Technical Information TI 030D/06/en No. 50068989

Coriolis Mass Flow Measurement System promass 63

Simultaneous measurement of mass, density and temperature for a broad range of applications For liquids and gases

Flexible system

- The system can be customised to each application
- Wide choice of materials for process connections and measuring tubes. compatible to the fluid
- Simple and cost-effective installation
- Transmitter housing can be rotated to fit the orientation

Easy to operate

- Menu-driven dialogue for all parameters
- Two-line illuminated display
- Touch Control: remote operation without special equipment (protection not violated)

Accurate measurement

- Measurement accuracy for liquids:
- Mass flow \pm 0.1%
- Volume flow \pm 0.15%
- Measurement accuracy for gases: - Mass flow \pm 0.5%
- 1000:1 operable flow range
- Excellent repeatability

Safe operation

- Self-emptying measuring tubes
- Secondary containment vessel as standard
- High electromagnetic compatibility
- Self-monitoring with alarm function
- EEPROM stores data on power failure (no batteries required)
- ISO 9001 manufacturer, quality assured

Install anywhere

- Compact design
- Insensitive to plant vibration
- Rugged and shock-proof surfaces resistant to acids and alkalis
- IP 67 protection for compact and remote versions
- Measurement independent of fluid characteristics
- High performance: simultaneous measurement of more than one process variable, special density evaluation functions, etc.

Technical Data

Application									
Instrument name	Flow measuring system "Promass 63"								
Instrument function	Mass and volumetric flow measurement of liquids and gases in closed pipings.								
Function and system design									
Measuring principle	Mass flow measurement according to the Coriolis measuring principle (see page 3)								
Measuring system	Instrument family "Promass 63" consisting of: Transmitter: Promass 63 Sensors: Promass A, I, F and M								
	Promass A DN 1, 2, 4 and DN 2, 4 (high pressure version) Single tube system in SS or Alloy C-22								
	Promass I DN 8, 15, 25, 40, 50 (completely welded version) Straight single tube system in titanium								
	DN 15 "FB", DN 25 "FB", DN 40 "FB": Full bore versions of Promass I with a higher full scale value (see table below)								
	Promass F DN 8, 15, 25, 40, 50, 80, 100 (completely welded version) Two slightly curved measuring tubes in SS (DN 8100) or Alloy C-22 (DN 880) Promass M DN 8, 15, 25, 40, 50, 80 (two straight measuring tubes in titanium). Containment vessel up to 100 ba DN 8,15, 25 high pressure version for operating pressures up to 350 bar								
	Two versions are available: Compact version Remote version (max. 20 m)								
		Input va	riables						
Measured variables	Mass flow rate (is proportional to the phase difference between two sensors on the measuring tube which detect differences in its oscillation) Fluid density (is proportional to the resonance frequency of the measuring tubes) Fluid temperature (is measured with temperature sensors)								
Measuring range			Range of full scale values						
	DN	Liquid	Gas						
	[mm]	m _{min (L)} m _{max (L)}	m _{min (G)} m _{max (G)}						
	1 2 4 8 15 15* 25 25* 40 40*	2 0100.0 kg/h 4 0450.0 kg/h 3 0 2.0 t/h 5 0 6.5 t/h 5* 0 18.0 t/h 5 0 45.0 t/h 0 0 45.0 t/h	The full scale depends on the density of the gas. The full scale value can be determined with the following formula: $\dot{m}_{max(G)} = \frac{\dot{m}_{max(L)} \cdot \rho_{(G)}}{x \cdot 16}$ $\dot{m}_{max(G)} = \text{Full scale value gas [t/h]}$ $\dot{m}_{max(L)} = \text{Full scale value liquid [t/h]}$ (value from table)						
	80 0	0 70.0 t/h 0180.0 t/h 0350.0 t/h	$\rho_{(G)}$ = gas density [kg/m ³] (at operating conditions)						
			x = constant [kg/m ³] Promass A: $x = 20$ Promass I, M, F: $x = 100$						
	* DN 15, 25, 40 "FB" = Full bore version of Promass I								
	(continued on next page)								

