2
Capillarity and Gravity

Liquids display rather peculiar properties. They have the ability to de-
feat gravity and create capillary bridges (see Figure 2.1), move up inclined
planes, or rise in very small capillary tubes.! Moreover, drops may lose
their spherical shape under the influence of gravity.

2.1 The Capillary Length 1

There exists a particular length, denoted x~!, beyond which gravity be-
comes important. It is referred to as the capillary length. It can be estimated
by comparing the Laplace pressure v/k ! to the hydrostatic pressure pgr 1
at a depth k™! in a liquid of density p submitted to earth’s gravity g = 9.8
m/s?. Equating these two pressures defines the capillary length:

The distance k™! is generally of the order of few mm (even for mercury,

for which both 7y and p are large). If one wants to increase £~! in a liquid by
a factor 10 to 1,000, it is necessary to work in a microgravity environment
or, more simply, to replace air by a non-miscible liquid whose density is
similar to that of the original liquid.

Gravity is negligible for sizes 7 < k™. When this condition is met, it is
as though the liquid is in a zero-gravity environment and capillary effects



FIGURE 2.1. Liquid bath rising
to form a capillary bridge (From
“Nucleation Radius and Growth
of a Liquid Meniscus,” by G. De-
bregeas and F. Brochard-Wyart.
In Journal of Colloid and Inter-
face Science, 190, p. 134 (1997),
© 2001 by Academic Press. Re-
produced by permission.)

dominate. The opposite case, when » > k™!, is referred to as the “gravity”

The distance x~* can also be thought of as a screening length. If one per-
turbs an initially horizontal liquid surface by placing on it a small floating
object (Figure 2.2a), the perturbation induced on the surface dies out in a
distance k2.

It is convenient to consider the one-dimensional situation illustrated in
Figure 2.2b. Here, the perturbing object is a solid vertical wall located at
& = 0. In the vicinity of the wall, the surface of a liquid is no longer flat
but, instead, rises to a height 2(z). Assume that the height z remains small
(Whll'-'h 18 always true.far enough from the wall, when kz > 1). The local

(a) (b)

f‘IGURE 2.2 A gmall floating object (&) or a wall (b) perturbs the surface of the
lqm!:lf_over’n distance ™ called the “capillary length.”
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curvature is then simply ~%§, and Laplace’s equation dictates that the
pressure immediately under the surface be

9%z
DA = Patm — 7@ (2.2)

where pqtr, is the atmospheric pressure. At the same time, the pressure
must also conform to the laws of hydrostatics, that is to say,

DA = Patm — PI%. (23)

Equating these last two equations yields

02z
Vo2 = P9 (2.4)
or, equivalently,
5%z
522 = K2z. (2.5)

The solutions to this last equation are of the form z = 2y exp(+&z). In
the problem at hand, we are restricted to z — 0 when z — co. Therefore,
we retain only the exponentially decaying solution:

z = zp - exp(—Kz) (2.6)

Conclusion. Surface perturbations decay ezponentially with distance
with a characteristic length ™!, which is the capillary length. In the imme-
diate vicinity of the wall, the exact solution is more complicated because the
height z is no longer necessarily small. This case will be discussed shortly
(section 2.3).

2.2 Drops and Puddles in the Partial
Wetting Regime

2.2.1 The Shape of Drops

Imagine that we place drops of increasing sizes on a piece of silanized glass
or on a horizontal sheet of plastic. The largest drops tend to flatten under
the influence of gravity (Figure 2.3).

We have seen in the previous chapter that, when the spreading parameter
S is negative (partial wetting regime), a drop of liquid deposited on a
horizontal substrate exhibits a contact angle 8z determined by Young’s
law. The shape of the drop will therefore change from perfectly spherical
to almost completely flat depending on whether its radius R is small or
large compared to the capillary length = .2
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k™1
—

2
FIGURE 2.3. Water drops of increasing size on a sheet of plastic. Gravity causes
the largest drops to flatten.

9.2.2 Droplets (R < k1)

For small drops of radius less than k™!, the capillary forces are the only ones
to come.into play. In accordance with Laplace’s equation, their curvature
must be constant. Therefore, a drop deposited on a horizontal surface takes
on the shape of a spherical cap whose edges intersect the substrate at angle
0r. Measuring that angle enables us to determine the spreading parameter
(negative inthe present case) through the expression S = v - (cosfg — 1).

