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The Cox-Ross-Rubinstein Model



Introduction

• The Cox-Ross-Rubinstein market model (CRR model), also known as the
binomial model, is an example of a multi-period market model.

• At each point in time, the stock price is assumed to either go ‘up’ by a
fixed factor u or go ‘down’ by a fixed factor d .

S(t + 1) = S(t)u

S(t)

S(t + 1) = S(t)d

p

1− p

• Only four parameters are needed to specify the binomial asset pricing
model: u > 1 > d > 0, r > −1 and S (0) > 0.

• The real-world probability of an ‘up’ movement is assumed to be the same
0 < p < 1 for each period and is assumed to be independent of all
previous stock price movements.
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The Bernoulli process

Definition 1
A stochastic process X = {X(t)})t∈{1,...,T} defined on some probability space
(Ω,F ,P) is said to be a (truncated) Bernoulli process with parameter
0 < p < 1 (and time horizon T ) if the random variables
X (1) ,X (2) , ...,X (T ) are independent and have the following common
probability distribution

P (X (t) = 1) = 1− P (X (t) = 0) = p, t ∈ N.

• We can think of a Bernoulli process as the random experiment of flipping
sequentially T coins.

• The sample space Ω is the set of vectors of zero’s and one’s of length T .
Obviously, #Ω = 2T .

• X (t, ω) takes the value 1 or 0 as ωt , the t-th component of ω ∈ Ω, is 1 or
0, that is, X (t, ω) = ωt .
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The Bernoulli process

• FX
t is the algebra corresponding to the observation of the first t coin flips.

• FX
t = a (πt) where πt is a partition with 2t elements, one for each possible

sequence of t coin flips.
• The probability measure P is given by P (ω) = pn (1− p)T−n, where ω is

any elementary outcome corresponding to n “heads” and T − n ”tails”.
• Setting this probability measure on Ω is equivalent to say that the random

variables X (1) , ...,X (T ) are independent and identically distributed.

Example
Consider T = 3. Let

A0 = {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)} ,
A1 = {(1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)} ,

A0,0 = {(0, 0, 0) , (0, 0, 1)} , A0,1 = {(0, 1, 0) , (0, 1, 1)} ,
A1,0 = {(1, 0, 0) , (1, 0, 1)} , A1,1 = {(1, 1, 0) , (1, 1, 1)} .

We have that
π0 = {Ω} ,π1 = {A0,A1} , π2 = {A0,0,A0,1,A1,0,A1,1} ,π3 = {{ω}}ω∈Ω and
Ft = a (πt),t = 0, ..., 3. In particular, F3 = P (Ω). 5/53



The Bernoulli counting process

Definition 2
The Bernoulli counting process N = {N(t)} t∈{0,...,T} is defined in terms of
the Bernoulli process X by setting N (0) = 0 and

N (t, ω) = X (1, ω) + · · ·+ X (t, ω) , t ∈ {1, ...,T} , ω ∈ Ω.

• The Bernoulli counting process is an example of additive random walk.
• The random variable N (t) should be thought as the number of heads in

the first t coin flips.
• Since E [X (t)] = p, Var [X (t)] = p (1− p) and the random variables

X (t) are independent, we have

E [N (t)] = tp, Var [N (t)] = tp (1− p) .

• Moreover, for all t ∈ {1, ...,T} one has

P (N (t) = n) =
(

t
n

)
pn (1− p)t−n , n = 0, ..., t,

that is, N (t) ∼ Binomial (t, p).
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The CRR market model

• The bank account process is given by B =
{

B (t) = (1 + r)t}
t=0,...,T

.
• The binomial security price model features 4 parameters: p, d , u and

S (0) , where 0 < p < 1,0 < d < 1 < u and S (0) > 0.
• The time t price of the security is given by

S (t) = S (0) uN(t)d t−N(t), t = 1, ...,T .

• The underlying Bernoulli process X governs the up and down movements
of the stock. The stock price moves up at time t if X(t, ω) = 1 and
moves down if X(t, ω) = 0.

• The Bernoulli counting process N counts the up movements. Before and
including time t, the stock price moves up N(t) times and down t − N (t)
times.

• The dynamics of the stock price can be seen as an example of a
multiplicative or geometric random walk.
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The CRR market model

• The price process has the following probability distribution

P
(

S (t) = S (0) und t−n) =
(

t
n

)
pn (1− p)t−n , n = 0, ..., t.

• Lattice representation

S(3) = S(0)u3

S(2) = S(0)u2

S(1) = S(0)u S(3) = S(0)u2d

S(0) S(2) = S(0)ud

S(1) = S(0)d S(3) = S(0)ud2

S(2) = S(0)d2

S(3) = S(0)d3

p

1− p

p

1− p
p

1− p

p

1− p
p

1− p
p

1− p
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The CRR market model

• The event
{

S (t) = S (0) und t−n} occurs if and only if exactly n out of
the first t moves are up. The order of these t moves does not matter.

• At time t, there are 2t possible sample paths of length t.
• At time t, the price process S (t) can only take one of t + 1 possible values.
• This reduction, from exponential to linear in time, in the number of

relevant nodes in the lattice is crucial in numerical implementations.

Example
Consider T = 2. Let

Ω = {(d , d) , (d , u) , (u, d) , (u, u)}
Ad = {(d , d) , (d , u)} , Au = {(u, d) , (u, u)} .

