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The Cox-Ross-Rubinstein Model



Introduction

e The Cox-Ross-Rubinstein market model (CRR model), also known as the
binomial model, is an example of a multi-period market model.

e At each point in time, the stock price is assumed to either go ‘up’ by a
fixed factor u or go ‘down’ by a fixed factor d .

o S(t+1)=S(t)u
0] —
PUs(e+1) = S(t)d

e Only four parameters are needed to specify the binomial asset pricing
model: u>1>d >0, r>—1and S(0) > 0.

e The real-world probability of an ‘up’ movement is assumed to be the same
0 < p < 1 for each period and is assumed to be independent of all
previous stock price movements.
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The Bernoulli process

Definition 1

A stochastic process X = {X(t)})eeqa,...,
(Q, F, P) is said to be a (truncated) Bernoulli process with parameter
0 < p <1 (and time horizon T) if the random variables

X (1),X(2),...,X(T) are independent and have the following common
probability distribution

71 defined on some probability space

P(X()=1)=1-P(X(t)=0)=p, teN.

e \We can think of a Bernoulli process as the random experiment of flipping
sequentially T coins.

e The sample space Q is the set of vectors of zero's and one’s of length T.
Obviously, #Q =27.

e X (t,w) takes the value 1 or 0 as we, the t-th component of w € Q, is 1 or
0, that is, X (t,w) = ws.
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The Bernoulli process

e FX is the algebra corresponding to the observation of the first t coin flips.
o Ff = a(m:) where 7; is a partition with 2° elements, one for each possible
sequence of t coin flips.

T—n :
, Where w is

e The probability measure P is given by P (w) = p" (1 — p)
any elementary outcome corresponding to n “heads” and T — n "tails”.
e Setting this probability measure on 2 is equivalent to say that the random

variables X (1),..., X (T) are independent and identically distributed.

Example
Consider T = 3. Let

Ao = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)},

A ={(1,0,0),(1,0,1),(1,1,0),(1,1,1)},
Aoo = {(0,0,0),(0,0,1)}, A1 ={(0,1,0),(0,1,1)},
Ao =1{(1,0,0),(1,0,1)}, A1 ={(1,1,0),(1,1,1)}.

We have that
7o = {Q} ,;m1 = {Ao, Ar}, m2 = {Ao, Ao,1, A1,0, A1} 3 = {{w}},,cq and
Fr=a(m),t =0,...,3. In particular, 75 = P (Q). 5/53



The Bernoulli counting process

Definition 2

The Bernoulli counting process N = {N(t)} ;cqo,...,7} is defined in terms of
the Bernoulli process X by setting N (0) =0 and

N(t,w)=X(1,w)+- -+ X(t,w), tef{l,..., T}, weq.

The Bernoulli counting process is an example of additive random walk.
The random variable N (t) should be thought as the number of heads in
the first t coin flips.

Since E [X (t)] = p, Var[X (t)] = p(1 — p) and the random variables
X (t) are independent, we have

E[N()] =tp,  Var[N(t)]=tp(1—p).
e Moreover, for all t € {1,..., T} one has

P(N(t) = n) = ( ; >p"(1p)t", n=0,..t

that is, N (t) ~ Binomial (t, p).
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The CRR market model

e The bank account process is given by B = {B(t) =(1+ r)t}t:0 e

e The binomial security price model features 4 parameters: p, d, u and
5(0), where0 < p<10<d<1l<uandS(0)>0.

e The time t price of the security is given by
S(t) =S "OgtNO =1, T

e The underlying Bernoulli process X governs the up and down movements
of the stock. The stock price moves up at time t if X(t,w) =1 and
moves down if X(t,w) = 0.

e The Bernoulli counting process N counts the up movements. Before and
including time t, the stock price moves up N(t) times and down t — N (t)
times.

e The dynamics of the stock price can be seen as an example of a
multiplicative or geometric random walk.
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The CRR market model

e The price process has the following probability distribution

P(S(t)=S(0)u"d"™") = (

e Lattice representation

t

> p"(1—p) ", n=0,..,t.
n

*
» S5(2) = S(0)u?
— ey
) S(1) = S(0)u o S(3) = S(0)u?d
— P
5(0) — tPS(2) = S(0)ud
e — 1o
S(1) = S(0)d ) 5(3) = S(0)ud?
1T —
S(2) = S(0)d?
—



The CRR market model

e The event {5 (t)=5(0) u”dt_"} occurs if and only if exactly n out of
the first t moves are up. The order of these t moves does not matter.

e At time t, there are 2° possible sample paths of length t.

e At time t, the price process S (t) can only take one of t+ 1 possible values.

e This reduction, from exponential to linear in time, in the number of
relevant nodes in the lattice is crucial in numerical implementations.

