
8th October, 2023

MEK4350 / MEK9350
Mandatory assignment 1 of 2

Submission deadline

Thursday 19th October 2023, 14:30 in Canvas (canvas.uio.no).

Instructions

Note that you have one attempt to pass the assignment. This means that
there are no second attempts.

You can choose between scanning handwritten notes or typing the solution
directly on a computer (for instance with LATEX). The assignment must be
submitted as a single PDF file. Scanned pages must be clearly legible. The
submission must contain your name, course and assignment number.

It is expected that you give a clear presentation with all necessary
explanations. Remember to include all relevant plots and figures. All
aids, including collaboration, are allowed, but the submission must be
written by you and reflect your understanding of the subject. If we doubt
that you have understood the content you have handed in, we may request
that you give an oral account.

In exercises where you are asked to write a computer program, you need
to hand in the code along with the rest of the assignment. It is important
that the submitted program contains a trial run, so that it is easy to see
the result of the code.

Application for postponed delivery

If you need to apply for a postponement of the submission deadline due to
illness or other reasons, you have to contact the Student Administration at
the Department of Mathematics (e-mail: studieinfo@math.uio.no) no later
than the same day as the deadline.

All mandatory assignments in this course must be approved in the same
semester, before you are allowed to take the final examination.

Complete guidelines about delivery of mandatory assignments:

uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html

GOOD LUCK!

https://canvas.uio.no
mailto:studieinfo@math.uio.no
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html
http://www.uio.no/english/studies/admin/compulsory-activities/mn-math-mandatory.html


Please look at figure 1. The blue curve in the middle is a time series
of sea surface elevation recorded by a radar at Ekofisk on November 30th,
2018. This time series shows a phenomenon known as “Three sisters”, three
consecutive waves that all satisfy the criterion for beeing rogue or freak
waves. The forward and backward simulations assume long crested waves,
which is certainly wrong. You may download the pdf figures here.
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Figure 1: Recorded “Three sisters” time series (blue), with numerically
computed propagation backward and forward in space (black) using three
different models: Upper left: linear Schrödinger equation. Upper right: cubic
nonlinear Schrödinger equation. Bottom: higher order nonlinear Schrödinger
equation known as the Dysthe equation.
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In order to appreciate how the wave field of the “Three sisters” time series
might have appeared upstream and downstream of the location monitored by
the radar, numerical simulations were carried out with three different types
of Schrödinger equations for spatial evolution. These simulations assume
that the waves were perfectly long-crested, and are therefore definitely not
a reliable description of reality!

It is clear from the figure that wave modulations propagate with a
characteristic velocity. This is the group velocity cg. It should be possible
to indicate this characteristic velocity by some parallel straight lines.

The data from our laboratory experiments on September 20th can be
downloaded from the semester page. Please do the following:

1. Present our laboratory measurements in a similar fashion as in figure
1, showing the time series for all the probes at locations along the
second axis corresponding to the locations of those probes.

2. Find the characteristic group velocity of the experimental waves.

3. Plot some parallel straight lines, with slope given by the characteristic
group velocity, in order to check if the modulations indeed propagate
with the group velocity. This may be easier to see for the irregular
waves than for the Stokes waves?

In class we discussed the cubic nonlinear Schrödinger (NLS) equation
for time evolution

∂B

∂t
+ ωc

2kc

∂B

∂x
+ iωc

8k2
c

∂2B

∂x2 + ik2
c ωc

2 |B|2B = 0 (1)

where B is the complex amplitude of the waves, and the wave field itself
can be represented approximatly by

η(x, t) = Re
{
B(x, t)ei(kcx−ωct)

}
(2)

In class we also discussed the modulational instability of Stokes waves,
known as the Benjamin–Feir instability. Assuming a small perturbation of
the form

B = B0(1 + α + iβ)e− 1
2 iωck2

c |B0|2t (3)
where the real quantities α and β are small perturbations, and assuming a
plane wave solution (

α
β

)
=
(

α̂

β̂

)
ei(λx−Ωt) + c.c. (4)
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we found the dispersion relation for the perturbation

Ω = 1
2λ ±

√
1
8λ2

(1
8λ2 − |B0|2

)
(5)

The unstable growth rate for time evolution of Stokes waves is given by the
imaginary value ImΩ.

We will need the corresponding unstable growth rate for space evolution.
This can be obtained by first rewriting the NLS equation (1) into a form
suitable for space evolution, and then carrying out the instability analysis
for this space evolution NLS equation.

4. Start by assuming the last two terms in (1) are one order smaller than
the first two terms and obtain the space evolution NLS equation by
iteration.

5. Find the unstable growth rate for spatial evolution of Stokes waves.

Now we shall compare the analytical growth rate found above with the
growth rate that can be computed from the laboratory measurements. The
idealized model for unstable growth is

η̂(x, ω) = A(ω)e(µr(ω)+iµi(ω))x (6)

where µr(ω) is the growth rate for a given frequency ω, µi(ω) is a phase
shift which we do not care to know, A(ω) is a complex amplitude which we
also do not care to know, and η̂(x, ω) is the temporal Fourier transform of
η(x, t). With the time series measured at two locations x1 and x2 we can
find the growth rate by

µr(ω) = 1
x2 − x1

log
∣∣∣∣∣ η̂(x2, ω)
η̂(x1, ω)

∣∣∣∣∣ (7)

6. Compute the Fourier transform of the experimental time series by
fft(η(t)) or ifft(η(t)) on the computer, compute and plot the
growth rate according to equation (7), and plot the analytical growth
rate in the same plot for comparison.

7. Can you confirm that the result is better if you:

• Employ two wave probes that are close to each other and close
to the wave paddle?
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• Employ a selection of the time series in a domain delimited by
the parallel straight lines with slope given by the characteristic
group velocity, as suggested at the beginning of this exercise?

Finally, an optional problem for those who may already be familiar with
the computation of the power spectrum:

8. In order that the power spectral density S(x, ω) looks nice and smooth,
some amount of smoothing is often applied by default or by request
in the routine that estimates S(x, ω). This is sometimes done by
the Matlab function pwelch. Can you confirm that such smoothing
actually ruins the estimation of the unstable growth rate?
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