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Quantitative imaging (QI) techniques are a general class of optically
based laboratory measurement techniques used in the field of experi-
mental fluid mechanics, which have seen rapid growth over the last two
decades. They are particularly well suited for the study of wavy fluid
flows which are characterized by unsteady free surfaces and internal mo-
tions. This paper presents an overview of QI techniques in general, with
a particular focus on particle image velocimetry (PIV). We present QI
methods in the context of the broader fields of pattern recognition and
image processing techniques, which are currently used in a wide range of
fields. In this review QI methods and their fundamentals are described
in detail and recent developments, targeted at increasing accuracy and
resolution, are described and put into perspective. More specifically we
identify QI techniques as a digital data analysis (through software) set
of issues built upon general principles of pattern matching. Through-
out the paper we address the aspects that are particular to wavy flows
although these issues can be argued to be important for any unsteady
fluid flow of interest, e.g. turbulence. This review article thus serves as
a general reference for the neophyte and experienced fluid mechanics
experimentalist.

1. Introduction

Perhaps the greatest challenge of making measurements in wavy free sur-
face flows is measuring flow field characteristics near the dynamically mov-
ing free surface — i.e., between the trough and crest. Quantitative imaging
(QI) techniques are a robust solution to this problem, as demonstrated in
Fig. 1, and hence QT techniques are becoming the methods of choice when
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Fig. 1. Incipient shoaling breaking wave. Left image with every 4*" determined vector
shown in each coordinate direction; right image is a magnified subregion of left image
with every 2"9 determined vector in each coordinate direction.

attempting to interrogate laboratory wavy free surface flows. An impor-
tant aspect to the emerging dominance of QI techniques is their ability to
capture whole field properties — e.g., #(x, z) (the velocity field), wy(z, z)
(the vorticity field), uw/w/(z,z) (the Reynolds stress field), and ¢(z, z) (the
turbulent dissipation field). While many wavy free surface flows are pe-
riodic the reality is that due to reflections and to the difference between
the phase velocity and the energy propagation velocity (group velocity)
flows are often quasi-periodic at best. Researchers interested in spatial gra-
dients have traditionally attempted to employ single-point measurement
technologies at two or more spatial locations but on different experimental
runs. Variability among experimental runs will lead to variability of in-
duced rms velocities which is often on the order of the turbulence intensity
itself making it extremely challenging to employ data from different runs
for the determination of gradients. While QI techniques do not eliminate
wave-to-wave variability they do capture a spatial field under the identi-
cal free surface conditions allowing accurate instantaneous gradients to be
determined. Presently the most cited reason to work with single-point mea-
surement technologies is a need for improved temporal resolution relative
to QI techniques. However, over the last decade computers and image cap-
ture technologies have progressed sufficiently that QI techniques are now
capable of reasonably high temporal as well as spatial resolutions, further
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propelling the popularity of QI techniques.

A challenge for these techniques is optical access, particularly for exist-
ing facilities that were not designed with PIV in mind. Recent advances with
boroscopes and index-of-refraction material matching, however, demon-
strate that optical access issues can usually be overcome with a bit of
ingenuity.

In order to visualize some of the methods presented in this paper, we
have chosen to use the free, open-source PIV program MatPIV! and two
example images taken from the paper by Jensen et al.2.

This paper is organized as follows. Section 2 presents a brief introduction
to some of the more commonly used QI techniques in the perspective of
pattern matching. Section 3 is written to provide a basic overview of the
fundamentals of Particle Image Velocimetry (PIV), while section 4 targets
the more fundamental aspects of the technique. Section 5 gives a brief
overview of Particle Tracking Velocimetry (PTV) and section 6 focuses on
higher order measurements from velocity fields. Finally, Section 7 contains
a short conclusion. and also provides an overview of a few other areas where
the same principles of pattern matching are applied.

2. Quantitative Imaging Techniques

QI techniques can be broken immediately into several fundamentally differ-
ent types of techniques — flows seeded with discrete particles, flows seeded
with continuous tracers (e.g., fluorescent dyes) and unseeded flows (to look
at density differences). The former are generally employed for the determi-
nation of velocity while the second and third are generally used to determine
a scalar field quantity (e.g., concentration or temperature). The literature is
rife with various acronyms for these types of techniques and we will briefly
introduce some of the more popular QI nomenclature here.

2.1. Particle Based QI Techniques

e Particle Streak Velocimetry (PSV) -A general class of techniques
where the image exposure time is long relative to the time a particle
occupies a point in space. The result 1s images of particle streaks.
The length of the streak can be calculated to determine the velocity
based on the known exposure time.

o Laser Speckle Velocimetry (LSV) -A general class of techniques
where the seeding density is sufficiently high that an image cap-
tures predominantly overlapping and interfering particle images,
which can be thought of as an intensity texture or speckle field.
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Essentially no discrete particle images are seen. The velocity is ex-
tracted by correlating the speckle pattern in a small subregion with
that in another subregion, either optically (Young’s fringe analysis)
or digitally (auto or cross correlation analysis).

e Particle Image Velocimetry (PIV) -This term is sometimes taken to
mean the entire broad class of discrete particle based techniques,
however, its preferred definition is a general class of techniques
where the seeding density is moderate such that the nearest neigh-
bor distance of particle images is on the order of a few to perhaps
ten times the particle diameter ensuring that all small subregions
have several distinct discretely imaged particles within them and
relatively few particle images overlap. The velocity field can be ex-
tracted in a number of ways, the most popular of which are digitally
via auto or cross correlation analysis.

o Particle Tracking Velocimetry (PTV) A general class of techniques
where the seeding density is sufficiently low that an image captures
predominantly non-overlapping or interfering particle images and
the velocity can be extracted by tracking the motion of individual
particles over known times.

Other common names for particle based techniques include: pulsed light
velocimetry (PLV), particle image displacement velocimetry (PIDV), par-
ticle displacement velocimetry (PDV), digital particle image velocimetry
(DPIV), digital particle tracking velocimetry (DPTV), correlation image
velocimetry (CIV), spatial correlation velocimetry (SCV) and large-scale
particle image velocimetry (LSPIV). We note that three dimensional QI
techniques have seen rapid growth recently and are based on one of four
fundamental approaches: holography?, stereoscopic imaging with multi-

ple cameras?®, depth-of-field with a single camera®

, and scanning a light
sheet through a volume®. We will restrict our review of QI techniques to
two-dimensional implementations. Ron Adrian, in a survey through 19957,
showed that the number of publications per year on particle based QI tech-
niques grew exponentially. All indications are that the trend continues.

The common principle to all particle based techniques is that the in-
stantaneous fluid velocities can be measured by recording the position of
images produced by small tracer particles, suspended in the fluid, at suc-
cessive instants in time. The techniques listed above, as well as others, fall
into two broad categories, each with different development paths: PIV and
PTV.
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LSV and PIV are different operating modes of the same technique. The
velocity field is generally determined on an interrogation grid and each
velocity vector is the average velocity over many tracers contained in a
small volume of fluid. These techniques have their roots in solid mechanics.
They were originally used to determine the in-plane displacement and strain
of solids with diffusively scattering surfaces.

PTV and PSV can also be thought of as different operating modes of
the same technique. In contrast to PIV, velocity vectors are determined
from the individual particle images or streaks produced by a single particle
at random locations. These techniques have their roots in the field of flow
visualization; particle streak photography and stroboscopic photography.
Prandtl® was an early developer of particle tracking techniques, although
not the first.

For the remainder of this manuscript we will use PIV to indicate the
class of particle based QI techniques where the velocity is extracted by
looking at the movement of an ensemble of particle images. PTV will be
used to indicate the class of particle based QI techniques where the velocity
is extracted by looking at the movement of a single particle image.

2.2. Tracerless QI Techniques

This class of techniques relies on measuring either the concentration or
displacement of a chemical tracer substance added to the flow.

o Laser induced fluorescence (LIF) -A general class of techniques
where a flow is seeded with a dilute fluorescent chemical tracer that
will fluoresce proportionally with its local concentration. The local
concentration field is often the objective of LIF measurements but
careful choice of dye can allow the measurement of temperature,
and pH as well as other scalar properties of the flow.

o Scalar image velocimetry (SIV) -Really a specific analysis applied to
LIF images where the gradient in intensity information recorded in
images is treated like speckle in LSV and correlation based analysis

is used to extract velocity field information.

Another common name for chemical tracer based QI techniques is planar
laser induced fluorescence (PLIF). As with the particle based techniques we
note that three dimensional scalar QI techniques have seen growth recently

and are generally based on scanning a laser light sheet through a volume®19,
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2.3. Other QI techniques

Other QI techniques do exist that do not rely on the use of passive tracers.
In fact some of the oldest flow visualization'' techniques do not, such as
shadowgraphy, schlieren imaging and the Mach-Zendner Interferometer. To-
day many researchers utilize so-called Synthetic Schlieren or Quantitative
Shadowgraph techniques using digital cameras and the very same principles
of pattern matching as are used in for example Particle Image Velocimetry.

We shall briefly return to this aspect in section 7.

2.4. QI Techniques — Image Processing and Pattern
Recognition by a Different Name

Many newcomers to PIV in particular, and QI techniques in general, are
often confused by the relatively large number of details that need to be
addressed in order to apply these techniques to real fluid flow experiments.
One of our primary goals in this review is to focus on the foundations
upon which these techniques are built. PIV in particular has received a
lot of attention within the last 10 to 15 years. As implied in section 2.1,
authors often use different nomenclature for what are essentially identical
approaches, perhaps with subtle implementation differences. We would like
to stress that PIV relies on image processing and pattern recognition anal-
ysis and as such it should more properly be viewed as an interdisciplinary
field between the experimental fluid mechanics research community and the
image processing and pattern recognition (IP&PR) research communities.
QI techniques are widely known and used by TP&PR, researchers and in
fact, experimental fluid mechanicians often re-invent analysis techniques
as they ignore the previous efforts documented in the IP&PR literature.
The basics for understanding PTIV and pattern recognition may actually
be found in most introductory books on image processing!?. The details of
applying QI techniques to fluid flows essentially consists of imaging a tem-
porally and spatially varying pattern within the flow, generally by adding
discrete tracer particles although we should not feel restricted to this par-
ticular case, illuminating the flow in a nearly two-dimensional slice as the
majority of imaging devices capture two-dimensional information, and us-
ing IP&PR algorithms to extract the displacement in a known time of the
imaged tracers. The entire QI measurement process can be divided into two
fundamental components:

(1) ahardware problem of experimental techniques, including illumination,
seeding and image recording, and
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(2) an analysis (software) problem of applying IP&PR techniques to extract
displacement or other information of interest from the images.

The latter point should be recognized as the fundamental application of
QI methods, while the former is merely an experimental problem (which in
many cases is the hardest part as the majority of QI experimentalists will
agree the challenge is getting ‘good’ images — with ‘good’ images in hand it
is simply a matter of finding the right IP&PR technique to extract the in-
formation one desires!). Hence we contend that QI analysis in general, and
PIV as a particular example, is simply a sub-specialty within the broader
fields of TP&PR. For our purposes QI/PIV are defined as extracting infor-
mation of interest to fluid mechanicians by image processing and pattern
recognition means.

There are subtleties that we avoid by this generalization, but as a start-
ing point this view is effective and allows us to break down a large problem
into smaller, solvable pieces. We can view the more recent developments in
QI and PIV analysis techniques as emerging to solve problems that arise in
terms of accuracy and resolution in displacement estimates — to date the
fundamental quantity that the vast majority of QI velocimetry techniques
seek to extract from images.

The reader should note that applications of pattern matching is cur-
rently an area of active research. For example, looking at the motion picture
industry, the MPEG standards'® for sound and video compression, storage
and transfer are built on many of the same ideas we use in PIV. As an
example we can consider the DVD standard (MPEG2), where local motion
estimates are used in order to limit the amount of storage required. Instead
of saving every single frame in a movie, only a few (typically every 8-16
frames) are stored as full frames and only the local motion is stored for the
remaining images. There are many advances from this industry that have
yet to be applied to PIV. For example, we should be able to perform motion
estimation in the frequency domain within the PIV framework, much like is
done in image processing'?. In this way we should be able to avoid one fast
Fourier transform (FFT), and hence save about one-third of the calculation
time. In section 7 we present a brief overview of other research fields that
use pattern matching approaches.

3. PIV — a General Overview

Let us begin the description of the basics of PIV with a fluid flow that is
seeded with particles that can be considered passive tracers, perhaps be-

cause they are very small or if they are not so small they are near neutrally
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buoyant with respect to the flowing fluid. A light source, generally a laser
light source, is shaped with optical components into a light sheet to illumi-
nate the particles. The light sheet is quasi-two-dimensional in the sense that
it is thin in the direction orthogonal to the plane of motion that contains
the two components of velocity we are interested in measuring while it is
broad in the other two directions. An imaging device, in this case a digital
camera, is equipped with appropriate optics (e.g., a lens) to collect images
of the particles as they pass through the light sheet. In general, computer
controlled timing signals are sent to the digital camera and laser light source
(or the optical components that shape the light source into a light sheet)
to synchronize the light source to the camera such that discrete images of
particles (e.g., short time exposure images) are captured at desired times
within each collected image.

There are, of course, myriad ways in which particle images can be col-
lected, which fall into two general categories: the single exposure of multi-
ple images and the multi-exposure of single images. Again there are myriad
ways that the mean displacement of particles in any sub-region (henceforth
referred to as a subwindow) can be extracted from the images but the fun-
damental technique used in multi-exposed single images is autocorrelation
analysis while the fundamental technique used in single-exposed multiple
images is cross-correlation analysis. As cross-correlation analysis is more
straightforward as well as more accurate, we will restrict our discussion of
PIV basics to cross-correlation analysis of image pairs — that is the expo-
sure of two sequential images, each individually, specifically for analysis by
cross-correlation.

Let’s assume we have collected an image pair where the second image
was captured a known time, At, after the collection time of the first image.
The most straightforward approach to cross-correlation analysis is to define
a square subwindow with side length N = 2" where n is an integer. N is
typically taken as a power of 2 to take advantage of determining the cross-
correlation in the frequency domain via the fast Fourier transform (FFT).
As will be described later NV need not be restricted to these discrete values
but as this restriction is frequently employed we will assume it for now.
Let us assume a value of N = 32 and an image size of NR x NC' pixels
(an acronym for “picture element” that describes the smallest discrete unit
of scattered light intensity measured by a digital camera, sometimes also
referred to as a “pel”), where NR and NC' are the number of rows and
columns in the digital image, respectively. The simplest algorithm is to
divide each image of the pair into non-overlapping N x N subwindows and
to then perform the two-dimensional cross-correlation of each subwindow
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pair in the image pair. The cross-correlation function is defined as

N-—

ZZFIJZJFIJ(Z+5 j+1i) (1)
where R is the cyclic cross-correlation between subwindows 7, J in the first
image of the image pair (F') and the second image of the image pair (F"'),
1, J is the pixel location within subwindow 7,.J, and s,? is the 2-D cyclic
lag at which the cross-correlation is being computed. As indicated above R
is often calculated in the spectral domain and hence equation (1) can be
found as:

R(s,t) = F~ [7*{F1J’J}7{ 7+ s, j+1)}] (2)

where F and F~1! are the Fourier and inverse Fourier transform operators
and the star denotes complex conjugate. This basic feature is known as
the correlation theorem and can be found in most introductory level books
on image processing!2. For the purpose of visualization we consider the
example images in Fig. 2a—b, which shows the image pair F’ and F’ along
with the non-overlapping subwindow interrogation grid. Fig. 2c and 2d
shows subwindow I = 10,J = 15 for each image in the pair along with
panel e, which shows the resultant cyclic cross-correlation of this subwindow
pair. The correlation plane contains a peak which has a maximumat (s,?) =
(26, 25). The displacement is measured from the center of the correlation
plane to this peak. The integer displacement in our example is estimated
to be de = —6 and dy = —T.

Our simple introduction here raises several issues. First we note that
the maximum unambiguous displacement that can be resolved is N/2 pix-
els. If the displacement is larger than N/2 pixels (but less than N pixels,
so at least a few of the particles in the first image subwindow remain in
the second image subwindow) the correlation peak will alias to the location
—(N — &) where ¢ is the actual displacement. If the displacement is larger
than N pixels then R represents the cross-correlation of two uncorrelated
subwindows and the returned displacement estimate will be the result of
a random noise peak (i.e., the lag where a maximum number of particles
randomly align themselves between the two subwindows). Secondly, there
is an implicit assumption that the particles are being translated without
rotation or shear. If the particles undergo rotation and/or shear over the
time At between the capture of the two images then we must be concerned
about the effect of this rotation and/or shear on the existence of a usable
correlation peak. Thirdly, if the flow is not two-dimensional where the out-
of-plane motion is identically zero then there is a finite non-zero probability
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of a particle appearing in the first subwindow moving out of the light sheet
(and hence the image) by the time the second image is captured. This out-
of-plane motion can clearly lead to a measurement bias if the out-of-plane
motion is correlated to the velocity itself. And lastly, if N = 32 our maxi-
mum resolvable displacement is just 16 pixels. If we cannot extend this or
resolve the displacements to sub-pixel accuracy (e.g., estimate the location
of the correlation peak to fractional pixel values) then our maximum ac-
curacy is greater than 3% and our typical accuracy is considerably higher
than this. The above example also raises many other questions. With the
above primer in PIV as our starting point we will now turn to the details

of PIV.

4. PIV — the Fundamentals

There are essentially three typical implementations of PIV: single expo-
sure multiple image (cross-correlation based), double-exposure single image
(auto-correlation based) and multi-exposure single image (auto-correlation
based). There are several excellent fundamental references on QI techniques

in general and PIV techniques in particular and the reader should explore

these references for further details and perspectives on PIV!5:16,17,18,19

4.1. Displacement Estimates — Correlation Approaches

PIV techniques often rely on either auto or cross-correlation of subregions to
extract the mean displacement of particles contained within the subregion.
This methodology thus relies on estimating the auto or cross-covariance
function between the subregions to extract the displacement estimate. For
details on auto-correlation see Adrian?’ and Keane and Adrian®!. The co-
variance can be determined in a number of ways but it is generally de-

22 or the direct determination of

termined by either Fourier transforms
the two-dimensional covariance function?® (also known as the correlation
coefficient!?). The expected value of the cross-covariance R(s,t) (see equa-

tion 1) is shown by Westerweel'” to be

E{R(s,t)} = <1 - |Ni|> (1 - |]:7—|) R(s,1) (3)

and it is seen immediately to be biased (note the bias vanishes as N — o).
The bias occurs because the shift over (s,t) results in only a part of F’
correlating with F”.

Adrian?* reported this as the result of in-plane loss-of-pairs. In the pres-
ence of strong gradients the interpolation region contains more particle pairs
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Fig. 2. Images with superimposed non-overlapping grid. Black cells marks the sub-
windows shown in c) and d). Correlation plane shown in e). Upper arrow shows the
displacement. Lower arrows denote the displacements along each axis. Black vertical line
marks the center of the plane.

with small displacements, therefore, this is an under bias. From the above
equation it is apparent that the bias grows linearly with the shift size. West-
erweel shows that two conditions arise from looking at the variance of the
expected value of R. He finds that the noise in R due to random correlations
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is approximately a uniform random field and goes as 1/N2. The probability
that the noise peak is greater than the correlation peak grows for increasing
displacement (s,1).