Example
Consider T = 2. Let

Q= {(dv d)v(d7 u),(u,d),(u, U)}
Ad:{(d’ d)v(d’ U)}’ AU:{(Uvd)a(uv u)}

We have that

o = {Q} 11 = {Ad7 AU} 12 = {{(d7 d)} 5 {(d7 u)} ) {(u7 d)} ) {(u7 u)}} , and
Fr = a(me),t =0,...,3. Note that

{5(2) = 5(0) ud} = {(d, v), (u, d)} ¢ m2.

Hence, the lattice representation is NOT the information tree of the model. o/s



Arbitrage and completeness in the CRR model

Theorem 3
There exists a unique martingale measure in the CRR market model if and
only if

d<1l+4r<u,

and is given by
QW) =¢"(1-a)" ",
where w is any elementary outcome corresponding to n up movements and

T — n down movement of the stock and

_1+r—d
T ou—d

Corollary 4
If d <1+ r < u, then the CRR model is arbitrage free and complete.
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Arbitrage and completeness in the CRR model

Lemma 5

Let Z be a r.v. defined on some prob. space (2, F, P), with
P(Z=a)+P(Z=0b)=1fora,becR. Let G C F be an algebra on Q. If
E[Z|G] is constant then Z is independent of G. (Note that the constant
must be equal to E[Z]).

Proof of Lemma 5.
Let A= {Z = a} and A° ={Z = b}. Then for any B€ G

E[ZlB] = E[(alA + blAc) 15] = zIP (A n B) + bP (AC N B)7
and
E[E[Z]18] = E[(aP (A) + bP (B))15] = aP (A) P(B) + bP (A°) P(B).

By the definition of cond. expect. we have that E[Z1g] = E [E [Z] 15]. Using
that P(A°) =1— P (A) and P (A°N B) = P(B) — P(AN B), we get that
P(ANB) = P(A)P(B) and P(A°N B) = P(A) P(B), which yields that
a(Z) is independent of G. O
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Arbitrage and completeness in the CRR model

Proof of Theorem 3 .
Note that S* (t) = S(t) (1 +r)"",t =0,...T. Moreover
S(t+1) _ S0 uM g NI e wie) g1 (e -no)

SO s©uogre Y
_ uX(t+1)d1*X(t+1)7 t=0,.., T —1.

Let Q be another probability measure on €.

We impose the martingale condition under @
Eq[S™ (t+1)|F] = ™ (t) & Eq [V XD | F] =14 1.
This gives

(1+r) =Eq [ g X 7]
uQ (X (t+1) =1/ F) +dQ(X (t+1) = 0| F).

In addition,

1=Q(X(t+1)=1|F)+ Q(X(t+1)=0|F). 12/53



Arbitrage free and completeness of the CRR model

Proof of Theorem 3 .

Solving the previous equations we get the unique solution

_14r—d

Q(X(t+1):1|ft)—ﬁ:q,
Qx(e+n=0F)=4"0FD _y g

Note that the r.v. uX(HDgi=X(t+1) gatisfies the hypothesis of Lemma 5 and,
therefore, u*(*1)g*=X(t+1) s independent (under Q) of F:.

This means that
(14 r) = Eq [ d X)) 7]
— Ko [ux(t+1)d17><(t+1)]
=uQ(X(t+1)=1)+dQ(X(t+1)=0),
and we get that
RIX(t+1)=1)=Q(X(t+1)=1|F),

QX (t+1)=0)=Q(X(t+1)=0|F). 13/53



Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

As the previous unconditional probabilities does not depend on t we obtain
that the random variables X (1),...X (T) are identically distributed under Q,
i.e. X (i) = Bernoulli(q) . Moreover, for a € {0,1}" we have that

Q (n {X(t) = 3t}> =Eq H l{X(t)at}]

[T—1
=Eo | [T 1oxw=arEe [L1px(ry=ar ] le]]

L t=1

[7—1
=Eq H Lix(t)=a} Q (X (T) = ar]| le)]

L t=1

Q(X(T) = ar)

T-1
=Eo | [[ tixw=20
L t=1

-Q <ﬂ {X(t)= at}> QX(T)=ar).
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
Iterating this procedure we get that

Q(ﬂ{X(t)—ar}> =[[ex®=a).

t=1
and we can conclude that X (1),...X (T) are also independent under Q.