Drops Deposited on Dirty Surfaces. We have implicitly assumed an ideal
surface. On a real surface, the contact angle of a drop is often slightly de-
pendent on the preparation conditions. Its value lies between two limits 8 4
(larger) and O (smaller). The hysteresis of the contact angle, determined
via the force 6 = - (cosfr ~ cosf4), will be discussed in chapter 3. The
difference 64 — 0 is a measure of the state of cleanliness and roughness of
a surface. It is used as a test in the automobile industry to ensure that sur-
faces are perfectly clean before applying paint. 4 — 6 must be sufficiently
small for good adhesion.

2.2.8 Heavy Drops (R> k1)

For large drops whose radius exceeds k™1, gravitational effects dominate. A
drop is flattened by gravity. At equilibrium, it takes on the shape of a liquid
pancake of thickness e. The value of e can be calculated by expressing the
equilibrium of the horizontal forces acting on a portion of the liquid.

The forces involved are shown in Figure 2.4. They are of two types:

1. Surface forces, which add up to vso — (v + vs),
2. Hyfirostatic pressure P, integrated over the entire thickness of the liquid,
which amounts to P — foe pg(e — 2)dz = '21‘»0962'
} The equilibrium of forces per unit length can be expressed by the equa-
ion
1 5

oPge” +7s0 ~ (Y +7s1) =0 | (27)
which leads to:

1
S = —Epgez. A (2.8)
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FIGURE 2.4. Equilibrium of the forces (per unit length of the line of contact)
acting on the edge of a puddle. P = pge? /2 is the hydrostatic pressure.

Young’s law, which describes the equilibrium of forces acting on the line
of contact, implies that vso — (ycosfg + vsr) = 0. Therefore,

1
v-(1—cosfg) = Epgez. (2.9)

From the preceding equation, the thickness e of a puddle can be recast
in terms of the capillary length:

e =2k !sin (G?E) . (2.10)

When 0 < 1, the thickness simplifies to e = k" 105.

Alternatively, the thickness e can be calculated by minimizing the energy
F of the puddle. If the surface area A of the drop is very large (VA > &~ 1),
it is legitimate to neglect the energy associated with the edges. The energy
of the drop can then be written as

1
F,=-SA+ 5,ogeZA. (2.11)
The procedure consists in minimizing the energy F, while keeping the

volume ) = Ae constant, which leads straight back to equation (2.8).

The Housewife Problem: A bucket containing 6 liters of water is
emptied onto the ground. Calculate the wet surface area A for 8 = 180°
and for g = 1°. (Answers: 1 m?; 120 m2.)

Detailed Profile

To calculate the profile of a drop near its edge, one can still express the
equilibrium of the horizontal forces acting on a portion of the drop near
the boundary (Figure 2.4):

Yso + P =ycos + sz, (2.12)

where P = foz pg(e — %) dz = pg(ez — 223) is the hydrostatic contribution
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exerted on a slice of liquid at height z. One can write cos@ in terms of
5 = tanf. The relevant expression is cos = 1/+/1 + #2. This approach pro-
duces a differential equation that, after integration, yields the profile z(z).
With the help of this detailed profile, one can calculate the border energy
per unit length, called the line tension <, which has been neglected in

equation (2.11).

2.2.44 Ezperimental Techniques for Characterizing Drops

The goal is to measure all the relevant parameters that characterize the
process of spreading, that is to say, the time evolution of a drop and its
final steady state. The techniques used generally involve an optical setup
and a camera to record the process continuously in real time. We will now
review several basic methods used to determine specific parameters, such
as the contact angle, the thickness of a liquid film, and the radius of a drop.