4.1.1. Remouing Fffects of Correlation with the Mean Background

As shown by Adrian?*, the correlation between two images may be split
into 3 contributions:

(1) correlation of the mean background intensities, R.(s,1),
(2) correlation of the mean and the fluctuating intensities, R¢(s,t), and
(3) correlation of the fluctuating intensities, Ry(s,1).

In this way the correlation may be written as R = R, + Ry + Ry4. The
latter part of the correlation plane will contain the displacement peak, and
to avoid the other parts of the correlation, the mean is normally subtracted
from each image prior to computing the correlation. The process is shown
in Fig. 3 and also included in equation (4).

Fig. 3. Schematic figure showing the different contributions to the correlation plane.

4.1.2. Normalizing the Correlation Plane

In many cases it may be favorable to be able to evaluate the degree of
correlation between two subwindows. The maximal value in the correlation
plane is a relatively important parameter to estimate since it is a direct
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measure of the degree of match between the subwindow patterns. The ratio
between the highest peak and the rest of the correlation plane will further-
more provide information of the quality of the match compared to the noise.
In order to evaluate these quantities we need to normalize the correlation
in equation (1). One function that calculates a normalized correlation is the

full correlation coefficient or covariance function, which is defined as'?
R(s,1) 1 2 I (5) = FF"(i+ s, j+1) = P )

S = 379 P = p - =

» Y N2 ZZ Zj([FI(Z)J) _ F’]2[F”(2 +s, j+ t) _ F//]2)1/2’ /
where F' = mean(F'(i,j)) and F” = mean(F"(i+s,j+1)). We will return
to this function later, but for now we note that the numerator easily can be

calculated by the use of Fourier transforms. The denominator, however, is
usually approximated by N2?std(F’(i, j)) -std(F"(i, 7)), where std() denotes
standard deviation, which is defined as std(F') = [ (F'— F')?/(N —1)]'/?,
and is calculated prior to R. In this way we can use the peak height in the
correlation plane as a measure of how good the correlation was. A value
close to 1 will indicate a very high degree of match between our windows,
while a value of 0 will indicate the opposite. The underlying assumption
for making this approximation is that our pattern is evenly distributed,
meaning that the standard deviations do not change if we vary s and ¢
during the calculation of R. An uneven distribution of the pattern may
easily reduce the accuracy of our measurements, as we shall see later in the

paper.

4.2. Minimizing Covariance Estimate Induced Bias

The source of the bias in estimating the displacement of an ensemble of par-
ticles can be minimized by insuring that the majority of particles captured
in the first subregion are also found in the second subregion. There are
two traditional approaches to minimizing this bias — dynamic subwindow
location and adaptive subwindow sizes.

22,25 is simply to insure that

The goal of dynamic subwindow location
the mean displacement of particles contained within two subwindows is,
to the nearest integer, zero pixels. Thus the second image subwindow (or
both subwindows as will be discussed shortly) is dynamically located so
that to the nearest integer the covariance estimate of the displacement is
zero pixels. Cowen and Monismith?? used this concept to remove spurious
analysis regions. They argued that if a dynamic estimate of the integer pixel
displacement does not converge to zero pixels in three iterations, the anal-

ysis of the subwindows is problematic and the subwindow pair is discarded.
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Fig. 4 (middle pair) shows the concept of this dynamic subwindow location.
The interrogation region in the first frame is fixed in space, while in the
second image it is shifted in integer steps found after an iterative process.

Based on the information from two subwindows, the optimal estimate of
displacement that can be obtained is second-order accurate. This is achieved
by considering the location of the displacement estimate to be at the mid-
point between the center of the first and second subwindows (this assumes
the center of mass of the particles for each subwindow is at the center of
the subwindow — a reasonable model but as subwindows get small there
may be significant deviations from this assumption). Allowing the second
subwindow to move dynamically with respect to the first subwindow re-
sults in a random perturbation to the originally intended interrogation grid
due to the potentially random motion of the second subwindow. Wereley
and Meinhart?® eliminate this random perturbation by allowing both sub-
windows to move dynamically as shown in Fig. 4 (lower pair). This avoids
the need to interpolate velocity vectors and ensures a truly second-order
accurate spatial velocity field.

21 is to expand the second sub-

The goal of an adaptive subwindow size
window in area so as to ensure that all particles contained in the first
subwindow will remain within the bounds of the second subwindow. If this
is done 1n the absence of discrete subwindow offsets, the potential for the
second subwindow to become large exists, and the signal to noise ratio of
the image (ratio of the magnitude of the true correlation peak to the rms
correlation peak) will decrease causing dropouts. An improved approach is
likely to couple the two techniques, handling the mean displacement with a
discrete offset and the effects of local turbulence induced shear by a slightly
larger second image subwindow. An optimal approach involves the consid-
eration of the image 1 subwindow as a system in the thermodynamic sense
— a collection of mass of fixed identity. Tracking the system, and thus its
boundaries, from its location in image 1 to its new location in image 2
results in no in-plane loss of particles but requires that the image 2 subwin-
dow boundaries become deformed. Several researchers have developed such
optimal methods, which have become known as particle image deformation,
or PID, methods 2728293031 PID methods are described in more detail in
section 4.7.3.

4.3. Subwindow Size

An important consideration is the size of the subwindow to be used for
PIV analysis as this leads directly to issues of resolution. Prasad et al.3?
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Fig. 4. Schematic view of the three most basic dynamic subwindow location techniques.
The upper pair shows fixed interrogation windows. The middle pair shows first order
window shifting?2:2% and the lower pair shows second order accurate window shifting?.

investigated a range of subwindow sizes from N = 32 to N = 256 finding

that a reduction of subwindow size from the traditional N = 256 to N = 128

117

resulted in no appreciable degradation of accuracy. Westerweel™* explored

in detail the requisite subwindow size to obtain the desired information,
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namely the location of the correlation peak to sub-pixel accuracy.

Westerweel!” sought the effective sampling rate needed to yield a good
representation of an original QI image. A signal is band limited if it can be
constructed from only signals with frequency components less than some
maximum, i.e., its Fourier transform is non-zero over only a finite portion
of the frequency domain. Therefore,

F(F)(s,t) =0, for |s| > S, |t| > T. (5)

The bandwidth is defined as the maximum of S and 7. A band limited
continuous signal can be reconstructed ezactly (given infinite samples) pro-
vided that the sampling rate is at least twice the bandwidth. This rate,
known as the Nyquist rate, is max (25, 27).

Goodman®? has shown that the bandwidth of the image intensity for a
thin spherical lens image system (aperture D, focal length f, coherent light
with wave length X) is given by:

D D

W=+—

Neo | AF(M + 1) (6)

where zg = f(M + 1) is the image distance and M = zq/Zp is the mag-
nification (Zp is the object distance). Now, if an image is obtained with
illumination wavelength A = 0.5 pym, f/D = 8, and M = 1, then it fol-
lows that W = 125 mm~! and therefore that the Nyquist rate, 2W, is
250 mm™!, explaining the traditional subwindow size of 256 pixels and a
subwindow area of Imm? early in the history of PIV. However, this is a
significant hurdle for CCD based image acquisition.

Most CCD’s pixels are at least 10 pm x 10 pm, therefore 2W = 100
mm ™! is the best that can be done. However, the reality is that the goal of
PIV interrogation is not to reconstruct the image exactly, but only to obtain
the position of the displacement covariance peak. What is required is not
the exact details of the particle shapes (edges) but just the details of their
positions (lower wave number information). The covariance function has a
spectral density function that is “nearly band limited” meaning its value
vanishes for sufficiently large (s,) but may not be exactly zero. Therefore
F(s,t) ~ 0 for |s| > S, |s| > T. Parzen®® showed that for a 1-D signal
the bandwidth, W, with a circularly symmetric spectral density function is

defined as the width of a cylinder with the same volume, therefore
W, = (v 5(0,0))"7. 7

It can be shown that if a square region is sampled instead of a circular region
and the covariance of particle images with diameter d are of interest, the
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covariance width, oy, is o, = d\/§/(‘2.447r_) which leads to W, = 1/(2m0y).
Thus, given the same optical parameters as above and d = 20pum (o =
3.7 um), 2W, = 86 m~', suggesting that 64 x 64 pixels over a bit less than

1 mm?

is sufficient. Note that larger particle image diameters reduce the
required sampling rate, so that 30um images —~ 32 x 32 pixels/mm?. Thus
the dominant subwindow sizes in currently used P1V algorithms are N = 64

and N = 32. For more details on band limited signals see Westerweel!7.

4.4. Sub-pizel Displacement Estimation

It can be shown that for any non-zero particle image diameter the width
of the correlation peak will be greater than one pixel. By including values
adjacent to the maximum in R, the center of the peak can be estimated to
sub-pixel accuracy.

We decompose the displacement (s, ) as

s=sote, t=to+e (8)

where sg,to is the integer displacement and ¢, ¢; is the fractional part.
Therefore

—05<e <05 and —0.5<¢e <05, (9)

In the absence of an estimate for ¢; and €; the error is £A/2 where A is
one pixel. For N = 32 a displacement of eight pixels has an uncertainty of
+0.5/8 ~ 6%.