We have that
π0 = {Ω} ,π1 = {Ad ,Au} ,π2 = {{(d , d)} , {(d , u)} , {(u, d)} , {(u, u)}} , and
Ft = a (πt),t = 0, ..., 3. Note that

{S (2) = S (0) ud} = {(d , u) , (u, d)} /∈ π2.

Hence, the lattice representation is NOT the information tree of the model.
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Arbitrage and completeness in the CRR model

Theorem 3

There exists a unique martingale measure in the CRR market model if and
only if

d < 1 + r < u,

and is given by
Q (ω) = qn (1− q)T−n ,

where ω is any elementary outcome corresponding to n up movements and
T − n down movement of the stock and

q = 1 + r − d
u − d .

Corollary 4
If d < 1 + r < u, then the CRR model is arbitrage free and complete.
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Arbitrage and completeness in the CRR model

Lemma 5

Let Z be a r.v. defined on some prob. space (Ω,F ,P), with
P (Z = a) + P (Z = b) = 1 for a, b ∈ R. Let G ⊂ F be an algebra on Ω. If
E [ Z | G] is constant then Z is independent of G. (Note that the constant
must be equal to E [Z ]).

Proof of Lemma 5.
Let A = {Z = a} and Ac = {Z = b}. Then for any B ∈ G

E [Z1B] = E [(a1A + b1Ac ) 1B] = aP (A ∩ B) + bP (Ac ∩ B) ,

and

E [E [Z ] 1B] = E [(aP (A) + bP (B)) 1B] = aP (A) P (B) + bP (Ac ) P (B) .

By the definition of cond. expect. we have that E [Z1B] = E [E [Z ] 1B]. Using
that P (Ac ) = 1− P (A) and P (Ac ∩ B) = P (B)− P (A ∩ B), we get that
P (A ∩ B) = P (A) P (B) and P (Ac ∩ B) = P (Ac ) P (B) , which yields that
a (Z) is independent of G.
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Arbitrage and completeness in the CRR model

Proof of Theorem 3 .
Note that S∗ (t) = S (t) (1 + r)−t ,t = 0, ...T . Moreover

S (t + 1)
S (t) = S (0) uN(t+1)d t+1−N(t+1)

S (0) uN(t)d t−N(t) = uN(t+1)−N(t)d1−(N(t+1)−N(t))

= uX(t+1)d1−X(t+1), t = 0, ...,T − 1.

Let Q be another probability measure on Ω.

We impose the martingale condition under Q

EQ [ S∗ (t + 1)| Ft ] = S∗ (t)⇔ EQ
[

uX(t+1)d1−X(t+1)∣∣Ft
]

= 1 + r .

This gives

(1 + r) = EQ
[

uX(t+1)d1−X(t+1)∣∣Ft
]

= uQ ( X (t + 1) = 1| Ft) + dQ ( X (t + 1) = 0| Ft) .

In addition,

1 = Q ( X (t + 1) = 1| Ft) + Q ( X (t + 1) = 0| Ft) .
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3 .
Solving the previous equations we get the unique solution

Q ( X (t + 1) = 1| Ft) = 1 + r − d
u − d = q,

Q ( X (t + 1) = 0| Ft) = u − (1 + r)
u − d = 1− q.

Note that the r.v. uX(t+1)d1−X(t+1) satisfies the hypothesis of Lemma 5 and,
therefore, uX(t+1)d1−X(t+1) is independent (under Q) of Ft .

This means that

(1 + r) = EQ
[

uX(t+1)d1−X(t+1)∣∣Ft
]

= EQ
[
uX(t+1)d1−X(t+1)]

= uQ (X (t + 1) = 1) + dQ (X (t + 1) = 0) ,

and we get that

Q (X (t + 1) = 1) = Q ( X (t + 1) = 1| Ft) ,
Q (X (t + 1) = 0) = Q ( X (t + 1) = 0| Ft) . 13/53



Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
As the previous unconditional probabilities does not depend on t we obtain
that the random variables X (1) , ...X (T ) are identically distributed under Q,
i.e. X (i) = Bernoulli (q) . Moreover, for a ∈ {0, 1}T we have that

Q

(
T⋂

t=1

{X (t) = at}

)
= EQ

[
T∏

t=1

1{X(t)=at}

]

= EQ

[
T−1∏
t=1

1{X(t)=at}EQ
[

1{X(T )=aT }
∣∣FT−1

]]

= EQ

[
T−1∏
t=1

1{X(t)=at}Q ( X (T ) = aT | FT−1)

]

= EQ

[
T−1∏
t=1

1{X(t)=at}

]
Q (X (T ) = aT )

= Q

(
T−1⋂
t=1

{X (t) = at}

)
Q (X (T ) = aT ) .
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
Iterating this procedure we get that

Q

(
T⋂

t=1

{X (t) = at}

)
=

T∏
t=1

Q (X (t) = at) ,

and we can conclude that X (1) , ...X (T ) are also independent under Q.

Therefore, under Q, we obtain the same probabilistic model as under P but
with p = q, that is,

Q (ω) = qn (1− q)T−n , n =
T∑

t=1

ωt .

