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Problem 1

a Ridge regression, because it performs better in the case of many vari-
ables with small e�ect (which can be seen from β „ Np0, 2q) and if
there is a strong correlation among the variables (ρ “ 0.9).

b Without knowing that there are many variables with small e�ect (i.e.,
we miss the information on the βs), it is safer to use lasso �betting on
sparsity�: if there are only a few variables with a large e�ect, it may
strongly outperform ridge; if the situation is similar to the one at point
(a), it will not perform much worse than ridge regression.

NOTE: if there was good reasoning behind the choice of ridge regres-
sion, the answer was considered correct. Example of good reasoning:
�Despite the fact that I do not know the e�ect of the variables, which
would let me choose lasso, I prefer to use ridge because I want my
model to handle the correlation in a better way, and, anyway, part
of the e�ect of a few potential strong variables is shared with all the
variables due to correlation�.

c Yes, it would allow having a sparse model due to the L1 penalty, with
a better handling of the correlation among variables thanks to the L2

penalty.

Problem 2

a The idea is to start from a parametric estimate of the density, f0px, θq,

and later correct it with a non-parametric part (
řN
i“1

Kλpxi´xq

f0pxi,θ̂q
). So

one could have a �rst good global approximation, and let the non-
parametric part focus on the discepancies between the parametric part
and the true density function.

b In this case, one may want to use an exponential distribution, that
solves the boundary problem: being equal to 0 for impossible values
(there cannot be a negative quantity of wine drunk by a person in one
year), it prevents the non-parametric part to give positive density to
areas outside the support.
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Exercise 3

a The procedure is wrong because it uses the test data in the model
construction procedure, and the error computed in the second point is
underestimated. The cross-validation procedure to �nd the best value
of the tuning parameter, indeed, must use only the training data. The
correct procedure is to use a nested cross-validation procedure: for
example, use LOOCV and, in each iteration, perform the K-fold cross-
validation on the n´ 1 observations currently used as a training set to
�nd the best tuning parameter.

b The larger the number of folds, smaller the bias, because the training
sets will be larger, more similar to the whole training set; and larger the
variance, because the training sets will be very similar to each other,
so the estimate will be very sample-speci�c: with a di�erent dataset,
one could obtain a very di�erent estimate of the error.

NOTE: in this point was very important to show to have understood
that the variance refers to the whole cross-validation estimator and not
to the fold-speci�c estimator.

Exercise 4

a We expect the orange line to go under the green line, i.e., the result of
consensus being worse than the individual guess. It shows that when
the estimators computed in each repetition of bagging are worse than
guessing at random, in average bagging actually performs worse than
the single estimator, as it �makes stronger� a bad solution.

b Since 35 out of 50 members vote randomly (so they are correct with
probability 1/4) and the remaining 15 with probability p,

EC “ 10ˆ

ˆ

35

50
¨
1

4
`

15

50
¨ p

˙

where EC is the expeced number of correct answers in the 10 cate-
gories. With p “ 0, EC “ 10ˆ 7{40 “ 7{4.

c Since V ar
”

1
B

řB
b“1Xb

ı

“ E
”

p 1B

řB
b“1Xbq

2
ı

´

´

Erp 1B
řB
b“1Xbs

¯2
, with

the last term simply equal to µ2, we should focus on the �rst term on
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the right hand side,

E

«

p
1

B

B
ÿ

b“1

Xbq
2

ff

“
1

B2
E

«

B
ÿ

b“1

X2
b ` 2

ÿ

b‰c

XbXc

ff

“
1

B2
E

˜

B
ÿ

b“1

ErX2
b s ` 2

ÿ

bąc

ErXbXcs

¸

“
1

B2
Bpµ2 ` σ2q `

2

B2

ˆ

B

2

˙

ErXbXcs

“
1

B
pµ2 ` σ2q `

2

B2

BpB ´ 1q

2
pρσ2 ` µq

because, given that ErXbs “ ErXcs “ µ,

ρ “
ErpXb ´ µqpXc ´ µqs

σ2

“
ErXbXcs ´ µErXcs ´ µErXbs ` µ

2

σ2

“
ErXbXcs ´ µ

2

σ2

so that ErXbXcs “ ρσ2 ` µ2.

Substituting in the �rst espression,

V ar

«

1

B

B
ÿ

b“1

Xb

ff

“ E

«

p
1

B

B
ÿ

b“1

Xbq
2

ff

´

˜

Erp
1

B

B
ÿ

b“1

Xbs

¸2

“
1

B
pµ2 ` σ2q `

2

B2

BpB ´ 1q

2
pρσ2 ` µ2q ´ µ2

“
1

B
pµ2 ` σ2q `

B ´ 1

B
pρσ2 ` µ2q ´ µ2

“
µ2 ` σ2 `Bρσ2 ´ ρσ2 `Bµ2 ´ µ2 ´Bµ2

B

“
σ2 `Bρσ2 ´ ρσ2

B

“
σ2

B
` ρσ2 ´

ρσ2

B

“ ρσ2 `
p1´ ρq

B
σ2

Exercise 4

a If the boosting step size is too small, it would take too many iterations
to reach the best estimate in terms of prediction error. We see that
in the �rst plot, in which we do not �nd the minimum within the
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considered number of boosting iterations. On the other hand, if the
boosting step size is too large, we do not have enough shrinkage and
we risk to over�t already at the beginning, as we can see in the fourth
�gure. When the boosting step size has the right magnitude, we see the
typical behaviour of the prediction error due to the combination of bias
and variance. By increasing the number of boosting steps, initially we
strongly decrease the bias, and the prediction error decreases despite
the increase of the variance. At a certain point, however, the bias
reduction gets small, and the increase of the variance will dominate.
As a consequence, the prediction error increases (we are over�tting).
In this case, one may want to choose ν “ 0.1 and 8 iterations: one
could get a similar result with ν “ 0.01 and 55 boosting iterations,
but it would need more time without any improvement in terms of
performance.

NOTE: those who chose ν “ 0.01 and number iteration “ 55 providing
a good reason (e.g., the curve is more smooth therefore any small error
in the choice of the number of steps will a�ect way less the algorithm)
got full points.

b In the componentwise version of boosting one dimension is updated at
each iteration. Advantages includes the possibility to implement boost-
ing when we have more variables than observations (high-dimensional
data), automatic variable selection (the irrelevant dimensions are never
selected as the best direction to get improved and therefore never in-
cluded in the model), and the possibility to use di�erent base-learners
for each dimension (e.g., linear e�ects and splines).
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