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Exercise 1

a When using the squared-error loss, the expected prediction error can
be decomposed into three parts:

– an irreducible error, which cannot be avoided;

– the squared bias, where bias is the difference between the average
of the estimate and the true mean;

– a variance term, the expected square deviation of our estimate
from its mean.

When minimizing the expected prediction error, we are in a situation
in which if we reduce the variance component, for example by adding
constraints to the model space, we increase the squared bias, and vice
versa. This is called bias-variance trade-off. In the picture this is
represented by lines and circles: when adding constraints, o.e. when we
move from the model space to the restricted model space, we increase
the bias (represented by the line named “Estimation Bias") but we
reduce the variance (the radius of the circle around the “Closest fit in
population” point is smaller than that around the corresponding point
on the restricted model space).

b Bias:
Erβ̂LSs “ β

Erβ̂ridgepλqs “ ErpXTX ` λIpq
´1XT ys

“ ErpIp ` λpX
TXq´1q´1 pXTXq´1XT y

loooooooomoooooooon

β̂LS

s

“ pIp ` λpX
TXq´1q´1

loooooooooooomoooooooooooon

wλ

Erβ̂LSs

“ wλβ ùñ Erβ̂ridgepλqs ‰ β for λ ą 0.

Variance:
Varrβ̂LSs “ σ2pXTXq´1

Varrβ̂ridgepλqs “ Varrwλβ̂LSs

“ wλVarrβ̂LSsw
T
λ

“ σ2wλpX
TXq´1wTλ .
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Then,

Varrβ̂LSs ´Varrβ̂ridgepλqs “ σ2
“

pXTXq´1 ´ wλpX
TXq´1wTλ

‰

“ σ2wλ
“

pIp ` λpX
TXq´1qpXTXq´1pIp ` λpX

TXq´1qT ´ pXTXq´1
‰

wTλ

“ σ2wλ
“

ppXTXq´1 ` 2λpXTXq´2 ` λ2pXTXq´3q ´ pXTXq´1
‰

wTλ

“ σ2wλ
“

2λpXTXq´2 ` λ2pXTXq´3q
‰

wTλ ą 0

(since all terms are quadratic and therefore positive)

ùñ Varrβ̂ridgepλqs ĺ Varrβ̂LSs

Exercise 2

a The procedure is incorrect because the prediction error is computed
on observations already used to train the prediction rule. This lead to
underestimation of the error (writing “too optimistic” was acceptable).

A possible solution is to compute the prediction error only on those
observations (in average 36.8% of the original sample) not included
in the bootstrap sample. Since this approach leads to overestimating
the prediction error, solutions like those described in the point (b) has
been implemented.

b The 0.632 bootstrap procedure addresses the problem of overesti-
mation of the correct procedure described in point (a) by averaging
it (with weight 0.632 and 0.368, respectively) with the training error
(underestimated error). The result is a sort of compromise between
overestimation and underestimation.

In formula:
yErr

p0.632q
“ 0.632 yErr

p1q
` 0.368 Ďerr,

where Ďerr is the training error and yErr
p1q

the corrected procedure de-
scribed at point (a).

Since the 0.632 and 0.382 weights may not be the best choice (e.g., in
case of complete overfitting in the training set), the 0.632+ bootstrap
has been developed. In the latter procedure,

yErr
p0.632`q

“ ŵ yErr
p1q
` p1´ ŵq Ďerr,

the weights depend on the relative overfitting rate, so the 0.632+
bootstrap can be seen as a better compromise between the overestima-
tion and underestimation of the prediction error done by the corrected
procedure described at point (a) and the training error, respectively.
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Exercise 3

a The penalization term penalizes curves too “wiggly”, reducing the model
complexity by penalizing curves with high curvature. The amount of
penalty is controlled by the tuning parameter λ:

– when λ “ 0 there is no penalization, and it leads to a curve which
passes though all the points;

– when λ “ 8 no curvature is allowed, and it leads to a straight
line.

The choice of λ is also a case of bias-variance trade-off: smaller λ,
smaller the bias (and higher the variance); larger λ, larger the bias
(and smaller the variance).

b Rewriting equation (1) in terms of θ, i.e. by plugging in fpxq “
ř

i“1Njpxqθj , one obtain the form

RSSpθ, λq “ py ´NθqT py ´Nθq ` λθTΩNθ,

where tNuij “ Njpxiq and tOmegaNujk “
ş

N
2

ptqN
2

ptqdt.

Either deriving (and setting the first derivative equal to 0) or recog-
nizing the solution of a regularized ridge regression, one obtains

θ “ pNTN ` λΩN q
´1NT y.

Therefore
f̂ “ NpNTN ` λΩN qN

T y,

which is linear in y. Knowing that the degrees of freedom of a linear
smoother correspond to the trace of the smoothing matrix,

dofpf̂q “ tracepNpNTN ` λΩN qN
T q.

Exercise 4

a Bagging (Bootstrap AGGregatING) is a procedure which consists in
aggregating (by averaging, by voting, etc.) the results of a prediction
rule applied to a number of bootstrap samples generated from the
original data. The prediction rule is typically (but not necessarily) a
tree.

An advantage of bagging with respect to a single tree is its stability
(reduced variance), while in contrast to a boosted tree model bagging
is not able to take advantage of the results of the previous iterations
to improve the later predictions (e.g., in the context of classification,
AdaBoost is able to focus on misclassified observations by weighting
them more in the later iterations).
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b Consider a simple case of binary classification in which we aggregate
the results of three trees: two trees say that an observation xi is of class
A with probability 0.55, of class B with probability 0.45; the third tree,
instead, says A with probability 0.1, B with probability 0.9.

When aggregating by “majority of votes”, xi is classified as A (two
votes against one).

When aggregating by “class probabilities”, xi is classified as B (average
probabilities being 0.4 for A, 0.6 for B).

Exercise 5

a The solution was seen in class during the 11th lecture (solution of
exercise 10.2 of the text book), see also here.

b The algorithm is called “gradient boosting” and the omitted expression
is

um “ ´
BLpy, fpxqq

Bfpxq

ˇ

ˇ

ˇ

ˇ

fpxq“fm´1pxq

4

https://www.uio.no/studier/emner/matnat/math/STK-IN4300/h18/solutions/solutions_lecture11.pdf