Therefore, under @, we obtain the same probabilistic model as under P but
with p = g, that is,

:
QW)=q"(1-9)" ", =) we
t=1

The conditions for g are equivalent to Q (w) > 0, which yields that Q is the
unique martingale measure. O
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Pricing European options in the CRR model

e By the general theory developed for multiperiod markets we have the
following result.

Proposition 6 (Risk Neutral Pricing Principle)

The arbitrage free price process of a European contingent claim X in the CRR
model is given by

X (T—
PX(t)B(t)EQ[B(T)‘]-}](lJrr) T t)EQ[X|]:t], t=0,..T,
where Q is the unique martingale measure characterized by q = lt:f’.
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Pricing European options in the CRR model

e If the contingent claim X is path-independent, X = g (5(T)), we have a
more precise formula.

o Let F,, (t,x) the function defined by

t

Fp,g(t,x) = ( ; ) p” (1 _ p)tfng(xundtf,j

Proposition 7

Consider a European contingent claim X given by X = g (S(T)). Then, the
arbitrage free price process Px (t) is given by

Px(t)=1+r) T 9F  (T—1t5S(), t=0,.,T,

where q = =9,
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Pricing European options in the CRR model

Proof of Proposition 7.
Recall that

t
S(t)=5(0)u"d M) =50 [[ e, t=1,.., T,
j=1

By Proposition 6 we have that

(14079 Px (t) = Eo[g (S (T))| Fi] = Eq [g <S(t) Il qudl‘XJ> ‘Ft]

=Eq [g (S(t) 11 qudl‘XJ‘)] = Foe (T —t,5(t)),

where in the last equality we have used that S (t) is F¢-measurable and
Xit1, ..., X1 are independent of F;.

Note that if X is G-measurable and Y is independent of G then
E[f (X, Y)IG] = E[f (x, Y)]|,—x -
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Pricing European options in the CRR model

Corollary 8

Consider a European call option with expiry time T and strike price K writen on the
stock S. The arbitrage free price Pc (t) of the call option is given by

Pcu):smi( T ) g g

Tt
g )rasam
where
A=inf{n€N:n>log(K/(S(t)d ")) /log(u/d)}
and
g = ﬁ’r €(0,1).

e This formula only involves two sums of T — t — i1+ 1 binomial probabilities.
e Using the put-call parity relationship one can get a similar formula for European
puts.
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Pricing European options in the CRR model

Proof of Corollary 8.
First note that

S(t)u"d" "= K >0<=n>log (K/(S(t)d ")) /log(u/d).

Let g(x) = (x — K)'. If A>T — t then Fy (T —t,S(t)) =0. If
n < T — t, then the formula in Proposition 7 yields

L+ Pe(t)
= q,g(T - t,S(t))
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Pricing European options in the CRR model

Proof of Corollary 8.

-5

T—
n=

( T;t > qn (1_q)T7t7nS(t) undetfn
— =i n T—t—n
-> ( . ) q"(1-q) K
= T—t n T—t—n
S ( ) ) (au)" (1 - 4) )

T—t
Tt n —t—n
_KZ< ) >q(1_q)“ .

The result follows by defining § = -Z- and noting that

1+r
14— l+r—qu _qu+(1-q)d—qu _ (1-q)d
1+r 1+4r 14+r "’
where we have used qu + (1 — q)d = Eq [ux(tﬂ)dl*x(t“)] =1+r. O
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Hedging European options in the CRR model

e Let X be a contingent claim and Px = {Px (t)},_, be its price
process (assumed to be computed/known).
e As the CRR model is complete we can find a self-financing trading
strategy H = {H (t)},_, ;= {(Ho(t) . Fh ()"}, , such that
Px(t)=V(t)=Ho(t) L+ 1)+ Hi(t)S(t), t=1,...,T, (1)
Px (0) = V (0) = Ho (1) + H1 (1) S(0).
e Given t =1,..., T we can use the information up to (and including) t — 1

to ensure that H is predictable.
e Hence, at time t, we know S (t — 1) but we only know that

S(t) =S (t—1)uOg O,
e Using that uX®d*=X® ¢ {4 d} we can solve equation (1) uniquely for

Ho (t) and H; (t)
e Making the dependence of Px explicit on S we have the equations

Px (t,S(t—1)u)=Ho(t) (L +r) + Hi(t)S(t —1)u,
Px (t,S(t—1)d) = Ho(t)(1+r)" + Hi(t)S(t —1)d.
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Hedging European options in the CRR model

e The solution for these equations is
uPx (t,S(t—1)d) — dPx (t,S(t — 1) u)
1+ (u—d) ’
Px (t,S(t—1)u) — Px (t,S(t —1)d)
S(t—1)(u—d)

Ho (t) =

H, (t) =

e The previous formulas only make use of the lattice representation of the
model and not the information tree.

