1 Phase Field model

We postulate the free energy of the system as

F:/Qf(C)dQ+/FfF(C)dF:/Q(%\p(cwgwcﬁ) dQ+/F’Ysl+(’ysg—”ysl)w(C)dF. (1)

where the first term is the bulk energy ¥(C) = 1(C — 1)*(C + 1)2, C = C(x, t) is a concentration, the
second term the interfacial energy and the boundary integral term is the solid substrate energy in dry
(w(C =-1)=1) and wet (w(C = 1) = 0) state. C' = C(x,t) is a scalar field, which represents the two
phases i.e. liquid state C' = 1 and gas state C' = —1. The volume integral (€2) represents the bulk free
energy and the surface integral (I') the free energy contribution from the surface. v is the surface tension
coefficient and e is the interface thickness. 7,4 and 7y is the surface tension of the solid in dry (gas-solid)

and wet (liquid-solid) state, respectively.

1.1 Chemical potential ¢

Find the integral equation for the chemical potential ¢, where §F/6C = fQ ¢dS2 + fr ¢~dl' by making
a variation in F' [Nm] with respect to the order parameter/concentration C' and the wetting boundary
conditions (integral). Scale the chemical potential with 7 /e and the volume/x with a characteristic length
of the system e.g. drop size L to make the equation dimensionless.

1.2 Derive the equilibrium interface thickness

Assume a flat interface along one dimension in equilibrium i.e. constant chemical potential ¢ = 0. Neglect
the boundary term and find the equilibrium interface profile C'(z) = tanh ﬁ

1.3 Surface tension calculation

Find the effective surface tension coefficient from the free energy at equilibrium (assume a flat one-
dimensional interface) i.e. [ F(C(z))dz

1.4 Substrate boundary conditions

Use the equilibrium solution to find the form of the polynomial for g(C) in the surface integral by
assuming the Neumann boundary condition on C at the substrate equals the variation in the substrate
free energy i.e. 7¢eVC - n = ¢,, with n the interface normal.

1.5 Decrease in free energy

Assume any variation JC must balance a diffusive Fickean flux J = M V¢ we get the mass conscerving

Cahn-Hilliard equation,

O VO =V 3=V (MVe). @)

What is the sign of M that ensures that the free energy F decreases in time, albeit the laws of
thermodynamics (assume u = 0). (Hint: Use the variation §C from the Cahn-Hilliard equation into the
variation of F' with respect to C.)

1.6 Numerical simulation

We will by end of the week put a repository with a solver of the Cahn-Hilliard equation. Perform
simulations with the code

i) Initialize the domain with a condition for C' =1 in the left half and C' = —1 right half. Test if you get
the analytical equilibrium thickness. How does the solution change when you change the Cahn number?
ii) Try to make an initial condition around C' = 0 with some small disturbance. How does the solution
behave?
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