UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK-IN4300/STK-IN9300 — Statistical learning methods in Data Science
Day of examination:	Monday, December 17th, 2018
Examination hours:	14.30-18.30
This problem set consists of 4 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Penalized regression

Consider the following figure from the text book (Hastie, Tibshirani & Friedman, 2009, The Elements of Statistical Learning):

a

Using the figure above, explain the concept of bias-variance trade-off.

(Continued on page 2.)

Show analytically the same concept of the point above by mathematically comparing bias and variance of the ordinary least square estimator and of the ridge estimator.

Problem 2 Bootstrapping for model evaluation

Consider the following procedure to estimate the prediction error:

- 1. generate B bootstrap samples z_1, \ldots, z_B , where $z_b = \{(y_1^*, x_1^*), \ldots, (y_N^*, x_N^*)\}, b = 1, \ldots, B$ and $(y_i^*, x_i^*), i = 1, \ldots, N$, is an observation sampled from the original dataset;
- 2. apply the prediction rule to each bootstrap sample to derive the predictions $\hat{f}_b^*(x_i), b = 1, \dots, B$;
- 3. compute the error for each point, and take the average,

$$\widehat{\operatorname{Err}}_{\operatorname{boot}} = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{N} \sum_{i=1}^{N} L(y_i, \widehat{f}_b^*(x_i)).$$

а

Explain why this procedure is incorrect and suggest a different way to proceed which still uses a bootstrap approach.

\mathbf{b}

Describe the 0.632 bootstrap and the 0.632+ bootstrap procedures, explaining in particular the rationale behind their construction.

Problem 3 Smoothing splines

Consider the following problem: among all functions f(x) with two continuous derivatives, find one that minimizes the penalized residual sum of squares

$$RSS(f,\lambda) = \sum_{i=1}^{N} (y_i - f(x_i))^2 + \lambda \int \{f''(t)\}^2 dt$$
 (1)

where $\lambda \geq 0$.

a

Define the role of the penalization term $\lambda \int \{f''(t)\}^2 dt$ in relation to its specific form, and discuss what happens when the smoothing parameter λ varies.

(Continued on page 3.)

\mathbf{b}

The solution of minimization problem (1) the can be written as a natural spline

$$f(x) = \sum_{j=1}^{N} N_j(x)\theta_j.$$

Rewrite (1) as a function of θ (i.e., $RSS(\theta, \lambda)$) and use its solution to show that a smoothing spline for a fixed λ is a linear smoother (linear operator). Use it to define the effective degrees of freedom of a smoothing spline.

Problem 4 Bagging

а

Describe bagging, mentioning at least one advantage with respect to a single tree and a disadvantage with respect to a boosted tree model.

\mathbf{b}

Consider a classification problem and how to aggregate the results of the single trees in a bagging classifier. The aggregation can be done by looking at the estimated classes or at the class-probability estimates. Show with a simple example that the two procedures can produce different results in terms of classification of an observation.

Problem 5 Boosting

а

Show that the additive expansion produced by AdaBoost is estimating onehalf the log-odds of P(Y = 1 | X = x), where Y is the binary response and X the input matrix.

\mathbf{b}

Consider the following algorithm,

- 1. initialize the estimate, e.g., $f_0(x) = 0$;
- 2. for $m = 1, ..., m_{\text{stop}}$,
 - 2.1 compute the negative gradient vector, $u_m = \mathbf{OMITTED}$;
 - 2.2 fit the base learner to the negative gradient vector, $h_m(u_m, x)$;
 - 2.3 update the estimate, $f_m(x) = f_{m-1}(x) + \nu h_m(u_m, x)$.

\mathbf{b}

3. final estimate, $\hat{f}_{m_{\text{stop}}}(x) = \sum_{m=1}^{m_{\text{stop}}} \nu h_m(u_m, x)$

Name the specific boosting algorithm and write the complete formula in point 2.1 (where the word **OMITTED** is) for a generic loss function L(y, f(x)).

THE END