UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in:	STK-IN4300/STK-IN9300 — Statistical learning methods in Data Science
Day of examination:	Thursday, December 5th, 2019
Examination hours:	14.30-18.30
This problem set consists of 4 pages.	
Appendices:	None.
Permitted aids:	None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Penalized regression

a Ridge versus principal component regression (10 pt.)

Consider the following figure from the textbook (Hastie, Tibshirani & Friedman, 2009, The Elements of Statistical Learning, Figure 3.17), where the x-label "Index" denotes the index of the principal components:

Explain the figure above, highlighting the differences between *ridge* regression and *principal component regression* when it concerns their shrinkage effect.

b Sparse group lasso

Consider the following version of lasso, called *sparse group lasso*,

$$\min_{\beta} \left\{ \left\| (y - \beta_0 \vec{1} - \sum_{\ell=1}^{L} X_{\ell} \beta_{\ell} \right\|_2^2 + (1 - \alpha) \lambda \sum_{\ell=1}^{L} \sqrt{p_{\ell}} \left\| \beta_j \right\|_2 + \alpha \lambda \left\| \beta \right\|_1 \right\},\$$

where $\vec{1}$ denotes an N-dimensional vector of 1s, $\lambda \ge 0$ and $0 \le \alpha \le 1$. Answer to the following questions:

- Why does β_0 appears only in the first term? (3 pt.)
- What does it happen when $\alpha = 0$ and $\alpha = 1$, respectively? (2 pt.)
- Briefly describe the concept of "bet on sparsity". (5 pt.)

c Elastic net versus bridge regression (10 pt.)

Briefly describe *elastic net* and *bridge regression*, and explain why, despite the corresponding constraints are almost indistinguishable in the figure here below (Hastie, Tibshirani & Friedman, 2009, The Elements of Statistical Learning, Figure 3.13), they provide, in general, quite different models.

Problem 2 Ensemble Methods

a Bagging (10 pt.)

Consider a classification problem and how to aggregate the results of the single trees in a bagging classifier. The aggregation can be done by looking at the estimated classes or at the class-probability estimates. Show with a simple example that the two procedures can produce different results in terms of classification of an observation.

b Random Forests (10 pt.)

Consider the figure below (Hastie, Tibshirani & Friedman, 2009, The Elements of Statistical Learning, Figure 15.7),

in which the results over 50 simulations (each time a training set of 300 observations has been generated, together with a test set of 500 observations) for random forests (red box-plot) and gradient boosting (blue box-plots, not relevant for the exercise) have been reported. Here the true boundary (it is a binary classification problem) depends on two variables, and an increasing number of noise variables are added (see x-axis). The default $m = \sqrt{p}$, where m is the number of candidate variables randomly selected as input before each split in the trees and p is the total number of variables, has been used. Explain why the performance of random forests worsen with p increasing.

c Boosting 1 (10 pt.)

Consider the regression model $y_i = f(x_i) + \epsilon_i$, i = 1, ..., N, where ϵ_i are i.i.d. random variables with $E[\epsilon_i] = 0$ and $Var[\epsilon_i] = \sigma^2$. Bühlmann & Yu (2003, Journal of the American Statistical Society) showed that, for L₂Boost, if

$$\frac{\mu_k^2}{\sigma^2} > \frac{1}{(1 - \lambda_k)^2} - 1 \tag{1}$$

for all k with $\lambda_k < 1$, then $\text{MSE}_{\mathcal{B}_m} < \text{MSE}_{\mathcal{S}}$, where $\text{MSE}_{\mathcal{B}_m}$ and $\text{MSE}_{\mathcal{S}}$ denote the mean square errors obtained using the boosting operator and the corresponding linear operator \mathcal{S} used as base learner, respectively. Here, λ_k is the k-th eigenvalue of \mathcal{S} and μ_k represents the true regression function corresponding to the k-th eigenvector of \mathcal{S} .

Interpret Equation (1), focusing on the importance of "shrinkage" in boosting.

d Boosting 2

Consider the following component-wise gradient boosting algorithm,

- 1. initialize the estimate, e.g., $\hat{f}_j^{[0]}(x) \equiv 0, j = 1, \dots, p;$
- 2. for $m = 1, ..., m_{\text{stop}}$,
 - compute the negative gradient vector, $u = \frac{\partial L(y, f(x))}{\partial f(x)} \Big|_{f(x) = \hat{f}^{[m-1]}(x)};$
 - $\forall j$, fit the base learner to the negative gradient vector, $\hat{h}(u, x_j)$;
 - select the best update j^* ;
 - update the estimate, $\hat{f}_{j^*}^{[m]}(x) = \hat{f}_{j^*}^{[m-1]} + \nu \hat{h}(u, x_{j^*});$

3. final estimate, $\hat{f}_{m_{\text{stop}}}(x) = \sum_{j=1}^{p} \hat{f}_{j}^{[m_{\text{stop}}]}(x)$.

where L(y, f(x)) is a generic loss function and $h(\cdot)$ a base-learner:

- Identify the tuning parameters of the algorithm; (2 pt.)
- Describe how they are usually computed in practice; (2 pt.)
- Relate them to the prediction performance of the final model; (3 pt.)
- Explain why their optimal values are related to each other. (3 pt.)

Problem 3 Bias-variance trade-off

a Expected prediction error (10 pt.)

Consider $y = f(x) + \epsilon$, with $E[\epsilon] = 0$ and $Var[\epsilon] = \sigma_{\epsilon}$. Show mathematically that, in the case of squared-error loss, the expected prediction error of a regression fit $\hat{f}(x)$ at an input point $x = x_0$ can be decomposed into: irreducible error, squared bias, variance. Moreover, briefly explain what these three terms are.

b Boosting (10 pt.)

Consider the model $y_i = f(x_i) + \epsilon_i$, $E[\epsilon_i] = 0$, $Var[\epsilon_i] = \sigma$, i = 1..., N. Derive the formula of the squared bias for L₂Boost,

bias
$$(m, \mathcal{S}; f)^2 = N^{-1} f^T U \operatorname{diag}((1 - \lambda_k)^{2m+2}) U^T f,$$

when a symmetric learner S, with eigenvalues λ_k and eigenvectors building the columns of the orthonormal matrix U, is used. Here f denotes the vector of the true regression function and m the number of boosting steps.

Hint: remember that the L₂Boost operator \mathcal{B}_m can be rewritten as $\mathcal{B}_m = UD_m U^T$, with $D_m = \text{diag}(1 - (1 - \lambda_k)^{m+1})$ and $UU^T = U^T U = I$.

c Model complexity (10 pt.)

Relate the concept of model complexity to the concept of bias-variance tradeoff, and show how this works for the k-nearest neighbours algorithm.