Proposition 9
Consider a European contingent claim X = g (S(T)). Then, the replicating
trading strategy H={H (t)},_; = {(Ho (t), H (1.“))7—}t:1 . is given by

UFq e (T —t,S(t—1)d) —dFg ¢ (T —t,S(t — 1) u)

(147 (u—d) ’
(1+r) " {F e (T—t,S(t—1)u) — Foe (T —t,S(t — 1) d)}
S(t—1)(u—d) ‘

Ho (t) =

Hi (1) =
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Hedging European options in the CRR model

o Let

T - - +
C = n 1 o T—n nd‘r n o K .
(7, %) Z}:(n>q( q)" " (xu )
Then, Pc(t) = (1+r) 79 C(T —t,5(t)).
Proposition 10
The replicating trading strategy

- for a European call option

.....

with strike K and expiry time T is given by

.....

uC(T —t,5(t—1)d) —dC (T —t,5(t — 1) uv)

(14" (u-d) -
@4+ nTTHC(T —t,S(t—1)u) - C(T —t,S(t—1)d)}
S(t—1)(u—d) '

Ho (t) =

H, (t)

e As C (7,x) is increasing in x we have that H; (t) > 0, that is, the
replicating strategy does not involve short-selling.
e This property extends to any European contingent claim with increasing
payoff g. 24/53



Hedging European options in the CRR model

e \We can also use the value of the contingent claim X and backward
induction to find its price process Px and its replicating strategy H
simultaneously.

e We have to choose a replicating strategy H (T) based on the information
available at time T — 1.

e This gives raise to two equations

PX(T,S(T—l)u):HO(T)(1+r)T+H1(T)S(T—1)u, (2)
PX(T,S(Tfl)d):HO(T)(1+r)T+H1(T)5(Tf1)d. 3)
e The solution is

uPx (T,S5(T —1)d) —dPx (T,S(T —1)u)
Ho (T) = T
14r) (u—d)

Px (T,S(T —1)u)— Px(T,S(T —1)d)

S(T-1)(u—d) '
e Next, using that H is self-financing, we can compute

Px(T=1,S(T—1))=Ho(T)(1+r)" "+ H(T)S(T - 1),

)

Hi (T) =

and repeat the procedure (changing T to T — 1 in equations (2) and (3) )
to compute H (T —1). 25/53



The Black-Scholes model




Introduction

e The Black-Scholes model is an example of continuous time model for the
risky asset prices.

Let us summarize the underlying hypothesis of the Black-Scholes model on the
prices of assets.

e The assets are traded continuously and their prices have continuous paths.

e The risk-free interest rate r > 0 is constant.

The logreturns of the risky asset S; are normally distributed:

Iog(g—:) NN((p—f) (t—u),a2(t—u)>.

e Moreover, the logreturns are independent from the past and are stationary.

The model needs three parameters ;1 € R,0 > 0 and Sp > 0.
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Probability basics

e Let Q be a set with possibly infinite cardinality.

Definition 11
A o-algebra F on Q is a familly of subsets of Q satisfying

1. Qe F.
2. If A€ F then A° = Q\ Ac F.
3. If {An},5, C F then (], An€ F.

Definition 12
A pair (2, F), where Q is a set and F is a o-algebra on , is called a
measurable space.

Definition 13

Given G a class of subsets of Q we define o(G) the o-algebra generated by G
as the smallest o-algebra containing G, which coincides with the intersection
of all o-algebras containing G.

e In R, we can consider the Borel o-algebra B (R), the o-algebra generated

27/53
by the open sets. 4



Probability basics

Definition 14

A probability measure on a measurable space (€, F) is a set function
P:F — [0,1] satisfying P(2) =1 and, if {An},., C F are pairwise disjoint

then
P(UA,,) =) P(A).

n>1 n>1

Definition 15

A triple (2, F, P) where F is a o-algebra on Q and P is a probability measure
on (2, F) is called a probability space.