Measuring the Contact Angle of a Liquid on a Solid

Drop Acting as a “Mirror” (1° < § < 45°). This measurement is based on
optical reflectometry.® The drop (with a typical diameter d of 5 mm) is used
as a convex mirror whose edges contact the horizontal support with an angle
¢ to be determined. When illuminated by a collimated laser beam (diam-
eter of the order of 5 mm) normally incident on the substrate, the drop
reflects a cone of light whose total angular’divergence is 40 (Figure 2.5a).
A simple method is to place a horizontal screen (translucent glass or wax
paper) at a height ~ above the substrate and to measure the diameter D

Laser beam
a /
D
E Octane
D
20 B Nonane
Decane

NN\

(b)

FIGURE 2.5. (2) Drop illuminated by a collimated light beam. The drop reflects
a cone of light that can be observed on a translucent screen E placed at a height
h above the substrate. (b) Record of the diameter of a laser beam reflected by a
drop of alkane deposited on silanized glass.
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FIGURE 2.11. Apparatus for measuring the radius of a drop as a function of time.
r g

the reaction at the upper contact even provides an exceller;,t'/hleaSLlrement
accuracy, which is limited only by the resolution of the micrometer, or
about 10 pm. Contact with the solid surface is signaled by the bending of
the needle as its tip touches the solid. This bending is'detected through the
sudden and drastic change in the diffraction pattérn of a collimated laser
beam skimming over the straight needle.® Accuracy is again 10 um.

This technique is able to determine liquid film thicknesses over a wide
range (preferably more than 100 um). It works equally well for opaque and
transparent liquids. In the case of fluids (viscosity 7 of the order of one
mPa-s), the relaxation time following contact is quite short and measure-
ments can be repeated in rapid succession, making it possible to follow the
dynamical evolution of a drop ,in'/ the process of spreading.

Measuring the Radius of a Drop

A simple technique for _méasuring the radius of a drop is to image it on a
screen with a video cdmera equipped with a zoom lens (using a magnifi-
cation of typically 20x) (Figure 2.11). Lengths can be measured with an
accuracy of about 100 um,

For surfacqs’/exhibiting wetting hysteresis, the advancing angle 6, and
the recedir}g"'angle @ r, to be studied in chapter 3, are measured using the
optical techniques just described. The liquid is deposited on a surface placed
within &n enclosed sample chamber (to curb evaporation) by means of a
syri/née. The angle 4 is measured as the liquid is inserted; the angle 6y is
measured as the liquid is withdrawn.

2.3 Menisci

2.8.1 Characteristic Size

A liquid is normally contained in a solid vessel with vertical walls. The
surface of the liquid is horizontal because of gravity, except near the walls
where Young’s relation [equation (1.23)] induces a distortion. When the
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liquid is of the mostly wetting type (characterized by 6 < 90°), it rises
slightly near the walls, whereas when it is non-wetting (65 > 90°), it drops.
The meniscus (from the Greek méniskos, meaning “crescent”) is the region
where the liquid surface is curved.

The shape of the meniscus is determined by the equilibrium between the
capillary forces (responsible for the curvature) and gravity forces (which
oppose it). One can invoke the following pressure argument: Immediately
underneath the surface, Laplace’s pressure [equation (1.6)] is equal to the
hydrostatic pressure. This can be written as

Po+ = Py — pgz (2.14)

T
R(z)
where z is the height of the surface above the level of the bath, Py is the
outer pressure, and R™'(z) is the curvature at a particular point. This
expression shows that for z > 0 (ascending meniscus), the curvature is neg-
ative, which does indeed correspond to a liquid under suction. Since the
height 2 varies from point to point along the interface from 0 (the altitude
of the bath proper) to A at the wall, so does the radius of curvature of the
interface. As a result, the meniscus is not shaped like a circle. Equation
(2.14) simplifies to

—Rz=kKr"? (2.15)

where, again, we run into the capillary length x=! = y/v/pg. Ordinary ex-
perience indicates that the typical:dimension of the meniscus is of the order
of a millimeter. Note, however, that as told before the capillary length can
be much larger if the densities of the liquid and the fluid above it are com-
parable. In this case, the density p of the liquid, which enters the expression
of the capillary length, should be replaced by the difference Ap between
the densities of the two fluids. Likewise, in a reduced gravity environment
(9 — 0), the capillary length diverges, in which case the meniscus extends
over the entire surface of the bath, as illustrated in Figure 2.12. Some peo-
ple believe that without gravity a wetting liquid would simply float out
of a glass; in actuality, it experiences an underpressure because of surface
tension and has no reason whatsoever to escape.

