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Turbulence! What is 1t?
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Realizations of solutions to the - s
governing equations and boundary conditions.

Most engineering flows are turbulent.



s turbulence still a problem?
What about Navier-Stokes Equations?

Instantaneous Navier-Stokes Equations (NSE):
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G.G. Stokes
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There are some real disadvantages associated with
these equations.

These Navier-Stokes equations are non-linear due to
convective term: U; AU, /ox;

Most solutions of interest are
‘random’ (or ‘stochastic’) and ‘chaotic’ in character.

All scales of motion are important to the dynamics;
none are negligible.
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Do we really bother with this?

The answer is YES!

Turbulence iIs almost everywhere:

e Aero/hydrodynamics
(Airplanes, ships, submarines, road vehicles, trains)
(Pipeline, channels, distribution systems)

e Environmental flows

e Industrial processes (chemical and multiphase)

e Combustion

e Energy technology (gas turbines, wind turl;)ines,...)



The range of scales in real turbulent flows Is
enormous... typically 10° to 104

~ Turbulent boundary layer e e e
i Van Dyke, 1982 LR S

e - Inertia | The higher Re,
€= ViSCous the greater the separation of scales.




It Is very difficult to measure every scale and will be
many decades before computing them directly.

Cascade of turbulence kinetic energy
r2>rl from scale to scale

Vix) r2 v{xNergy
B .

Physical space — Structure functions: v(r) — [u(x — r) — u(x)]

Spectral space — Energy spectra:
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The primary goal of any turbulence research is to be
able to predict or at least model turbulence.

Flow Physics
(DNS & Experiments)
\
Turbulencel\/lo{mg Flow control
Valchatl/
Application

(Performance Enhancement and Energy Efficiency)



What can we do then?

One obvious way is to divide flow into mean and fluctuations
(the so called Reynolds decomposition).

e.g., mean: U, (X,t)=((X,t))
fluctuation: u (X,t)=u (X,t)-U. (X,t)

Ensemble average < > is space and time-dependent.



One has to be careful when computing statistical quantities

In turbulence:
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10 Streamwise velocity behind a grid in a wind tunnel



Let's define a time mean estimator as:

T__f Ult)d

Let's define the true time mean

—

El_"i."EI'-EI_gE

_ 1/t
[/ = hm ?fu U(t) dt

T —oo

Clearly Uy 1s unbiased since 1t 1s straightforward to show that

hm Up =U

T— oo

The question of convergence 15 as usual addressed by studying the variability.

E% _ var {UT — F} _ III_Q_IT'H-
T FE T
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Example:

To 1llustrate this we can take an example where the turbulence intensity, Tu.
1s 20% and the integral time scale 15 I = 1.5 ms. Say that you want an error of
at most 1%. Then the total sampling time becomes

21 (Tu)®  2x 1.5x 107 x 0.2?

T=—ag—>= 0.012

=1.2s

This corresponds to

T 1.2
21 2x1.5x 108
Statistically, 1t does not matter 1f we take more samples during the 1.2 seconds of
sampling. This yields an optimal sampling rate of
Nggr 400
=T =13

Thus, to ensure that the samples are statistically independent, one has to wait
at least two integral time scales between samples.

= 400

"ME_,IFI —

A Jaa Hz
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It is not easy to get the statistics right in turbulence
measurements; in particular high order moments.

N 21 var{u™} 21 [ u?n — (u™)? ,
2 S Sl S . 1.16
F"'-* T {un}}_‘ T ( ,[u:lt:]‘_} [ ]

For the second moment we get

h }H 1!-['}J

2 q —
- — — —1 '4.14“
Ei‘i T ({HI‘E]L—} ) [. ]

Thus 1in order to estimate the error of the second moment. we need to know the
fourth!. For the third moment (the skewness) we get

.. of [ ub o
€ly = — — 1 (4.18)
T\ (u?)?
For the fourth moment (the flatness or sometimes called the kurtosis) the error
estimate becomes
: 21 [ uB ,
2y = —— 1 (4.19)
T\ (ut)?
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Autocorrelation of two random and one periodic process
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Integral time scale is obtained by integrating the area under
the autocorrelation coeffeicient.