Definition 16

Let (Ei, &1) and (Ez, &) two measurable spaces. A function X : E1 — E; is
said to be (&1, &>)-measurable if ! (A) € & for all A € &.

Definition 17

Let (2, F, P) be a probability space. A function X : 2 — R is a random
variable if it is (F, B (R))-measurable (usually one only write F-measurable).
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Probability basics

Definition 18

The o-algebra generated by a random variable X is the o-algebra generated
by the sets of the form {X (A): AeB( R)}

Definition 19

The law of a random variable X, denoted by £(X), is the image measure Px
on (R, B(R)), that is,

Px(B) = P(X'B), B e B(R).

Definition 20

Let g : R — R be a Borel measurable function. Then the expectation of g(X)
is defined to be

IE[g(X)]:/ngXdP:'/RgdPX.

If Px < A, with 2% = fx then

E[g(X)] = / gfedh — / 20 ().

29/53



Probability basics

Definition 21

Let X be a random variable on a probability space (2, F, P) such that
E[|X|] < co and G C F be a o-algebra. The conditional expectation of X
given G, denoted by E [ X| ] is the unique random variable Z satisfying:

1. Z is G-measurable.
2. For all B € G, we have E [X15] = E[Z15].

e As ) does not need to be finite, the structure of the o-algebras on Q is
not as easy as in the finite case. In particular, they are not always
generated by partitions.

e This makes computing E [ X|G] much more difficult in general.

e However, E [ X|J] satisfies the same properties as when Q was finite:
tower law, total expectation, role of the independence,etc...
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Stochastic processes

Definition 22
A (real-valued) stochastic process X indexed by [0, T] is a family of random
variables X = {X;}:c[o,7] defined on the same probability space (2, 7, P).

e We can think of a stochastic process as a function
X: [0,T]xQ — R
(t,w) = Xe(w)
e For every w € Q fixed, the process X defines a function
X (w): [0,T] — R
t = Xe(w)
which is called a trajectory or a sample path of the process.
e Hence, we can look at X as a mapping
X: Q — ROT
w o= X(w)’
where R is the cartesian product of [0, T] copies of R which is the set
of all functions from [0, T] to R. That is, we can see X as a mapping from

Q to a space of functions.
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Stochastic processes

e The canonical construction of a random variable consists on taking X = Id
and (Q, F,P) = (R, B(R), Px).

e For stochastic processes Y = {yt}te[O,T] this procedure is far from trivial.
One can consider the measurable space (R[O’T],B(R)[O’T]) but to find Py
one needs to do it consistently with the family of finite dimensional laws.
(Kolmogorov Extension Theorem)

e Moreover, the space R is too big. One often wants to find a
realization of the process in a nicer subspace as Cp ([0, T]). (Kolmogorov
Continuity Theorem)

Definition 23

A filtration F = {Ft}tE[O,T] is a family of nested o-algebras, that is, Fs C F;
if s <t.

Definition 24
A stochastic process X = {Xf}te[o,T] is F-adapted if X; is F:-measurable.
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Stochastic processes

Definition 25
A stochastic process X = {Xf}te[o,T] is a F-martingale if it is F-adapted,
E [|X¢]] < oo,t € [0, T] and

E[X| Fs]=Xs, 0<s<t<T.

Definition 26
A stochastic process X = {Xf}te[o 7 has independent increments if X; — Xs is
independent of X, — X, forall u <r <s<t.

Definition 27
A stochastic process X = {X:},.[ 7 has stationary increments if for all
s <t € R, we have that

L(Xe — Xs) = L(Xe—s).
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Brownian motion

Definition 28

A stochastic process W = {W:},. [, 7} is a (standard) Brownian motion if it
satisfies

1. W has continuous sample paths P-a.s.,

2. Wo =0, P-as.,

3. W has independent increments,

4. Forall0<s < t<T,thelaw of W; — W; is a N(0, (t — s)).

Definition 29

A stochastic process W = {W:}, (o 7| is a F-Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,

2. Wo =0, P-as.,

3. Forall 0 <s <t < T, the random variable W; — W is independent of Fs.
4. Forall0 <s<t<T,thelaw of W, — W, is a N(0, (t — s)).
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Lévy processes

Definition 30

A stochastic process L = {Lt}te[o,r] is a Lévy process if it satisfies:

1.
2.

Lo =0, P-as.,
L has independent increments,

L has stationary increments, i.e., for all 0 < s < t, the law of L — Ls
coincides with the law of L;_s.