The conditions for q are equivalent to Q (ω) > 0, which yields that Q is the
unique martingale measure.
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Pricing European options in the CRR model

• By the general theory developed for multiperiod markets we have the
following result.

Proposition 6 (Risk Neutral Pricing Principle)

The arbitrage free price process of a European contingent claim X in the CRR
model is given by

PX (t) = B (t)EQ

[
X

B (T )

∣∣∣∣Ft

]
= (1 + r)−(T−t) EQ [ X | Ft ] , t = 0, ...,T ,

where Q is the unique martingale measure characterized by q = 1+r−d
u−d .
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Pricing European options in the CRR model

• If the contingent claim X is path-independent, X = g (S (T )), we have a
more precise formula.

• Let Fp,g (t, x) the function defined by

Fp,g (t, x) =
t∑

n=0

(
t
n

)
pn (1− p)t−n g

(
xund t−n)

Proposition 7

Consider a European contingent claim X given by X = g (S (T )). Then, the
arbitrage free price process PX (t) is given by

PX (t) = (1 + r)−(T−t) Fq,g (T − t, S (t)) , t = 0, ...,T ,

where q = 1+r−d
u−d .
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Pricing European options in the CRR model

Proof of Proposition 7.
Recall that

S (t) = S (0) uN(t)d t−N(t) = S (0)
t∏

j=1

uXj d1−Xj , t = 1, ...,T .

By Proposition 6 we have that

(1 + r)(T−t) PX (t) = EQ [ g (S (T ))| Ft ] = EQ

[
g

(
S (t)

T∏
j=t+1

uXj d1−Xj

)∣∣∣∣∣Ft

]

= EQ

[
g

(
S (t)

T∏
j=t+1

uXj d1−Xj

)]
= Fq,g (T − t,S (t)) ,

where in the last equality we have used that S (t) is Ft -measurable and
Xt+1, ...,X T are independent of Ft .

Note that if X is G-measurable and Y is independent of G then

E [ f (X ,Y )| G] = E [f (x ,Y )]|x=X .
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Pricing European options in the CRR model

Corollary 8

Consider a European call option with expiry time T and strike price K writen on the
stock S. The arbitrage free price PC (t) of the call option is given by

PC (t) = S (t)
T−t∑
n=n̂

(
T − t

n

)
q̂n (1− q̂)T−t−n

− K
(1 + r)T−t

T−t∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n ,

where
n̂ = inf

{
n ∈ N : n > log

(
K/(S (t) dT−t)

)
/ log (u/d)

}
and

q̂ = qu
1 + r ∈ (0, 1) .

• This formula only involves two sums of T − t − n̂ + 1 binomial probabilities.
• Using the put-call parity relationship one can get a similar formula for European

puts.
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Pricing European options in the CRR model

Proof of Corollary 8.
First note that

S (t) undT−t−n − K > 0⇐⇒ n > log
(

K/(S (t) dT−t)
)
/ log (u/d) .

Let g (x) = (x − K)+. If n̂ > T − t then Fq,g (T − t, S (t)) = 0. If
n̂ ≤ T − t, then the formula in Proposition 7 yields

(1 + r)T−t PC (t)
= Fq,g (T − t, S (t))

=
T−t∑
n=0

(
T − t

n

)
qn (1− q)T−t−n (S (t) undT−t−n − K

)+

=
n̂∑

n=0

(
T − t

n

)
qn (1− q)T−t−n 0

+
T−t∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n (S (t) undT−t−n − K

)
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Pricing European options in the CRR model

Proof of Corollary 8.

=
T−t∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n S (t) undT−t−n

−
T−t∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n K

= S (t)
T−t∑
n=n̂

(
T − t

n

)
(qu)n ((1− q) d)T−t−n

− K
T−t∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n .

The result follows by defining q̂ = qu
1+r and noting that

1− q̂ = 1 + r − qu
1 + r = qu + (1− q)d − qu

1 + r = (1− q)d
1 + r ,

where we have used qu + (1− q)d = EQ
[
uX(t+1)d1−X(t+1)] = 1 + r .
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Hedging European options in the CRR model

• Let X be a contingent claim and PX = {PX (t)}t=0,...,T be its price
process (assumed to be computed/known).

• As the CRR model is complete we can find a self-financing trading
strategy H = {H (t)}t=1,...,T =

{
(H0 (t) ,H1 (t))T}

t=1,...,T
such that

PX (t) = V (t) = H0 (t) (1 + r)t + H1 (t) S (t) , t = 1, ...,T , (1)
PX (0) = V (0) = H0 (1) + H1 (1) S (0) .

• Given t = 1, ...,T we can use the information up to (and including) t − 1
to ensure that H is predictable.

• Hence, at time t, we know S (t − 1) but we only know that

S (t) = S (t − 1) uX(t)d1−X(t).

• Using that uX(t)d1−X(t) ∈ {u, d} we can solve equation (1) uniquely for
H0 (t) and H1 (t).

• Making the dependence of PX explicit on S we have the equations

PX (t, S (t − 1) u) = H0 (t) (1 + r)t + H1 (t) S (t − 1) u,
PX (t, S (t − 1) d) = H0 (t) (1 + r)t + H1 (t) S (t − 1) d .
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Hedging European options in the CRR model

• The solution for these equations is

H0 (t) = uPX (t,S (t − 1) d)− dPX (t, S (t − 1) u)
(1 + r)t (u − d)

,

H1 (t) = PX (t, S (t − 1) u)− PX (t, S (t − 1) d)
S (t − 1) (u − d) .