C(r)  (u(t)u(t + 7))

p7) = SO (u?)
C (1)
/I
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Plugging the Reynolds decomposition into the NSE
yields the Reynolds Averaged N-S equations (RANS).
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Mean momentum equation:

< pUU;

> +Ti§V)

< pUU; > is the so-called Reynolds stress.

e |tis a flow property.

e \Working against mean flow gradient and extracts

energy to turbulence at large scales.
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Now we have a closure problem due to < puUU; > :
No new equations, 9 (6 independent) new unknowns

Original “gradient” idea: _ an
(Boussinesq (1877)) <UU; >=v,

OX.

J

» 130 years since the turbulent viscosity,
» k-epsilon models are just another way to guess.

It has been proven that simple ideas/approaches
do not work in this problem
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Reynolds stress models are another way...

Using Navier-Stokes equations to "build’ a set of
equations for the Reynolds stress tensor.

D 0 1 0
— <UU >= — | +—(< pU;o; >+ < pu,dy >)- <uuu; >+v —<uu, >

Dt OX Jo, OX
U, oU .
- <uu,; > - <uu; >
OX | OX |
1 ou, ou, ou; ou,
——|<p >+ < p > ||—v <
P 0X, OX. OX; X,

e The number of unknowns is now 52, but only 13 egns!

e Presence of pressure presents a huge problem!
(non-locality)
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Anybody who does research in turbulence should
keep following points in mind:

The flow at a single point is related to the flow at every other
point, and at all previous times (Triadic Interactions).

Even the terms in our averaged equations are NON-LOCAL in
both space and time.

This presents real problems for turbulence models, since all
closures are LOCAL.
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How much of these can be measured In the lab?
--- Unfortunately, not much!

e Particle Image Velocimetry:
— 2, or 3 component of velocity at very high spatial resolution,
— Most of the systems provide low temporal resolution,
— Measurement field is often small,
— Near-wall and low turbulence measurements are very difficult.

e Laser Doppler Anemometry

Very good at high turbulence measurements,
Handles very near-wall region,

Single point measurements,

Can provide reasonable sampling frequencies. 20



We will focus on the most common measurement
methodology used in turbulence reasearch (even today).

e Hot — wire anemometry:

— 1, 2, or 3component of velocity at very high temporal resolution,
— Based on heat balance along the sensor element,

— Single point measurements,

— Disturbance to the flow,

— Poor response in high turbulence and recirculation,

— Cheap compared to the others,

— Easy to manufacture in-house.
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Operating principle (as visualized by Dantec)

AD converter

Lineariz ation
YE
E

3 Sarvo amplifier
Wheatstone bridge
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Last lecture: Turbulence
Statistics
Autocorrelation
Integral time scale
Effective number of samples
Record length
Variability of estimator

Hot wire anemometry

Today: Hot wire anemometry

Calibration

Some examples

Spectral measurements
Practical design of experiment.
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Finite probe size limits the resolvable

—Measurement volume — Measurement system

I size | extension
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Exp. Fluid Mech. 2007

Cut-off frequency in practice :
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smallest scale.

Non-resolvable signal

I

— ) —
A= g

Resolvable signal

I_\D"

x=2£

U.
2x L,

Je=



Velocity U

Cur

y

Sensor dimensions:
length ~1 mm
diameter ~5 micrometer

N\

/

Sensor (thin wire)

Wire supports
(St.St. needles)
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All dates back to 1914: L.V. King (Phil. Trans. Roy. Soc., A214, 373-432).

On the convection og heat from small cylinders in a stream of fluid:

Determination of the convection constants of small platinum wires with application
to hot-wire anemometry.

1
Nu=(4+BRe")(1+ 5 a;)"

where the dimensionless heat transfer rate (Nusselt number):

Nit = 4
INU =
mk(T, - T)
= Nu(Re,Pr,Gr,M ,Kn,a.,l/d,0)
The Reynolds number: Overheat ratio:
Re — pUd 0 = I -1
7 I

2 2R, 2=E2= (T, -T,)(A +B - U") “King’s law”



Hot-wire temperature profiles:

1.5
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27 Freymuth, 1979



Schematics of the anemometer circuit: Wheatstone bridge

N

I—~f T —™

28 Optimum square-wave test response, Bruun, 1995



How it looks in reality:
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Figure 2 3: Anemometer circuit diagram
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Calibration before and/or after the experiment Is
needed in order to convert voltages to velocities.