. X is stochastically continuous, i.e.,

lims ¢ P(|Le — Ls| > €) = 0,Ve > 0,t € [0, T].

That L is stochastically continuous does not imply that L has continuous

sample paths.
A Brownian motion is a particular case of Lévy process.

The class of Lévy processes, in particular exponential Lévy processes, is a
natural class of processes to consider for modeling stock prices.
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Brownian motion with drift and geometric Brownian motion

Definition 31
A stochastic process Y = {Yi},(o 71 is @ Brownian motion with drift 4 and
volatility o if it can be written as

Y =pt+oW,, tel0,T],
where W is a standard Brownian motion.

Definition 32
A stochastic process S = {St},o 71 is @ geometric Brownian motion (or
exponential Brownian motion) with drift © and volatility o if it can be written

as
St =exp(ut+oW), telo,T],

where W is a standard Brownian motion.

e Note that the paths S are continuous and strictly positive by construction.
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Increments of a geometric Brownian motion

e The increments of S are not independent.
e |ts relative increments
Stn - 5tn—1 Stn—1 - Stn—z Stl - Sto
Stoer T S T Sy

are independent and stationary.

0<to<ti < <t <T,

e Equivalently,

St St_l Stl
2 ey = 0<to<ti<- - <ta <T
Stn7135tn727 ’Sto’ > lo 1 n > 5

and

S
log (5?" ) log (5?1> o 02 (gZI) ;o 0t <t < <t ST,
n—1 n—2 0

are also independent and stationary.

e Moreover, the law of S;/S;,0 < s < t < T is lognormal with parameters
p(t —s) and o°(t — s), that is, the law of log (S:/S:),0<s<t< Tis
N (u(t —s),0%(t —5)).
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The Black-Scholes model

e The time horizon will be the interval [0, T].

e The price of the riskless asset, denoted by B = {B:}c[o, 7] is given by
Bi=e"0<t<T.

e The price of the risky asset, denoted by S = {S;}:co, 7], is modeled by a
continuous time stochastic process satisfying the stochastic differential
equation (SDE)

dSt = ,LLStdt + OStth, t e [07 T] 5
So = S0 > 0.

e One can check that the process

2
St:5()exp(<u—02)t—f—UWt>7 tel0,T],

satisfies the previous SDE.

2
e Therefore, S; is a geometric Brownian motion with drift ;1 — %- and

volatility o.
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The Black-Scholes model

e Consider the discounted price process S* = {5? = ef'tSt}te[o n

e Note that S* satisfies

E |:§:: fs} =E [exp((u—g;—r) (t—s)+o(W:— Wg)‘]—'s}
=E [exp((u— %2 —r) (t—s)+o (W, — Ws))]
= exp ((,u— %2 — r) (t— s)) E [exp (c W;—s)]

2 2
cen((p 5 o0 uma) o

202
where we have used that E [eaz] — et f Z A N ([L,O’z).

e Hence, S* is a martingale under P iff pn=r.

e Does there exist a probability measure @ such that S* is a martingale
under Q7
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The Black-Scholes model

e The answer is given by Girsanov's theorem. Let Q be given by

dQ w—r 1(u—r)2
el _ _ - T
dP exp( o Wr 2 o ’

then the process

— —r
Wt = Lt + Wt,
o
is a Brownian motion under Q.

e Moreover, S™ is a martingale under Q.

Theorem 33 (Risk-neutral pricing principle )
Let X be a contingent claim such that Eq [|X|] < co. Then its arbitrage free
price at time t is given by

Px(t)=e T 9Eq[X|F], 0<t<T.
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Black-Scholes pricing formula

Theorem 34
The prices of a call and a put options are given by

C(t,5:)=S® (i (S, T— 1)) — Ke T 90 (o (S, T — 1)),
P(t,5:) = Ke " "9 (—dy (S:, T — t)) — Se® (—di (S, T — 1)),

where
) = Iog(x/K)O-i-\fg—r 4 %2> 7'7
da (x,T) = * (X/K):\fgr - %2> T’
and

O(x) = /_Oo (2)dz = /; \/% xp (-i) dz.

Note also that di (t,7) = do (t,7) + o/T.
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Black-Scholes pricing formula

Proof of Theorem 34.

