—2—

The boundary integral equations

2.1 Green’s functions of Stokes flow

The Green’s functions of Stokes flow represent solutions of the continuity
equation V-u=0 and the singularly forced Stokes equation

—VP 4+ uViu+gé(x —x,) =0 (2.1.1)
where g is an arbitrary constant, X, is an arbitrary point, and ¢ is the

three-dimensional delta function. Introducing the Green’s function G, we
write the solution of (2.1.1) in the form

1
u(x) = @Gu(x, X0)g; (2.1.2)

where X, is the pole or the source point, and X is the observation or field
point. Physically, (2.1.2) expresses the velocity field due to a concentrated
point force of strength g placed at the point xo, and may be identified
with the flow produced by the slow settling of a small particle. In the
literature of boundary integral methods, the Green’s function may appear
under the names fundamental solution or propagator.

It is convenient to classify the Green’s functions into three categories
depending on the topology of the domain of flow. First, we have the
free-space Green’s function for infinite unbounded flow; second, the
Green’s functions for infinite or semi-infinite flow that is bounded by a
solid surface; and third, the Green’s functions for internal flow that is
completely confined by solid surfaces. The Green’s functions in the second
and third categories are required to vanish over the internal or external
boundaries of the flow. As the observation point x approaches the pole
X, all Green’s functions exhibit singular behaviour and, to leading order,
behave like the free-space Green’s function. The Green’s functions for
infinite unbounded or bounded flow are required to decay at infinity at a
rate equal to or lower than that of the free-space Green’s function.

Taking the divergence of (2.1.2) and using the continuity equation we
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20 The boundary integral equations

find

0G;;
—(%,%0) =0 (2.1.3)
ax,'

Integrating (2.1.3) over a volume of fluid that is bounded by the surface
D and using the divergence theorem, we find

f G;;(x,x0)n(x)dS(x) =0 (2.1.4)
D

independently of whether the pole X, is located inside, right on, or outside
D.

The vorticity, pressure, and stress fields associated with the flow (2.1.2)
may be presented in the corresponding forms:

1
;(x) = agij(xﬂ Xo)g; (2.1.5)
1
P(x) = —p;(X,X,)g; (2.1.6)
8n
1
ou(X) = — T (X, Xo) g; 2.1.7)
8n

where Q,p, and T are the vorticity tensor, pressure vector, and stress
tensor associated with the Green’s function. The stress tensor T, in
particular, is defined as

T %0) = = 81y, X0) + (5 %0) + M, xp) (218
0x, 0x;
It will be noted that Tj;, = T,;; as required by the symmetry of the stress
tensor 6. When the domain of flow is infinite, we require that all Q, p,
and T vanish as the observation point is moved to infinity.
Substituting (2.1.2), (2.1.6),and (2.1.8) into (2.1.1) we obtain the equations

_ g_ii(x, Xo) + V2G (X, Xo) = — 876,3(x — Xo) 2.19)
and
%(x, X,) = %(x, Xo) = — 870, ;0(X — Xo) (2.1.10)
Furthermore, usiI;g (2.1.10) we find
6ix,‘ L&1m X1t Tonjie (%, Xo) 1 = — 8mey,6(x — Xo) (2.1.11)

Integrating (2.1.10) and (2.1.11) over the volume of fluid enclosed by the
smooth surface D and using the divergence theorem to convert the volume
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integral into a surface integral, we obtain the identities

8n
j T (x, xo)n,-(X)dS(X)=J T (X, Xo) (%) dS(x) = —|:4n 8p (21.12)
D D 0

8n
ﬁumj~ Xt T jue (X, Xo) 1y (X) AS(x) = —'[4” &njXo,1 (2.1.13)
b 0
where the unit normal vector n is directed outside the control volume,
and x,, on the right-hand side of (2.1.13) indicates the | component of
Xo. The values —8xn, —4n, and 0 on the right-hand sides of (2.1.12)
and (2.1.13) apply when the point X, is located respectively inside, right
on, or outside D. When x, is right on D, the integrals in (2.1.12) and
(2.1.13) are improper but convergent (see discussion at the end of
section 2.3).
In section 3.2 we shall see that the pressure vector p and the stress tensor
T associated with a Green’s function for infinite unbounded or bounded
flow represent two fundamental solutions of Stokes flow. Specifically, we
shall show that p(x, X,) represents the velocity field at the point x,, due
to a point source of strength — 8= with pole at x. Furthermore, we shall
show that