• The previous formulas only make use of the lattice representation of the
model and not the information tree.

Proposition 9
Consider a European contingent claim X = g (S (T )). Then, the replicating
trading strategy H = {H (t)}t=1,...,T =

{
(H0 (t) ,H1 (t))T}

t=1,...,T
is given by

H0 (t) = uFq,g (T − t, S (t − 1) d)− dFq,g (T − t, S (t − 1) u)
(1 + r)T (u − d)

,

H1 (t) = (1 + r)T−t {Fq,g (T − t, S (t − 1) u)− Fq,g (T − t, S (t − 1) d)}
S (t − 1) (u − d) .
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Hedging European options in the CRR model

• Let

C (τ, x) =
τ∑

n=0

(
τ

n

)
qn (1− q)τ−n (xundτ−n − K

)+
.

Then, PC (t) = (1 + r)−(T−t) C (T − t, S (t)) .

Proposition 10
The replicating trading strategy
H = {H (t)}t=1,...,T =

{
(H0 (t) ,H1 (t))T}

t=1,...,T
for a European call option

with strike K and expiry time T is given by

H0 (t) = uC (T − t, S (t − 1) d)− dC (T − t, S (t − 1) u)
(1 + r)T (u − d)

, .

H1 (t) = (1 + r)T−t {C (T − t, S (t − 1) u)− C (T − t, S (t − 1) d)}
S (t − 1) (u − d) .

• As C (τ, x) is increasing in x we have that H1 (t) ≥ 0, that is, the
replicating strategy does not involve short-selling.

• This property extends to any European contingent claim with increasing
payoff g . 24/53



Hedging European options in the CRR model

• We can also use the value of the contingent claim X and backward
induction to find its price process PX and its replicating strategy H
simultaneously.

• We have to choose a replicating strategy H (T ) based on the information
available at time T − 1.

• This gives raise to two equations

PX (T , S (T − 1) u) = H0 (T ) (1 + r)T + H1 (T ) S (T − 1) u, (2)
PX (T , S (T − 1) d) = H0 (T ) (1 + r)T + H1 (T ) S (T − 1) d . (3)

• The solution is

H0 (T ) = uPX (T , S (T − 1) d)− dPX (T , S (T − 1) u)
(1 + r)T (u − d)

,

H1 (T ) = PX (T ,S (T − 1) u)− PX (T , S (T − 1) d)
S (T − 1) (u − d) .

• Next, using that H is self-financing, we can compute

PX (T − 1,S (T − 1)) = H0 (T ) (1 + r)T−1 + H1 (T ) S (T − 1) ,

and repeat the procedure (changing T to T − 1 in equations (2) and (3) )
to compute H (T − 1) . 25/53



The Black-Scholes model



Introduction

• The Black-Scholes model is an example of continuous time model for the
risky asset prices.

Let us summarize the underlying hypothesis of the Black-Scholes model on the
prices of assets.

• The assets are traded continuously and their prices have continuous paths.
• The risk-free interest rate r ≥ 0 is constant.
• The logreturns of the risky asset St are normally distributed:

log
( St

Su

)
∼ N

((
µ− σ2

2

)
(t − u) , σ2 (t − u)

)
.

• Moreover, the logreturns are independent from the past and are stationary.
• The model needs three parameters µ ∈ R,σ > 0 and S0 > 0.
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Probability basics

• Let Ω be a set with possibly infinite cardinality.

Definition 11
A σ-algebra F on Ω is a familly of subsets of Ω satisfying

1. Ω ∈ F .
2. If A ∈ F then Ac = Ω \ A∈ F .
3. If {An}n≥1 ⊆ F then

⋃
n≥1 An∈ F .

Definition 12
A pair (Ω,F), where Ω is a set and F is a σ-algebra on Ω, is called a
measurable space.

Definition 13
Given G a class of subsets of Ω we define σ(G) the σ-algebra generated by G
as the smallest σ-algebra containing G, which coincides with the intersection
of all σ-algebras containing G.

• In R, we can consider the Borel σ-algebra B (R), the σ-algebra generated
by the open sets. 27/53



Probability basics

Definition 14
A probability measure on a measurable space (Ω,F) is a set function
P : F → [0, 1] satisfying P(Ω) = 1 and, if {An}n≥1 ⊆ F are pairwise disjoint
then

P

(⋃
n≥1

An

)
=
∑
n≥1

P (An) .

Definition 15
A triple (Ω,F ,P) where F is a σ-algebra on Ω and P is a probability measure
on (Ω,F) is called a probability space.

Definition 16
Let (E1, E1) and (E2, E2) two measurable spaces. A function X : E1 → E2 is
said to be (E1, E2)-measurable if X−1 (A) ∈ E1 for all A ∈ E2.

Definition 17
Let (Ω,F ,P) be a probability space. A function X : Ω→ R is a random
variable if it is (F ,B (R))-measurable (usually one only write F-measurable).
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Probability basics

Definition 18
The σ-algebra generated by a random variable X is the σ-algebra generated
by the sets of the form

{
X−1 (A) : A ∈ B (R)

}
.

Definition 19
The law of a random variable X , denoted by L(X), is the image measure PX

on (R,B(R)), that is,

PX (B) = P(X−1B), B ∈ B(R).

Definition 20
Let g : R→ R be a Borel measurable function. Then the expectation of g(X)
is defined to be

E [g(X)] =
∫

Ω
g ◦ XdP =

∫
R

gdPX .

If PX � λ, with dPX
dλ = fX then

E [g(X)] =
∫
R

gfX dλ =
∫
R

g(x)fX (x)dx .
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Probability basics

Definition 21
Let X be a random variable on a probability space (Ω,F ,P) such that
E [|X |] <∞ and G ⊂ F be a σ-algebra. The conditional expectation of X
given G, denoted by E [ X | G] is the unique random variable Z satisfying:

1. Z is G-measurable.
2. For all B ∈ G, we have E [X1B] = E [Z1B] .

• As Ω does not need to be finite, the structure of the σ-algebras on Ω is
not as easy as in the finite case. In particular, they are not always
generated by partitions.

• This makes computing E [ X | G] much more difficult in general.
• However, E [ X | G] satisfies the same properties as when Ω was finite:

tower law, total expectation, role of the independence,etc...
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Stochastic processes

Definition 22
A (real-valued) stochastic process X indexed by [0,T ] is a family of random
variables X = {Xt}t∈[0,T ] defined on the same probability space (Ω,F ,P) .

• We can think of a stochastic process as a function
X : [0,T ]× Ω −→ R

(t, ω) 7→ Xt(ω)
.

• For every ω ∈ Ω fixed, the process X defines a function
X· (ω) : [0,T ] −→ R

t 7→ Xt(ω)
,

which is called a trajectory or a sample path of the process.
• Hence, we can look at X as a mapping

X : Ω −→ R[0,T ]

ω 7→ X·(ω)
,

where R[0,T ] is the cartesian product of [0,T ] copies of R which is the set
of all functions from [0,T ] to R. That is, we can see X as a mapping from
Ω to a space of functions.
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Stochastic processes

• The canonical construction of a random variable consists on taking X = Id
and (Ω,F ,P) = (R,B (R) ,PX ).

• For stochastic processes Y = {Yt}t∈[0,T ] this procedure is far from trivial.
One can consider the measurable space

(
R[0,T ],B (R)[0,T ]) but to find PY

one needs to do it consistently with the family of finite dimensional laws.
(Kolmogorov Extension Theorem)

• Moreover, the space R[0,T ] is too big. One often wants to find a
realization of the process in a nicer subspace as C0 ([0,T ]). (Kolmogorov
Continuity Theorem)

Definition 23
A filtration F = {Ft}t∈[0,T ] is a family of nested σ-algebras, that is, Fs ⊆ Ft

if s < t.

Definition 24
A stochastic process X = {Xt}t∈[0,T ] is F-adapted if Xt is Ft -measurable.

32/53



Stochastic processes

Definition 25
A stochastic process X = {Xt}t∈[0,T ] is a F-martingale if it is F-adapted,
E [|Xt |] <∞,t ∈ [0,T ] and

E [ Xt | Fs ] = Xs , 0 ≤ s < t ≤ T .

Definition 26
A stochastic process X = {Xt}t∈[0,T ] has independent increments if Xt −Xs is
independent of Xr − Xu, for all u ≤ r ≤ s ≤ t.

Definition 27
A stochastic process X = {Xt}t∈[0,T ] has stationary increments if for all
s ≤ t ∈ R+ we have that

L (Xt − Xs) = L(Xt−s).
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Brownian motion

Definition 28
A stochastic process W = {Wt}t∈[0,T ] is a (standard) Brownian motion if it
satisfies

1. W has continuous sample paths P-a.s.,
2. W0 = 0,P-a.s.,
3. W has independent increments,
4. For all 0 ≤ s < t ≤ T , the law of Wt −Ws is a N (0, (t − s)).

Definition 29
A stochastic process W = {Wt}t∈[0,T ] is a F-Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,
2. W0 = 0,P-a.s.,
3. For all 0 ≤ s < t ≤ T , the random variable Wt −Ws is independent of Fs .

4. For all 0 ≤ s < t ≤ T , the law of Wt −Ws is a N (0, (t − s)).
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Lévy processes

Definition 30
A stochastic process L = {Lt}t∈[0,T ] is a Lévy process if it satisfies:

1. L0 = 0,P-a.s.,
2. L has independent increments,
3. L has stationary increments, i.e., for all 0 ≤ s < t, the law of Lt − Ls

coincides with the law of Lt−s .

4. X is stochastically continuous, i.e.,
lims→t P(|Lt − Ls | > ε) = 0, ∀ε > 0, t ∈ [0,T ] .

• That L is stochastically continuous does not imply that L has continuous
sample paths.

• A Brownian motion is a particular case of Lévy process.
• The class of Lévy processes, in particular exponential Lévy processes, is a

natural class of processes to consider for modeling stock prices.
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Brownian motion with drift and geometric Brownian motion

Definition 31
A stochastic process Y = {Yt}t∈[0,T ] is a Brownian motion with drift µ and
volatility σ if it can be written as

Yt = µt + σWt , t ∈ [0,T ] ,

where W is a standard Brownian motion.

