7. Multiperiod Securities Markets

S. Ortiz-Latorre

STK-MAT 3700 An Introduction to Mathematical Finance

Department of Mathematics
University of Oslo

Outline

Model Specifications

Economic Considerations

Risk Neutral Pricing

Complete and Incomplete Markets

Optimal Portfolio Problem

Model Specifications

Model specifications

Definition 1

A multiperiod model of financial markets is specified by the following ingredients:

1. $T+1$ trading dates: $t=0, \ldots, T$.
2. A finite probability space $(\Omega, \mathcal{P}(\Omega), P)$ with $\# \Omega=K$ and $P(\omega)>0, \omega \in \Omega$.
3. A filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0, \ldots, T}$.
4. A bank account process $B=\{B(t)\}_{t=0, \ldots, T}$ with $B(0)=1$ and $B(t, \omega)>0, t \in\{0, \ldots, T\}$ and $\omega \in \Omega$. B is assumed to be an \mathbb{F}-adapted process.
5. N risky asset processes $S_{n}=\left\{S_{n}(t)\right\}_{t=0, \ldots, T}$, where S_{n} is a nonnegative \mathbb{F}-adapted stochastic process for each $n=1, \ldots, N$.

Model specifications

Remark 2

- The filtration \mathbb{F} represents the information available to the traders.
- In this course we will take \mathbb{F} to be equal to $\mathbb{F}^{B, S}$, that is, the filtration generated by the bank account process and the N risky asset processes:

$$
\mathcal{F}_{t}=\mathfrak{a}\left(\left\{B(u), S_{1}(u), \ldots, S_{N}(u)\right\}_{u \leq t}\right), \quad t=0, \ldots, T .
$$

- The bank account process B is nondecreasing, which implies

$$
r(t)=(B(t)-B(t-1)) / B(t-1) \geq 0, \quad t=1, \ldots, T
$$

- When $r(t)=r, t=1, \ldots, T$, then $B(t)=(1+r)^{t}, t=1, \ldots, T$ and

$$
\mathcal{F}_{t}=\mathfrak{a}\left(\left\{S_{1}(u), \ldots, S_{N}(u)\right\}_{u \leq t}\right), \quad t=0, \ldots, T
$$

Model specifications

Definition 3

A trading strategy $H=\left(H_{0}, H_{1}, \ldots, H_{N}\right)^{T}$ is a vector of stochastic processes $H_{n}=\left\{H_{n}(t)\right\}_{t=1, \ldots, T}$, which are predictable with respect to \mathbb{F}. That is,

$$
H_{n}(t) \text { are } \mathcal{F}_{t-1} \text {-measurable, } \quad n=0, \ldots, N, \quad t=1, \ldots, T .
$$

Remark 4

- Note that $H_{n}, n=0, \ldots, N$, being \mathbb{F}-predictable processes, they are also \mathbb{F}-adapted processes.
- $H_{n}(0), n=0, \ldots, N$ is not specified because
- $H_{n}(t), n \geq 1$ is the number of shares of the nth risky asset that the investor own from time $t-1$ to time t.
- $H_{0}(t) B(t-1)$ is the amount of money that the trader invest/borrow in the money market (bank account) from time $t-1$ to time t.
- The trading position $H_{n}(t)$ is decided by the trader at time $t-1$ and then he/she only has the information associated to $\mathcal{F}_{t-1} \Rightarrow H_{n}(t)$ are \mathbb{F}-predictable.