As a general rule, the characteristic size of a meniscus is either the cap-
illary length £~ or the size [ of the vessel itself, whichever is smaller.

FIGURE 2.12. Meniscus in a glass of water in reduced gravity.
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2.3.2 Shape of a Meniscus Facing a Vertical Plate

We study here the meniscus of a liquid faciug a vertical plate, shown in
Figure 2.13. We now return to the general equation (2.15). Here one of the
curvature radius is infinite. The curvature C' = 1/R can be expressed as

1 ag

o 2.16

R ds (2:16)
where 6§ is the angle between the tangent to the curve at a particular point
and the vertical direction, and s is the curvilinear coordinate.

Switching to a Cartesian coordinate system in the (z,y) plane (Fig-

ure 2.13), equation (2.16) translates to

d?z

1 iz
— =— —YrR (2.17)

14 (&

dx
Equation (2.17) is a second-order differential equation for the profile z(x)
of the meniscus, subject to the appropriate boundary conditions. A first

N

N

N

NE

FIGURE 2.13. Menisci for a liquid that is (a) attracted to or (b) repelled by
a vertical wall. Case (a) corresponds to #5 < m/2 and case (b) to non-wetting
(0r > m/2). The protile z(x) goes exponentially to zero when xz > 1 [equation

(2.6)].
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integration, together with the boundary condition 42 = z = 0 when & — 00
(where the profile merges with the horizontal surface of the bath), yields

1 22

dz\ 2 1/2:1_§F'
1
(@)

The same result can be derived independently without any calculus by
expressing the equilibrium of the forces acting a portion of the meniscus
extending between z and infinity. The pertinent contributions are the cap-
illary forces and the forces associated with the hydrostatic pressure Py out-
side the liquid and P, = Py — pgZ inside the liquid. The resultant pressure
force P = foz pgzdz = % pgz? exerts itself in the direction z < 0. The argu-
ment is similar to the one used in connection with Figure 2.3, even though
the substrate'is now vertical. In horizontal projection, the equilibrium can
be written as

(2.18)

1
~ysin 6 + -2-pgz2 = # (2.19)

which is but a slightly disguised version of Equation (2.18).
Equation (2.19) allows us to calculate the height A to which the meniscus
rises. At 'z = h, Young’s condition gives § = 0, which leads to

=v2. k71 (1 —sinfg)"/2 (2.20)

The maximum height is reached when 6 = 0, at which point h = v/2x~1.
When observing water on clean glass, the height of the meniscus turns out
to be 4 mm, which gives direct information on the value of the capillary
length.

Remark. Equation 2.20 can be derived more directly from equations (2.14)
and (2.16) leading to v d8/ds = pgz. With ds = —dz/ cos 8, we get pgz dz =
—~cos b d9 By 1nterpretat10n with the boundary condition 8 = g for 2=
0, we get 2,ogz = 7(1 — sin#). The height ‘h of the meniscus is the value
of z for 8 = 0.

To obtain an explicit relation for the profile z(z), one must integrate
equation (2.18) once more. The result is rather cumbersome and uninspir-

ing:
—1 2 1/2
T — o=k 'cosh™! <2f§ ) — 2,71 (1 S > (2.21)

z 4k—2
where g is the distance such that (2.21) gives z = h at z = 0 (i.e., at the
wall).