We will prove the formula for the call option, X = (S(T) — K)* . By the
risk-neutral valuation principle we know that

Px (t) = e """ IEq [(S(T ~ K)*\ft}

]
o

i**((z—)) = exp (—02 (T—-t)+o (WT — Wt)) ,

and Wy — W, ~ N (0, (T — t)) under Q, we have that

FED o2(T—1) i
F(x):/ o (2) (xe 2 7 T"—Ke’””) dz.

4
2T (X)|X:$*(t) i
x=5*(t)
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Black-Scholes pricing formula

Proof of Theorem 34.
Note that

o2(T—t)
xem 7 VTR ke T >0 s 2> —dh (x, T — 1)

Therefore,
+o00o 2
o2(T—1t)
r(x)= / o (2) <xe2+c‘/ﬁz — Ke'(Tt)> dz
—dp(x, T—t)
T _2T=0
= o (z)e 2 dz
—dp(x, T—t)
+oo
— Ke "T=9 / ¢ (z) dz
—dy(x, T—t)
=h— L.
Using that
oZ(T—t)
o (2) e~ Tz tovT-tz _ 10) (z — a\/ﬁ) ,
and

d(x, T—t)=0VT —t+do(x,T —t), 43/53



Black-Scholes pricing formula

Proof of Theorem 34.
we get

+oo
Ilzx/ ¢(z—0oVT —1t)dz

da(x, T—t)

:x/m 6 (2) dz

(oV/T=t+da(x, T—1))
=x(1-®(-di(x, T —1)).

On the other hand,
h=Ke"""9(1—d(—d(x, T —t))).
The result follows from the following well known property of ®

d(z2)=1-d(—2), zeR.
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The Greeks or sensitivity parameters

e Note that the price of a call option C(t,S;) actually depends on other variables
C(t,S:) = C(t, S ry0, K).

e The derivatives with respect to these variables/parameters are known as the Greeks

and are relevant for risk-management purposes.
e Here, there is a list of the most important:

e Delta: ac
A="T2(t,S)=d(dh (S, T —t)).
(6.5 = ®(dh (S0, T~ 1))
e Gamma:
_PC O (di (S, T 1) _ $(di (5, T — 1)
T 082 o5VT -t  oS/T—t¢t
e Theta:
ac 05:® (ch (Se, T — 1)) e
=== 2T A0 T Ke (T 00 (dy (Se, T — t
ot T & e Calforr=2)
05:0 (di (Se, T — £)) S
= —— 7 rKe " S (dr (S, T — t)).
S rie (e (S, T = 1)
e Rho: BE
p="5= K(T —t)e "T=9 (dy (5:, T — 1))
r
e Vega:
a—c=St\/T—tcb’(dl(St,T—t))=St\/T—th(d1(S[,T—t))4

oo
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Convergence of the CRR pricing formula
to the Black-Scholes pricing formula




Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e We will consider a family of CRR market models indexed by n € N.

e Partition the interval [0, T) into [(j — 1) L,jL), j=1...,n.

e S, (j) will denote the stock price at time jL in the nth binomial model.

e Similarly B, (j) represents the bank account at time j L, in the nth
binomial model.

o Let r, = r% be the interest rate, where r > 0 is the interest rate with
continuous compounding, i.e.,

lim (14r)" =¢e".
n—oo

o Let a, = a\/? where o is interpreted as the instantaneous volatility.
e Set up the up and down factors by
u, =€ (1+r),
dh=e"(1+r).
e For n sufficiently large d, < 1. Moreover, note that u, > 1+ r, and that

dn < 1+ r, for all n and, by Theorem 3, there exists a unique martingale
measure in th nth binomial model for all n.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e The martingale probability measure parameter in the nth model is

_ltnody_ loen  mogmio(d) 11
" —d, _ea"—e*a"_2an+1a2+0(aﬁ)_2 4™ v

where o () with § > 0 means lim; o 22 = 0.

o Let {X,(j)}_; _, bethe Bernoullli r.v. underlying the nth market model.

.....

Note that Q, ( ,,( j))=1) = gn and
S.(j) = S(0) un)(n(l)Jr'"Jan(j)d{;*(Xn(l)Jr''-Jan(J'))7 j=1,..,n

e The value at time zero of a put option with strike K in the nth binomial
market is given by

.
PR (0) = (1+ ) "Eq, [(K = S (n))'] = Eq, K(HK) —o¢ ) ] |

where

di=%n0)
Vip = ZYn(J) Z|°g< 1+r) )
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e For n fixed the random variable Y, (1), ..., Y, (n) are i.i.d. with
Eo, [Yn ()] Io( )+(1— )lo ( i )
QLTnU)I = gnlog i qn) 108 T

= (; = %an + o(a,,)) an + (% + %a,, + O(Qn)) (—an)

=2 +o(d),
Eq, [Y2()] = &+ 0(a),

Eo, [[Ya()|"=0(a7) m>3.