If we digitize the same subwindow into 256 pixels (N = 256) the uncer-
tainty is now £0.5/64 ~ 1%. Therefore to work at small N, we need sub-
pixel estimates of the center of the covariance peak. It can be shown that
the covariance cov{e,, e} =0 (i.e., &€ = 0), therefore, we can work with
the 1-D problem without loss of generality. For narrow correlation peaks
the covariance width is small enough that only the nearest pixels to the
peak contain significant information. Since QI techniques generally satisfy
the conditions for narrow covariance peaks, three-point sub-pixel estima-
tors are generally sufficient. As an example we will consider the correlation
peak shown in Fig. 2e. Fig. ba shows a close up of this peak, while Fig. 5b
shows the highest value, Ry, of the correlation along with the two nearest
pixels in the vertical direction, R_1 and R4q. The three most commonly
used estimators are Center-of-Mass, Parabolic fit and Gaussian fit.
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Ry

R_4

Ry

b)

Fig. 5. Close-up of the largest peak in the correlation plane in Fig. 2e.

Center-of-Mass (COM)

The sub-pixel estimation of the Center-of-Mass is calculated from
Ry1— Ry
€c = .
R1+Ro+ Ry

This method ignores the need for a peak since Rg can be less than R_q or

(10)

Ry4. Fig. 5 shows an example of a correlation peak and the positions of

R_1, R+1 and RO.

Parabolic

Another option is to assume that the peak has a certain shape, for example
a parabola. We can then evaluate

R_i— Ry
= . 11
P 2(R_1 —2Ro + R+1) ( )

This formula actually requires a peak since |Ry| must be greater than |R_1]

and |Ry1].

Gaussian

The most common assumption in PIV is to use a Gaussian peak-fit. This is
mainly due to the fact that spherical particles image as Airy functions and
the central lobe of an Airy function is well approximated by a Gaussian
curve.
The log of a Gaussian curve is parabolic and therefore
_ 111 R_ 1 — 1I1 R+1
= YR —2InRo+ I Ryy)

(12)
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Note, again that Rg must be a peak and R; > 0 for i = —1,0, 1. Clearly
all three are a balance of R_; and R4; with a normalizing value in the
denominator. Note that e will always yield a result and e has the most
restrictions. Therefore we expect ec to be the most robust and e the least.
On the other hand, ¢ does not even acknowledge that we have a peak while
e acknowledges and uses shape information. Therefore we may expect e
to be the best performer and ec the worst.

What is the expectation of these estimators? We begin with the bias
by ignoring the fractional displacement for a moment. Therefore R_; =
Ry1 = a1 Ry where 0 < a1 < 1 and aq is proportional to the width of the
correlation peak. Westerweel'” shows

aq

f
1T om0 or €c

2 ay

B == di—ay

for ep (13)

1
41n(1/aq)

for e

Clearly the terms on the right hand side of the bracket are simply constants,
but note that the first term is a function of the displacement mg (the integer
pixel displacement). This is a negative bias, resulting from the probability
of smaller velocities leading to higher pairing. If PIV is to operate in an
unbiased manner this bias must be corrected. The correction is:

R(s,t)

R* (s,t) = F](S,t)

where

P (1-1) (1 1), "

We note that this could have been predicted looking at equation (3).
We now consider the fractional part of the displacement. A particle
will have a small imbalance in R_1 and Ry1; therefore we will model the

particle image as:

Roi=a;%, Ro=aj and Ry1 =a;". (16)
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Note that this is not Gaussian. Westerweel'” shows that in this case

inh(el
o — — sinh(e nall) __ (17)
cosh(elnai) + 3af

sinh(elnaq)/2
P = el (18)
cosh(elnay) — af
€
= . 1¢
4T 9 9 (19)

The Gaussian sub-pixel fit is independent of ay, but COM and parabolic
are functions of ay. If we look at the RMS error, f_lﬁz(errOI)Q de, we find
that the Gaussian performs the best under all particle diameters.

We note that other peak fitting functions have been applied in the lit-
erature, for example various versions of spline-curve fits?3. These, however,
have the drawback that they are considerably more computationally inten-
sive without significant gain in accuracy. As will be discussed in the next
section, there are alternative methods to improve the sub-pixel fit.

4.5. Peak-Locking and Solutions

Westerweel'” has argued that the requisite bandwidth for a PTV image is
constrained only by the need to locate the correlation peak. Hence, if this
bandwidth criteria is met, we should be able to locate the correlation peak
to subpixel accuracy in an unbiased manner. However, as demonstrated
in section 4.4, we find in general a strong bias of subpixel fit estimators
toward integer pixel locations. Looking at figure 6 we note that for actual
subpixel displacements of —0.5 < ¢ < 0 the bias error is positive — hence the
determined displacement 1s biased towards a subpixel displacement of zero.
We see the same effect for 0 < € < 0.5, namely the bias error is negative
resulting again in a bias toward zero pixel displacements. This effect is
often referred to as peak-locking as correlation peaks have a tendency to
‘lock’ onto integer-pixel displacements.

The easiest way to identify the presence of peak-locking in a data set is
to plot the histogram of the un-calibrated displacements (i.e., the displace-
ments in pixels) as shown in figure 7. Depending on the quantity of interest
peak-locking may not be a significant problem. For example, if one is inter-
ested in the mean velocity or even the variance, peak-locking contributes
little to the error as long as the histogram spans at least two integer pixels
of displacement. If the probability density function (PDF) of the underly-
ing velocity field is of known shape then the histogram could be corrected
by redistributing the displacements to have the assumed form of the PDF.
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Fig.6. Sub-pixel bias. Comparison of different sub-pixel peak fits. Figure reprinted with
permission from Westerweel'7.

However, if the displacements range over less than two integer pixels the
possibility of a strong bias in all calculated statistics exists. Further, if one
is interested in derivative quantities (e.g., vorticity, acceleration) or other
quantities involving the difference of two displacement calculations (e.g.,
turbulent structural functions) then errors induced by peak-locking effects
may be considerable and must be monitored.

There has been research on minimizing or even eliminating the effects
of peak-locking. As there is no peak-locking effect if the subpixel displace-
ment is truly zero the majority of efforts have focused on iterative solu-
tions where the image subwindows are displaced dynamically in fractional
steps (a process that is known as continuous window shifting as opposed
to the more conventional discrete window shifting where subwindows are
shifted an integer number of pixels). Continuous window shifting is gener-
ally achieved by interpolating the original image at subpixel locations. The
idea is to dynamically shift the subwindow(s) until the subpixel displace-
ment is identically zero. Gui and Wereley®® have found that continuous
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Fig. 7. Example of velocity histogram showing the peaklocking effect.

window shifting using simple bilinear interpolation and as few as four iter-
ations provides a significant minimization of peak-locking effects. Fincham

and Delerce?®

employ a slightly different approach to continuous window
shifting as they use a spline-thin-shell interpolator to analytically model
the first image subwindow and then utilize a PIV result already calculated
for the image pair to translate and deform this analytic function based on
the velocity field estimate. This analytic function is then compared to the
subwindow in the second image in a least-squares sense and iteratively ad-
justed to minimize the difference. They demonstrate that the final result
reduces peak locking and gradient bias while enhancing the robustness of
PIV in the presence of locally large shear. Tt must be pointed out that their
approach i1s computational expensive without any obvious improvement rel-
ative to simple bilinear interpolation. As an alternative to interpolation in
the spatial domain, Liao and Cowen3® have shown that interpolations for
continuous window shifting can be performed more efficiently in the spec-
tral domain taking advantage of the shift property of the Fourier transform.
They demonstrate the elimination of peak locking effects at minimal com-
putational cost, given the Nyquist particle image sampling criteria is met.
We also note that bi-linear subpixel interpolation has been used earlier in
other contexts of pattern matching which we will return to in section 7.2.
Finally we note that the solutions to peak-locking problems are closely
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connected to the evaluation methods in question, and readers may find
several relevant publications cited in section 4.7.3. In one of the more recent
works, Scarano and Riethmuller®® give a general review and comparison of
several iterative PTV methods.

4.6. Spurious Vector Detection

There are three fundamental approaches to test the validity of an individual
vector: signal quality, spatial consistency (smoothness in space), and tem-
poral consistency (smoothness in time). Signal quality based tests look at
a specific property of the images, such as the magnitude of the correlation
peak relative to the magnitude of the background noise in the correlation
plane, to test the validity of a vector. Spatial consistency tests compare
each vector with certain properties calculated from the local neighborhood
of vectors (local filtering), or the entire vector field (global filtering). Tem-
poral consistency tests are similar to spatial consistency tests with the ex-
ception that the vector whose quality is being tested i1s compared to either
a statistic developed locally in time (e.g., acceleration) or globally in time
(e.g., its distance from the mean relative to the standard deviation??).

Filtering using spatial statistics is the standard approach, however, and
has the added advantage that it works on individual instantaneous vector
fields. That said, the recent advances in camera speed have lead to tempo-
rally resolved data. As single-point measurement techniques can only rely
on the temporal history of data to remove spurious points there is a well
developed literature on the removal of spurious data points from temporal
records (e.g., spike detection in acoustic Doppler velocimetry, which is es-
sentially a local gradient (the acceleration) threshold in the time domain).
The time domain is a relatively unexploited method for spurious vector
detection in PTV which should be developed.

The detection of spurious vectors is an essential part of any PIV mea-
surement, and the topic is well covered in the literature!737:38 Below is a

review of the fundamental approaches currently in use.

4.6.1. Detectability

It would be nice if we could simply look at a correlation-peak (PIV) and
decide, based on some criteria, whether or not we think it is valid. Keane
and Adrian®® proposed the detectability, Dg, as such a measure. They define
the detectability as the ratio of the peak value of the first correlation peak
to the second and suggest that if Dy 1s greater than 1.2 — 1.5 that the

vector is valid. The detectability criterion is often referred to as signal-to-
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noise ratio (snr) filtering. Westerweel3” demonstrates that any of the three
methods based on the statistics of the measured vectors in a field perform
better. These methods are known as global mean, local mean and local
median filters.