U
o Probe To anemometer

-

U = (2gH) *7

From Pressure Supply Filrm Probe

To anemormeter

E2=A+Bu" King’s Law

U=C,+C,E+C,E?+CE3+C,E4  Polynomial calibration
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The relation Is found by curve fitting to the
calibration data using least square method.

Curve fitting of calibration data (manual procedure):
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Two component measurements need cross-wires;
and angular calibration

32

N
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n=0

T T 2 i ,2 o 2 i v0.5
Uerr1 = Up(cos™ @y + kisin“¢gy)”

0.5

7 T 2 2 .2,
U.rro = Uy(cos®do + k3sin~oo
eff2 - 2 2 2,

= Q1 + ¢

Co+ 1 E + coB? + 3 E° + e, B* — C"T[](C?{}‘Sgtfil + kfg.ﬁ-i-n..Zr;})D'E’ = ()




Calibration of cross-wires may be more troublesome
and difficult than expected.

Oseen High Flow, x/d = 0 Calibration Holes
E 1 1 1 1

=ofl O “aoltages Outside Calibration |
< Calibration Faoints
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We put all your angular calibrations onto one single curve
for each of the sensors!

18
16
14
« -30
12
m -20
10 4
= -10
o
8 4 0
5 10
4 = 20
+ 30
o
——e kT
o T T T T T T T {gen)
1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
E1
16
14 4
12 4 e« 30
= 20
10 4
-10
5 s 0
5 - = 10
4 4 . 20
2 + 30
—— PFPoly.
0 T T T T T T T T {gen)
1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

E2




More difficult and time consuming to perform this way!

T a2 A 2 a2 i
[ ef fl1\2 COS™ () — /xf SN~

9 92 - o
Ues o c0S2(y + k551N,

A = Fkycos’a + Fsin*a — 1
B = 2(F(1 — ky)cosasinw)
C = Fcos*a+ kyFsin*a— 1
Uecrrr ..
F o= (52
Uesr

—B +B? —4AC
2A

tang, =
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Axisymmetric far wake Is very difficult to measure
because of small velocity deficit.

J_.=15m/s
D =20 mm
Rep = 20000
X/D =50

/ ¢=20 mm

¢ 0.20 mm

800 mm

1200 mm
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Bridge oscillations and quantization error (even for
16 bit A/D converter) are big problems in this case.
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21.6 m long wind tunnel of Laboratoire de Mécanique de
Lille (LML) is unique to conduct boundary layer research.
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FIGURE 4. Sketch of the top view of the wind tunnel: 1. plenum chamber: 2, guide vanes; 3,
honeycomb; 4, grids; 5, contraction; 6, turbulent boundary layer developing zone; 7, testing
zone of wind tunnel; 8, fan and motor; 9, return circuit; 10, heat exchanger (air—water).

U.. (m/s) u, (m/s) 6 (m) y*=1 (um) Reg

5 0.185 0.323 80 11 500
38 10 0.350 0.302 40 20 600




A hot-wire rake of 143 single wire probes to get both spatial
and temporal information about the flow.

13 individual PCBs holding 1 double
and 9 single probes

Probe positioning is crucial

window for PIV

z-position : 0, =#4.0 mm, =*£=12.0mm, =+ 28.0 mm,
=+ 60.0 mm, =100.0 mm, == 145.0 mm
y-position : 0.3 mm, 0.9 mm, 2.1 mm, 4.5 mm, 9.3 mm,
18.9 mm, 38. 1 mm, 76.5 mm, 153.3 mm,
39 230.1 mm, 306.9 mm




Some practical info: Fast (spectral) or slow measurement

Example: pipe flow

Large scale ~ R
Characteristic velocity ~ U qnteriine
Time scale of large scales ~ R/U,

3\ 1/4 u?
Small scale: Kolmogorov microscale 17, = (%) € ~ T
1/2 '
__ (v
Tk = ( E)
1 2m
Rd:— — )\d:—:z’ﬂ?;k
Tl ka
‘Eprﬂbe — Tk
2m
ky = Jrf
L'
U,

Cut-off frequency in practice : L=
. quency in p /e % O,
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