U(Xo) = T (X, Xo) g (2.1.14)
where q is a constant matrix, represents the velocity field due to a
singularity called the stresslet with pole at x. The pressure field

corresponding to (2.1.14) may be conveniently expressed in terms of a
pressure matrix IT as

P(xo) = pIL; (%o, X)qiy (2.1.15)
The precise definition and further properties of IT will be discussed in
section 3.2.

Adding a number of Green’s functions with different poles x, we can
devise a Green’s function with multiple poles, namely

G= i G(x,x,) (2.1.16)

n=1
In the limiting case where an infinite number of poles are placed
exceedingly close to each other, the sum in (2.1.16) reduces to an integral
yielding a line, surface, or volume distribution of point forces. Differen-
tiating the Green’s function with respect to the pole x, we can derive
differential singular solutions representing multipoles of the point force
(see section 7.2). For instance, differentiating the Green’s function once,
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we obtain the point force doublet that represents the flow produced by
two point forces with opposite strengths and indistinguishable poles.

2.2 The free-space Green’s function

To compute the free-space Green’s function we replace the delta function
on the right-hand side of (2.1.1) with the equivalent expression

5(%) = — 41_1:V2<1> 2.2.1)

"
where r=|%|,& =X —x, Recalling that the pressure is a harmonic
function, and balancing the dimensions of the pressure term with those
of the delta function in equation (2.1.1), we set

= — ig-v(1> (22.2)

4n r
Substituting (2.2.1) and (2.2.2) into (2.1.1) we obtain
1 1
= ——g(VV-1V? (—) (2.2.3)
4n r

Next, we express the velocity in terms of a scalar function H as
1
u=-g(VV-1IV)H (2.24)
K

It will be noted that the continuity equation is satisfied for any choice of
H. Substituting (2.2.4) into (2.2.3) and discarding the arbitrary constant g
we obtain

(VV - IV2)<V2H + #) =0 (2.2.5)

Clearly, (2.2.5) is satisfied by any solution of Poisson’s equation,
V2H = — 1/(4nr). Using (2.2.1) we find that H is, in fact, the fundamental
solution of the biharmonic equation V*H = 8(%). Thus

r

H=—-— (2.2.6)
8n
Substituting (2.2.6) into (2.2.4) we find
1 "
u(x) = S—yi](x)gj 2.2.7)
n
where
(%) = % + *—f’ (2.2.8)
r r

is the free-space Green’s function, also called the Stokeslet, or the
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Oseen—Burgers tensor. The vorticity, pressure, and stress fields associated
with the flow (2.2.7) may be written in the standard forms (2.1.5), (2.1.6),
and (2.1.7) where

. %
Q%) =2, j,r—; (22.9)
and
pi(%) = 2% (2.2.10)

Substituting (2.2.7) and (2.2.10) into (2.1.8) we obtain the stress tensor

st it
:

Tijk(f‘) =-6

As mentioned in section 2.1, p and T represent two fundamental

solutions of Stokes flow. Specifically, p represents the velocity at the point

x due to a point source of strength 8z with pole at x,, or, equivalently,

the velocity at x, due to a point source of strength — 8z with pole at x,
whereas

uj(Xo) = Ty (X — Xo)qy = — Tiju(Xo — X)qix (2212)
where q is a constant matrix, represents the velocity field due to a stresslet

with pole at x. Using the results of section 7.2 we find that the pressure
field corresponding to the flow (2.2.12) is given by (2.1.15) where

d; 2%
I, (%o, x)=4( -3+ 3'—5"> (22.13)
r r
The associated stress field will be discussed in problem 2.2.2.

