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Exam in: STK-IN4300/STK-IN9300 –– Statistical
learning methods in Data Science

Day of examination: Thursday, December 5th, 2019

Examination hours: 14.30 – 18.30

This problem set consists of 4 pages.

Appendices: None.

Permitted aids: None.

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Problem 1 Penalized regression

a Ridge versus principal component regression (10 pt.)

Consider the following figure from the textbook (Hastie, Tibshirani &
Friedman, 2009, The Elements of Statistical Learning, Figure 3.17), where
the x -label “Index” denotes the index of the principal components:

Explain the figure above, highlighting the differences between ridge
regression and principal component regression when it concerns their
shrinkage effect.

(Continued on page 2.)
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b Sparse group lasso

Consider the following version of lasso, called sparse group lasso,

minβ
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where ~1 denotes an N -dimensional vector of 1s, λ ≥ 0 and 0 ≤ α ≤ 1.
Answer to the following questions:

• Why does β0 appears only in the first term? (3 pt.)

• What does it happen when α = 0 and α = 1, respectively? (2 pt.)

• Briefly describe the concept of “bet on sparsity”. (5 pt.)

c Elastic net versus bridge regression (10 pt.)

Briefly describe elastic net and bridge regression, and explain why, despite
the corresponding constraints are almost indistinguishable in the figure here
below (Hastie, Tibshirani & Friedman, 2009, The Elements of Statistical
Learning, Figure 3.13), they provide, in general, quite different models.

Problem 2 Ensemble Methods

a Bagging (10 pt.)

Consider a classification problem and how to aggregate the results of the
single trees in a bagging classifier. The aggregation can be done by looking
at the estimated classes or at the class-probability estimates. Show with
a simple example that the two procedures can produce different results in
terms of classification of an observation.

b Random Forests (10 pt.)

Consider the figure below (Hastie, Tibshirani & Friedman, 2009, The
Elements of Statistical Learning, Figure 15.7),

(Continued on page 3.)
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in which the results over 50 simulations (each time a training set of 300
observations has been generated, together with a test set of 500 observations)
for random forests (red box-plot) and gradient boosting (blue box-plots, not
relevant for the exercise) have been reported. Here the true boundary (it is
a binary classification problem) depends on two variables, and an increasing
number of noise variables are added (see x-axis). The defaultm =

√
p, where

m is the number of candidate variables randomly selected as input before
each split in the trees and p is the total number of variables, has been used.
Explain why the performance of random forests worsen with p increasing.

c Boosting 1 (10 pt.)

Consider the regression model yi = f(xi)+εi, i = 1, . . . , N , where εi are i.i.d.
random variables with E[εi] = 0 and Var[εi] = σ2. Bühlmann & Yu (2003,
Journal of the American Statistical Society) showed that, for L2Boost, if

µ2k
σ2

>
1

(1− λk)2
− 1 (1)

for all k with λk < 1, then MSEBm < MSES , where MSEBm and MSES
denote the mean square errors obtained using the boosting operator and the
corresponding linear operator S used as base learner, respectively. Here, λk
is the k-th eigenvalue of S and µk represents the true regression function
corresponding to the k-th eigenvector of S.
Interpret Equation (1), focusing on the importance of “shrinkage” in
boosting.

(Continued on page 4.)
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d Boosting 2

Consider the following component-wise gradient boosting algorithm,
——————————————————————————————————

1. initialize the estimate, e.g., f̂ [0]j (x) ≡ 0, j = 1, . . . , p;

2. for m = 1, . . . ,mstop,

• compute the negative gradient vector, u = − ∂L(y,f(x))
∂f(x)

∣∣∣
f(x)=f̂ [m−1](x)

;

• ∀j, fit the base learner to the negative gradient vector, ĥ(u, xj);
• select the best update j∗;
• update the estimate, f̂ [m]

j∗ (x) = f̂
[m−1]
j∗ + νĥ(u, xj∗);

3. final estimate, f̂mstop(x) =
∑p

j=1 f̂
[mstop]
j (x).

——————————————————————————————————
where L(y, f(x)) is a generic loss function and h(·) a base-learner:

• Identify the tuning parameters of the algorithm; (2 pt.)

• Describe how they are usually computed in practice; (2 pt.)

• Relate them to the prediction performance of the final model; (3 pt.)

• Explain why their optimal values are related to each other. (3 pt.)

Problem 3 Bias-variance trade-off

a Expected prediction error (10 pt.)

Consider y = f(x) + ε, with E[ε] = 0 and Var[ε] = σε. Show mathematically
that, in the case of squared-error loss, the expected prediction error of a
regression fit f̂(x) at an input point x = x0 can be decomposed into:
irreducible error, squared bias, variance. Moreover, briefly explain what
these three terms are.

b Boosting (10 pt.)

Consider the model yi = f(xi) + εi, E[εi] = 0, Var[εi] = σ, i = 1 . . . , N .
Derive the formula of the squared bias for L2Boost,

bias(m,S; f)2 = N−1fTUdiag((1− λk)2m+2)UT f,

when a symmetric learner S, with eigenvalues λk and eigenvectors building
the columns of the orthonormal matrix U , is used. Here f denotes the vector
of the true regression function and m the number of boosting steps.

Hint: remember that the L2Boost operator Bm can be rewritten as Bm =
UDmU

T , with Dm = diag(1− (1− λk)m+1) and UUT = UTU = I.

c Model complexity (10 pt.)

Relate the concept of model complexity to the concept of bias-variance trade-
off, and show how this works for the k-nearest neighbours algorithm.

THE END