Input variables (continued)							
Measuring range (continued)	Example for calculating a gas full scale value: Sensor: Promass F $\rightarrow x = 100$ Nominal diameter DN 50 \rightarrow 70.0 t/h (full scale value from table on page 26)						
	Gas: Air with a density of 60.3 kg/m ³ (at 20°C and 50 bar)						
	$\dot{m}_{\text{max(G)}} = \frac{\dot{m}_{\text{max(L)}} \cdot \rho_{\text{(G)}}}{x \cdot 16} = \frac{70.0 \cdot 60.3}{100 \cdot 16} = 26.4 \text{ t/h}$						
Operable flow range	up to 1000: 1 This enables totalizer values to be accurately determined even in pulsating systems e.g. with reciprocating pumps.						
Auxiliary input (with "RS 485" board only)	$\label{eq:U} \begin{array}{l} \text{U} = 330 \text{ V DC, } R_i = 1.8 \text{ k}\Omega \text{, pulsed or level mode} \\ \text{Configurable for: totaliser reset, batching, zero point adjustment,} \\ \text{zero point selection, positive zero return or full scale switching} \end{array}$						
	Output variables						
Output signal	Relay output 1 max. 60 V AC / 0.5 A or max. 30 V DC / 0.1 A Either NC or NO via a jumper available (factory setting: NO) Configurable for error message (failure), empty pipe detection, full scale switching, batch precontact, flow direction, limit value						
	Relay output 2 max. 60 V AC / 0.5 A or max. 30 V DC / 0.1 A Either NC or NO via a jumper available (factory setting: NC) Configurable like relay 1 except error messages						
	• Current output 1/2 0/420 mA, also acc. to NAMUR recommendations; R _L < 700 Ω; freely assignable to different measured values, time constant freely selectable (0.01100.00 s), full scale value selectable, temperature coefficient typ. 0.005% o.f.s./°C HART protocol via current output 1 only						
	o.f.s. = of full scale						
	 Pulse/Frequency output freely assignable to one flow variable, active/passive selectable, active: 24 V DC, 25 mA (250 mA during 20 ms), R_L > 100 Ω passive: 30 V DC, 25 mA (250 mA during 20 ms) 						
	 Frequency output: f_{End} selectable up to 10 kHz On/off ratio 1:1, pulse width max. 10 s 						
	 Pulse output: pulse weighting adjustable, pulse polarity adjustable, pulse width adjustable (50 ms10 s) Above a frequency of ¹/(2 x pulse width) the on/off ratio is 1:1 						
Signal on alarm	The following applies until the fault has been cleared: Current output: failure mode selectable Pulse/Frequency output: failure mode selectable Relay 1: de-energised if configured to "FAILURE". Relay 1/2: de-energised on power supply failure.						
Load	$R_L < 700 \Omega$ (current output)						
Creep suppression	Switch points for low flow selectable. Hysteresis: -50 %						

Technical Data

Accuracy									
Reference conditions	Error limits based on ISO / DIS 11631: • 2030 °C; 24 bar • Calibration rig based on national standards • Zero point calibrated under operating conditions • Field density calibration carried out (or special density calibration)								
Measured error	 Mass flowrate (liquids): Promass A, M, F ± 0.10% ± [(zero stability / flow rate) x 100]% of rate I ± 0.15% ± [(zero stability / flow rate) x 100]% of rate Mass flowrate (gas): Promass A, I, M, F± 0.50% ± [(zero stability / flow rate) x 100]% of rate Volume flowrate (liquids): Promass A, M ± 0.25% ± [(zero stability / flow rate) x 100]% of rate I ± 0.50% ± [(zero stability / flow rate) x 100]% of rate F ± 0.15% ± [(zero stability / flow rate) x 100]% of rate zero stability → see table below 								
 Note! The values above refer to the pulse/frequency output. Additional measuring error of the current output: ± 5 μA (typical) 									
	Diameter DN	Max. full scale [kg/h] or [l/h]	Zero stability Promass A, M, F [kg/h] or [l/h]	Zero stability Promass I [kg/h] or [l/h]					
	1 2 4 8 15 15 * 25 25 * 40 40 * 50 80 100 *	20 100 450 2000 6500 18000 45000 45000 70000 70000 180000 350000 DN 15, 25, 40 "FB"	0.0010 0.0050 0.00225 0.100 0.325 — 0.90 — 2.25 — 3.50 9.00 14.00						
	Example for calculating the measured error: Promass F \pm 0.10% \pm [(zero stability / flow rate) x 100]% of rate DN 25; Flowrate = 3.6 t/h = 3600 kg/h								
	Measured e	$\text{fror} \rightarrow \pm 0.10\% \pm \frac{0.9 \text{ kg/h}}{3600 \text{ kg/h}} \cdot 100\% = \pm 0.125\%$							
	Density (liquid): Standard calibration: Promass A, I, M ± 0.02 g/cc (1 g/cc = 1 kg/l) Promass F ± 0.01 g/cc Special density calibration (optional): (calibration range = 0.81.8 g/cc, 580°C) Promass A, M ± 0.002 gccl Promass I ± 0.004 g/cc Promass F ± 0.001 g/cc Density calibration in the field:								
	Promas Promas	ss I ± 0.00 ss F ± 0.00	± 0.0010 g/cc ± 0.0020 g/cc ± 0.0005 g/cc						
	Temperate Promass a		°C ± 0.005 x T	(T = fluid temp. in °C)					