4.6.2. The Global Mean

Often during PIV measurements we observe that the data contains a few
vectors that are very different from the whole ensemble of vectors. These
vectors are typically the result of either R_1 or R41 being close to zero, see
equation (12).

If v; ; is the observed vector at 1, j then the global mean ¥ = % Y ors Urs-
The variance of this statistics will be ¢ +0? where o2 is the variance of the
actual velocity field and o2 is the variance of the error. So, one possibility
is to try to select the allowable variance of the signal and remove outliers
(invalid vectors). However, 2 < o2 in practice so this is hard, hence, a
user determined threshold is generally applied.

4.6.3. The Local Mean

Let us now extend this idea by looking at individual vectors and comparing
them with their closest neighbors. As opposed to looking at individual vec-
tors compared to the global properties, this filter should be able to remove
local “large” vector to vector variations. To do this we evaluate

B 1
Vii = N Z (Vik, j+e = Vi)

kLeM

typically using a 3 x 3 region (Ny = 8) around each vector, where M is
the set of points in the neighborhood.

The common approach is now to say that a vector is invalid if it is
“very” different from the mean of its neighbors (for example twice as large).
We immediately notice that in the cases where the neighborhood actually
contains one or more outliers, our criterion for filtering is very difficult
to determine, and actually spurious vectors are smoothed out with this
method. Tt turns out we need to know a priori which vectors are bad to
make reasonable decision criteria. If we can, perhaps using global mean,
this performs fairly well.
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4.6.4. The Local Median

The obvious extension of the local filter is to use the local median value
instead of the mean. The median value is the n? value in a 2n + 1 long
sequence (data sorted in ascending order) and is well known to be robust
to outliers for estimating the mean of data. It should be relatively obvious
that spurious data normally will be sorted to either side in this sequence.
The advantage is therefore that the median is much more robust to outliers
and eliminates the need for a priori information on which vectors are bad.
Westerweel®? finds that this performs the best.

4.6.5. Adaptive Gaussian Filtering (temporal filtering)

Given the underlying stochastic nature of turbulence it is possible to exploit
knowledge of the PDF of the velocity component statistics to remove spuri-
ous vectors. Cowen and Monismith??demonstrate such a technique for both
PIV and PIV stray vector removal. The idea is to choose a robust estima-
tor of the center of the distribution (accumulated in time as the temporal
ensemble at a point), such as the median, and then iteratively test the data
for lying within the assumed bounds of the PDF (in the case of Cowen and
Monismith, a Gaussian) given the number of data points in the ensemble.
The data that is retained is used to recalculate the center of the data, where
the mean may be used after the first iteration in general, and the retained
data is again tested for lying within the bounds of the assumed PDF. This

processes is iterated until no data is removed and hence is an adaptive filter.

4.6.6. Filtering Example
Fig. 8 shows a velocity field as measured by conventional FFT-based PIV

and filtered using a global filter, a local median filter and a signal-to-noise
ratio filter. The images in question are identical to the images shown in
Fig. 2 and Fig. 11. Fig. 8a—c shows a part of the velocity field as measured
from the example images. The three sub-panels depict the velocity field
after first a snr-filter has been applied, followed subsequently by a global
filter and a local filter.

First the vector field has been filtered by a signal-to-noise ratio filter,
discarding all vectors where the ratio of the tallest peak in the correlation
plane to the second tallest is less than 1.3.

Secondly the remaining vectors are filtered using a global filter with the
criterion defined as

v; ; 2 mean(vy,) + k - std (v, ), (20)
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where k is a constant defined by the user (in the present example k = 3)
and r = 1,...,Rand s = 1,...,5 and (R,S) is the number of velocity
vectors.

Finally a local median filter is applied, and in this case the criterion

used for validation is
v(%, j) 2 median[v(r, s)] £ k - std[v(r, 5)], (21)

where again k is a user defined threshold (in the present example k& = 3)
and r =i— 1,25,i+ 1 and s = j—1,j,7 + 1 are the indexes of the 3 x 3
neighboring vectors.

4.6.7. Correlation Based Correction

t40

Another approach to vector validation was suggested by Har and in

)
fact his proposal is more a general processing technique than a filtering
technique. The idea is to take a correlation plane and compare with one
or more adjacent correlation planes. The comparison is performed via an
element by element multiplication, and thus represents a zero-dimensional
correlation (therefore the name “Correlation Based Correction” or CBC).
The point here is that each correlation plane typically will consist of a peak
that signifies the displacement plus several additional peaks which are due
to noise. The noise-peaks are randomly distributed in the correlation plane,
but the displacement peaks are not. Therefore the multiplication of two or
more correlation planes cancels the noise peaks, while the displacement
peak remains. The principle is shown in Fig. 9. In this way we are able
to calculate the displacement of a vector centered between the adjacent
regions used in the calculation.

There are basically two ways to use CBC processing. The first is to use
the signal to noise ratio in the combined correlation plane as an indica-
tor, discarding vectors where this ratio is smaller than a certain threshold.
The second method, suggested by Hart*®, is to compare the peak in the
combined correlation plane with the peaks in each of the correlation planes
that produced it. If the peak in the combined plane exists as a peak in at
least one of the other planes, it is assumed to represent the local displace-
ment. Hart*® concludes that the method improves sub-pixel accuracy and
eliminates spurious vectors, reduces bias errors and improves vector yields.
However, he provides no evidence of the reduction in bias errors with re-
gard to peak locking and, in fact, tests performed in the preparation of this
manuscript suggest that CBC processing may be sensitive to peak locking.
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Example of PTV velocity filtering. a) Velocity-field - black vectors removed by

the snr-filter. Gray vectors are the remaining. b) shows the results after the global filter -

gray, valid, black, outliers. c) black vectors, outliers identified by the local median filter.

4.7. Alternative Displacement Estimation Approaches

We have until now only discussed the “original” approach to PIV, namely

by evaluation of the cross-correlation function via the use of FFTs. Further-
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Fig. 9. a) and b), solid square corresponds to panel c), dash-dotted square to panel d)
and dashed square to panel e). Multiplication of correlation tables c), d) and e) produces
the combined correlation plane f).

more we have seen that in order to normalize the correlation function, we
must divide it by the covariance function. The latter is hard to implement
using FFTs and therefore a first order approximation is applied by dividing
the correlation plane with the standard deviations of the original images.
In the following sections we will review a few different approaches that
avoid the use of FFTs. Typically their downside is the additional compu-
tational time needed, but on the other hand often at improved accuracy.
The cross-correlation function is used in many applications for pattern
matching. By definition it is a measure of the “likeness” of two images
(or subwindows). In the cases where there is a certain degree of match
between the images, it will produce a plane which will contain a peak at
the position of the highest match. In contrast we could have chosen to look
for the position where the images are the least unlike. This can be done by
looking at the minimum of the squared difference between the images.

4.7.1. MQD

The use of the minimum squared distance (MQD) for PTV evaluations was
first proposed by Gui and Merzkirch*! and subsequently expanded in Gui
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and Merzkirch*?. The MQD method evaluates the function

M-1N-

,_\

1

MN
i=0

R(s,t — F"(i+s, j+t)]

=0

.

where the location of the minimum value of R indicates the displacement
between the windows. The method is reported to increase the accuracy
compared to the cross-correlation function, and it is claimed that the reason
for this is that “... the MQD method contains a term which accounts for
a non-uniform distribution of the particle images and for a non-uniformly
distributed illumination intensity...”. If we turn to the basic mathematics
of the method?*?, it should be fairly obvious that

M-1N-1
DTG0 - F s, 1) =
i=0 j=0
M-1N-1
STIFG,G) = 2F (i, 5)F (i +s, j+1) + F'(i+s, j+1)°], (22)
i=0 j=0

which in turn means that the MQD method equals the (zeroth order) auto-
correlation of the first (sub-)image, plus the autocorrelation of the second
(sub-)image (or a part of it, that is), minus two times the cross-correlation
of image one and two. If the images now contain a nonuniform seeding or il-
lumination, this will show up in both the auto-correlations and in the cross-
correlation, but will cancel each other out in the MQD function, roughly
speaking. If, on the other hand, the images are uniformly seeded and the
illumination is uniform, there is no need to evaluate the full MQD-function.

The evaluation of the auto-correlation function can be understood as a
measure of the non-uniformities within the overlapping regions. As an ex-
ample we may consider each interrogation region as a wave-field, where the
particles show up as small waves. A non-uniformity in the seeding density,
or a background illumination gradient, will appear as a lower frequency
wave in this field. Depending on the amplitude of this lower frequency, our
PIV measurement may in some cases be overshadowed by it.

We may argue that the comparison between MQD and cross-correlation
is a little unfair since the MQD plane is not normalized. A proper normal-
ization of the cross-correlation plane can only be achieved in the spatial
domain, and this is the basis of the next evaluation method we shall look
at.
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4.7.2. CIV

The cross-correlation function, as defined in equation (1), may be used
for pattern matching, but the reader may notice that the product will be
sensitive to changes in the amplitude in the image matrices. If we double
the values in one of the images, the correlation values will double. For this
reason the function known as the correlation coefficient (also termed the

covariance function earlier in this paper), defined as

R(s, 1) = L 2 2lld) - FF"(i 45, j+1) —
VT NIEE G - PRI s, ) - T

is often used in pattern matching!? (with M = N). Here F'' is the average

(23)

value of image 2, which is evaluated only once, and F’ is the mean value
of image 1 which needs to be evaluated for every (s,t). As we already have
seen, the denominator may be approximated by NZstd(F’)std(F”) in the
cases where we have uniform illumination or seeding. If this is not the case,
the standard deviation of the region in image 1, which overlaps image 2,
will actually change as the values of (s,?) change.

