UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK-IN4300/9300 — Statistical Learning Methods in Data Science
Day of examination:	Tuesday, 28 November 2023
Examination hours:	15.00-19.00
This problem set consists of 5 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Fitting a Regression Function

Consider a regression setting and assume an additive error model:

$$Y = f_{\theta}(X) + \epsilon,$$

where θ denotes the model parameters defining the regression function f_{θ} and $\epsilon \sim N(0, \sigma^2)$ is the error term.

- (a) For the purpose of estimating θ from data, describe (i) the least squares method and (ii) the maximum likelihood method.
- (b) Show that the least squares method and the maximum likelihood method are equivalent under the considered assumptions described above. Hint: recall that the probability density function of a random variable $Z \sim N(\mu, \sigma^2)$ is given by:

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\sigma}\right)^2}, \ z \in \mathbb{R} \text{ and } \mu \in \mathbb{R}, \sigma > 0.$$

Problem 2 Bias-Variance Tradeoff

Consider a regression setting with an additive error model $Y = f(X) + \epsilon$, where $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var}[\epsilon] = \sigma_{\epsilon}^2$.

(a) Using the squared-error loss, show that the expected prediction error of a regression fit $\hat{f}(X)$ at input point $X = x_0$ can be decomposed as:

$$\mathbb{E}[(Y - \hat{f}(x_0))^2 \mid x_0] = \sigma_{\epsilon}^2 + \left(\mathbb{E}[\hat{f}(x_0)] - f(x_0)\right)^2 + \mathbb{E}[(\hat{f}(x_0) - \mathbb{E}[\hat{f}(x_0)])^2]$$

and describe what the three terms on the right-hand side of the above equation represent. Hint: recall that the variance of a random variable Z with $\mathbb{E}[Z] = \mu$ is defined as $\operatorname{Var}[Z] = \mathbb{E}[(Z - \mu)^2]$.

(Continued on page 2.)

Figure 1: From Hastie et al. (2009). The Elements of Statistical Learning.

(b) Assuming that $\hat{f}(X)$ is a k-nearest-neighbor regression fit, the above expected prediction error expression takes the specific form of

$$\mathbb{E}[(Y - \hat{f}(x_0))^2 \,|\, x_0] = \sigma_{\epsilon}^2 + \left(f(x_0) - \frac{1}{k} \sum_{\ell=1}^k f(x_{(\ell)})\right)^2 + \frac{\sigma_{\epsilon}^2}{k},$$

where $x_{(\ell)}$ denotes the ℓ :th nearest neighbor of x_0 in the training data. Describe the role of k in controlling the complexity of the model and the associated bias-variance tradeoff.

Problem 3 Linear Regression with Shrinkage

Assume a linear regression model $Y = \beta_0 + \sum_{j=1}^p \beta_j X_j + \epsilon$ with p input variables. Given some training data, we can define a shrinkage estimator of the model parameters as the solution to the following optimization problem:

$$\underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\},\$$

subject to $R(\beta) \leq t$,

where $R(\beta) = \sum_{j=1}^{p} \beta_j^2$ for ridge regression and $R(\beta) = \sum_{j=1}^{p} |\beta_j|$ for lasso.

- (a) Describe briefly the general idea behind shrinkage methods, such as ridge regression and lasso, and also how t is connected to the bias-variance tradeoff for the fitted models.
- (b) Consider Figure 1 which shows the contours (red ellipses) of the objective function around the least-squares solution $\hat{\beta}$ and the constraint regions of lasso and ridge regression (solid blue areas) for the above optimization problem in the case of two input variables. Based on Figure 1:

(Continued on page 3.)

- (i) Explain the key difference between ridge regression and lasso in terms of the model they produce.
- (ii) Explain how changing t would affect the constraint regions and the resulting parameter estimates.

Problem 4 Model Selection and Evaluation

- (a) Consider the following strategy for performing a regression analysis in a case where there is a very large number of input variables X_1, \ldots, X_p :
 - 1. Initial screening: Find a good subset of predictors by including the $q \ll p$ input variables that are most strongly correlated with the response variable.
 - 2. K-fold cross-validation: For k = 1, ..., K, train a model for predicting the response given the q input variables (from Step 1) using all data except fold k and compute a fold-specific estimate of the test error based on the observations in fold k.
 - 3. Average the fold-specific test errors obtained in Step 2 to obtain a cross-validation estimate of the test error.

