(t+ T/2)
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Analysis of wave groups in more dimensions (I)

There is not a unique generalization of the Hilbert Transform for higher dimensions.


Any multidimensional generalization corresponds to the Hilbert transform in 1D


For linear ocean waves the proper generalization is the Riesz Transform.


In the same way than the Hilbert transform for 1D, the Riesz transform 

corresponds to the Lagrangian horizontal wave displacements under the frame 

of the linear wave theory (Nieto Borge et al., 2013).


The spatio-temporal evolution of groups, energy, etc. can be achieved.
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Analysis of wave groups in more dimensions (II)

Example of spatio-temporal envelope derived from the wave elevation estimation by 

using temporal sequences of X-band radar images (Nieto Borge et al., 2013).

⌘(x, y, t) A(x, y, t)
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Examples of Gaussian waves

Example of wave record measured by a buoy deployed in the Northern coast of Spain 
(Bay of Biscay)
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Examples of non Gaussian waves

Stokes waves

Freak wave (New Year Wave)

Breaking wave
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DFT Estimation of the Three-Dimensional 
Spectrum



Spectral Analysis Techniques Applied to Image Time Series



Sampling of an Image Time Series

Consider time series of images sampled in space and time

�mnl = �(xm, yn, tl)

Sampling time: �t

Spatial resolution along X-axis: �x

Spatial resolution along Y-axis: �y

xm = m ·�x

m = 0, . . . , N
x

� 1;

yn = n ·�y n = 0, . . . , Ny � 1;

tl = l ·�t l = 0, . . . , Nt � 1;
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Sampling of an Image Time Series

Example: temporal sequence of X-band marine radar images
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3D Discrete Fourier Transform (3D-DFT)

The three-dimensional Fourier coefficients of �mnl = �(xm, yn, tl)

�m0n0l0 =
1

NxNyNt

N
x

�1X

m=0

N
y

�1X

n=0

N
t

�1X

l=0

�mnl e
�i2�(mm0+nn0+ll0)/(N

x

N
y

N
t

)

In practice, the DFT is computed using the Fast Fourier Transform (FFT) algorithm.


The output of a FFT function has to be reordered to have the negative branch of each 
spectral variable before the positive branch.

m0 = 0, . . . , N
x

� 1

n0 = 0, . . . , Ny � 1

l0 = 0, . . . , Nt � 1

�
m

0
n

0
l

0 = �(k
xm0 , kyn0 ,�l

0)
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3D Discrete Fourier Transform (3D-DFT)

Two-dimensional example of data reordering (half-period shift) 

Most of the data analysis softwares include a specific function for that:


 Examples:


IDL: SHIFT function.


Matlab: fftshift function.
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3D Discrete Fourier Transform (3D-DFT)

Scheme of the application of the 3D FFT:

�(xm, yn, tl)

�(k
xm0 , kyn0 ,�l

0)

�(k
xm0 , kyn0 ,�l

0)

3D FFT

half-period shift
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3D Discrete Fourier Transform (3D-DFT) 
Spectral Variables

Once the half-period shift is carried out, the sampled spectral variables are

k
xm0 = �k

xc +m0 ·�k
x

m0 = 0, . . . , N
x

� 1;

kyn0 = �kyc + n0 ·�ky n0 = 0, . . . , Ny � 1;

�l0 = ��c + l0 ·�� l0 = 0, . . . , Nt � 1;

k
xc =

�

�x
�k

x

=
2�

N
x

�x

kyc =
�

�y
�ky =

2�

Ny�y

⇥c =
�

�t
�⇥ =

2�

Nt�t
95



3D Discrete Fourier Transform (3D-DFT) 
Spectral Estimation

The spectral estimation using the DFT is called periodogram.

F (3)(m0, n0, l0) =
1

�k
x

�k
y

��
|⇥(m0, n0, l0)|2

F (3)(m0, n0, l0) ⌘ F (3)(k
xm0 , kyn0 ,�l

0)
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3D Discrete Fourier Transform (DFT) for wave analysis



1D DFT: Overview of the needed mathematical operations

a)   Original (continuous) functions


b-c) Sampling in time


d-c) Time truncation 


f-g) Sampling in frequency

Aliasing
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3D Discrete Fourier Transform (DFT) for wave analysis

The DFT permits to estimate the complex Fourier coefficients

3D DFT⌘(x, y, t) c(k
x

, k
y

,!)

Or the amplitude and phase of the spectral components:


The computation of the DFT from its definition needs extremely large CPU time


Fast Fourier Transform (FFT) algorithms permit to estimate the DFT in short CPU time

a(k
x

, k
y

,!) '(k
x

, k
y

,!)
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Examples

Three different examples to illustrate ow the FFT works in 1D, 2D and 3D:


1D (t): Time series of wave elevations measured by a buoy at a fixed 
location.


2D (x, y): Sea surface elevations to estimate the 2D wave number spectra:


Three cases: wind sea, swell, bimodal sea state.


3D (x, y, t): Time series of sea surface elevations to estimate:


3D wave number-frequency spectrum


2D wave number spectrum


Three cases: wind sea, swell, bimodal sea state.
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Example 1: Wave elevation time series

Read the data file WaveTimeSeries.dat


Estimate the variance of the time series.


Estimate the spectral density using the function fft.


Plot the spectral density for each frequency.


What do you see in the plot?


Compute the variance from the spectral estimation.


Proposed exercise:


Compute the autocorrelation function from the spectral density.
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Example 2: 2D Sea surface elevations (I)
Read the data files for each case (Matlab data format):


Wind sea, files: WindSea2D_1.dat, WindSea2D_2.dat and WindSea2D_3.dat


Swell, files: Swell2D_1.dat, Swell2D_2.dat and Swell2D_3.dat


Bimodal sea state, files: Bimodal2D_1.dat, Bimodal2D_2.dat and 
Bimodal2D_3.dat


Estimate the variance of the surfaces


Plot the spectra


Compare the different obtained the spectra for each case.


Are they equal? Why?


Do they present even-symmetry on the wave numbers? Why?


Estimate the variance from the spectral estimation.
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Example 2: 2D Sea surface elevations (II)

Way to proceed:


Load the data in the Matlab workspace


Compute the 2D FFT by using the Matlab functions fft2 or fftn.


shift a half-period in the wave number-frequency domain using the 
function fftshift


compute the 32D spectral estimation (wave number space)
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Example 3: spatio-temporal evolution of a 
wave field (I)

Purpose: analyze a spatio-temporal wave field evolution by using a 3D FFT.


Data:


Matlab data files:


Wind sea: WindSea.mat


Swell: Swell.mat


Bimodal sea state: Bimodal.mat
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Example 3: spatio-temporal evolution of a 
wave field (II)

Way to proceed (I):


Load the data in the Matlab workspace 


Estimate the variance from the wave elevation field


Compute the 3D spectral estimation (wave number and frequency space)


Compute the 3D FFT using the function fftn


Shift a half-period in the wave number-frequency domain using the 
function fftshift


Estimate the 3D spectrum. 
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Example 3: spatio-temporal evolution of a 
wave field (II)

Way to proceed (II):


Identify the dispersion relation by applying different transects on the wave 
number-frequency domain.


Estimate the variance of the wave field from the 3D spectrum


compute the 2D wave number spectrum, by integrating over all the positive 
frequencies.


Is this wave number spectrum symmetric? Why?


Estimate the variance of the wave field from the 2D spectrum
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Thanks