The method of direct calculation of correlations in PIV, has been sug-
gested by a few authors, most notably Huang et al.??, but also Fincham
and Spedding?3. The latter authors suggest that there should be two main
reasons for calculating the correlations in the spatial domain. Firstly they
point out the argument about normalization that we have already pre-
sented. Secondly they claim that the use of FFTs place a limitation on
the size of the interrogation windows. Traditionally interrogation windows
needed to be of size 27, but recent developments in FFTs have made this
demand less stringent®*.

We note that the benefits of calculating the full correlation coefficient is

12,43

well known within the image processing community and this fact can

be found in many introductory level books on image processing.

4.7.3. PIP-matching and PID

The concept of Particle Image Pattern (PIP) was first introduced by Huang
et al.’” and is basically a direct calculation of the full correlation coefficient,
see equation (23). The authors vary the interrogation window sizes in order
to maintain all particles in both frames.

The works of Huang et al 27,28

also contain an approach to dealing
with large gradients in flows, known as particle image deformation, or PID.
Large gradients may lead to interrogation regions with a spatial variation

in velocities, again leading to loss of correlation. To adjust for this they
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distort the interrogation windows in an iterative manner where the rotation
and shear is calculated from the velocity field and subsequently used to
distort the images. These distorted windows are then used to calculate a
new velocity, and the process is iterated upon until some predefined criteria
is met. The window distortion is calculated from the shear components
(Ou/dy, —0v/dz) and strain components (du/dz, dv/dy), neglecting the
translation. A schematic drawing is shown in Fig. 10.

Fig. 10. Schematic drawing of the interrogation window distortion in the PID method.

Scarano and Riethmuller®® extended the PID method to also use inter-
rogation window offsets, as well as distortion (Originally the PID method
used larger interrogation regions in the second window to maintain a high
correlation). Additionally they apply progressive grid refinements to maxi-
mize the spatial resolution, and in this respect they combine the results of
Huang et al.?”?® with those of Westerweel et al.?. They report a decreased
sensitivity with respect to peak-locking effects.

Several authors*®:47:48:49 have applied the PID concept or similar ap-
proaches and readers are advised to study these works individually. For
the present review, the results by Lin and Perlin” are of particular interest
since it deals with PIV measurements in water waves. More specifically they
combine the PID methods with a particle tracking approach®® in order to
measure velocities in the boundary layer of gravity-capillary waves.

4.7.4. Other Methods for Displacement Estimation

Some researchers have suggested the use of the phase correlation functions
for pattern matching. This method is detailed in Kuglin and Hines®!, and
it is based on using the phase information in the images rather than the
amplitude information.

Finally we would like to mention that within the field of Optic (or Opti-
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cal) Flow, another approach to motion estimation is often used. Under the

assumption that the image intensity, £, is conserved and that the displace-
ments between frames are small, one may solve

Ei(x,y,t)+v -VE(z,y,t) =0, (24)

where subscript denotes partial differentiation with respect to time, v is
the velocity vector and V is the gradient operator. Interested readers may

find a good starting point in the paper by Beghdadi et al.2.

4.8. Comments on the Normalization of the Cross
Correlation

In the cases where the interrogation windows contain an unevenly dis-
tributed pattern or where we perhaps have non-uniformities in our illu-
mination, the cross correlation may contain errors. In these cases the calcu-
lation of the full correlation coefficient may be more accurate. Since this is
a time consuming task to calculate, an approximation is often used for the
denominator. In PTV we normally use the standard deviations of the two
sub-windows. For example in wavy flows, we often find a thick band of light
at the fluid surface, where the light sheet leaves the fluid. For demonstra-
tional purposes we will consider the work by Jensen et al.?, where errors
in the PIV calculations are observed close to the free surface. Two images
from those experiments are investigated (figure 4 b in that paper), and we
focus our attention at this problematic region. Fig. 11a-b shows the origi-
nal images taken with a time separation of At = 0.0012s. Fig. 11c—d shows
two corresponding 64 x 64 pixel subregions, close to the free surface. The
reader may notice that there is a gradient in the background illumination
in these two sub-windows. Correlation via FFT produces the correlation
plane shown in Fig. 11e and, although difficult to spot visually, the central
peak is actually higher than the true displacement peak. The central peak
corresponds to a correlation of the gradient in the background illumination
within the sub-windows, and since this does not move between exposures, it
shows up as a zero-displacement peak. If we, on the other hand, use direct
calculation of the cross-correlation function, we get a correlation plane as
shown in Fig. 11e. Here the true correlation peak is slightly taller than the
false (zero-displacement) peak. We observe that the full correlation calcu-
lation is less sensitive to the background illumination gradient. This brief
example has an interesting aspect if we compare with the results from the
MQD algorithm. Fig. 12 shows the corresponding plane as calculated using
the MQD method. Interestingly we can observe that due to the nature of
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the algorithm, the false correlation peak has opposite sign of the true dis-
placement peak and the true displacement may easily be identified as the
minimum value (black color) in this figure. This indicates that the MQD
method may be favorable in many cases where the image quality is not
ideal.

In other areas of pattern matching several approaches for calculating
the normalized correlation plane are used. For example one method was
developed for the motion picture Forest Gump*3, which relies on using
precomputed integrals of the image and image energy over the interrogation
region.

5. PTV

Particle Tracking Velocimetry is probably the oldest of the particle based
QI techniques. In its simplest form it can be thought of as low particle image
density PIV, where low particle image density means that the concentration
of tracers is sufficiently low that the maximum displacement of a particle in
some time, At, will always be less than the mean nearest neighbour spacing
between particle images. In PTV’s early incarnations particle images were
manually digitized and tracked, but with the aid of computers the process
is now automated. However, due to the difficulty in determining a particle’s
pair when the particle’s mean spacing is on the order of, or less than the
maximum expected displacement, the technique has remained, until the
1990’s22:50:53:54 " 3 Jow seeding density technique. That decade saw multi-
ple researchers working with a variety of computer algorithms for particle
pairing — the process of identifying which particle image, in any particular
image, resulted from the identical particle that produced a particle image
in one or more other images (singly exposed multiple images) or a different
particle image in the same image (multiply exposed single images). During
the 1990’s the restriction on displacements relative to the mean particle
separation distance was relaxed. The specific seeding density limit depends
on the physical parameters of the experiment and the procedure used for
particle pairing, and ultimately Cowen and Monismith?? demonstrated that
the limit on seeding density was essentially set only by the requirement of
having the majority of the particles produce non-overlapping images.
While the low seeding density restriction on PTV was an early criticism
of the technique, it was overcome. A second significant criticism of PTV
is the resultant randomly distributed velocity vectors, which is still an im-
portant area of research. The traditional solution to dealing with randomly
located PT'V data is to interpolate it onto a regular grid. This interpola-
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Fig. 11. a)-b) original images, black squares indicate the position of subwindows shown
in c)—d). €) FFT-based correlation plane. f) Direct calculation of cross correlation.
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Fig. 12. Figure showing result of MQD-interrogation of the subwindows in Fig. 11 ¢)—d).
Note that the displacement is found as the minimum value (black color) in this plane.

tion has an associated error, that while not a major problem relative to
the mean velocity field, is problematic when considering the variance and
the co-variance as well as the calculation of any velocity gradients. Several
research efforts at determining optimal interpolation methods exist (e.g.,
Agui and Jiminez®”, Spedding and Rignot®®) and Cowen and Monismith??
demonstrate the success of a zeroth order interpolation scheme — simple
data binning over small spatial regions.

While the above criticism is generally restricted to PTV, the reality
is that the majority of PIV techniques produce quasi-randomly distributed
velocity vectors due to the perturbation to the position of the PIV interroga-
tion grid as a result of using first-order displacement differences to estimate
the velocity. As discussed, Wereley and Meinhart?6 have resolved this issue
through the use of second-order accurate displacement differences that are
centered on the interrogation grid node. It should be noted that in the limit
of small subwindow size PIV converges to PTV which points to a remain-
ing perturbation to the location of the second-order accurate displacement
differences proposed by Wereley and Meinhart — the true location of the
estimated average displacement between two subwindows must account for
the location of particles in each subwindow (e.g., a particle weighting of
the information in each subwindow) and as the subwindow gets small the
probability that the center-of-mass of the particle location information is
not at the center of the subwindow, as implicitly assumed in all subwindow
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techniques, increases.

The fundamental PTV approach to the determination of the velocity is
to measure the displacement of an individual particle, located at a random
point in space and time, either in doubly-exposed single images or successive
singly-exposed images. The velocity is calculated as:

u(e,y,t) = 2XE21 (25)

At
Clearly in the limit, when At — 0, we recover the fundamental definition
of velocity. However, we must keep in mind that we are approximating
the Eulerian velocity as the second-order difference (or in some cases even
the first-order difference) of the Lagrangian track of a particle. In fact, it
is important to remember that PTV essentially is a Lagrangian measure-
ment technique. Dalziel®®5* developed an effective and relatively successful
particle tracking algorithm, which was commercialized through the code
DigImage and applied in many publications®?:6%:6! In the DigImage code,
for example, the Lagrangian velocity is calculated by a least squares fit to
more than two points in the particle path. By fitting a quadratic function
we can obtain the Lagrangian acceleration directly, a concept also utilized
by Chang et al.5? to obtain acceleration from a single-camera configuration.