Definition 32
A stochastic process S = {St}t∈[0,T ] is a geometric Brownian motion (or
exponential Brownian motion) with drift µ and volatility σ if it can be written
as

St = exp (µt + σWt) , t ∈ [0,T ] ,

where W is a standard Brownian motion.

• Note that the paths S are continuous and strictly positive by construction.
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Increments of a geometric Brownian motion

• The increments of S are not independent.
• Its relative increments

Stn − Stn−1

Stn−1
,

Stn−1 − Stn−2

Stn−2
, ....,

St1 − St0

St0
, 0 ≤ t0 < t1 < · · · < tn ≤ T ,

are independent and stationary.
• Equivalently,

Stn

Stn−1
,

Stn−1

Stn−2
, ....,

St1

St0
, 0 ≤ t0 < t1 < · · · < tn ≤ T ,

and

log
(

Stn

Stn−1

)
, log

(
Stn−1

Stn−2

)
, ...., log

(
St1

St0

)
, 0 ≤ t0 < t1 < · · · < tn ≤ T ,

are also independent and stationary.
• Moreover, the law of St/Ss , 0 ≤ s < t ≤ T is lognormal with parameters
µ(t − s) and σ2(t − s), that is, the law of log (St/Ss) , 0 ≤ s < t ≤ T is
N
(
µ(t − s), σ2(t − s)

)
.
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The Black-Scholes model

• The time horizon will be the interval [0,T ].
• The price of the riskless asset, denoted by B = {Bt}t∈[0,T ], is given by

Bt = ert , 0 ≤ t ≤ T .
• The price of the risky asset, denoted by S = {St}t∈0,T ], is modeled by a

continuous time stochastic process satisfying the stochastic differential
equation (SDE)

dSt = µStdt + σStdWt , t ∈ [0,T ] ,
S0 = S0 > 0.

• One can check that the process

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
, t ∈ [0,T ] ,

satisfies the previous SDE.
• Therefore, St is a geometric Brownian motion with drift µ− σ2

2 and
volatility σ.
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The Black-Scholes model

• Consider the discounted price process S∗ =
{

S∗t = e−rtSt
}

t∈[0,T ]
.

• Note that S∗ satisfies

E
[

S∗t
S∗s

∣∣∣∣Fs

]
= E

[
exp
((

µ− σ2

2 − r
)

(t − s) + σ (Wt −Ws)
)∣∣∣∣Fs

]
= E

[
exp
((

µ− σ2

2 − r
)

(t − s) + σ (Wt −Ws)
)]

= exp
((

µ− σ2

2 − r
)

(t − s)
)
E [exp (σWt−s)]

= exp
((

µ− σ2

2 − r
)

(t − s) + σ2

2 (t − s)
)

= e(µ−r)(t−s),

where we have used that E
[
eθZ] = eθµ+ θ2σ2

2 if Z ∼ N
(
µ, σ2).

• Hence, S∗ is a martingale under P iff µ = r .
• Does there exist a probability measure Q such that S∗ is a martingale

under Q?
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The Black-Scholes model

• The answer is given by Girsanov’s theorem. Let Q be given by

dQ
dP = exp

(
−µ− r

σ
WT −

1
2

(
µ− r
σ

)2
T
)
,

then the process
W̃t = µ− r

σ
t + Wt ,

is a Brownian motion under Q.
• Moreover, S∗ is a martingale under Q.

Theorem 33 (Risk-neutral pricing principle )
Let X be a contingent claim such that EQ [|X |] <∞. Then its arbitrage free
price at time t is given by

PX (t) = e−r(T−t)EQ [ X | Ft ] , 0 ≤ t ≤ T .
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Black-Scholes pricing formula

Theorem 34

The prices of a call and a put options are given by

C (t, St) = StΦ (d1 (St ,T − t))− Ke−r(T−t)Φ (d2 (St ,T − t)) ,

P (t, St) = Ke−r(T−t)Φ (−d2 (St ,T − t))− StΦ (−d1 (St ,T − t)) ,

where

d1 (x , τ) =
log (x/K) +

(
r + σ2

2

)
τ

σ
√
τ

,

d2 (x , τ) =
log (x/K) +

(
r − σ2

2

)
τ

σ
√
τ

,

and
Φ(x) =

∫ x

−∞
φ(z)dz =

∫ x

−∞

1√
2π

exp
(
−z2

2

)
dz.

Note also that d1 (t, τ) = d2 (t, τ) + σ
√
τ .
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Black-Scholes pricing formula

Proof of Theorem 34.
We will prove the formula for the call option, X = (S (T )− K)+ . By the
risk-neutral valuation principle we know that

PX (t) = e−r(T−t)EQ
[

(S (T )− K)+∣∣Ft
]

= EQ

[(
S∗ (T )
S∗ (t) S∗ (t)− e−r(T−t)K

)+∣∣∣∣Ft

]
= EQ

[(
S∗ (T )
S∗ (t) x − e−r(T−t)K

)+]∣∣∣∣
x=S∗(t)

, Γ (x)|x=S∗(t) .

