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Analysis of time series

For this WaveLab you will be working with time series of surface elevation η(x, t) which
you have collected from the large wavetank in the Hydrodynamic laboratory. The data is
collected with a stationary array consisting of sixteen ultrasonic probes. In the stationary
array the ultrasonic probes are equispaced with distance ∆x = 0.3 m and for all probes
the data is collected at a sampling rate of s = 200 Hz. The technical specifications of
the ultrasonic probes can be found online at ... The array is mounted on rails along the
length of the wavetank and this allows us to perform dense spatio-temporal synthetic
measurements of the wave fields.

You will measure two irregular wave fields with steepness:

ǫ = ackp, (1)

equal to 0.02 and 0.10 initially closest to the wave generator, where ac =
√

2〈η2〉 is the
characteristic amplitude of the irregular wave field, 〈η2〉 is the mean-square of the time
series of the surface elevation measured by the probe closest to the wave generator and kp

is the peak wavenumber. The goal of the WaveLab is to compare the directly measured
dispersion relation with the linear dispersion relation for water surface gravity waves:

ω2 = gk, (2)

and possible discover if there is any qualitative difference between linear and nonlinear
wave regimes when the initial steepness ǫ increases from 0.02 to 0.10.

For each synthetic measurement the data will be collected in lvm files which consists
of seventeen columns. The first coloumn is the discrete time steps and the second to
seventeenth column is the surface elevation data from the sixteen probes in the stationary
array. The second column is the measurement of the surface elevation from the probe
closest to the wave generator and the seventeenth coloumn is the measurement from the
probe closest to the damping beach.

1. Store the lvm data you collected in the laboratory from the wave field with steepness
ǫ equal to 0.02 in a folder on a computer and plot the time series of the raw data
from the measurement closest to the wave generator. This can be done by using the
matlab commands:

>> load e0,02_Run01_d00.lvm

>> A=e0,02_Run01_d00

>> plot(A(:,1),A(:,2))

>> axis([0 120 -3 3])
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Do a visual inspection of the time series (the axis command is useful in this context).
Are there any anomalies? If any, how can you describe them? Suggested reading
section 10.4.2 in Bendat and Piersol (2000).

2. Store the lvm data from the wave field with steepness ǫ equal to 0.10 in another
folder. Do a visual inspection of the raw data time series. Does the number of
anomalies increase compared to the wave field with ǫ equal to 0.02? If so, what do
you think is a reasonable explanation?

Download the matlab m-files e02SignalProcessing.m and e10SignalProcessing.m from
the online link given above and store the m-files in the same folders as the data col-
lected from the laboratory. Run e02SignalProcessing.m and e10SignalProcessing.m.
The outputs are M × N -matrixes ETA were M is the number of synthetic meas-
urement positions in space and N is the number of time samples taken at each
probe. The columns in ETA are ordered so that the first column corresponds to
the measurement closest to the wave generator and the last column corresponds to
the measurement closest to the damping beach. The synthetic measurements are
equispaced with ∆x = 0.05 m.

3. Plot the time series closest to the wave generator for both wave fields (you are free
to write the plot command in to the already existing m-file). This can be done by
for instance:

plot(t,ETA(:,1))

Do a visual inspection of the processed time series. Are there now any differences
compared to the raw data plotted in exercise 1 and 2? What do you think the
downloaded processing m-files do? Do you see any noise in the data? You can filter
the data by using a smoothing filter, for instance a Savitzky-Golay filter implemented
in Matlab®:

po=3; % Polynomial order

ffs=61; % Filter frame size

ETA=sgolayfilt(ETA,po,ffs);

Feel free to experiment with different paramenters for the filter. What happens with
the surface elevation if you use large polynomial orders and filter frame sizes?