Theorem 35 (Lévy’s continuity theorem)

A sequence { Yy}, of r.v, possibly defined on different probability spaces
(2, Fn, @Qn), converges in distribution to Y, defined on a probability space
(Q, F, Q), if and only if the sequence of corresponding characteristic
functions {tpyn = Eg, [e’ey"] }n>1 converges pointwise to the characteristic
function oy (0) = Eq [ ] of Y.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e Let Y be a random variable defined on some probability space (22, F, Q)
with law N (—%, o? T). Its characteristic function is

oy (0) = exp <—H9T 62UT> .

e As Y, (j),..., Yn(n) are i.i.d. we have that

©y, (9) I@Yn HE /HY,, = Eq, [e,'@yn(l)} n

(1+ i0Eq, [Yn ()] — fEQn [Y2 ()] +o (ai)>

i0+6%\ , o
:(1—( > >an+o(an))
- (1- () T woum)',

which converges to ¢y (0) as n tends to infinity.

2
e We can conclude that Y, converges in distribution to a \/ (—UTT,O'Q T)
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e A sequence { Y}, -, of random variables, defined on (Q2n, s, @n),
converges in distribution to Y, defined on (2, F, Q), if and only if

Ep, [g(Yn)] — Er[g(Y)], (4)

when n — 400, for all g€ Gy (R).
e Therefore, since we know that {Y,,}n21 converge in law to Y, by applying
(4) with g (x) = (Ke™™ — 5(0) )", we have

lim Eq, [(K T —5(0)e™) }

n——+o0o
+oo _2 2 +
e 2 —T o°T
= —— (Ke " —S0)exp | —— +0VTz dz
Ceo V2w < 0) p( 2 )>
- PP(O)7
where we have used that Y ~ N( ,O T) if and only if
Y = 2L 4 o/TZ with Z ~ N (0,1).
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e Recall that

PL.. (0) = Eq, K(K _5(0) eYn> } .

1+r)"

e One can check that

Piu (0) ~Eo, |(Ke™ =5 (0)e")]

<K|@Q+rm)"—eT,

and, therefore, Pg,; (0) and Eq, {(Ke_’T - 5(0) eY")+] converge to the
same limit as n tends to infinity.
e Then, we can conclude that

lim_PPu (0) = lim Eq, |(Ke™ S (0)e")’]

n—+oo n—+o00
= Ppus (0).
e |t is easy to check that
Prut (0) = Ke™ " & (=2 (5(0), T)) = S(0) & (=i (5(0), 7)),
where @ is the cumulative normal distribution and d; and d> are the same
functions defined in Theorem 34.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

e By using the put-call parity relationship (on the binomial market and on
the Black-Scholes market) one gets that
lim Play (0) = lim (PBu (0)+ S(0) = (1+r)""K)
n—+o0

n—+o00

= Pput (0) + S(O) — e_rTK

= Pcan (0),
where
Pean (0) = (1+ ) "Eq, [(S(n) — K)']
ve K\
:IE,Q7 |:(S(O)e W) :|7
and

Pcan (0) = S(0)® (i (S(0), T)) — Ke~ " (dr (5(0), T))

e One can modify the previous arguments to provide the formulas for
Pcan (t) and Ppyut (t)
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

Theorem 36
Let g € C» (R) and let X = g (S(T)) be a contingent claim in the

Black-Scholes model. Then the price process of X is given by
Px (t) = lim Px(t), 0<t<T,

t—+oo

where Py (t),n > 1 are the price processes of X in the corresponding CRR
models.

e There exist similar proofs of the previous results using the normal
approximation to the binomial law, based on the central limit theorem.
e However, note that here we have a triangular array of random variables

Yo ()}jma,...,

version of the central limit theorem.

,»n > 1. Hence, the result does not follow from the basic

e Moreover, the asymptotic distribution of Y, need not be Gaussian if we
choose suitably the parameters of the CRR model.

ct/n ¢ < r we have that Y,

converges in law to a Poisson random variable.

e For instance, if we set u, = v and d, = e

e This lead to consider the exponential of more general Lévy process as

underlying price process for the stock. SRyeE
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