As
S∗ (T )
S∗ (t) = exp

(
−σ

2

2 (T − t) + σ
(

W̃T − W̃t

))
,

and W̃T − W̃t ∼ N (0, (T − t)) under Q, we have that

Γ (x) =
∫ +∞

−∞
φ (z)

(
xe−

σ2(T−t)
2 +σ

√
T−tz − Ke−r(T−t)

)+

dz.
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Black-Scholes pricing formula

Proof of Theorem 34.
Note that

xe−
σ2(T−t)

2 +σ
√

T−tz − Ke−r(T−t) ≥ 0⇐⇒ z ≥ −d2 (x ,T − t) .

Therefore,

Γ (x) =
∫ +∞

−d2(x,T−t)
φ (z)

(
xe−

σ2(T−t)
2 +σ

√
T−tz − Ke−r(T−t)

)
dz

= x
∫ +∞

−d2(x,T−t)
φ (z) e−

σ2(T−t)
2 +σ

√
T−tz dz

− Ke−r(T−t)
∫ +∞

−d2(x,T−t)
φ (z) dz

= I1 − I2.

Using that

φ (z) e−
σ2(T−t)

2 +σ
√

T−tz = φ
(

z − σ
√

T − t
)
,

and
d1 (x ,T − t) = σ

√
T − t + d2 (x ,T − t) , 43/53



Black-Scholes pricing formula

Proof of Theorem 34.
we get

I1 = x
∫ +∞

−d2(x,T−t)
φ
(

z − σ
√

T − t
)

dz

= x
∫ +∞

−(σ√T−t+d2(x,T−t))
φ (z) dz

= x (1− Φ (−d1 (x ,T − t))) .

On the other hand,

I2 = Ke−r(T−t) (1− Φ (−d2 (x ,T − t))) .

The result follows from the following well known property of Φ

Φ (z) = 1− Φ (−z) , z ∈ R.
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The Greeks or sensitivity parameters

• Note that the price of a call option C(t,St) actually depends on other variables

C(t, St) = C(t, St ; r , σ,K).

• The derivatives with respect to these variables/parameters are known as the Greeks
and are relevant for risk-management purposes.

• Here, there is a list of the most important:
• Delta:

∆ =
∂C
∂S

(t, St ) = Φ (d1 (St ,T − t)) .

• Gamma:
Γ =

∂2C
∂S2 =

Φ′ (d1 (St ,T − t))
σSt
√

T − t
=
φ (d1 (St ,T − t))
σSt
√

T − t
• Theta:

Θ =
∂C
∂t

= −
σSt Φ′ (d1 (St ,T − t))

2
√

T − t
− rKe−r(T−t)Φ (d2 (St ,T − t))

= −
σStφ (d1 (St ,T − t))

2
√

T − t
− rKe−r(T−t)Φ (d2 (St ,T − t)) .

• Rho:
ρ =

∂C
∂r

= K(T − t)e−r(T−t)Φ (d2 (St ,T − t)) .

• Vega:
∂C
∂σ

= St
√

T − tΦ′ (d1 (St ,T − t)) = St
√

T − tφ (d1 (St ,T − t)) .
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Convergence of the CRR pricing formula
to the Black-Scholes pricing formula



Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• We will consider a family of CRR market models indexed by n ∈ N.
• Partition the interval [0,T ) into [(j − 1) T

n , j
T
n ), j = 1...., n.

• Sn (j) will denote the stock price at time j T
n in the nth binomial model.

• Similarly Bn (j) represents the bank account at time j T
n , in the nth

binomial model.
• Let rn = r T

n be the interest rate, where r > 0 is the interest rate with
continuous compounding, i.e.,

lim
n→∞

(1 + rn)n = erT .

• Let an = σ
√

T
n , where σ is interpreted as the instantaneous volatility.

• Set up the up and down factors by

un = ean (1 + rn) ,
dn = e−an (1 + rn) .

• For n sufficiently large dn < 1. Moreover, note that un > 1 + rn and that
dn < 1 + rn for all n and, by Theorem 3, there exists a unique martingale
measure in th nth binomial model for all n.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• The martingale probability measure parameter in the nth model is

qn = 1 + rn − dn

un − dn
= 1− e−an

ean − e−an
=

an − 1
2 a2

n + o
(

a2
n
)

2an + 1
3 a3

n + o (a3
n)

= 1
2 −

1
4 an + o (an) ,

where o (δ) with δ > 0 means limδ→0
o(δ)
δ

= 0.
• Let {Xn (j)}j=1,...,n be the Bernoullli r.v. underlying the nth market model.

Note that Qn (Xn (j) = 1) = qn and

Sn (j) = S (0) uXn(1)+···+Xn(j)
n d j−(Xn(1)+···+Xn(j))

n , j = 1, ..., n.

• The value at time zero of a put option with strike K in the nth binomial
market is given by

Pn
Put (0) = (1 + rn)−n EQn

[
(K − S (n))+] = EQn

[(
K

(1 + rn)n − S (0) eYn

)+]
,

where

Yn =
n∑

j=1

Yn (j) =
n∑

j=1

log
(

uXn(j)
n d1−Xn(j)

n

(1 + rn)

)
.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• For n fixed the random variable Yn (1) , ...,Yn (n) are i.i.d. with

EQn [Yn (j)] = qn log
( un

1 + rn

)
+ (1− qn) log

( dn

1 + rn

)
=
(1

2 −
1
4 an + o (an)

)
an +

(1
2 + 1

4 an + o (an)
)

(−an)

= −1
2 a2

n + o
(

a2
n
)
,

EQn

[
Y 2

n (j)
]

= a2
n + o

(
a2

n
)
,

EQn [|Yn (j)|m] = o
(

a2
n
)

m ≥ 3.