Accuracy (continued)

Repeatability

Mass flowrate (liquids):
 Promass A, I, M, F

 $\pm 0.05\%$ $\pm [\frac{1}{2} \times (\text{zero stability / flow rate}) \times 100]\%$ of rate

Mass flowrate (gas):
 Promass A, I, M, F
 ± 0.25% ± [¹/₂ x (zero stability / flow rate) x 100]% of rate

• Volume flowrate (liquids): Promass

A, M $\pm 0.10\% \pm [^1/_2 \text{ x (zero stability / flow rate)} \times 100]\%$ of rate I $\pm 0.20\% \pm [^1/_2 \text{ x (zero stability / flow rate)} \times 100]\%$ of rate F $\pm 0.05\% \pm [^1/_2 \text{ x (zero stability / flow rate)} \times 100]\%$ of rate

Zero stability \rightarrow see table on page 28

Example for calculating the repeatability:

Promass F \pm 0.05% \pm [(zero stability / flow rate) x 100]% of rate DN 25; Flowrate = 3.6 t/h = 3600 kg/h

Repeatabilitity $\rightarrow \pm 0.05\% \pm \frac{1}{2}$ $\cdot \frac{0.9 \text{ kg/h}}{3600 \text{ kg/h}} \cdot 100\% = \pm 0.0625\%$

• Density measurement (liquids):

Promass A, M $\pm 0.00050 \text{ g/cc}$ (1 g/cc = 1 kg/l)

Promass I ± 0.00100 g/cc Promass F ± 0.00025 g/cc

Temperature measurement:
 Description Add M. English 2005 200 40 0005 T. (T. (Initial Measurement))

Promass A, I, M, F ± 0.25 °C ± 0.0025 x T (T = fluid temp. in °C)

Process effects

• Process temperature effect:

The below value represents the zero point error due to changing process temperature away from temperature at which a zero point adjustment was carried out:

Promass A, I, M, F typical = \pm 0,0002% of full scale / °C

Process pressure effect:

The below defined values represent the effect on accuracy of mass flow due to changing process pressure away from calibration pressure (values in % of rate / bar).

DN [mm]	Promass A flow rate % o.r.** / bar	Promass I flow rate % o.r.** / bar	Promass M flow rate % o.r.** / bar	Promass MP flow rate % o.r.** / bar	Promass F flow rate % o.r.** / bar
1	none	_	_	_	_
2	none	_	_	_	_
4	none	_	_	_	_
8	_	0.006	0.009	0.006	none
15	_	0.004	0.008	0.005	none
15 *	_	0.006	_	_	_
25	_	0.006	0.009	0.003	none
25 *	_	none	_	_	_
40	_	none	0.005	_	-0.003
40 *	_	0.006	_	_	_
50	_	0.006	none	_	-0.008
80	_	_	none	_	-0.009
100	_	_	_	_	-0.012

* DN 15, 25, 40 "FB" = Promass I mit vollem Nennweitenquerschnitt

** o.r. = of rate