TurbLab: Turbulence Measurements with Hot Wire Anemometry

A. A. Ayati, A. Jensen, M. Tutkun

Department of Applied Mathematics University of Oslo, N-0316 Oslo, Norway

November, 2012

Anis A. Ayati FACE 2012 - Toulouse

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

크

Hot Wire Section - UW-Probe

Anis A. Ayati FACE 2012 - Toulouse

Goals

- Understand the basic principles of Hot Wire Anemometry. (Murat)
- Gain basic knowledge about turbulence. At least from a statistical point of view. (Murat)
- Learn how to use various control and processing softwares in a Hot Wire experiment. (Labview, Moons, Matlab ...).
- How to apply statistical tools on raw data in order to obtain mean and turbulence quantities, integral time scale, frequency spectra, etc.
- How to scale the results properly in order to compare with other people's work.

 Understand the various features of the LabView program (Only Front Panel). (Samplerate, Convergence test, Electric motor frequency, ++).

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ● ●

LabView Front Panel

Anis A. Ayati FACE 2012 - Toulouse

- Understand the various features of the LabView program (Only Front Panel). (Samplerate, Convergence test, Electric motor frequency, ++).
- Learn how to use the step motor software.

Step Motor Software

MOONS'	\$1240MI	Help Line		Description	Clear
	Drive 2.23F	1	¥	[_
Current: 0.49 A/Phase	Download	2	¥	1	_
	Upload	3	2	Wait for Input 1 rising edge	_
Idle Current	Execute	4	A	Save abs position to Dist1	_
• 0% C 25%		5	ì	MMI: "Posistion"	_
C 50% C 100%	Save	6	¥	1	_
20000 stens/rev	Open	⊢ 7	0	Repeat 5 times	_
4000 count enc	Print	8	2	Wait for Input 1 rising edge	_
	Quit	9		CCW 1.0 mm, 1.0 mps	_
Jog Parameters		10	B	Save abs position to Dist1	_
-0	Dame 000	11		MMI: "Posistion"	_
Accel 50.0 mm/s/s	steps/mm	12	0	End Repeat Loop	_
	10000	13	¥		_
		14	0	Repeat 18 times	_
Configure Inputs		15	22	Wait for Input 1 rising edge	_
COM port		16	œ	CCW 5.0 mm, 1.0 mps	_
		17	A	Save abs position to Dist1	_
		18	T	MMI: "Position"	_
		19	0	End Repeat Loop	_
		20	¥		_
		21	0	Repeat 5 times	_
		22	2	Wait for Input 1 rising edge	_
		23		CW 1.0 mm, 1.0 mps	_
		24	A	Save abs position to Dist1	_
		25	Ì	MMI: "Position"	_
		26	0	End Repeat Loop	_
		27	¥		_
		28	¥	1	_
		20	-	Fig. to fee 4	_

Anis A. Ayati FACE 2012 - Toulouse

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

- Understand the various features of the LabView program (Only Front Panel). (Samplerate, Convergence test, Electric motor frequency, ++).
- Learn how to use the step motor software.
- $[V] \longrightarrow [m/s]$ calibration (An additional note will be attached):
 - Centerline calibration. Six flowrates.
 - Use Nikuradse's interpolation method to find U_c from U_b . Matlab functions will be given.

・ロト < 回ト < 国ト < 国ト < 国ト

- Adjust the air fan frequency such that $Re_g \simeq 44000$ and set the step motor frequency to 0.05Hz.
- Perform a 5-18-5-points measurement at $Re_g \simeq 44000$.
 - $5 \times 1mm$ near top, $18 \times 5mm$ in main pipe, $5 \times 1mm$ near bottom. (StepMotor program is given)
- Convert signals from $[V] \longrightarrow [m/s]$ using the calibration constants.
- Extract horizontal and azimuthal mean and rms components.

・ロト < 回ト < 国ト < 国ト < 国ト

- Compute U_b and U_{τ} with the function "UbUtRe.m".
- Compare with DNS-data given by Wu and Moin. (Will be given).
- Compute the autocorrelation function β(τ) and integral time scale I at the point of maximum turbulence intensity.
- Compute the frequency spectrum S(f) at that same point.
- (Optional) Repeat the latter two tasks at the pipe center.

・ロト ・四ト ・ヨト ・ヨト

Channel 1	Channel 2	Temperature	Mass Flow Rate	Pressure Drop	Time
0.72273577	0.72112585	258.67462757	0.02754746	76.39723615	0.00000000
0.83176982	0.82685902	297.31643740	0.06887937	93.55833714	0.00100000
0.83218613	0.82603829	297.37116789	0.06885106	93.51461065	0.00200000
0.83188444	0.82663774	297.33510230	0.06900694	93.40990547	0.00300000
0.83086443	0.82781611	297.33696847	0.06891937	93.49531760	0.00400800
0.83073186	0.82905015	297.33691561	0.06903685	93.45523648	0.00500000
0.83049275	0.82673965	297.33691519	0.06905623	93.45187179	0.00600000
0.83007615	0.82700641	297.33691531	0.06884728	93.55952116	0.00700800
0.83175399	0.82643996	297.33691531	0.06885551	93.45603828	0.00800000
0.83380320	0.82638759	297.33691531	0.06890651	93.52564786	0.00900800
0.83916705	0.82926385	297.33691531	0.06887579	93.43972663	0.01000000
0.83962251	0.83087801	297.33691531	0.06906040	93.45388007	0.01100800
0.83624320	0.82506296	297.33691531	0.06901626	93.56750181	0.01200800
0.83394267	0.82429598	297.33691531	0.06892640	93.51795253	0.01300000
0.83351522	0.82629479	297.33691531	0.06908536	93.47418792	0.01400800
0.83832799	0.83102387	297.33691531	0.06889071	93.51613779	0.01500800
0.84049778	0.82749199	297.33691531	0.06893862	93.56152368	0.01600800
0.84501146	0.82607923	297.33691531	0.06883711	93.46494969	0.01700800
0.85993919	0.83127150	297.33691531	0.06907597	93.49231949	0.01800800
0.85273973	0.83854126	297.33691531	0.06900463	93.54663527	0.01900000

Anis A. Ayati FACE 2012 - Toulouse

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆□ ▶ ◆□ ● ● ● ●

Typical Profiles

Anis A. Ayati FACE 2012 - Toulouse

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →