8. Cox-Ross-Rubinstein \& Black-Scholes models

S. Ortiz-Latorre

STK-MAT 3700 An Introduction to Mathematical Finance

Department of Mathematics
University of Oslo

Outline

The Cox-Ross-Rubinstein Model
Introduction
Bernoulli process and related processes
The Cox-Ross-Rubinstein model
Pricing European options in the CRR model
Hedging European options in the CRR model
The Black-Scholes model
Introduction
Brownian motion and related processes
The Black-Scholes model
The Black-Scholes pricing formula
Convergence of the CRR pricing formula to the Black-Scholes pricing formula

The Cox-Ross-Rubinstein Model

Introduction

- The Cox-Ross-Rubinstein market model (CRR model), also known as the binomial model, is an example of a multi-period market model.
- At each point in time, the stock price is assumed to either go 'up' by a fixed factor u or go 'down' by a fixed factor d.

- Only four parameters are needed to specify the binomial asset pricing model: $u>1>d>0, r>-1$ and $S(0)>0$.
- The real-world probability of an 'up' movement is assumed to be the same $0<p<1$ for each period and is assumed to be independent of all previous stock price movements.

The Bernoulli process

Definition 1

A stochastic process $X=\{X(t)\})_{t \in\{1, \ldots, T\}}$ defined on some probability space (Ω, \mathcal{F}, P) is said to be a (truncated) Bernoulli process with parameter $0<p<1$ (and time horizon T) if the random variables $X(1), X(2), \ldots, X(T)$ are independent and have the following common probability distribution

$$
P(X(t)=1)=1-P(X(t)=0)=p, \quad t \in \mathbb{N}
$$

- We can think of a Bernoulli process as the random experiment of flipping sequentially T coins.
- The sample space Ω is the set of vectors of zero's and one's of length T. Obviously, $\# \Omega=2^{T}$.
- $X(t, \omega)$ takes the value 1 or 0 as ω_{t}, the t-th component of $\omega \in \Omega$, is 1 or 0 , that is, $X(t, \omega)=\omega_{t}$.

The Bernoulli process

- \mathcal{F}_{t}^{X} is the algebra corresponding to the observation of the first t coin flips.
- $\mathcal{F}_{t}^{X}=\mathfrak{a}\left(\pi_{t}\right)$ where π_{t} is a partition with 2^{t} elements, one for each possible sequence of t coin flips.
- The probability measure P is given by $P(\omega)=p^{n}(1-p)^{T-n}$, where ω is any elementary outcome corresponding to n "heads" and $T-n$ "tails".
- Setting this probability measure on Ω is equivalent to say that the random variables $X(1), \ldots, X(T)$ are independent and identically distributed.

Example

Consider $T=3$. Let

$$
\begin{aligned}
A_{0} & =\{(0,0,0),(0,0,1),(0,1,0),(0,1,1)\} \\
A_{1} & =\{(1,0,0),(1,0,1),(1,1,0),(1,1,1)\} \\
A_{0,0} & =\{(0,0,0),(0,0,1)\}, \quad A_{0,1}=\{(0,1,0),(0,1,1)\} \\
A_{1,0} & =\{(1,0,0),(1,0,1)\}, \quad A_{1,1}=\{(1,1,0),(1,1,1)\}
\end{aligned}
$$

We have that
$\pi_{0}=\{\Omega\}, \pi_{1}=\left\{A_{0}, A_{1}\right\}, \pi_{2}=\left\{A_{0,0}, A_{0,1}, A_{1,0}, A_{1,1}\right\}, \pi_{3}=\{\{\omega\}\}_{\omega \in \Omega}$ and $\mathcal{F}_{t}=\mathfrak{a}\left(\pi_{t}\right), t=0, \ldots, 3$. In particular, $\mathcal{F}_{3}=\mathcal{P}(\Omega)$.

The Bernoulli counting process

Definition 2

The Bernoulli counting process $N=\{N(t)\}_{t \in\{0, \ldots, T\}}$ is defined in terms of the Bernoulli process X by setting $N(0)=0$ and

$$
N(t, \omega)=X(1, \omega)+\cdots+X(t, \omega), \quad t \in\{1, \ldots, T\}, \quad \omega \in \Omega
$$

- The Bernoulli counting process is an example of additive random walk.
- The random variable $N(t)$ should be thought as the number of heads in the first t coin flips.
- Since $\mathbb{E}[X(t)]=p, \operatorname{Var}[X(t)]=p(1-p)$ and the random variables $X(t)$ are independent, we have

$$
\mathbb{E}[N(t)]=t p, \quad \operatorname{Var}[N(t)]=t p(1-p)
$$

- Moreover, for all $t \in\{1, \ldots, T\}$ one has

$$
P(N(t)=n)=\binom{t}{n} p^{n}(1-p)^{t-n}, \quad n=0, \ldots, t
$$

that is, $N(t) \sim \operatorname{Binomial}(t, p)$.

The CRR market model

- The bank account process is given by $B=\left\{B(t)=(1+r)^{t}\right\}_{t=0, \ldots, T}$.
- The binomial security price model features 4 parameters: p, d, u and $S(0)$, where $0<p<1,0<d<1<u$ and $S(0)>0$.
- The time t price of the security is given by

$$
S(t)=S(0) u^{N(t)} d^{t-N(t)}, \quad t=1, \ldots, T
$$

- The underlying Bernoulli process X governs the up and down movements of the stock. The stock price moves up at time t if $X(t, \omega)=1$ and moves down if $X(t, \omega)=0$.
- The Bernoulli counting process N counts the up movements. Before and including time t, the stock price moves up $N(t)$ times and down $t-N(t)$ times.
- The dynamics of the stock price can be seen as an example of a multiplicative or geometric random walk.

The CRR market model

- The price process has the following probability distribution

$$
P\left(S(t)=S(0) u^{n} d^{t-n}\right)=\binom{t}{n} p^{n}(1-p)^{t-n}, \quad n=0, \ldots, t
$$

- Lattice representation

The CRR market model

- The event $\left\{S(t)=S(0) u^{n} d^{t-n}\right\}$ occurs if and only if exactly n out of the first t moves are $u p$. The order of these t moves does not matter.
- At time t, there are 2^{t} possible sample paths of length t.
- At time t, the price process $S(t)$ can only take one of $t+1$ possible values.
- This reduction, from exponential to linear in time, in the number of relevant nodes in the lattice is crucial in numerical implementations.

Example

Consider $T=2$. Let

$$
\begin{aligned}
\Omega & =\{(d, d),(d, u),(u, d),(u, u)\} \\
A_{d} & =\{(d, d),(d, u)\}, \quad A_{u}=\{(u, d),(u, u)\}
\end{aligned}
$$

We have that
$\pi_{0}=\{\Omega\}, \pi_{1}=\left\{A_{d}, A_{u}\right\}, \pi_{2}=\{\{(d, d)\},\{(d, u)\},\{(u, d)\},\{(u, u)\}\}$, and $\mathcal{F}_{t}=\mathfrak{a}\left(\pi_{t}\right), t=0, \ldots, 3$. Note that

$$
\{S(2)=S(0) u d\}=\{(d, u),(u, d)\} \notin \pi_{2}
$$

Hence, the lattice representation is NOT the information tree of the model.

Arbitrage and completeness in the CRR model

Theorem 3

There exists a unique martingale measure in the CRR market model if and only if

$$
d<1+r<u
$$

and is given by

$$
Q(\omega)=q^{n}(1-q)^{T-n}
$$

where ω is any elementary outcome corresponding to n up movements and $T-n$ down movement of the stock and

$$
q=\frac{1+r-d}{u-d}
$$

Corollary 4

If $d<1+r<u$, then the CRR model is arbitrage free and complete.

Arbitrage and completeness in the CRR model

Lemma 5

Let Z be a r.v. defined on some prob. space (Ω, \mathcal{F}, P), with $P(Z=a)+P(Z=b)=1$ for $a, b \in \mathbb{R}$. Let $\mathcal{G} \subset \mathcal{F}$ be an algebra on Ω. If $\mathbb{E}[Z \mid \mathcal{G}]$ is constant then Z is independent of \mathcal{G}. (Note that the constant must be equal to $\mathbb{E}[Z])$.

Proof of Lemma 5.

Let $A=\{Z=a\}$ and $A^{c}=\{Z=b\}$. Then for any $B \in \mathcal{G}$

$$
\mathbb{E}\left[Z \mathbf{1}_{B}\right]=\mathbb{E}\left[\left(a \mathbf{1}_{A}+b \mathbf{1}_{A^{c}}\right) \mathbf{1}_{B}\right]=a P(A \cap B)+b P\left(A^{c} \cap B\right),
$$

and

$$
\mathbb{E}\left[\mathbb{E}[Z] \mathbf{1}_{B}\right]=\mathbb{E}\left[(a P(A)+b P(B)) \mathbf{1}_{B}\right]=a P(A) P(B)+b P\left(A^{c}\right) P(B)
$$

By the definition of cond. expect. we have that $\mathbb{E}\left[Z 1_{B}\right]=\mathbb{E}\left[\mathbb{E}[Z] \mathbf{1}_{B}\right]$. Using that $P\left(A^{c}\right)=1-P(A)$ and $P\left(A^{c} \cap B\right)=P(B)-P(A \cap B)$, we get that $P(A \cap B)=P(A) P(B)$ and $P\left(A^{c} \cap B\right)=P\left(A^{c}\right) P(B)$, which yields that $\mathfrak{a}(Z)$ is independent of \mathcal{G}.

Arbitrage and completeness in the CRR model

Proof of Theorem 3.

Note that $S^{*}(t)=S(t)(1+r)^{-t}, t=0, \ldots T$. Moreover

$$
\begin{aligned}
\frac{S(t+1)}{S(t)} & =\frac{S(0) u^{N(t+1)} d^{t+1-N(t+1)}}{S(0) u^{N(t)} d^{t-N(t)}}=u^{N(t+1)-N(t)} d^{1-(N(t+1)-N(t))} \\
& =u^{X(t+1)} d^{1-X(t+1)}, \quad t=0, \ldots, T-1
\end{aligned}
$$

Let Q be another probability measure on Ω.
We impose the martingale condition under Q

$$
\mathbb{E}_{Q}\left[S^{*}(t+1) \mid \mathcal{F}_{t}\right]=S^{*}(t) \Leftrightarrow \mathbb{E}_{Q}\left[u^{X(t+1)} d^{1-X(t+1)} \mid \mathcal{F}_{t}\right]=1+r
$$

This gives

$$
\begin{aligned}
(1+r) & =\mathbb{E}_{Q}\left[u^{X(t+1)} d^{1-X(t+1)} \mid \mathcal{F}_{t}\right] \\
& =u Q\left(X(t+1)=1 \mid \mathcal{F}_{t}\right)+d Q\left(X(t+1)=0 \mid \mathcal{F}_{t}\right)
\end{aligned}
$$

In addition,

$$
1=Q\left(X(t+1)=1 \mid \mathcal{F}_{t}\right)+Q\left(X(t+1)=0 \mid \mathcal{F}_{t}\right)
$$

Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

Solving the previous equations we get the unique solution

$$
\begin{aligned}
& Q\left(X(t+1)=1 \mid \mathcal{F}_{t}\right)=\frac{1+r-d}{u-d}=q, \\
& Q\left(X(t+1)=0 \mid \mathcal{F}_{t}\right)=\frac{u-(1+r)}{u-d}=1-q
\end{aligned}
$$

Note that the r.v. $u^{X(t+1)} d^{1-X(t+1)}$ satisfies the hypothesis of Lemma 5 and, therefore, $u^{X(t+1)} d^{1-X(t+1)}$ is independent (under Q) of \mathcal{F}_{t}.

This means that

$$
\begin{aligned}
(1+r) & =\mathbb{E}_{Q}\left[u^{X(t+1)} d^{1-X(t+1)} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[u^{X(t+1)} d^{1-X(t+1)}\right] \\
& =u Q(X(t+1)=1)+d Q(X(t+1)=0)
\end{aligned}
$$

and we get that

$$
\begin{aligned}
& Q(X(t+1)=1)=Q\left(X(t+1)=1 \mid \mathcal{F}_{t}\right) \\
& Q(X(t+1)=0)=Q\left(X(t+1)=0 \mid \mathcal{F}_{t}\right)
\end{aligned}
$$

Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

As the previous unconditional probabilities does not depend on t we obtain that the random variables $X(1), \ldots X(T)$ are identically distributed under Q, i.e. $X(i)=\operatorname{Bernoulli}(q)$. Moreover, for $a \in\{0,1\}^{T}$ we have that

$$
\begin{aligned}
Q\left(\bigcap_{t=1}^{T}\left\{X(t)=a_{t}\right\}\right) & =\mathbb{E}_{Q}\left[\prod_{t=1}^{T} \mathbf{1}_{\left\{X(t)=a_{t}\right\}}\right] \\
& =\mathbb{E}_{Q}\left[\prod_{t=1}^{T-1} \mathbf{1}_{\left\{X(t)=a_{t}\right\}} \mathbb{E}_{Q}\left[\mathbf{1}_{\left\{X(T)=a_{T}\right\}} \mid \mathcal{F}_{T-1}\right]\right] \\
& =\mathbb{E}_{Q}\left[\prod_{t=1}^{T-1} \mathbf{1}_{\left\{X(t)=a_{t}\right\}} Q\left(X(T)=a_{T} \mid \mathcal{F}_{T-1}\right)\right] \\
& =\mathbb{E}_{Q}\left[\prod_{t=1}^{T-1} \mathbf{1}_{\left\{X(t)=a_{t}\right\}}\right] Q\left(X(T)=a_{T}\right) \\
& =Q\left(\bigcap_{t=1}^{T-1}\left\{X(t)=a_{t}\right\}\right) Q\left(X(T)=a_{T}\right)
\end{aligned}
$$

Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

Iterating this procedure we get that

$$
Q\left(\bigcap_{t=1}^{T}\left\{X(t)=a_{t}\right\}\right)=\prod_{t=1}^{T} Q\left(X(t)=a_{t}\right)
$$

and we can conclude that $X(1), \ldots X(T)$ are also independent under Q.
Therefore, under Q, we obtain the same probabilistic model as under P but with $p=q$, that is,

$$
Q(\omega)=q^{n}(1-q)^{T-n}, \quad n=\sum_{t=1}^{T} \omega_{t}
$$

The conditions for q are equivalent to $Q(\omega)>0$, which yields that Q is the unique martingale measure.

Pricing European options in the CRR model

- By the general theory developed for multiperiod markets we have the following result.

Proposition 6 (Risk Neutral Pricing Principle)

The arbitrage free price process of a European contingent claim X in the $C R R$ model is given by
$P_{X}(t)=B(t) \mathbb{E}_{Q}\left[\left.\frac{X}{B(T)} \right\rvert\, \mathcal{F}_{t}\right]=(1+r)^{-(T-t)} \mathbb{E}_{Q}\left[X \mid \mathcal{F}_{t}\right], \quad t=0, \ldots, T$, where Q is the unique martingale measure characterized by $q=\frac{1+r-d}{u-d}$.

Pricing European options in the CRR model

- If the contingent claim X is path-independent, $X=g(S(T))$, we have a more precise formula.
- Let $F_{p, g}(t, x)$ the function defined by

$$
F_{p, g}(t, x)=\sum_{n=0}^{t}\binom{t}{n} p^{n}(1-p)^{t-n} g\left(x u^{n} d^{t-n}\right)
$$

Proposition 7

Consider a European contingent claim X given by $X=g(S(T))$. Then, the arbitrage free price process $P_{X}(t)$ is given by

$$
P_{X}(t)=(1+r)^{-(T-t)} F_{q, g}(T-t, S(t)), \quad t=0, \ldots, T
$$

where $q=\frac{1+r-d}{u-d}$.

Pricing European options in the CRR model

Proof of Proposition 7.

Recall that

$$
S(t)=S(0) u^{N(t)} d^{t-N(t)}=S(0) \prod_{j=1}^{t} u^{x_{j}} d^{1-X_{j}}, \quad t=1, \ldots, T
$$

By Proposition 6 we have that

$$
\begin{aligned}
(1+r)^{(T-t)} P_{X}(t) & =\mathbb{E}_{Q}\left[g(S(T)) \mid \mathcal{F}_{t}\right]=\mathbb{E}_{Q}\left[g\left(S(t) \prod_{j=t+1}^{T} u^{x_{j}} d^{1-x_{j}}\right) \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[g\left(S(t) \prod_{j=t+1}^{T} u^{x_{j}} d^{1-x_{j}}\right)\right]=F_{q, g}(T-t, S(t)),
\end{aligned}
$$

where in the last equality we have used that $S(t)$ is \mathcal{F}_{t}-measurable and X_{t+1}, \ldots, X_{T} are independent of \mathcal{F}_{t}.

Note that if X is \mathcal{G}-measurable and Y is independent of \mathcal{G} then

$$
\mathbb{E}[f(X, Y) \mid \mathcal{G}]=\left.\mathbb{E}[f(x, Y)]\right|_{x=x}
$$

Pricing European options in the CRR model

Corollary 8

Consider a European call option with expiry time T and strike price K writen on the stock S. The arbitrage free price $P_{C}(t)$ of the call option is given by

$$
\begin{aligned}
P_{C}(t)= & S(t) \sum_{n=\hat{n}}^{T-t}\binom{T-t}{n} \hat{q}^{n}(1-\hat{q})^{T-t-n} \\
& -\frac{K}{(1+r)^{T-t}} \sum_{n=\hat{n}}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n},
\end{aligned}
$$

where

$$
\hat{n}=\inf \left\{n \in \mathbb{N}: n>\log \left(K /\left(S(t) d^{T-t}\right)\right) / \log (u / d)\right\}
$$

and

$$
\hat{q}=\frac{q u}{1+r} \in(0,1) .
$$

- This formula only involves two sums of $T-t-\hat{n}+1$ binomial probabilities.
- Using the put-call parity relationship one can get a similar formula for European puts.

Pricing European options in the CRR model

Proof of Corollary 8.

First note that

$$
S(t) u^{n} d^{T-t-n}-K>0 \Longleftrightarrow n>\log \left(K /\left(S(t) d^{T-t}\right)\right) / \log (u / d)
$$

Let $g(x)=(x-K)^{+}$. If $\hat{n}>T-t$ then $F_{q, g}(T-t, S(t))=0$. If $\hat{n} \leq T-t$, then the formula in Proposition 7 yields

$$
\begin{aligned}
& (1+r)^{T-t} P_{C}(t) \\
& =F_{q, g}(T-t, S(t)) \\
& =\sum_{n=0}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n}\left(S(t) u^{n} d^{T-t-n}-K\right)^{+} \\
& =\sum_{n=0}^{\hat{n}}\binom{T-t}{n} q^{n}(1-q)^{T-t-n} 0 \\
& +\sum_{n=\hat{n}}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n}\left(S(t) u^{n} d^{T-t-n}-K\right)
\end{aligned}
$$

Pricing European options in the CRR model

Proof of Corollary 8.

$$
\begin{aligned}
= & \sum_{n=\hat{n}}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n} S(t) u^{n} d^{T-t-n} \\
& -\sum_{n=\hat{n}}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n} K \\
= & S(t) \sum_{n=\hat{n}}^{T-t}\binom{T-t}{n}(q u)^{n}((1-q) d)^{T-t-n} \\
& -K \sum_{n=\hat{n}}^{T-t}\binom{T-t}{n} q^{n}(1-q)^{T-t-n} .
\end{aligned}
$$

The result follows by defining $\hat{q}=\frac{q u}{1+r}$ and noting that

$$
1-\hat{q}=\frac{1+r-q u}{1+r}=\frac{q u+(1-q) d-q u}{1+r}=\frac{(1-q) d}{1+r}
$$

where we have used $q u+(1-q) d=\mathbb{E}_{Q}\left[u^{X(t+1)} d^{1-X(t+1)}\right]=1+r$.

Hedging European options in the CRR model

- Let X be a contingent claim and $P_{X}=\left\{P_{X}(t)\right\}_{t=0, \ldots, T}$ be its price process (assumed to be computed/known).
- As the CRR model is complete we can find a self-financing trading strategy $H=\{H(t)\}_{t=1, \ldots, T}=\left\{\left(H_{0}(t), H_{1}(t)\right)^{T}\right\}_{t=1, \ldots, T}$ such that

$$
\begin{align*}
& P_{X}(t)=V(t)=H_{0}(t)(1+r)^{t}+H_{1}(t) S(t), \quad t=1, \ldots, T \tag{1}\\
& P_{X}(0)=V(0)=H_{0}(1)+H_{1}(1) S(0)
\end{align*}
$$

- Given $t=1, \ldots, T$ we can use the information up to (and including) $t-1$ to ensure that H is predictable.
- Hence, at time t, we know $S(t-1)$ but we only know that

$$
S(t)=S(t-1) u^{X(t)} d^{1-X(t)}
$$

- Using that $u^{X(t)} d^{1-X(t)} \in\{u, d\}$ we can solve equation (1) uniquely for $H_{0}(t)$ and $H_{1}(t)$.
- Making the dependence of P_{X} explicit on S we have the equations

$$
\begin{aligned}
& P_{X}(t, S(t-1) u)=H_{0}(t)(1+r)^{t}+H_{1}(t) S(t-1) u \\
& P_{X}(t, S(t-1) d)=H_{0}(t)(1+r)^{t}+H_{1}(t) S(t-1) d
\end{aligned}
$$

Hedging European options in the CRR model

- The solution for these equations is

$$
\begin{aligned}
& H_{0}(t)=\frac{u P_{X}(t, S(t-1) d)-d P_{X}(t, S(t-1) u)}{(1+r)^{t}(u-d)} \\
& H_{1}(t)=\frac{P_{X}(t, S(t-1) u)-P_{X}(t, S(t-1) d)}{S(t-1)(u-d)}
\end{aligned}
$$

- The previous formulas only make use of the lattice representation of the model and not the information tree.

Proposition 9

Consider a European contingent claim $X=g(S(T))$. Then, the replicating trading strategy $H=\{H(t)\}_{t=1, \ldots, T}=\left\{\left(H_{0}(t), H_{1}(t)\right)^{T}\right\}_{t=1, \ldots, T}$ is given by

$$
\begin{aligned}
& H_{0}(t)=\frac{u F_{q, g}(T-t, S(t-1) d)-d F_{q, g}(T-t, S(t-1) u)}{(1+r)^{T}(u-d)} \\
& H_{1}(t)=\frac{(1+r)^{T-t}\left\{F_{q, g}(T-t, S(t-1) u)-F_{q, g}(T-t, S(t-1) d)\right\}}{S(t-1)(u-d)} .
\end{aligned}
$$

Hedging European options in the CRR model

- Let

$$
C(\tau, x)=\sum_{n=0}^{\tau}\binom{\tau}{n} q^{n}(1-q)^{\tau-n}\left(x u^{n} d^{\tau-n}-K\right)^{+}
$$

Then, $P_{C}(t)=(1+r)^{-(T-t)} C(T-t, S(t))$.

Proposition 10

The replicating trading strategy
$H=\{H(t)\}_{t=1, \ldots, T}=\left\{\left(H_{0}(t), H_{1}(t)\right)^{T}\right\}_{t=1, \ldots, T}$ for a European call option with strike K and expiry time T is given by

$$
\begin{aligned}
& H_{0}(t)=\frac{u C(T-t, S(t-1) d)-d C(T-t, S(t-1) u)}{(1+r)^{T}(u-d)}, \\
& H_{1}(t)=\frac{(1+r)^{T-t}\{C(T-t, S(t-1) u)-C(T-t, S(t-1) d)\}}{S(t-1)(u-d)}
\end{aligned}
$$

- As $C(\tau, x)$ is increasing in x we have that $H_{1}(t) \geq 0$, that is, the replicating strategy does not involve short-selling.
- This property extends to any European contingent claim with increasing payoff g.

Hedging European options in the CRR model

- We can also use the value of the contingent claim X and backward induction to find its price process P_{X} and its replicating strategy H simultaneously.
- We have to choose a replicating strategy $H(T)$ based on the information available at time $T-1$.
- This gives raise to two equations

$$
\begin{align*}
& P_{X}(T, S(T-1) u)=H_{0}(T)(1+r)^{T}+H_{1}(T) S(T-1) u \tag{2}\\
& P_{X}(T, S(T-1) d)=H_{0}(T)(1+r)^{T}+H_{1}(T) S(T-1) d \tag{3}
\end{align*}
$$

- The solution is

$$
\begin{aligned}
& H_{0}(T)=\frac{u P_{X}(T, S(T-1) d)-d P_{X}(T, S(T-1) u)}{(1+r)^{T}(u-d)} \\
& H_{1}(T)=\frac{P_{X}(T, S(T-1) u)-P_{X}(T, S(T-1) d)}{S(T-1)(u-d)}
\end{aligned}
$$

- Next, using that H is self-financing, we can compute

$$
P_{X}(T-1, S(T-1))=H_{0}(T)(1+r)^{T-1}+H_{1}(T) S(T-1)
$$

and repeat the procedure (changing T to $T-1$ in equations (2) and (3))
to compute $H(T-1)$.

The Black-Scholes model

Introduction

- The Black-Scholes model is an example of continuous time model for the risky asset prices.

Let us summarize the underlying hypothesis of the Black-Scholes model on the prices of assets.

- The assets are traded continuously and their prices have continuous paths.
- The risk-free interest rate $r \geq 0$ is constant.
- The logreturns of the risky asset S_{t} are normally distributed:

$$
\log \left(\frac{S_{t}}{S_{u}}\right) \sim \mathcal{N}\left(\left(\mu-\frac{\sigma^{2}}{2}\right)(t-u), \sigma^{2}(t-u)\right)
$$

- Moreover, the logreturns are independent from the past and are stationary.
- The model needs three parameters $\mu \in \mathbb{R}, \sigma>0$ and $S_{0}>0$.

Probability basics

- Let Ω be a set with possibly infinite cardinality.

Definition 11

A σ-algebra \mathcal{F} on Ω is a familly of subsets of Ω satisfying

1. $\Omega \in \mathcal{F}$.
2. If $A \in \mathcal{F}$ then $A^{c}=\Omega \backslash A \in \mathcal{F}$.
3. If $\left\{A_{n}\right\}_{n \geq 1} \subseteq \mathcal{F}$ then $\bigcup_{n \geq 1} A_{n} \in \mathcal{F}$.

Definition 12

A pair (Ω, \mathcal{F}), where Ω is a set and \mathcal{F} is a σ-algebra on Ω, is called a measurable space.

Definition 13

Given \mathcal{G} a class of subsets of Ω we define $\sigma(\mathcal{G})$ the σ-algebra generated by \mathcal{G} as the smallest σ-algebra containing \mathcal{G}, which coincides with the intersection of all σ-algebras containing \mathcal{G}.

- In \mathbb{R}, we can consider the Borel σ-algebra $\mathcal{B}(\mathbb{R})$, the σ-algebra generated by the open sets.

Probability basics

Definition 14

A probability measure on a measurable space (Ω, \mathcal{F}) is a set function $P: \mathcal{F} \rightarrow[0,1]$ satisfying $P(\Omega)=1$ and, if $\left\{A_{n}\right\}_{n \geq 1} \subseteq \mathcal{F}$ are pairwise disjoint then

$$
P\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{n \geq 1} P\left(A_{n}\right) .
$$

Definition 15

A triple (Ω, \mathcal{F}, P) where \mathcal{F} is a σ-algebra on Ω and P is a probability measure on (Ω, \mathcal{F}) is called a probability space.

Definition 16

Let $\left(E_{1}, \mathcal{E}_{1}\right)$ and $\left(E_{2}, \mathcal{E}_{2}\right)$ two measurable spaces. A function $X: E_{1} \rightarrow E_{2}$ is said to be ($\mathcal{E}_{1}, \mathcal{E}_{2}$)-measurable if $X^{-1}(A) \in \mathcal{E}_{1}$ for all $A \in \mathcal{E}_{2}$.

Definition 17

Let (Ω, \mathcal{F}, P) be a probability space. A function $X: \Omega \rightarrow \mathbb{R}$ is a random variable if it is $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$-measurable (usually one only write \mathcal{F}-measurable).

Probability basics

Definition 18

The σ-algebra generated by a random variable X is the σ-algebra generated by the sets of the form $\left\{X^{-1}(A): A \in \mathcal{B}(\mathbb{R})\right\}$.

Definition 19

The law of a random variable X, denoted by $\mathcal{L}(X)$, is the image measure P_{X} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, that is,

$$
P_{X}(B)=P\left(X^{-1} B\right), \quad B \in \mathcal{B}(\mathbb{R})
$$

Definition 20

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel measurable function. Then the expectation of $g(X)$ is defined to be

$$
\mathbb{E}[g(X)]=\int_{\Omega} g \circ X d P=\int_{\mathbb{R}} g d P x .
$$

If $P_{X} \ll \lambda$, with $\frac{d P_{X}}{d \lambda}=f_{X}$ then

$$
\mathbb{E}[g(X)]=\int_{\mathbb{R}} g f_{X} d \lambda=\int_{\mathbb{R}} g(x) f_{X}(x) d x
$$

Probability basics

Definition 21

Let X be a random variable on a probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}[|X|]<\infty$ and $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. The conditional expectation of X given \mathcal{G}, denoted by $\mathbb{E}[X \mid \mathcal{G}]$ is the unique random variable Z satisfying:

1. Z is \mathcal{G}-measurable.
2. For all $B \in \mathcal{G}$, we have $\mathbb{E}\left[X 1_{B}\right]=\mathbb{E}\left[Z 1_{B}\right]$.

- As Ω does not need to be finite, the structure of the σ-algebras on Ω is not as easy as in the finite case. In particular, they are not always generated by partitions.
- This makes computing $\mathbb{E}[X \mid \mathcal{G}]$ much more difficult in general.
- However, $\mathbb{E}[X \mid \mathcal{G}]$ satisfies the same properties as when Ω was finite: tower law, total expectation, role of the independence,etc...

Stochastic processes

Definition 22

A (real-valued) stochastic process X indexed by $[0, T]$ is a family of random variables $X=\left\{X_{t}\right\}_{t \in[0, T]}$ defined on the same probability space (Ω, \mathcal{F}, P).

- We can think of a stochastic process as a function

$$
\begin{array}{ccc}
X: & {[0, T] \times \Omega} & \longrightarrow
\end{array} \mathbb{R} 1 \text { (t, } \begin{array}{ccc}
& \mapsto & X_{t}(\omega)
\end{array}
$$

- For every $\omega \in \Omega$ fixed, the process X defines a function

$$
\begin{array}{cccc}
X \cdot(\omega): & {[0, T]} & \longrightarrow & \mathbb{R} \\
t & \mapsto & X_{t}(\omega)
\end{array}
$$

which is called a trajectory or a sample path of the process.

- Hence, we can look at X as a mapping

$$
\begin{aligned}
& X: \quad \Omega \longrightarrow \\
& \mathbb{R}^{[0, T]} \\
& \omega \mapsto
\end{aligned} X_{(\omega)},
$$

where $\mathbb{R}^{[0, T]}$ is the cartesian product of $[0, T]$ copies of \mathbb{R} which is the set of all functions from $[0, T]$ to \mathbb{R}. That is, we can see X as a mapping from Ω to a space of functions.

Stochastic processes

- The canonical construction of a random variable consists on taking $X=I d$ and $(\Omega, \mathcal{F}, P)=\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$.
- For stochastic processes $Y=\left\{Y_{t}\right\}_{t \in[0, T]}$ this procedure is far from trivial. One can consider the measurable space $\left(\mathbb{R}^{[0, T]}, \mathcal{B}(\mathbb{R})^{[0, T]}\right)$ but to find P_{Y} one needs to do it consistently with the family of finite dimensional laws. (Kolmogorov Extension Theorem)
- Moreover, the space $\mathbb{R}^{[0, T]}$ is too big. One often wants to find a realization of the process in a nicer subspace as $C_{0}([0, T])$. (Kolmogorov Continuity Theorem)

Definition 23

A filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ is a family of nested σ-algebras, that is, $\mathcal{F}_{s} \subseteq \mathcal{F}_{t}$ if $s<t$.

Definition 24

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ is \mathbb{F}-adapted if X_{t} is \mathcal{F}_{t}-measurable.

Stochastic processes

Definition 25

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ is a \mathbb{F}-martingale if it is \mathbb{F}-adapted, $\mathbb{E}\left[\left|X_{t}\right|\right]<\infty, t \in[0, T]$ and

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}, \quad 0 \leq s<t \leq T .
$$

Definition 26

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ has independent increments if $X_{t}-X_{s}$ is independent of $X_{r}-X_{u}$, for all $u \leq r \leq s \leq t$.

Definition 27

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ has stationary increments if for all $s \leq t \in \mathbb{R}_{+}$we have that

$$
\mathcal{L}\left(X_{t}-X_{s}\right)=\mathcal{L}\left(X_{t-s}\right) .
$$

Brownian motion

Definition 28

A stochastic process $W=\left\{W_{t}\right\}_{t \in[0, T]}$ is a (standard) Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,
2. $W_{0}=0, P$-a.s.,
3. W has independent increments,
4. For all $0 \leq s<t \leq T$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.

Definition 29

A stochastic process $W=\left\{W_{t}\right\}_{t \in[0, T]}$ is a \mathbb{F}-Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,
2. $W_{0}=0, P$-a.s.,
3. For all $0 \leq s<t \leq T$, the random variable $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}.
4. For all $0 \leq s<t \leq T$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.

Lévy processes

Definition 30

A stochastic process $L=\left\{L_{t}\right\}_{t \in[0, T]}$ is a Lévy process if it satisfies:

1. $L_{0}=0, P$-a.s.,
2. L has independent increments,
3. L has stationary increments, i.e., for all $0 \leq s<t$, the law of $L_{t}-L_{s}$ coincides with the law of L_{t-s}.
4. X is stochastically continuous, i.e., $\lim _{s \rightarrow t} P\left(\left|L_{t}-L_{s}\right|>\varepsilon\right)=0, \forall \varepsilon>0, t \in[0, T]$.

- That L is stochastically continuous does not imply that L has continuous sample paths.
- A Brownian motion is a particular case of Lévy process.
- The class of Lévy processes, in particular exponential Lévy processes, is a natural class of processes to consider for modeling stock prices.

Brownian motion with drift and geometric Brownian motion

Definition 31

A stochastic process $Y=\left\{Y_{t}\right\}_{t \in[0, T]}$ is a Brownian motion with drift μ and volatility σ if it can be written as

$$
Y_{t}=\mu t+\sigma W_{t}, \quad t \in[0, T]
$$

where W is a standard Brownian motion.

Definition 32

A stochastic process $S=\left\{S_{t}\right\}_{t \in[0, T]}$ is a geometric Brownian motion (or exponential Brownian motion) with drift μ and volatility σ if it can be written as

$$
S_{t}=\exp \left(\mu t+\sigma W_{t}\right), \quad t \in[0, T]
$$

where W is a standard Brownian motion.

- Note that the paths S are continuous and strictly positive by construction.

Increments of a geometric Brownian motion

- The increments of S are not independent.
- Its relative increments

$$
\frac{S_{t_{n}}-S_{t_{n-1}}}{S_{t_{n-1}}}, \frac{S_{t_{n-1}}-S_{t_{n-2}}}{S_{t_{n-2}}}, \ldots, \frac{S_{t_{1}}-S_{t_{0}}}{S_{t_{0}}}, \quad 0 \leq t_{0}<t_{1}<\cdots<t_{n} \leq T
$$

are independent and stationary.

- Equivalently,

$$
\frac{S_{t_{n}}}{S_{t_{n-1}}}, \frac{S_{t_{n-1}}}{S_{t_{n-2}}}, \ldots ., \frac{S_{t_{1}}}{S_{t_{0}}}, \quad 0 \leq t_{0}<t_{1}<\cdots<t_{n} \leq T
$$

and
$\log \left(\frac{S_{t_{n}}}{S_{t_{n-1}}}\right), \log \left(\frac{S_{t_{n-1}}}{S_{t_{n-2}}}\right), \ldots, \log \left(\frac{S_{t_{1}}}{S_{t_{0}}}\right), \quad 0 \leq t_{0}<t_{1}<\cdots<t_{n} \leq T$,
are also independent and stationary.

- Moreover, the law of $S_{t} / S_{s}, 0 \leq s<t \leq T$ is lognormal with parameters $\mu(t-s)$ and $\sigma^{2}(t-s)$, that is, the law of $\log \left(S_{t} / S_{s}\right), 0 \leq s<t \leq T$ is $\mathcal{N}\left(\mu(t-s), \sigma^{2}(t-s)\right)$.

The Black-Scholes model

- The time horizon will be the interval $[0, T]$.
- The price of the riskless asset, denoted by $B=\left\{B_{t}\right\}_{t \in[0, T]}$, is given by $B_{t}=e^{r t}, 0 \leq t \leq T$.
- The price of the risky asset, denoted by $S=\left\{S_{t}\right\}_{t \in 0, T]}$, is modeled by a continuous time stochastic process satisfying the stochastic differential equation (SDE)

$$
\begin{aligned}
d S_{t} & =\mu S_{t} d t+\sigma S_{t} d W_{t}, \quad t \in[0, T] \\
S_{0} & =S_{0}>0
\end{aligned}
$$

- One can check that the process

$$
S_{t}=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}\right), \quad t \in[0, T]
$$

satisfies the previous SDE.

- Therefore, S_{t} is a geometric Brownian motion with drift $\mu-\frac{\sigma^{2}}{2}$ and volatility σ.

The Black-Scholes model

- Consider the discounted price process $S^{*}=\left\{S_{t}^{*}=e^{-r t} S_{t}\right\}_{t \in[0, T]}$.
- Note that S^{*} satisfies

$$
\begin{aligned}
\mathbb{E}\left[\left.\frac{S_{t}^{*}}{S_{s}^{*}} \right\rvert\, \mathcal{F}_{s}\right] & =\mathbb{E}\left[\left.\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)+\sigma\left(W_{t}-W_{s}\right)\right) \right\rvert\, \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)+\sigma\left(W_{t}-W_{s}\right)\right)\right] \\
& =\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)\right) \mathbb{E}\left[\exp \left(\sigma W_{t-s}\right)\right] \\
& =\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)+\frac{\sigma^{2}}{2}(t-s)\right)=e^{(\mu-r)(t-s)},
\end{aligned}
$$

where we have used that $\mathbb{E}\left[e^{\theta Z}\right]=e^{\theta \mu+\frac{\theta^{2} \sigma^{2}}{2}}$ if $Z \sim N\left(\mu, \sigma^{2}\right)$.

- Hence, S^{*} is a martingale under P iff $\mu=r$.
- Does there exist a probability measure Q such that S^{*} is a martingale under Q ?

The Black-Scholes model

- The answer is given by Girsanov's theorem. Let Q be given by

$$
\frac{d Q}{d P}=\exp \left(-\frac{\mu-r}{\sigma} W_{T}-\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2} T\right)
$$

then the process

$$
\widetilde{W}_{t}=\frac{\mu-r}{\sigma} t+W_{t},
$$

is a Brownian motion under Q.

- Moreover, S^{*} is a martingale under Q.

Theorem 33 (Risk-neutral pricing principle)

Let X be a contingent claim such that $\mathbb{E}_{Q}[|X|]<\infty$. Then its arbitrage free price at time t is given by

$$
P_{X}(t)=e^{-r(T-t)} \mathbb{E}_{Q}\left[X \mid \mathcal{F}_{t}\right], \quad 0 \leq t \leq T
$$

Black-Scholes pricing formula

Theorem 34

The prices of a call and a put options are given by

$$
\begin{aligned}
& C\left(t, S_{t}\right)=S_{t} \Phi\left(d_{1}\left(S_{t}, T-t\right)\right)-K e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right) \\
& P\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\left(S_{t}, T-t\right)\right)-S_{t} \Phi\left(-d_{1}\left(S_{t}, T-t\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& d_{1}(x, \tau)=\frac{\log (x / K)+\left(r+\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}, \\
& d_{2}(x, \tau)=\frac{\log (x / K)+\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}},
\end{aligned}
$$

and

$$
\Phi(x)=\int_{-\infty}^{x} \phi(z) d z=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) d z
$$

Note also that $d_{1}(t, \tau)=d_{2}(t, \tau)+\sigma \sqrt{\tau}$.

Black-Scholes pricing formula

Proof of Theorem 34.

We will prove the formula for the call option, $X=(S(T)-K)^{+}$. By the risk-neutral valuation principle we know that

$$
\begin{aligned}
P_{X}(t) & =e^{-r(T-t)} \mathbb{E}_{Q}\left[(S(T)-K)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\left(\frac{S^{*}(T)}{S^{*}(t)} S^{*}(t)-e^{-r(T-t)} K\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\left.\left.\mathbb{E}_{Q}\left[\left(\frac{S^{*}(T)}{S^{*}(t)} x-e^{-r(T-t)} K\right)^{+}\right]\right|_{x=S^{*}(t)} \triangleq \Gamma(x)\right|_{x=S^{*}(t)} .
\end{aligned}
$$

As

$$
\frac{S^{*}(T)}{S^{*}(t)}=\exp \left(-\frac{\sigma^{2}}{2}(T-t)+\sigma\left(\widetilde{W}_{T}-\widetilde{W}_{t}\right)\right)
$$

and $\widetilde{W}_{T}-\widetilde{W}_{t} \sim \mathcal{N}(0,(T-t))$ under Q, we have that

$$
\Gamma(x)=\int_{-\infty}^{+\infty} \phi(z)\left(x e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t} z}-K e^{-r(T-t)}\right)^{+} d z
$$

Black-Scholes pricing formula

Proof of Theorem 34.

Note that

$$
x e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}}-K e^{-r(T-t)} \geq 0 \Longleftrightarrow z \geq-d_{2}(x, T-t) .
$$

Therefore,

$$
\begin{aligned}
\Gamma(x)= & \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z)\left(x e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}}-K e^{-r(T-t)}\right) d z \\
= & x \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z) e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}} d z \\
& -K e^{-r(T-t)} \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z) d z \\
= & I_{1}-I_{2} .
\end{aligned}
$$

Using that

$$
\phi(z) e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t} z}=\phi(z-\sigma \sqrt{T-t}),
$$

and

$$
d_{1}(x, T-t)=\sigma \sqrt{T-t}+d_{2}(x, T-t),
$$

Black-Scholes pricing formula

Proof of Theorem 34.

we get

$$
\begin{aligned}
I_{1} & =x \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z-\sigma \sqrt{T-t}) d z \\
& =x \int_{-\left(\sigma \sqrt{T-t}+d_{2}(x, T-t)\right)}^{+\infty} \phi(z) d z \\
& =x\left(1-\Phi\left(-d_{1}(x, T-t)\right)\right)
\end{aligned}
$$

On the other hand,

$$
I_{2}=K e^{-r(T-t)}\left(1-\Phi\left(-d_{2}(x, T-t)\right)\right) .
$$

The result follows from the following well known property of Φ

$$
\Phi(z)=1-\Phi(-z), \quad z \in \mathbb{R}
$$

The Greeks or sensitivity parameters

- Note that the price of a call option $C\left(t, S_{t}\right)$ actually depends on other variables

$$
C\left(t, S_{t}\right)=C\left(t, S_{t} ; r, \sigma, K\right)
$$

- The derivatives with respect to these variables/parameters are known as the Greeks and are relevant for risk-management purposes.
- Here, there is a list of the most important:
- Delta:

$$
\Delta=\frac{\partial C}{\partial S}\left(t, S_{t}\right)=\Phi\left(d_{1}\left(S_{t}, T-t\right)\right)
$$

- Gamma:

$$
\Gamma=\frac{\partial^{2} C}{\partial S^{2}}=\frac{\Phi^{\prime}\left(d_{1}\left(S_{t}, T-t\right)\right)}{\sigma S_{t} \sqrt{T-t}}=\frac{\phi\left(d_{1}\left(S_{t}, T-t\right)\right)}{\sigma S_{t} \sqrt{T-t}}
$$

- Theta:

$$
\begin{aligned}
\Theta & =\frac{\partial C}{\partial t}=-\frac{\sigma S_{t} \Phi^{\prime}\left(d_{1}\left(S_{t}, T-t\right)\right)}{2 \sqrt{T-t}}-r K e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right) \\
& =-\frac{\sigma S_{t} \phi\left(d_{1}\left(S_{t}, T-t\right)\right)}{2 \sqrt{T-t}}-r K e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right)
\end{aligned}
$$

- Rho:

$$
\rho=\frac{\partial C}{\partial r}=K(T-t) e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right)
$$

- Vega:

$$
\frac{\partial C}{\partial \sigma}=S_{t} \sqrt{T-t} \phi^{\prime}\left(d_{1}\left(S_{t}, T-t\right)\right)=S_{t} \sqrt{T-t} \phi\left(d_{1}\left(S_{t}, T-t\right)\right)
$$

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- We will consider a family of CRR market models indexed by $n \in \mathbb{N}$.
- Partition the interval $[0, T)$ into $\left[(j-1) \frac{T}{n}, j \frac{T}{n}\right), j=1 \ldots, n$.
- $S_{n}(j)$ will denote the stock price at time $j \frac{T}{n}$ in the nth binomial model.
- Similarly $B_{n}(j)$ represents the bank account at time $j \frac{T}{n}$, in the nth binomial model.
- Let $r_{n}=r \frac{T}{n}$ be the interest rate, where $r>0$ is the interest rate with continuous compounding, i.e.,

$$
\lim _{n \rightarrow \infty}\left(1+r_{n}\right)^{n}=e^{r T}
$$

- Let $a_{n}=\sigma \sqrt{\frac{T}{n}}$, where σ is interpreted as the instantaneous volatility.
- Set up the up and down factors by

$$
\begin{aligned}
& u_{n}=e^{a_{n}}\left(1+r_{n}\right) \\
& d_{n}=e^{-a_{n}}\left(1+r_{n}\right)
\end{aligned}
$$

- For n sufficiently large $d_{n}<1$. Moreover, note that $u_{n}>1+r_{n}$ and that $d_{n}<1+r_{n}$ for all n and, by Theorem 3 , there exists a unique martingale measure in th nth binomial model for all n.

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- The martingale probability measure parameter in the nth model is
$q_{n}=\frac{1+r_{n}-d_{n}}{u_{n}-d_{n}}=\frac{1-e^{-a_{n}}}{e^{a_{n}}-e^{-a_{n}}}=\frac{a_{n}-\frac{1}{2} a_{n}^{2}+o\left(a_{n}^{2}\right)}{2 a_{n}+\frac{1}{3} a_{n}^{3}+o\left(a_{n}^{3}\right)}=\frac{1}{2}-\frac{1}{4} a_{n}+o\left(a_{n}\right)$,
where $o(\delta)$ with $\delta>0$ means $\lim _{\delta \rightarrow 0} \frac{o(\delta)}{\delta}=0$.
- Let $\left\{X_{n}(j)\right\}_{j=1, \ldots, n}$ be the Bernoullli r.v. underlying the nth market model. Note that $Q_{n}\left(X_{n}(j)=1\right)=q_{n}$ and

$$
S_{n}(j)=S(0) u_{n}^{X_{n}(1)+\cdots+X_{n}(j)} d_{n}^{j-\left(X_{n}(1)+\cdots+X_{n}(j)\right)}, \quad j=1, \ldots, n .
$$

- The value at time zero of a put option with strike K in the nth binomial market is given by

$$
P_{\text {Put }}^{n}(0)=\left(1+r_{n}\right)^{-n} \mathbb{E}_{Q_{n}}\left[(K-S(n))^{+}\right]=\mathbb{E}_{Q_{n}}\left[\left(\frac{K}{\left(1+r_{n}\right)^{n}}-S(0) e^{Y_{n}}\right)^{+}\right]
$$

where

$$
Y_{n}=\sum_{j=1}^{n} Y_{n}(j)=\sum_{j=1}^{n} \log \left(\frac{u_{n}^{X_{n}(j)} d_{n}^{1-X_{n}(j)}}{\left(1+r_{n}\right)}\right)
$$

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- For n fixed the random variable $Y_{n}(1), \ldots, Y_{n}(n)$ are i.i.d. with

$$
\begin{aligned}
\mathbb{E}_{Q_{n}}\left[Y_{n}(j)\right] & =q_{n} \log \left(\frac{u_{n}}{1+r_{n}}\right)+\left(1-q_{n}\right) \log \left(\frac{d_{n}}{1+r_{n}}\right) \\
& =\left(\frac{1}{2}-\frac{1}{4} a_{n}+o\left(a_{n}\right)\right) a_{n}+\left(\frac{1}{2}+\frac{1}{4} a_{n}+o\left(a_{n}\right)\right)\left(-a_{n}\right) \\
& =-\frac{1}{2} a_{n}^{2}+o\left(a_{n}^{2}\right) \\
\mathbb{E}_{Q_{n}}\left[Y_{n}^{2}(j)\right] & =a_{n}^{2}+o\left(a_{n}^{2}\right) \\
\mathbb{E}_{Q_{n}}\left[\left|Y_{n}(j)\right|^{m}\right] & =o\left(a_{n}^{2}\right) \quad m \geq 3
\end{aligned}
$$

Theorem 35 (Lévy's continuity theorem)

A sequence $\left\{Y_{n}\right\}_{n \geq 1}$ of $r . v$, possibly defined on different probability spaces $\left(\Omega_{n}, \mathcal{F}_{n}, Q_{n}\right)$, converges in distribution to Y, defined on a probability space (Ω, \mathcal{F}, Q), if and only if the sequence of corresponding characteristic functions $\left\{\varphi_{Y_{n}}=\mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}}\right]\right\}_{n \geq 1}$ converges pointwise to the characteristic function $\varphi_{Y}(\theta)=\mathbb{E}_{Q}\left[e^{i \theta Y}\right]$ of Y.

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- Let Y be a random variable defined on some probability space (Ω, \mathcal{F}, Q) with law $\mathcal{N}\left(-\frac{\sigma^{2} T}{2}, \sigma^{2} T\right)$. Its characteristic function is

$$
\varphi_{Y}(\theta)=\exp \left(-i \theta \frac{\sigma^{2} T}{2}-\theta^{2} \frac{\sigma^{2} T}{2}\right) .
$$

- As $Y_{n}(j), \ldots, Y_{n}(n)$ are i.i.d. we have that

$$
\begin{aligned}
\varphi_{Y_{n}}(\theta) & =\mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}}\right]=\prod_{j=1}^{n} \mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}(j)}\right]=\mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}(1)}\right]^{n} \\
& =\left(1+i \theta \mathbb{E}_{Q_{n}}\left[Y_{n}(j)\right]-\frac{\theta^{2}}{2} \mathbb{E}_{Q_{n}}\left[Y_{n}^{2}(j)\right]+o\left(a_{n}^{2}\right)\right)^{n} \\
& =\left(1-\left(\frac{i \theta+\theta^{2}}{2}\right) a_{n}^{2}+o\left(a_{n}^{2}\right)\right)^{n} \\
& =\left(1-\left(\frac{i \theta+\theta^{2}}{2}\right) \sigma^{2} \frac{T}{n}+o(1 / n)\right)^{n}
\end{aligned}
$$

which converges to $\varphi_{Y}(\theta)$ as n tends to infinity.

- We can conclude that Y_{n} converges in distribution to a $\mathcal{N}\left(-\frac{\sigma^{2} T}{2}, \sigma^{2} T\right)$.

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- A sequence $\left\{Y_{n}\right\}_{n \geq 1}$ of random variables, defined on $\left(\Omega_{n}, \mathcal{F}_{n}, Q_{n}\right)$, converges in distribution to Y, defined on (Ω, \mathcal{F}, Q), if and only if

$$
\begin{equation*}
\mathbb{E}_{P_{n}}\left[g\left(Y_{n}\right)\right] \longrightarrow \mathbb{E}_{p}[g(Y)] \tag{4}
\end{equation*}
$$

when $n \rightarrow+\infty$, for all $g \in C_{b}(\mathbb{R})$.

- Therefore, since we know that $\left\{Y_{n}\right\}_{n \geq 1}$ converge in law to Y, by applying (4) with $g(x)=\left(K e^{-r T}-S(0) e^{x}\right)^{+}$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right] \\
& =\int_{-\infty}^{+\infty} \frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}}\left(K e^{-r T}-S(0) \exp \left(-\frac{\sigma^{2} T}{2}+\sigma \sqrt{T} z\right)\right)^{+} d z \\
& =P_{P}(0)
\end{aligned}
$$

where we have used that $Y \sim \mathcal{N}\left(-\frac{\sigma^{2} T}{2}, \sigma^{2} T\right)$ if and only if $Y=-\frac{\sigma^{2} T}{2}+\sigma \sqrt{T} Z$ with $Z \sim \mathcal{N}(0,1)$.

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- Recall that

$$
P_{\text {Put }}^{n}(0)=\mathbb{E}_{Q_{n}}\left[\left(\frac{K}{\left(1+r_{n}\right)^{n}}-S(0) e^{Y_{n}}\right)^{+}\right]
$$

- One can check that

$$
\left|P_{\text {Put }}^{n}(0)-\mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right]\right| \leq K\left|\left(1+r_{n}\right)^{-n}-e^{-r T}\right|
$$

and, therefore, $P_{\text {Put }}^{n}(0)$ and $\mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right]$converge to the same limit as n tends to infinity.

- Then, we can conclude that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} P_{\text {Put }}^{n}(0) & =\lim _{n \rightarrow+\infty} \mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right] \\
& =P_{\text {Put }}(0)
\end{aligned}
$$

- It is easy to check that

$$
P_{\text {Put }}(0)=K e^{-r T} \Phi\left(-d_{2}(S(0), T)\right)-S(0) \Phi\left(-d_{1}(S(0), T)\right),
$$

where Φ is the cumulative normal distribution and d_{1} and d_{2} are the same functions defined in Theorem 34.

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

- By using the put-call parity relationship (on the binomial market and on the Black-Scholes market) one gets that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} P_{\text {Call }}^{n}(0) & =\lim _{n \rightarrow+\infty}\left(P_{\text {Put }}^{n}(0)+S(0)-\left(1+r_{n}\right)^{-n} K\right) \\
& =P_{\text {Put }}(0)+S(0)-e^{-r T} K \\
& =P_{\text {Call }}(0)
\end{aligned}
$$

where

$$
\begin{aligned}
P_{\text {Call }}^{n}(0) & =\left(1+r_{n}\right)^{-n} \mathbb{E}_{Q_{n}}\left[(S(n)-K)^{+}\right] \\
& =\mathbb{E}_{Q_{n}}\left[\left(S(0) e^{Y_{n}}-\frac{K}{\left(1+r_{n}\right)^{n}}\right)^{+}\right]
\end{aligned}
$$

and

$$
P_{\text {Call }}(0)=S(0) \Phi\left(d_{1}(S(0), T)\right)-K e^{-r T} \Phi\left(d_{2}(S(0), T)\right)
$$

- One can modify the previous arguments to provide the formulas for $P_{\text {Call }}(t)$ and $P_{\text {Put }}(t)$.

Convergence of the CRR pricing formula to the Black-Scholes pricing formula

Theorem 36

Let $g \in C_{b}(\mathbb{R})$ and let $X=g(S(T))$ be a contingent claim in the Black-Scholes model. Then the price process of X is given by

$$
P_{X}(t)=\lim _{t \rightarrow+\infty} P_{X}^{n}(t), \quad 0 \leq t \leq T
$$

where $P_{X}^{n}(t), n \geq 1$ are the price processes of X in the corresponding CRR models.

- There exist similar proofs of the previous results using the normal approximation to the binomial law, based on the central limit theorem.
- However, note that here we have a triangular array of random variables $\left\{Y_{n}(j)\right\}_{j=1, \ldots, n}, n \geq 1$. Hence, the result does not follow from the basic version of the central limit theorem.
- Moreover, the asymptotic distribution of Y_{n} need not be Gaussian if we choose suitably the parameters of the CRR model.
- For instance, if we set $u_{n}=u$ and $d_{n}=e^{c t / n}, c<r$ we have that Y_{n} converges in law to a Poisson random variable.
- This lead to consider the exponential of more general Lévy process as underlying price process for the stock.