Is the averaged test error obtained from the above procedure a good estimate of the expected prediction error of a new test observation from the same distribution? If not, what would you do differently to improve it?

(b) Let \mathcal{T} denote a set of training data containing N joint observations of the input-output pair (X, Y) and let (X^0, Y^0) denote a new test data pair (all generated from the same p(X, Y)). Further let $\hat{f}(X)$ be a model fitted on the training data. Given some loss function L(y, f(x)), consider the following definitions of errors for the fitted model:

(i)
$$\operatorname{Err}_{\mathcal{T}} = \mathbb{E}_{X^0, Y^0}[L(Y^0, \hat{f}(X^0)) | \mathcal{T}]$$

(ii) Err =
$$\mathbb{E}_{\mathcal{T}} \left[\mathbb{E}_{X^0, Y^0} [L(Y^0, \hat{f}(X^0)) | \mathcal{T}] \right]$$

(iii)
$$\operatorname{Err}_{\operatorname{in}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{Y^0} [L(Y_i^0, \hat{f}(x_i)) | \mathcal{T}]$$

Explain what errors (i)–(iii) measure and what they are used for in the context of model selection and evaluation.

Problem 5 Bagged Trees and Random Forest

A regression and classification tree model can formally be expressed as

$$T(x;\Theta) = \sum_{j=1}^{J} \gamma_j I(x \in R_j),$$

(Continued on page 4.)

where $\Theta = \{\gamma_j, R_j\}_{j=1}^J$ contains all the model parameters describing the tree, or its regions R_j , as well as the associated region-specific constants γ_j .

(a) By using bootstrap aggregation, or bagging, we can construct a socalled bagged tree estimate:

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} T(x; \Theta_b).$$

How is the above estimate constructed and why does it in general improve the accuracy of a single-tree model?

(b) Let Z_1, \ldots, Z_B be *B* identically distributed random variables with variance σ^2 . If the variables are dependent, with a positive correlation ρ , one can show that:

$$\operatorname{Var}\left[\frac{1}{B}\sum_{b=1}^{B}Z_{b}\right] = \rho\sigma^{2} + \frac{1-\rho}{B}\sigma^{2}.$$

Explain why the bagged tree model is limited by the above result and how random forest can be considered an improved version of the bagged tree model.

(c) By letting $B \to \infty$, we obtain the limiting form of the random forest regression estimator:

$$\hat{f}_{\mathrm{rf}}(x) = \mathbb{E}_{\Theta \mid \boldsymbol{Z}}[T(x;\Theta)],$$

where Z denotes the training data. Further, it can be shown that the total variance of a tree can be decomposed into a sum of two terms:

$$\operatorname{Var}_{\Theta, \mathbf{Z}} \left[T(x; \Theta) \right] = \operatorname{Var}_{\mathbf{Z}} \left[\mathbb{E}_{\Theta \mid \mathbf{Z}} \left[T(x; \Theta) \right] \right] + \mathbb{E}_{\mathbf{Z}} \left[\operatorname{Var}_{\Theta \mid \mathbf{Z}} \left[T(x; \Theta) \right] \right].$$

What does the total variance and the two terms on the right-hand side of the above equation represent?

Problem 6 Boosting

Consider a two-class classification problem where the binary output variable is coded as $Y \in \{-1, 1\}$.

(a) For the considered problem, it can been shown that the AdaBoost algorithm in Figure 2 is equivalent to forward stagewise additive modelling under the exponential loss function:

$$L(y, f(x)) = e^{-yf(x)}$$

and, as a consequence of this, one can show that AdaBoost is seeking to estimate the population minimizer:

$$f^*(x) = \operatorname*{argmin}_{f(x)} \left\{ \mathbb{E}_{Y \mid x} \left[e^{-Yf(x)} \right] \right\}.$$

Derive an expression for $f^*(x)$ and explain, based on the expression, why the classification rule of AdaBoost is reasonable.

(Continued on page 5.)

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m = 1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$

3. Output $G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$.

Figure 2: From Hastie et al. (2009). The Elements of Statistical Learning.

Figure 3: Different loss functions plotted against the margin.

(b) When classifying a -1/1 response using the classification rule $\operatorname{sign}[f(x)]$, the margin yf(x) plays a role analogous to the residuals in regression. Consider the exponential loss, squared error loss and binomial deviance, which are plotted in Figure 3 against the margin. Discuss the strengths and weaknesses of the considered loss functions in comparison to each other.

THE END - GOOD LUCK!