5.1. Particle Detection Algorithms

All PTV based techniques employ some form of particle detection algo-
rithm. This usually involves thresholding the image, leading to a binary
image. The threshold may be set manually or determined automatically. In
either case the ideal image will have a histogram that looks like the one
shown in Fig. 13. If in fact two separate peaks exist (one for the background
and one for the particles) it is a simple process to pick a threshold value
between the two peaks. However, as discussed shortly, it is more likely that
the histogram will decay monotonically (a negative exponential probability
density function), making the threshold choice somewhat unclear. In the
latter case a user defined threshold is often the simplest solution.

Preconditioning of the images may, generally speaking, serve to enhance
the particle images from the background. Such preprocessing may be ac-
complished by convolving the images with a top-hat function, which will
serve to amplify the particle images. Subsequently thresholding is applied,
followed by binarization.

Once an image has been binarized, particles are generally defined in one
of two ways, either as horizontally and vertically adjacent “hot” pixels or
as horizontally, vertically and diagonally adjacent “hot” pixels.
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Fig. 13. Histogram of image intensities. Notice the small peak between 20 < p; < 40.

Particle tracking may occur over multiple exposed or sequential singly
pulsed images. Multiply exposed particle image based techniques can lead
to higher accuracy since the probability of incorrectly drawing a vector
decreases with each additional exposure. However, these techniques suffer
from lower vector density as the probability of tracers remaining in an
illuminated region is reduced the longer they are tracked. Multiply exposed
image based techniques can also be used to make higher order estimates
of the velocity field (by retaining higher order terms in the Taylor Series
expansion implied by equation 25) and the estimate of the acceleration field,

which will be discussed further in section 6.4.

5.2. Locating a Particle’s Center

Spherical particles tend to scatter light with an intensity pattern given by a
rotated Airy wave. The central lobe of an Airy wave is well approximated as
Gaussian. As discussed in section 4.4 as long as the particle image diameter
is small (2 - 4 pixels) then a three-point Gaussian sub-pixel estimate of the
particle’s location is optimal. Unlike correlation peaks, however, we have
no guarantee that the particle image diameter will be greater than one
pixel. Tt 1s important in implementing the image acquisition and particle
seeding that proper choices are made to insure that particle images will
have diameters greater than one pixel and preferably less than four pixels??.
Further, the same considerations about peak-locking as discussed in section
4.5 exist. In many cases, however, particle images may overlap (or nearly
so) and in these cases the Gaussian fit may not work as well. In this case
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the particle image intensity centroid may be used as an estimate of the

particle’s position.

5.3. Particle Pairing

After the individual particles are located at two different time steps, usually
the next step will be to perform a pairing or matching of them. That is,
we want to know which particle image in the second frame results from a
particular particle that was imaged in the first frame.

Hybrid PTV techniques have been developed that employ PIV based al-
gorithms as predictors of the velocity field allowing particle pairing searches
to be conducted in small search regions relative to the region to where a
particle might have moved??5%, This predictor approach overcomes the low
seeding density limitation on PTV allowing particles to be tracked in flows
where the mean spacing between particles is considerably less than the ex-
pected maximum displacements. Ultimately it must be remembered that
these PIV predictor techniques suffer from the limitations of the PIV algo-
rithms used to develop the predictive velocity field.

The algorithm in Dig/mage®>°4
cle pairing is accomplished via the use of a cost function. This cost function

is based on Operations Research. Parti-

is dependent on individual particle factors, such as size, intensity, velocity
history and shape. Particles are paired after a minimization process, where
the cost of pairing particles in one frame with the particles in the next
is minimized. The algorithm in Dig/mage is similar to the so called trans-
portation algorithm, although not quite the same since particles are allowed
to leave and re-enter the light-sheet.

There are many other algorithms that have been proposed for particle
tracking that include fuzzy logic®® and simulated annealing®®. An intriguing
capability of several of these techniques is their ability to extract higher-
order flow quantities, such as the local strain rate and rotation rate, directly
from the analysis.

6. Higher Order Measurements from Velocity Fields
Obtained by QI-techniques

In a great number of applications of QI-techniques the velocity field in-
formation is only part of a complete description of the physical processes
under study. For example many flows of interest are turbulent and deriva-
tive quantities of the velocity field may be of fundamental importance to
describe the turbulence. In both turbulent and viscous flows the vorticity
field is often an important descriptor of the flow physics. In stratified flows
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it may be necessary to simultaneously measure the density field. In wave-
structure interaction flows knowledge of the acceleration or pressure field
may be of vital interest.

In the present chapter we will turn our attention to the use of the veloc-
ity fields, obtained from QI-imaging techniques, to determine higher order
quantities. Such quantities may include shear, strain, vorticity, streamlines,
acceleration, pressure and estimates of turbulence characteristics (e.g., the

Reynolds stresses, turbulence dissipation, and spectra).

6.1. Vorticity, Strain Rate and Divergence

The calculation of vorticity, strain rate and divergence is often referred to
as the calculation of differential quantities. These quantities are defined as

Ov  Ou .
1/0v  Ou .
ow Ov  Ou
R B 2
8z Oy + Oz’ (28)

where w,s and —0w/dz denote the (in-plane) vorticity, strain rate and
two-dimensional divergence, respectively.

The differentiation of the velocity is a straightforward calculation,
using for example a second-order accurate central difference numerical
scheme. However, QI velocity measurements contain errors which can lead
to strong noise in the differential quantity. Furthermore the data is discrete,
which also may introduce noise. In these cases many scientists apply higher
order numerical schemes®3, others apply smoothing®* functions to deal with
this noise, and Cowen and Monismith?? argue for the careful choice of the
differentiation length scale to maximize resolution and minimize noise am-
plification. Readers are advised to consult Raffel et al.'°, Nogueira et al.?®
and Lourenco and Krothapalli®® for further details. We also note that it is
possible to measure differential properties directly from the images using

image distortion techniques%57
56

and other non-correlation based displace-

ment extraction techniques

6.2. Streamlines and Pressure Estimation

Defining the streamfunction, ¥, can be very useful in two-dimensional ap-
plications. The streamfunction i1s constant along a streamline, where the
streamline is tangent to the velocity field at every point.
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Consider a two-dimensional incompressible flow, thus V - v .= 0. The
streamfunction can be obtained from dy = udy — vdx where u = 9¢ /0y
and v = —0v¢/0z. This implies that the unknown scalar function ¥ at the
location P is defined as

P

Yp = Yo +/ (udy — vdx), (29)

o
where 1o is the streamfunction at the origin O (typically set to zero®®).

The path of the numerical integration can be freely chosen, but in order
to minimize noise accumulation, the integrations are often performed on a
staggered grid starting from the center of the velocity field and proceeding
out towards the edges®®.

In order to estimate the pressure gradient we have to know the accelera-
tion field (see section 6.4). If we make the assumptions that the flow is two-
dimensional, steady and incompressible, it is possible to estimate the pres-
sure field from the 2D Navier-Stokes equations®® or similar approaches®®

using the measured velocity field.

6.3. Turbulence

As many fluid flows of interest are turbulent it 1s not surprising that QI
techniques have a development history that reflects a desire to extract in-
formation on the turbulent statistics and turbulent structures of the flows.
The application of QI techniques to turbulent flows presents unique chal-
lenges due to the range in space and time scales, which leads not only to a
large requisit dynamic range in velocity to characterize the flow, but also
the potential for strong strain rates, which historically are problematic for
traditional PIV type techniques (e.g.,??).

6.3.1. Dissipation

The determination of the dissipation of turbulence, ¢, 1s an important but
challenging experimental goal. In theory it should be particularly straight-
forward using QI techniques based on its definition

€ = 2V<5ij5ij>; (30)

where s;; is the fluctuating strain rate tensor defined as

_ 1 6uz an
%ii =g (axj + am) ' (31)
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Hence, the in-plane fluctuating strain rate components can be directly cal-
culated by second-order central differencing and the out-of-plane fluctuat-
ing strain rate components can be modeled by an understanding of the

22 However, presumably due

anisotropy ratio to the in-plane components
to the noise level present in many velocity field calculations, relatively few
researchers have reported dissipation results. Cowen and Monismith?? re-
port a dynamic algorithm that adjusts the length scale over which the
velocity data is differentiated, arguing that the signal-to-noise ratio can be
maximized by optimally choosing the length scale of the gradient calcula-
tion. Doron et al.” discuss optimal assumptions about the anisotropy of
the out-of-plane gradients impact on the total dissipation. Cowen et al.”!
demonstrate several impacts of understating the dissipation structure in
the swash zone. They show that the dissipation is in balance with the tur-
bulent kinetic energy and that the turbulence is decaying as free turbulence
during the swash uprush. They use the dissipation to estimate the friction
velocity and the friction coefficient of the bed.

The single point measurement fields with sufficient temporal resolution
to capture temporal frequency based spectra (whose QI-based calculation
is described in the next section) have a well developed history of using the
inertial subrange spectral energy measurements to estimate the turbulence
dissipation. For temporally resolved QI measurements this is another ap-
proach to estimating the dissipation. For an example see Liao and Cowen ™
and for a discussion of the errors with respect to direct measurements see
Doron et al.”™.