Now, as an exercise, we shall compute the surface force exerted on a
fluid sphere of radius r centered at the pole of a point force. Using (2.1.7)
and (2.2.11) we find

1 3 ®%;
Ji®) = 03 (X)n(x) = — Ty (x, Xo)m(X)g;= — ——g; (22.14)
8n 4n r
The force acting on the sphere is

3 1
F,= I fdx)dS(x) = — —gj—,’-[ X;X;dS(x) (2.2.15)
sphere 4n r sphere
Using the divergence theorem we compute

0x;
_[ 2:2,d8(x) =r f n;dS(x)=r f LAV (x) = 6,/ nr
sphere sphere sphere

j
(2.2.16)
Combining (2.2.15) and (2.2.16) we find F = — g independently of the
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radius of the sphere, in agreement with our previous discussion in
section 1.2. The torque with respect to the pole of a point force on any
surface that encloses the pole of the point force is equal to zero (see
problem 2.2.3),

Problems

2.2.1 An alternative method for deriving the free-space Green’s function is by
using Fourier transforms. Take the three-dimensional complex Fourier
transform of (2.1.1) and the continuity equation to find

6 _ 4 L(a k,kj> g S "
T e kY kP T en kP

where the three-dimensional complex Fourier transform of a function f(x)
is defined as

. 1 .
0= J IR0 ®
Next, invert (1) using
1 .
100= f i F(K)exp(ix-k)dk 3

to obtain the Stokeslet (Ladyzhenskaya 1969, p. 50).

2.2.2 Show that the stress field associated with the flow (2.2.12) is given by
oy = 2uT} 8 (%)q;, Where the stress tensor TS™ is given in (7.2.26).

2.2.3 Using (2.2.14) show that the torque with respect to the pole of a point force
on any surface that encloses the pole of the point force is equal to zero.

What is the torque with respect to another point in space?

2.3 The boundary integral equation

It is well known that the solution of linear, elliptic, and homogeneous
boundary value problems may be represented in terms of boundary
integrals involving the boundary values of the unknown function and its
derivatives (Stakgold 1968). One example of a boundary integral
representation is Green’s third identity for harmonic functions (Kellogg
1954, p. 219). Another example is Somigliana’s identity for the displace-
ment field in linear elastostatics (Love 1944, p. 245). In the case of Stokes
flow, we obtain a boundary integral representation involving the boundary
values of the velocity and surface force.

A convenient starting point for deriving the boundary integral equation
is the Lorentz reciprocal identity (1.4.4) stating that for any two non-
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singular (regular) flows u and u’ with corresponding stress tensors ¢ and ¢,

—6—(u;o,-,, - u0l)=0 (23.1)
3xk

Identifying u' with the flow due to a point force with strength g located
at the point x,, we obtain

1 1
ui(x) = 87;1 Gu(x’ X0)d; o (x)= é; Tiju(x, xo)g,- (23.2)

Substituting (2.3.2) into (2.3.1), and discarding the arbitrary constant g, we
obtain

0
XEGU(X’ X0)0 i (X) — pty(x) Tij(%,%0)] =0 (233)
k

Now, we select a control volume V that is bounded by the closed
(simply- or multiply-connected) surface D, as illustrated in Figure 2.3.1.
Note that D may be composed of fluid surfaces, fluid interfaces, or solid
surfaces. In addition, we select a point x, outside V. Noting that the
function within the square bracket in (2.3.3) is regular throughout V,
integrating (2.3.3) over V, and using the divergence theorem to convert
the volume integral over V into a surface integral over D, we obtain

_[ [Glj(X, X0) 0 (X) — put;(x) T (X, Xo) I (x) dS(x) =0 (234)
D

In (2.3.4) as well as in all subsequent equations, the normal vector n is
directed into the control volume V.

Next we select a point X, in the interior of V, and define a small spherical
volume V, of radius ¢ centered at x,. The function within the square bracket

Figure 2.3.1. A control volume V within the domain of a flow.
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in (2.3.3) is regular throughout the reduced volume V — V,. Integrating
(2.3.3) over ¥V — V,and using the divergence theorem to convert the volume
integral into a surface integral, we obtain

J [Gu(x> X0) 0 (X) — pty(x) Tijk(x9 Xo)In(x)dS(x) =0 (2.3.5)
D,S.

where S, is the spherical surface enclosing V, as indicated in Figure 2.3.1.
Letting the radius ¢ tend to zero we find that over S,, to leading order in
&, the tensors G and T reduce to the Stokeslet and its associated stress
tensor, respectively, i.e.