Theorem 35 (Lévy’s continuity theorem)
A sequence {Yn}n≥1 of r.v, possibly defined on different probability spaces
(Ωn,Fn,Qn), converges in distribution to Y , defined on a probability space
(Ω,F ,Q), if and only if the sequence of corresponding characteristic
functions

{
ϕYn = EQn

[
e iθYn

]}
n≥1

converges pointwise to the characteristic
function ϕY (θ) = EQ

[
e iθY ] of Y .
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• Let Y be a random variable defined on some probability space (Ω,F ,Q)
with law N

(
−σ

2T
2 , σ2T

)
. Its characteristic function is

ϕY (θ) = exp
(
−iθ σ

2T
2 − θ2 σ

2T
2

)
.

• As Yn (j) , ...,Yn (n) are i.i.d. we have that

ϕYn (θ) = EQn

[
e iθYn

]
=

n∏
j=1

EQn

[
e iθYn(j)] = EQn

[
e iθYn(1)]n

=
(

1 + iθEQn [Yn (j)]− θ2

2 EQn

[
Y 2

n (j)
]

+ o
(

a2
n
))n

=
(

1−
(

iθ + θ2

2

)
a2

n + o
(

a2
n
))n

=
(

1−
(

iθ + θ2

2

)
σ2 T

n + o (1/n)
)n

,

which converges to ϕY (θ) as n tends to infinity.
• We can conclude that Yn converges in distribution to a N

(
−σ

2T
2 , σ2T

)
.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• A sequence {Yn}n≥1 of random variables, defined on (Ωn,Fn,Qn),
converges in distribution to Y , defined on (Ω,F ,Q), if and only if

EPn [g (Yn)] −→ EP [g (Y )] , (4)

when n→ +∞, for all g∈ Cb (R).
• Therefore, since we know that {Yn}n≥1 converge in law to Y , by applying

(4) with g (x) =
(

Ke−rT − S (0) ex)+, we have

lim
n→+∞

EQn

[(
Ke−rT − S (0) eYn

)+
]

=
∫ +∞

−∞

e− z2
2

√
2π

(
Ke−rT − S (0) exp

(
−σ

2T
2 + σ

√
T z
))+

dz

= PP (0) ,

where we have used that Y ∼ N
(
−σ

2T
2 , σ2T

)
if and only if

Y = −σ2T
2 + σ

√
T Z with Z ∼ N (0, 1).
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• Recall that

Pn
Put (0) = EQn

[(
K

(1 + rn)n − S (0) eYn

)+]
.

• One can check that∣∣∣Pn
Put (0)− EQn

[(
Ke−rT − S (0) eYn

)+
]∣∣∣ ≤ K

∣∣(1 + rn)−n − e−rT ∣∣ ,
and, therefore, Pn

Put (0) and EQn

[(
Ke−rT − S (0) eYn

)+
]

converge to the
same limit as n tends to infinity.

• Then, we can conclude that

lim
n→+∞

Pn
Put (0) = lim

n→+∞
EQn

[(
Ke−rT − S (0) eYn

)+
]

= PPut (0) .

• It is easy to check that

PPut (0) = Ke−rT Φ (−d2 (S (0) ,T ))− S (0) Φ (−d1 (S (0) ,T )) ,

where Φ is the cumulative normal distribution and d1 and d2 are the same
functions defined in Theorem 34.
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

• By using the put-call parity relationship (on the binomial market and on
the Black-Scholes market) one gets that

lim
n→+∞

Pn
Call (0) = lim

n→+∞

(
Pn

Put (0) + S (0)− (1 + rn)−n K
)

= PPut (0) + S (0)− e−rT K
= PCall (0) ,

where

Pn
Call (0) = (1 + rn)−n EQn

[
(S (n)− K)+]

= EQn

[(
S (0) eYn − K

(1 + rn)n

)+]
,

and

PCall (0) = S (0) Φ (d1 (S (0) ,T ))− Ke−rT Φ (d2 (S (0) ,T ))

• One can modify the previous arguments to provide the formulas for
PCall (t) and PPut (t).
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Convergence of the CRR pricing formula to the Black-Scholes pricing formula

Theorem 36
Let g ∈ Cb (R) and let X = g (S (T )) be a contingent claim in the
Black-Scholes model. Then the price process of X is given by

PX (t) = lim
t→+∞

Pn
X (t) , 0 ≤ t ≤ T ,

where Pn
X (t),n ≥ 1 are the price processes of X in the corresponding CRR

models.

• There exist similar proofs of the previous results using the normal
approximation to the binomial law, based on the central limit theorem.

• However, note that here we have a triangular array of random variables
{Yn (j)}j=1,...,n ,n ≥ 1. Hence, the result does not follow from the basic
version of the central limit theorem.

• Moreover, the asymptotic distribution of Yn need not be Gaussian if we
choose suitably the parameters of the CRR model.

• For instance, if we set un = u and dn = ect/n,c < r we have that Yn

converges in law to a Poisson random variable.
• This lead to consider the exponential of more general Lévy process as

underlying price process for the stock. 53/53
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