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Faculty of mathematics and natural sciences

Exam in: STK-IN4300/9300 –– Statistical Learning
Methods in Data Science

Day of examination: Tuesday, 28 November 2023

Examination hours: 15.00 – 19.00

This problem set consists of 5 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 Fitting a Regression Function

Consider a regression setting and assume an additive error model:

Y = fθ(X) + ε,

where θ denotes the model parameters defining the regression function fθ
and ε ∼ N(0, σ2) is the error term.

(a) For the purpose of estimating θ from data, describe (i) the least squares
method and (ii) the maximum likelihood method.

(b) Show that the least squares method and the maximum likelihood
method are equivalent under the considered assumptions described
above. Hint: recall that the probability density function of a random
variable Z ∼ N(µ, σ2) is given by:

f(z) =
1√

2πσ2
e−

1
2( z−µσ )

2

, z ∈ R and µ ∈ R, σ > 0.

Problem 2 Bias-Variance Tradeoff

Consider a regression setting with an additive error model Y = f(X) + ε,
where E[ε] = 0 and Var[ε] = σ2

ε .

(a) Using the squared-error loss, show that the expected prediction error
of a regression fit f̂(X) at input point X = x0 can be decomposed as:

E[(Y −f̂(x0))2 |x0] = σ2
ε +
(
E[f̂(x0)]−f(x0)

)2
+E
[
(f̂(x0)−E[f̂(x0)])2

]
,

and describe what the three terms on the right-hand side of the above
equation represent. Hint: recall that the variance of a random variable
Z with E[Z] = µ is defined as Var[Z] = E[(Z − µ)2].

(Continued on page 2.)
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Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |β1|+ |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of
the least squares error function.

Figure 1: From Hastie et al. (2009). The Elements of Statistical Learning.

(b) Assuming that f̂(X) is a k-nearest-neighbor regression fit, the above
expected prediction error expression takes the specific form of

E[(Y − f̂(x0))2 |x0] = σ2
ε +

(
f(x0)− 1

k

k∑

`=1

f(x(`))

)2

+
σ2
ε

k
,

where x(`) denotes the `:th nearest neighbor of x0 in the training data.
Describe the role of k in controlling the complexity of the model and
the associated bias-variance tradeoff.

Problem 3 Linear Regression with Shrinkage

Assume a linear regression model Y = β0 +
∑p

j=1 βjXj + ε with p input
variables. Given some training data, we can define a shrinkage estimator of
the model parameters as the solution to the following optimization problem:

argmin
β





N∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2



 ,

subject to R(β) ≤ t,

where R(β) =
∑p

j=1 β
2
j for ridge regression and R(β) =

∑p
j=1 |βj | for lasso.

(a) Describe briefly the general idea behind shrinkage methods, such as
ridge regression and lasso, and also how t is connected to the bias-
variance tradeoff for the fitted models.

(b) Consider Figure 1 which shows the contours (red ellipses) of the
objective function around the least-squares solution β̂ and the
constraint regions of lasso and ridge regression (solid blue areas) for the
above optimization problem in the case of two input variables. Based
on Figure 1:

(Continued on page 3.)
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(i) Explain the key difference between ridge regression and lasso in
terms of the model they produce.

(ii) Explain how changing t would affect the constraint regions and
the resulting parameter estimates.

Problem 4 Model Selection and Evaluation

(a) Consider the following strategy for performing a regression analysis in
a case where there is a very large number of input variables X1, . . . , Xp:

1. Initial screening: Find a good subset of predictors by including
the q << p input variables that are most strongly correlated with
the response variable.

2. K-fold cross-validation: For k = 1, . . . ,K, train a model for
predicting the response given the q input variables (from Step 1)
using all data except fold k and compute a fold-specific estimate
of the test error based on the observations in fold k.

3. Average the fold-specific test errors obtained in Step 2 to obtain
a cross-validation estimate of the test error.

Is the averaged test error obtained from the above procedure a good
estimate of the expected prediction error of a new test observation
from the same distribution? If not, what would you do differently to
improve it?

(b) Let T denote a set of training data containing N joint observations of
the input-output pair (X,Y ) and let (X0, Y 0) denote a new test data
pair (all generated from the same p(X,Y )). Further let f̂(X) be a
model fitted on the training data. Given some loss function L(y, f(x)),
consider the following definitions of errors for the fitted model:

(i) ErrT = EX0,Y 0 [L(Y 0, f̂(X0)) | T ]

(ii) Err = ET
[
EX0,Y 0 [L(Y 0, f̂(X0)) | T ]

]

(iii) Errin =
1

N

N∑

i=1

EY 0 [L(Y 0
i , f̂(xi)) | T ]

Explain what errors (i)–(iii) measure and what they are used for in the
context of model selection and evaluation.

