UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Exam in: STK-IN4300/STK-IN9300 - Statistical learning methods in Data Science
Day of examination: Thursday, December 5th, 2019
Examination hours: 14.30-18.30
This problem set consists of 4 pages.
Appendices: None.
Permitted aids: None.

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Penalized regression

a Ridge versus principal component regression (10 pt.)
Consider the following figure from the textbook (Hastie, Tibshirani \& Friedman, 2009, The Elements of Statistical Learning, Figure 3.17), where the x-label "Index" denotes the index of the principal components:

Explain the figure above, highlighting the differences between ridge regression and principal component regression when it concerns their shrinkage effect.

b Sparse group lasso

Consider the following version of lasso, called sparse group lasso,

$$
\min _{\beta}\left\{\|\left(y-\beta_{0} \overrightarrow{1}-\sum_{\ell=1}^{L} X_{\ell} \beta_{\ell}\left\|_{2}^{2}+(1-\alpha) \lambda \sum_{\ell=1}^{L} \sqrt{p_{\ell}}\right\| \beta_{j}\left\|_{2}+\alpha \lambda\right\| \beta \|_{1}\right\}\right.
$$

where $\overrightarrow{1}$ denotes an N-dimensional vector of $1 \mathrm{~s}, \lambda \geq 0$ and $0 \leq \alpha \leq 1$. Answer to the following questions:

- Why does β_{0} appears only in the first term? (3 pt.)
- What does it happen when $\alpha=0$ and $\alpha=1$, respectively? (2 pt.)
- Briefly describe the concept of "bet on sparsity". (5 pt.)

c Elastic net versus bridge regression (10 pt.)

Briefly describe elastic net and bridge regression, and explain why, despite the corresponding constraints are almost indistinguishable in the figure here below (Hastie, Tibshirani \& Friedman, 2009, The Elements of Statistical Learning, Figure 3.13), they provide, in general, quite different models.

Elastic Net

Problem 2 Ensemble Methods

a Bagging (10 pt.)

Consider a classification problem and how to aggregate the results of the single trees in a bagging classifier. The aggregation can be done by looking at the estimated classes or at the class-probability estimates. Show with a simple example that the two procedures can produce different results in terms of classification of an observation.

b Random Forests (10 pt.)

Consider the figure below (Hastie, Tibshirani \& Friedman, 2009, The Elements of Statistical Learning, Figure 15.7),

in which the results over 50 simulations (each time a training set of 300 observations has been generated, together with a test set of 500 observations) for random forests (red box-plot) and gradient boosting (blue box-plots, not relevant for the exercise) have been reported. Here the true boundary (it is a binary classification problem) depends on two variables, and an increasing number of noise variables are added (see x -axis). The default $m=\sqrt{p}$, where m is the number of candidate variables randomly selected as input before each split in the trees and p is the total number of variables, has been used. Explain why the performance of random forests worsen with p increasing.

c Boosting 1 (10 pt.)

Consider the regression model $y_{i}=f\left(x_{i}\right)+\epsilon_{i}, i=1, \ldots, N$, where ϵ_{i} are i.i.d. random variables with $E\left[\epsilon_{i}\right]=0$ and $\operatorname{Var}\left[\epsilon_{i}\right]=\sigma^{2}$. Bühlmann \& Yu (2003, Journal of the American Statistical Society) showed that, for L_{2} Boost, if

$$
\begin{equation*}
\frac{\mu_{k}^{2}}{\sigma^{2}}>\frac{1}{\left(1-\lambda_{k}\right)^{2}}-1 \tag{1}
\end{equation*}
$$

for all k with $\lambda_{k}<1$, then $\operatorname{MSE}_{\mathcal{B}_{m}}<\operatorname{MSE}_{\mathcal{S}}$, where $\operatorname{MSE}_{\mathcal{B}_{m}}$ and $\operatorname{MSE}_{\mathcal{S}}$ denote the mean square errors obtained using the boosting operator and the corresponding linear operator \mathcal{S} used as base learner, respectively. Here, λ_{k} is the k-th eigenvalue of \mathcal{S} and μ_{k} represents the true regression function corresponding to the k-th eigenvector of \mathcal{S}.
Interpret Equation (1), focusing on the importance of "shrinkage" in boosting.

d Boosting 2

Consider the following component-wise gradient boosting algorithm,

1. initialize the estimate, e.g., $\hat{f}_{j}^{[0]}(x) \equiv 0, j=1, \ldots, p$;

2 . for $m=1, \ldots, m_{\text {stop }}$,

- compute the negative gradient vector, $u=-\left.\frac{\partial L(y, f(x))}{\partial f(x)}\right|_{f(x)=\hat{f}^{[m-1]}(x)} ;$
- $\forall j$, fit the base learner to the negative gradient vector, $\hat{h}\left(u, x_{j}\right)$;
- select the best update j^{*};
- update the estimate, $\hat{f}_{j^{*}}^{[m]}(x)=\hat{f}_{j^{*}}^{[m-1]}+\nu \hat{h}\left(u, x_{j^{*}}\right)$;

3. final estimate, $\hat{f}_{m_{\text {stop }}}(x)=\sum_{j=1}^{p} \hat{f}_{j}^{\left[m_{\text {stop }}\right]}(x)$.
where $L(y, f(x))$ is a generic loss function and $h(\cdot)$ a base-learner:

- Identify the tuning parameters of the algorithm; ($2 \mathbf{p t}$.
- Describe how they are usually computed in practice; (2 pt .)
- Relate them to the prediction performance of the final model; ($\mathbf{3} \mathbf{~ p t}$.)
- Explain why their optimal values are related to each other. (3 pt.)

Problem 3 Bias-variance trade-off

a Expected prediction error (10 pt.)

Consider $y=f(x)+\epsilon$, with $\mathrm{E}[\epsilon]=0$ and $\operatorname{Var}[\epsilon]=\sigma_{\epsilon}$. Show mathematically that, in the case of squared-error loss, the expected prediction error of a regression fit $\hat{f}(x)$ at an input point $x=x_{0}$ can be decomposed into: irreducible error, squared bias, variance. Moreover, briefly explain what these three terms are.

b Boosting (10 pt.)

Consider the model $y_{i}=f\left(x_{i}\right)+\epsilon_{i}, \mathrm{E}\left[\epsilon_{i}\right]=0, \operatorname{Var}\left[\epsilon_{i}\right]=\sigma, i=1 \ldots, N$. Derive the formula of the squared bias for L_{2} Boost,

$$
\operatorname{bias}(m, \mathcal{S} ; f)^{2}=N^{-1} f^{T} U \operatorname{diag}\left(\left(1-\lambda_{k}\right)^{2 m+2}\right) U^{T} f
$$

when a symmetric learner \mathcal{S}, with eigenvalues λ_{k} and eigenvectors building the columns of the orthonormal matrix U, is used. Here f denotes the vector of the true regression function and m the number of boosting steps.

Hint: remember that the L_{2} Boost operator \mathcal{B}_{m} can be rewritten as $\mathcal{B}_{m}=$ $U D_{m} U^{T}$, with $D_{m}=\operatorname{diag}\left(1-\left(1-\lambda_{k}\right)^{m+1}\right)$ and $U U^{T}=U^{T} U=I$.

c Model complexity (10 pt.)

Relate the concept of model complexity to the concept of bias-variance tradeoff, and show how this works for the k-nearest neighbours algorithm.