O, Rk %R

Gijz:’+ 831 Tijkz—6—;;—"

where x=x—X,. Over S, n=%/c and dS=¢>d€, where Q2 is the

differential solid angle. Substituting these expressions along with (2.3.6)
into (2.3.5) we obtain

f [Gu (%, X0) 05 (x) — pu(x) T (x, Xo) ]ny(x) dS(x)
D

- f [(5,.,-+ xﬁ‘—ief>aik(x)+6uui(x)"‘:j""]xkdg 2.37)
S:

As ¢—0, the values of u and ¢ over S, tend to their corresponding values
at the center of V,, i.e. to u(x,) and o(x,), respectively. Since X decreases
linearly with ¢, as £¢—0 the contribution of the stress term within the
integral on the right-hand side of (2.3.7) decreases linearly in ¢, whereas
the contribution of the velocity term tends to a constant value. Thus, in
the limit ¢ =0, (2.3.7) reduces to

_[ LG (%, Xo)it(X) — pri(x) T (X, Xo) ] (%) dS(x)
D

(2.3.6)

1

=— 6#“.-("0)8—4.[‘ 2;%;dS(x) (2.3.8)
S

Using the divergence theorem we compute

0X;
J ﬁiﬁde(x)=sf )?,nde(x)=s-[ a—)f'dV(x)=6ij§ne" (2.3.9)
s, 5. v.0Xj
Substituting (2.3.9) into (2.3.8) we finally obtain the desired boundary
integral representation

1
uj(x0)= __—8 _[ oik(x)nk(x)Gij(x’ Xo) dS(x)
THJp

+ if (x) T (%, Xo) 1 (x) A S(x) (2.3.10)
8nJp
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It will be convenient to introduce the surface force f=6'n and rewrite
(2.3.10) in the equivalent form

1
“j(xo) = mj fi(x)Gij(x’ Xo) dS(x)
D

e f 0 T, X)) () @311)
8nJ)p

Equation (2.3.11) provides us with a representation of a flow in terms of
two boundary distributions involving the Green’s function G and the
associated stress tensor T. The densities of these distributions are
proportional to the boundary values of the surface force and velocity. The
first distribution on the right-hand of (2.3.11) is termed the single-layer
potential, whereas the second distribution is termed the double-layer
potential. A detailed discussion of the significance and properties of these
potentials will be deferred until Chapter 4.

Now, viewing the double-layer potential as a mere mathematical
function, we compute its limiting values as the point x, approaches the
boundary D either from the internal or from the external side, and obtain
two different values. Specifically, if D is a Lyapunov surface, i.e. it has a
continuously varying normal vector (see Jaswon & Symm 1977), and the
velocity over D varies in a continuous manner, we find

lim J (%) T4 (X, Xo) 1y (x) dS(x)
b Py
= +4nu;(x,) + J (%) Ti (X, Xo)1, (x) dS(x) (2.3.12)

D
where the plus sign applies when the point x, approaches D from the side
of the flow (indicated by the direction of the normal vector), and the minus
sign otherwise (see section 4.3). The superscript 2% indicates the principal
value of the double-layer potential, defined as the value of the improper
double-layer integral when the point X, is right on D. Substituting (2.3.12)
with the plus sign into (2.3.11) or with the minus sign into (2.3.4), we find

that for a point x, that is located right on the boundary D,
Py

1 1
“j(xo) == Zn—u.[ fi(x)Gij(x’ Xo)dS(x) + 4—_[ u;(x) Ty (x, Xo)m(x) dS(x)
D

TJp
(23.13)
In summary, equations (2.3.4), (2.3.11), and (2.3.13) are valid when the
point X, is located outside, inside, or right on the boundary of a selected
volume of flow.
In section 3.1 we shall show that the Green’s functions satisfy the
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symmetry property
G;;(x, Xo) = G (o, X) (2.3.14)
which allows us to switch the order of the indices as long as we also switch

the order of the arguments, i.e. the location of the observation point and
the pole. Substituting (2.3.14) into (2.3.11) we obtain