Finally, the equilibrium of forces over the entire meniscus in wvertical
projection is

~ycosbg = /pgz(a:) dz. | (2.22)
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In the partial wetting regime, v cos g = vso — vsr.. This shows that yso —
vsr, is the force per unit length that supports the weight of the meniscus
Wineniscus (also expressed per unit length). In the total wetting regime,
the meniscus connects smoothly with the wall with an angle g = 0. The
weight of the meniscus is therefore Wieniscus = ¥ < ¥so0 — ¥sr.- The total
force yso — ysr offsets not only the weight of the meniscus (), but also
that of the wetting film rising high above the liquid bath (the existence of
this film will be discussed in more detail later). In summary,

In total wetting regime: In pqrtz’al wetling regime:
¥ = Wineniscus (223) Yso _7SL = Wneniscus (224)
S = Waim No Film

2.8.3 Meniscus on a Vertical Fiber

We have already touched on this case in chapter 1 [section (1.6)] as an
example of a surface with zero curvature. We can carry the analysis further
by including the range of the perturbation created on the liquid surface
far from the fiber, where gravity is no longer negligible. If the solid is a
capillary rod of radius & less than the capillary length !, experiments
show that the height of the meniscus is clearly smaller than that predicted
by equation (2.20), because it must join with the surface of the fiber, which
has a high curvature. ’

As in the case of a planar wall, the profile of the interface can be calcu-
lated by equating the Laplace and hydrostatic pressures. However, because
of the additional curvature of the fiber, equation (2.14) must be modified to

Py~ (3}7 + R%) é-Po ~ pgz (2.25)
where R, and Rj are the two principal radii of curvature at any point on
the interface. We could, of course, integrate equation (2.25) numerically.
Instead, we will try to give a more physical picture of what goes on. Near
the line of contact, curvatures are of the order of b~!. In other words, they
are much more dominant here than in the planar case, when they were of
the order of k. Each curvature term here far exceeds the hydrostatic term
in equation (2.25), to the point that gravity can be neglected altogether.
This approximation is valid in the vicinity of the fiber only, at distances
r < K~ 1. This constitutes an a posteriori justification of the argument used
in section 1.1.6. The equation of the meniscus is then that of a surface with
zero curvature
1 1

=+ =0 (2.26)
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consistent with what anyone can observe when turning a water faucet
on. The water emerges as a laminar flow from /tjle‘falcet but gets com-
pletely fragmented by the time it splashes/a/ga/lnst the sink (the best way
to verify this fact is to place your hand in the lower part of the stream
and clearly feel individual drops-striking your skin). There also exists a
viscous version of the czﬁcu’{a/tion applicable to the case of highly viscous
fluids (or fluids surreunded by another, highly viscous, fluid).%*® This
can be used to-advantage for measuring the surface tension of molten
polymers;which can be deduced from the dynamical properties of the
instability.

5.3 Forced Wetting

When trying to coat a solid with a liquid, a time-honored practice is to
help the process along with some kind of movement. We all know that a
paintbrush wiped against a wall or a piece of paper leaves a trace of liquid
in its wake. Likewise, most industrial processes intended to deposit a fluid
layer rely on a relative motion between solid and fluid. As an example,
to apply a photographic emulsion on a suitable supporting medium, the
standard method is to immerse a plastic strip in an emulsion bath and
take it out gently so that the liquid “sticks” to the plastic. In any event, it
is important to know the parameters that determine the thickness of the
coating, which must be controlled precisely in many cases. This section is
devoted to this particular problem. We shall confine our attention here to
wetting liquids (the case of partial wetting will be discussed in chapter 6).

5.3.1 The Landau-Levich-Derjaguin Model
(and Variant Thereof)

Consider first a solid plate partially immersed in a liquid, as we are about to
pull it out. If the liquid is wetting (S > 0), the surface of the bath connects
with the solid with a zero angle, which creates a meniscus in the vicinity
of the line of contact. We have already discussed in chapter 2 some of the
characteristics of this meniscus, including its height, which is of the order
of the capillary length k™! [equation (2.20)].

Figure 5.10 depicts what happens when the plate is being slowly drawn
out of the bath. The upper part of the meniscus (shown as a dotted line)
finds itself perturbed by the liquid film dragged along by the plate. The
junction between the static meniscus and the film being dragged along
is referred to as the dynamical meniscus, and its length—unknown as of
yet—is denoted I.