Problem 5 Bagged Trees and Random Forest

A regression and classification tree model can formally be expressed as

T (x; Θ) =
J∑

j=1

γjI(x ∈ Rj),

(Continued on page 4.)
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where Θ = {γj , Rj}Jj=1 contains all the model parameters describing the
tree, or its regions Rj , as well as the associated region-specific constants γj .

(a) By using bootstrap aggregation, or bagging, we can construct a so-
called bagged tree estimate:

f̂bag(x) =
1

B

B∑

b=1

T (x; Θb).

How is the above estimate constructed and why does it in general
improve the accuracy of a single-tree model?

(b) Let Z1, . . . , ZB be B identically distributed random variables with
variance σ2. If the variables are dependent, with a positive correlation
ρ, one can show that:

Var
[ 1

B

B∑

b=1

Zb
]

= ρσ2 +
1− ρ
B

σ2.

Explain why the bagged tree model is limited by the above result and
how random forest can be considered an improved version of the bagged
tree model.

(c) By letting B → ∞, we obtain the limiting form of the random forest
regression estimator:

f̂rf(x) = EΘ |Z [T (x; Θ)],

where Z denotes the training data. Further, it can be shown that the
total variance of a tree can be decomposed into a sum of two terms:

VarΘ,Z
[
T (x; Θ)

]
= VarZ

[
EΘ |Z

[
T (x; Θ)

]]
+ EZ

[
VarΘ |Z

[
T (x; Θ)

]]
.

What does the total variance and the two terms on the right-hand side
of the above equation represent?

Problem 6 Boosting

Consider a two-class classification problem where the binary output variable
is coded as Y ∈ {−1, 1}.
(a) For the considered problem, it can been shown that the AdaBoost

algorithm in Figure 2 is equivalent to forward stagewise additive
modelling under the exponential loss function:

L(y, f(x)) = e−yf(x),

and, as a consequence of this, one can show that AdaBoost is seeking
to estimate the population minimizer:

f∗(x) = argmin
f(x)

{
EY |x

[
e−Y f(x)

]}
.

Derive an expression for f∗(x) and explain, based on the expression,
why the classification rule of AdaBoost is reasonable.

(Continued on page 5.)
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10.1 Boosting Methods 339

Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M :

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =

∑N
i=1 wiI(yi 6= Gm(xi))∑N

i=1 wi

.

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp[αm · I(yi 6= Gm(xi))], i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

to concentrate on those training observations that are missed by previous
ones in the sequence.
Algorithm 10.1 shows the details of the AdaBoost.M1 algorithm. The

current classifier Gm(x) is induced on the weighted observations at line 2a.
The resulting weighted error rate is computed at line 2b. Line 2c calculates
the weight αm given to Gm(x) in producing the final classifier G(x) (line
3). The individual weights of each of the observations are updated for the
next iteration at line 2d. Observations misclassified by Gm(x) have their
weights scaled by a factor exp(αm), increasing their relative influence for
inducing the next classifier Gm+1(x) in the sequence.
The AdaBoost.M1 algorithm is known as “Discrete AdaBoost” in Fried-

man et al. (2000), because the base classifier Gm(x) returns a discrete class
label. If the base classifier instead returns a real-valued prediction (e.g.,
a probability mapped to the interval [−1, 1]), AdaBoost can be modified
appropriately (see “Real AdaBoost” in Friedman et al. (2000)).
The power of AdaBoost to dramatically increase the performance of even

a very weak classifier is illustrated in Figure 10.2. The features X1, . . . , X10

are standard independent Gaussian, and the deterministic target Y is de-
fined by

Y =

{
1 if

∑10
j=1X

2
j > χ2

10(0.5),

−1 otherwise.
(10.2)

Here χ2
10(0.5) = 9.34 is the median of a chi-squared random variable with

10 degrees of freedom (sum of squares of 10 standard Gaussians). There are
2000 training cases, with approximately 1000 cases in each class, and 10,000
test observations. Here the weak classifier is just a “stump”: a two terminal-
node classification tree. Applying this classifier alone to the training data
set yields a very poor test set error rate of 45.8%, compared to 50% for

Figure 2: From Hastie et al. (2009). The Elements of Statistical Learning.
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Figure 3: Different loss functions plotted against the margin.

(b) When classifying a −1/1 response using the classification rule
sign[f(x)], the margin yf(x) plays a role analogous to the residuals
in regression. Consider the exponential loss, squared error loss and
binomial deviance, which are plotted in Figure 3 against the margin.
Discuss the strengths and weaknesses of the considered loss functions
in comparison to each other.

THE END - GOOD LUCK!