u;j(Xo) = — L-[ G;i(Xo, X) f1(x) dS(x) + SLJ u(X) T (X, X o)1, (x) dS(x)
D TJp

8nu
(2.3.15)
Clearly, the single-layer potential on the right-hand side of (2.3.15)
represents a boundary distribution of point forces with strength —f. To
understand the significance of the double-layer potential, we decompose
the stress tensor T into its constituents using (2.1.8). Exploiting (2.3.14)
we obtain

f ui(x)Tijk(x’ Xo)ny(x) dS(x) = —j ;i (%, Xo)uy(x)n;(x) dS(x)
D

D
+ j 961X X) e + um)x) dSX) (2.3.16)
p 0x

In section 3.2 we shall see that when p corresponds to a Green’s function
of infinite unbounded or bounded flow, the first integral on the right-hand
side of (2.3.16) represents a distribution of point sources. The density of
this distribution vanishes over a solid surface or stationary fluid interface
where u =0 or u-n = 0 respectively. The second integral on the right-hand
side of (2.3.16) represents a distribution of symmetric point force dipoles.

Now, inspecting (2.3.15) suggests an expression for the pressure in terms
of two boundary distributions corresponding to the single-layer and
double-layer potential, namely

1
P(xp)= — 8—_[ pilxq, X) fi(x) dI(x) + :_nj (%) IT;, (X o, X) 1, (x) dI(x)
¢

T ¢
(2.3.17)
where p and IT express the pressure corresponding to the Green’s function
and its associated stress tensor defined in (2.1.6) and (2.1.15), respectively.

It will be instructive to apply the boundary integral equation for certain
simple flows that are known to be exact solutions to the equations of
Stokes flow. For instance, if we are considering rigid body motion then
u=U+ o x x; setting f= — Pn, where P is the constant pressure, and
using (2.3.4), (2.3.11), (2.3.13), and (2.1.4) we find

8n
f Tl o) (x) AS(x) = [411]5;,- (2.3.18)
b 0
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and
8n
Eumf Xm Tiju(X, xo)nk(x)dS(x)=|:4n EitmX0,m (2.3.19)
D 0
for a point x, located inside, right on, or outside D, respectively (in the
second case the integrals should be interpreted in the principal value
sense).

The reader will note that (2.3.18) and (2.3.19) are identical to (2.1.12)
and (2.1.13) with the exception of a minus sign due to the opposite
orientation of the normal vector (the normal vector in (2.1.12) and (2.1.13)
is directed outside the control volume). Two sets of identities similar to
(2.3.18) and (2.3.19) may be derived by applying the boundary integral
equations for linear and parabolic flow (problem 2.3.4).

To derive the above boundary integral equations, we used the reciprocal
identity (1.4.4). Had we used the alternative reciprocal identity discussed
in problem (1.4.2), we would have obtained a different but equivalent set
of equations. Specifically, for a point X, that is located within a selected
volume of flow we would have obtained
u;(Xo) = — LJ‘ Gi(Xo, x)( — Pn; + %n,‘)(x)dS(x)

8nu)p 0x,
0G (X0, X)
n

+8i j ui(x)[—p,-(x,xo)ni(x)+ nk(x)]dS(x) (23.20)
D

Xk
which is the counterpart of (2.3.15) (Happel & Brenner 1973, p. 81). Due
to the more direct physical significance of the density of the single-layer
potential, equation (2.3.15) is preferable to (2.3.20) in theoretical analyses
as well as numerical implementations.

Infinite flow _
A number of problems involve flow in completely unbounded or partially
bounded domains. Two examples are flow due to the motion of a small
particle in an infinitely dilute suspension, and semi-infinite shear flow over
a wall containing a depression or projection. In these cases, in order to
apply the boundary integral equation, we select a control volume that is
confined by a solid or fluid boundary Sy and a large spherical surface S,
extending to infinity. If the fluid at infinity is quiescent, the velocity must
decay at least as fast as 1/r, whereas the pressure and stress must decay
at least as fast as 1/r%, where r is a typical distance from Sg. These scalings
become evident by expanding the far pressure field in terms of spherical
harmonics, requiring that the pressure at infinity tends to a constant value,
and inspecting the corresponding velocity (Lamb 1932, section 335; see