If the film is being pulled slowly enough, the film it drags along is thin
since it would not exist at all absent the drag effect (ignoring the possible
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FIGURE 5.10. Plate being pulled out of a VT
pool of wetting liquid. The plate drags a :
liquid film along with it.

existence of a microscopic wetting film). Therefore, the key role is played
by the interfaces:

1. The solid/liquid interface, because the associated boundary condition is
actually responsible for the liquid coating. By virtue of its viscosity, the
liquid in the vicinity of the solid moves at the same velocity as the solid
and is being dragged by it, ‘

2. The liquid/vapor interface, which is being distorted by the film despite
the opposing action of the surface tension of the liquid. Of course, gravity
causes the film to flow downwards as well and is therefore also opposed
to its movement, although we will see that, when the so-called capil-
lary number is small, the contribution of this force is negligible when
compared to that of the surface tension.

In short, viscosity and capillarity play opposing roles. The number that
compares these two forces (written per unit length) is called the capillary
number, denoted Ca:

(5.26)

This number is dimensionless, unlike the thickness itself. Therefore, there
must be a normalizing length that is naturally associated with the menis-
cus from which the film originates. It happens to be the capillary length.
Accordingly, the thickness is expected to be of the form e = x~! f(Ca).

What follows is the argument originally proposed by Landau, Levich,
and Derjaguin (LLD for short) in 1942-1943 to evaluate the thickness of
the coating and to specify the functional form of f(Ca). We present the
LLD calculation in a simplified form. Here again the interested reader is
encouraged to read the original papers, which qualify as veritable jewels in
the field of interfacial hydrodynamics.!4 15

In steady state and for low Reynolds numbers (when viscosity dominates
over inertia), we can legitimately work in the lubrication approximation.,
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Within the dynamical meniscus, the velocity of the liquid and its thickness
are of orders magnitude V and e, respectively. The viscous force can there-
fore be written dimensionally as nV/e?®. The capillary force, on the other
hand, is related to the gradient of the curvature of the dynamical menis-
cus [the curvature of the film makes a transition from that of the static
meniscus to the curvature (equal to zero) of the film being dragged along].
Since the static meniscus is hardly perturbed at all by the flow (LLD hy-
pothesis), the curvature at the point where the static meniscus matches
the dynamical one is essentially that which exists at the top of the static
meniscus. In other words, it is of the order of x, the inverse of the capillary
length [equation (2.15)]. The gradient of the Laplace pressure associated
with this curvature gradient is then equal to yx/l.
Equilibrium between these two forces is written dimensionally as

oK
— R -, 5.27
ez 1 (5:27)
This equation has two unknowns (e and [), and finding the solution
requires an additional equation. The second equation derived by LLD ex-
presses the matching between the static and the dynamical meniscus. We
have already pointed out that the order of magnitude of the curvature is .
The dynamical meniscus is nearly flat since it merges with a planar film.
Therefore, its curvature can be taken to be equal to the second derivative of
the profile e(z), which is dimensionally given by €/1%. These two curvatures
have the same sign (both regions are in an underpressure condition with
respect to the atmosphere). Setting-them equal leads to
e
l—2' ~ K. (5.28)
The extent of the dynamical meniscus therefore turns out to be the
geometric mean of the other two relevant lengths in the problem, namely,

the thickness e and the capillary length s~ 1:

l x Vex™1 (5.29)

which “happily” reduces to zero when the thickness e vanishes, in other
words, when one stops pulling the plate. Equation (5.29) enables us to
eliminate [ in equation (5.27), which yields the law describing the thickness
of the coating (known as the LLD law):

| e oc k1Ca2/3 I (5.30)

With the help of equations (5.29) and (5.30), one can also derive the
length of the dynamical meniscus:

l x k~1Cal/3, © (5.31)
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In their rigorous calculations, LLD were able to evaluate the numerical
coefficient in equation (5.30). Its turns out to be equal to 0.94. The calcu-
lation is done by writing the matching condition between the two menisci
based on the mathematical expression for the profile of the free interface. At
any rate, the underlying principle remains the same as before in the sense
that the curvatures of both menisci are evaluated asymptotically. The cur-
vature of the static meniscus is calculated at its summit (even though the
actual matching may occur slightly above), while that of the dynamical
meniscus is calculated in the limit when its thickness is large in compar-
ison with e (it can be shown by numerical calculation that the matching
takes place over a thickness of the order of 10e). A prerequisite for the
previous argument to be valid is that the static and dynamical menisci
differ only by a slight perturbation, which can be written in terms of their
respective lengths [ < 1. Based on equation (5.31), we conclude that the
LLD result holds as long as