4. Compute the discrete angular frequency spectrum S(ωn) from the measured time
series closest to the wave generator for both wave fields. This can be done in the
following manner. Discretize the wave angular frequencies in steps of:

∆ω =
2π

T
(3)

where T is the total time length of the time series and T = N∆t with ∆t = 1/s.
The angular frequencies ωn = n∆ω where n = 0, 1, 2, ..., N −1. The spectral energy
density S(ωn) = |η̂(ωn)|2 were η̂(ωn) is the one-dimensional Fourier transform of the
time series η(tn). In matlab® the discretization of the angular frequencies is easily
achived with the command:
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n=0:N-1;

do=(2*pi)/T;

o = n*do;

and the one-dimensional Fourier-transform is computed from the FFT-algorithm:

etaHat=ifft(ETA(:,1))

The spectral energy density:

So=abs(etaHat)^2

Plot the angular frequency spectrum S(ωn) by using the command:

plot(o,So)

axis([0 20 0 1.0*10^(-3)])

Adjust the axis if necessary. Can you describe the spectrum? Hint: the curve may
not look very nice.

5. Make the curve nicer by smoothing the spectral energy density:

po=1;

ffs=31;

So=sgolayfilt(So,po,ffs);

Plot the smoothed angular frequency spectrum. Is there any difference compared
to when the smoothing is not used? Find the maximum of the spectrum and the
corresponding angular frequency. We will name this angular frequency the peak
angular frequency ωp. Find the peak wavenumber kp = ω2

p/g from the linear disper-
sion relation in Eq. (2) and the steepness ǫ from Eq. (1) for both wave fields. To
compute the mean of the time series use:

mean(ETA(:,1))

Verify that the initial steepness of the wave fields are ǫ equal to 0.02 and 0.10. The
angular frequency has unit rads−1 and the wavenumber has unit radm−1.

Compare the measured data with the linear dispersion relation for water surface
gravity waves ω2 = gk. We will do this in the following manner. Compute a
two-dimensional Fourier-transform of the space-time series collected in ETA and
compute the spectral energy density S(km, ωn). This can be done from the com-
mands:

ETAHat=(1/M)*(fft(ifft(ETA).’).’);

S=abs(ETAHat)^2;
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The wavenumbers are discretized in steps of,

∆k =
2π

M∆x
(4)

where M∆x = L is the length of the synthetic array in the wavetank. The wavenum-
bers km = m∆k where m = 0, 1, 2, ..., M − 1.

6. Plot the spectral energy density in dB (decibel). This is done by taking the logarithm
of the normalized spectral energy density and multiplying it with ten:

maxS= max(S(:));

SdB=10*log10(S/maxS);

Make the wavenumber and angular frequency axis non-dimensional. This is done
simply by dividing the discretized wavenumber and angular frequencies with the
peak wavenumber kp and the peak angular frequency ωp respectively. For instance:

k_p=?

o_p=?

k=k./k_p;

o=o./o_p;

We will make a k/ω-spectrum by plotting the contours of the spectral energy density
in k/ω-space. For the k/ω-spectrum it is recommended not to use a smoothing filter
on the surface elevation. To plot the k/ω-spectrum use the commands:

pcolor(k,o,SdB)

shading interp

axis([0 5 0 5])

caxis([-70 0])

Plot the linear dispersion relation ω =
√

gk in the same figure. If you like you
can use a finer resolution for the linear dispersion relation curve. Adjust the axis if
necessary. The highest energies will be shown in red colours. How is the spectral
energy density distributed compared to the linear dispersion relation? Is there any
qualitative difference between the linear (ǫ equal to 0.02) and nonlinear (ǫ equal to
0.10) wave regimes?

We will also do a simple error analysis on the repetition error between three inde-
pendent repetitions of the wave field which were measured from the array position
d00 closest to the wave generator.

7. Download the m-file errorSignalProcessing.m. Let R = 1, 2, 3 denote the wave runs
Run01, Run02 and Run03 and let the surface elevation measured closest to the
wave generator from these three runs be ηR(tn). Calculate the repetition errors (in
percentage) from the independent measurements closest to the wave generator by,

ζ1,2 =

∑N−1

n=0
(η1(tn) − η2(tn))2

∑N−1

n=0
(η1(tn))2

(5)
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and

ζ1,3 =

∑N−1

n=0
(η1(tn) − η3(tn))2

∑N−1

n=0
(η1(tn))2

(6)

How are the repetition errors? Would you say that the wave field is repeatable?
How significant are the repetition errors for using the synthetic array?
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