6.3.2. Temporal and Spatial Spectra

In unsteady flows in general and turbulent flows in particular, it is often of
interest to look at flow statistics in the spectral domain. For single-point
measurements this is only possible in the temporal frequency based sense.
However, a significant advantage of QI techniques is the ability to deter-
mine instantaneous spatial information and hence spatial frequency based
spectra. With typical QI hardware, say 30 frame per second cameras with
1024 x 1024 pixel imagers, we often find ourselves in the situation where
the high spectral frequency content can only be determined in the spatial
domain while the low spectral frequency content must be determined in
the temporal domain. Typically a characteristic advective velocity is used
to make the Galilean transformation from time to space and the temporal
and spatial spectra are combined. In turbulent flows this transformation

is known as Taylor’s frozen turbulence hypothesis”® and the characteristic
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velocity scale is simply the mean velocity. However, in turbulent flows one
must be careful as Taylor’s hypothesis requires (u’2)1/2 < @ and it is not
uncommon for this requirement to be violated. Further, for unsteady tur-
bulent flows such as wavy flows, the choice of advective velocity scale is
not obvious. Cowen et al.”", working in the swash zone, found that the rms
orbital velocity scale can be a reasonable choice of advective velocity scale

but not at all wave phases.

6.3.3. Turbulence versus Wave-Induced Variance

An important question in considering turbulent flows by any measurment
technique is the relative effects of flow unsteadiness and turbulence. For
periodic flows in general and wavy flows in particular we often decompose
the velocity field as

u(x,t) = u(x) + u(x, ) + u'(x,1) (32)

where u is the instantaneous velocity vector at spatial location x and time
t, @ is the temporal mean velocity vector, u is the phase averaged velocity
vector, and u’ is the turbulent velocity perturbation vector. The turbu-
lent perturbations are generally found by subtracting the temporal mean
and phase averaged velocity vectors from the instantaneous velocity vector
and hence all perturbations with respect to the temporal mean and phase
averaged quantities are passed through to u’.

From energy considerations gravity waves are known to propagate as
groups and often contain reflection components. Hence at minimum one
expects amplitude variations even in a monochromatic wave field. These
amplitude variations, even if small, can lead to perturbations from the mean
and phase averaged velocity fields that are on the order of the turbulent
perturbations, yet are not the result of turbulence (and do not effect the flow
in the same manner as turbulence, e.g., they do not enhance the mixing).
To account for the amplitude and phase induced variability we can apply a
wave-turbulence decomposition technique, originally proposed by Thais and
Magnudet™ for single-point temporal data, to spatially resolved velocity
fields. A second-order Stokes wave can be fit to the velocity field in a least
squares sense where the wave phase, wave length, and wave amplitude can
all be determined by the least squares fit. The velocity field decomposition
can be written

u(x,t) = u(x) + up(x,t) + ug(x,?) + u'(x,t), (33)

where up 1s the irrotational phased-dependent wave-induced velocity vec-
tor, upg is the rotational phase-dependent wave-induced velocity vector, and
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u’ is the turbulent velocity perturbation vector. Importantly, tip is used to
separate the effects of amplitude and phase-induced variability in the wave-
induced motions from the turbulence.

An advantage of the decomposition is that it works independently of
the choice of coordinate system. For example, a free-surface following co-
ordinate system may be utilized to explore the free surface boundary layer
73

)

structure (e.g., Cowen’”), or an Eulerian grid may be used, referenced to the

bed, to look at the ensemble averaged phase dependent turbulence beneath
the wave.

6.4. Acceleration

Measurements of acceleration have not received the same attention in the
literature as PIV itself. These measurements are important, for example, to
determine pressure which is needed for calculating forces on structures that
are subject to fluid forces. The acceleration of a fluid particle is defined as,

Ju Ou Ju Du
a= o + <”_x + 1)—) = — (34)

where 1D/ Dt is the material derivative and consists of a temporally unsteady
and an advective spatially unsteady term.

The acceleration field arising from the temporal unsteadiness of the flow
may be calculated from the difference between two consecutive velocity
fields, as produced by conventional PIV,

_ Uz — 1y

St —ty
Here 1 and t5 denote the time of measurement of the first and second veloc-
ity fields, respectively. However, to calculate the material derivative of the
velocity, in addition to the temporal gradients, we also need to evaluate the
spatial derivatives. In each calculation small differences in velocity, either
in space or time, are normalized by small differences in either position or
time, and may produce large errors.

To enable proper control and accuracy of acceleration measurements
typically between 2 and 4 consecutive images are required, depending on
the choice of PIV-evaluation method (auto or cross-correlation, or a com-
bination of the two). Furthermore we need to accurately control the timing
of each exposure.

Jensen et al.? reported on acceleration measurements in periodic surface
waves in a wave tank. They measured the temporal derivative, (u(x,?2) —
u(x,1))/(t2 —t1) and used a stereo CCD-camera setup where each camera
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takes two single-exposed images. The exposure was controlled by the use
of an Acousto-Optical Modulator. In this case careful camera alignment is
crucial to avoid introduction of additional errors. Jensen et al.? reported
that their camera calibration typically introduced errors on the order of
1.9 — 2.6% compared to the displacement. Measurements were performed
on accelerations due to water waves in a laboratory wave tank and the
results were compared to the theoretical description of Stokes waves. In the
best case they found a relative standard deviation of about 0.6% for the
velocities and about 2% for the accelerations.

1.76 extended the acceleration measurements to also include

Jensen et a
the advective terms. They calculated the material derivative by tracing
pseudo particles through a number of iterations. Their method thus uses
an interpolated velocity in the second velocity field. They report the need
for smoothing of the velocity fields to reduce the effects of spatial noise.
Measurements were performed on runup of strongly non-linear waves on
a steep beach. Additional results using this method are also published in
Jensen et al.””

Jacobsen et al.”®

reported on a 4-CCD-camera looking at the same field
of view through the use of beamsplitters. The temporal component of the
acceleration in standing waves and trains of irregular waves was measured,
with errors being on the order of 20 — 100%.

Other investigations®80

off-the-shelf PTV cameras that image approximately the same field of view.

use similar two CCD-camera setups, employing

Dong et al.” report a two camera system for measuring the temporal
component of accelerations in a rotating flow using pairs of doubly exposed
images. They report a relative uncertainty of less than 25%. A similar ap-
proach was used by Chang and Liu®!

Christensen and Adrian®® extended the acceleration calculation to also
include the advective terms. They report that these terms are an order
of magnitude smaller than the temporal part in their application, which
is acceleration measurements in a turbulent channel flow. They calculate
the convective derivative by shifting the evaluation region in the second
velocity field by the horizontally averaged mean flow. We note that the
work by Christensen and Adrian uses polarization of the laser illumination
to avoid a multiple exposure on the second image at the first camera. Such
a double exposure was a feature found in the system of Jensen et al.?

Chang et al.®? proposed an interesting 2D PTV based single-camera
technique where they used one doubly exposed and one singly exposed
image and PTV to calculate the substantial derivative in the Lagrangian
reference frame.
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La Porta et al.3? measured fluid particle accelerations in fully devel-
oped turbulence, using a 3D PTV method® with relatively advanced ex-
perimental techniques (recall from section 5 that PTV may give Lagrangian
accelerations directly).

7. Conclusion

In this work we have aimed at reviewing the foundations and fundamentals
of Quantitative Imaging (QI) techniques in general with a particular focus
on Particle Image Velocimetry (PIV) and specific details of its application
to wavy flows. The QI techniques have been presented in the context of gen-
eral pattern matching techniques with the aim of pointing out similarities
and differences between the relatively large number of techniques available.
With this in mind we conclude by tieing the specifics of QI techniques in
fluid flows thus far presented to the more general field of pattern matching
techniques. The thoughts below are only a minimal scratch at the surface of
the variety of pattern matching techniques in use in quantitative research
fields but we hope they give the reader a sense of the range of applications
of these techniques.

7.1. Measurements of Deformation

The use of PIV techniques has received increasing attention within the field
of solid mechanics where it is applied to measure deformation of various
substances such as clay, soil or sand subject to pressure or forces®*8%. In
these cases the addition of tracer particles is not as common as it is in
fluid mechanics. Sand or soil, for example, will often provide a pattern
suitable for matching, whereas a substance like clay can be (very gently)

spray-painted on the clay surface to create a suitable pattern.

7.2. Measurements of Density

A light-ray that passes through a fluid may experience deflection due to

11

changes in refractive index in the fluid. The method known as Schlieren*",

is a well known quantitative method to determine gradients in a density
field. By using a background pattern, any refractive index change will dis-
place this pattern with a distance proportional to the density gradient.
This is basically the idea behind the image processing versions of Schlieren,
8687 and Background Orientated
Schlieren (BOS)3:89 The latter method is based on cross-correlation using

which are known as Synthetic Schlieren

FFT (i.e. equation 1) to locate the displacement, while the former method
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primarily calculates the full correlation coefficient (equation 23) but also
the absolute difference, i.e. R(s,t) = |F'(4,j) — F"(i + s,j +t)|, and the
minimum quadratic difference methods are used. In the sense that both
methods rely on principles of pattern matching, we can say that they are
identical.

We should also emphasize that subpixel interpolation of the subwindows

were implemented in these techniques. In fact, Dalziel et al.37 applied bi-
linear subpixel interpolations of their images, similar to that applied by Gui

and Wereley?® in the context of PIV.

7.3. Measurements of Volume

In a vast number of industrial and scientific applications it is desirable
to measure the volume of an object. As an example we can consider the
inspection of manufactured parts where a lower limit tolerance exists with
respect to accuracy. Manual inspection is in most cases impossible and
the use of various 3D scanning systems are currently in use®®. There are
several, slightly different methods available, some of which are known as
structured light or (computer) tomography. Applications include scanning
of the human body®', automatic inspection of car parts®? and fluid surface
measurements®®. The concept behind this class of methods is basically to
illuminate a 3D object with a pattern. The pattern will thus be displaced
compared to the scene without the object present. The displacement is
directly proportional to the height of the object in the plane we are viewing.
By rotating the object or using more than one camera, the 3-dimensional

shape may be reconstructed.
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