Cax1 (5.32)

which amounts to restricting the velocity to low values (more rigorously, the
requirement is Ca'/® < 1, which is more restrictive). In practice, the LLD
law will be valid for capillary numbers less than 1073, Another requirement
is that the flow be nearly parallel to the plate, so that the velocity vector
can be taken equal to it scalar component in the direction of the plate.
This imposes e < [. In light of equations (5.29) and (5.30), this condition
is completely equivalent to the one spelled out previously.

It becomes clear that the LLD model adequately describes situations in
which the capillary number is low. When we drink a glass of water, for
instance, the velocity at which the glass is emptied is of the order of one
cm/s, and the capillary number is 10~4. The LLD model is then suitable
for evaluating the thickness of the residual film. The result is about 6
pm. When you scramble out of your bath, perhaps to answer an untimely
phone call, V is of the order of 1 m/s (the validity of the LLD model is
then borderline), in which case you are covered by a thickness of about
150 um of water. On an average adult human body (about 1.7 m?), this
corresponds to a weight of about 250 g.

When the capillary number approaches 1, both the thickness and the
extent of the dynamical meniscus tend toward the capillary length. Der-
jaguin has shown that gravity then becomes the dominant force, and limits
the thickness of the film. Up to this point, we have neglected the effect of
gravity in comparison to that of surface of tension. The condition for this
approximation to hold is pg < yk/l (gravity negligible when compared
to the gradient of the Laplace pressure). Again, this leads to the condi-
tion | < x~!, which is equivalent to the criterion (5.32). When Ca exceeds
unity, the LLD visco-capillary regime is replaced by a visco-gravitational
one. In this case, viscous and gravitational forces balance each other out,
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and equation (5.27) must be rewritten as

%4
72—2 ~ pg. (5.33)

From this we easily derive Derjaguin’s law:8

l e~ Kk 1Cal’? I (5.34)

which does indeed merge seamlessly with the LLD law [equation (5.30)]
when Ca = 1, in which case the thickness of the deposited liquid layer is
equal to the capillary length. Equation (5.34) can be derived from an even
more direct argument. Since a gravity regime takes the place of a capillary
regime, Derjaguin looked for a law of the form x~!Ca™, where the exponent
n must be such as to make the latter expression independent of «.1% This
happens only when n =1/2.

5.8.2 Soapy Liquids

We have assumed up to now that the liquid being dragged is pure. That
is rarely the case in real life. In most practical situations, the liquids one
deals with are dispersed mixtures (suspensions or emulsions) containing
surfactants (a detailed discussion of surfactants is deferred until chapter 8).
Even in the supposedly “simple” case of soap water, the problem proves
far more difficult than in the case of pure water. We will see later on that
the main effect of a surfactant is to lower the surface tension of water
(typically by a factor of 2). This has repercussions on the capillary length
as well as on the capillary number, both of which intervene in the LLD
law. But the primary difficulty has to do with the fact that when a solid
is being pulled out of ‘a liquid, the surface gets diluted, which creates a
concentration gradient of surfactant at the surface, and thus a gradient of
surface tension. The physical consequence is a certain “stiffening” of the
free surface, which causes it to behave somewhat like a solid. The surface
can become the seat of a viscous stress, which can be balanced by the
gradient in surface tension.

"When a plate is pulled out of soap water, it is as though two interfaces (as
opposed to just one as in the case of pure water) drag the liquid along with
them, which results in a film about twice as thick as it otherwise would
be.!” The precise value of the extra thickness is difficult to calculate. It
has to depend on the surfactant concentration since the behavior of a pure
liquid must be recovered at very low concentrations. Nevertheless, it is
useful to hold on to the qualitative notion of a soapy interface endowed
with drawing power, that is to say, with the ability to drag a liquid along
with it, very much as a solid would. As it turns out, there is in this respect a