Model specifications

Definition 5

The value process $V=\{V(t)\}_{t=0, \ldots, T}$ is the stochastic process defined by

$$
V(t)=\left\{\begin{array}{lll}
H_{0}(1) B(0)+\sum_{n=1}^{N} H_{n}(1) S_{n}(0) & \text { if } & t=0 \tag{1}\\
H_{0}(t) B(t)+\sum_{n=1}^{N} H_{n}(t) S_{n}(t) & \text { if } & t \geq 1
\end{array}\right.
$$

Definition 6

The gains process $G=\{G(t)\}_{t=1, \ldots, T}$ is the stochastic process defined by

$$
\begin{equation*}
G(t)=\sum_{u=1}^{t} H_{0}(u) \Delta B(u)+\sum_{n=1}^{N} \sum_{u=1}^{t} H_{n}(u) \Delta S_{n}(u), \quad t \geq 1 \tag{2}
\end{equation*}
$$

where $\Delta B(u)=B(u)-B(u-1)$ and $\Delta S_{n}(u)=S_{n}(u)-S_{n}(u-1)$.

Model specifications

Remark 7

- Both V and G are \mathbb{F}-adapted processes.
- $H_{n}(t) \Delta S_{n}(t)$ represents the one-period gain or loss due to owning $H_{n}(t)$ shares of the security n between times $t-1$ and t.
- $G(t)$ represents the cumulative gain or loss up to time t of the portfolio.
- $V(t)$ represents the time- t value of the portfolio before any transactions (changes in H) are made at time t.
- The time-t value of the portfolio just after any time-t transactions are made is

$$
\begin{equation*}
H_{0}(t+1) B(t)+\sum_{n=1}^{N} H_{n}(t+1) S_{n}(t), \quad t \geq 1 \tag{3}
\end{equation*}
$$

- In general these two portfolio values can be different, which means that we add or withdraw some money from the portfolio. If we do not allow this possibility we have a self-financing portfolio.

Model specifications

Definition 8

A trading strategy H is self-financing if

$$
\begin{equation*}
V(t)=H_{0}(t+1) B(t)+\sum_{n=1}^{N} H_{n}(t+1) S_{n}(t), \quad t=1, \ldots, T-1 \tag{4}
\end{equation*}
$$

Remark 9

- It is easy to check that H is self-financing if and only if

$$
\begin{equation*}
V(t)=V(0)+G(t), \quad t=1, \ldots, T . \tag{5}
\end{equation*}
$$

- If no money is added or withdrawn from the portolio between time $t=0$ and $t=T$, then any change in the portfolio's value is due to gain or loss in the investments

Model specifications

Definition 10

- The discounted price process $S_{n}^{*}=\left\{S_{n}^{*}(t)\right\}_{t=0, \ldots, T}$ is defined by

$$
\begin{equation*}
S_{n}^{*}(t)=\frac{S_{n}(t)}{B(t)}, \quad t=0, \ldots, T, \quad n=1, \ldots, N . \tag{6}
\end{equation*}
$$

- The discounted value process $V^{*}=\left\{V^{*}(t)\right\}_{t=0, \ldots, T}$ is defined by

$$
V^{*}(t)=\left\{\begin{array}{lll}
H_{0}(1)+\sum_{n=1}^{N} H_{n}(1) S_{n}^{*}(0) & \text { if } & t=0, \tag{7}\\
H_{0}(t)+\sum_{n=1}^{N} H_{n}(t) S_{n}^{*}(t) & \text { if } & t \geq 1 .
\end{array}\right.
$$

- The discounted gains process $G^{*}=\left\{G^{*}(t)\right\}_{t=1, \ldots, T}$ is defined by

$$
\begin{equation*}
G^{*}(t)=\sum_{n=1}^{N} \sum_{u=1}^{t} H_{n}(u) \Delta S_{n}^{*}(u), \quad t=1, \ldots, T, \tag{8}
\end{equation*}
$$

where $\Delta S_{n}^{*}(u)=S_{n}^{*}(u)-S_{n}^{*}(u-1)$.

- It is easy to check that a trading strategy H is self-financing if and only if

$$
\begin{equation*}
V^{*}(t)=V^{*}(0)+G^{*}(t), \quad t=0, \ldots, T \tag{9}
\end{equation*}
$$

Model specifications

Example 11

$$
\begin{aligned}
N=1, K=4, & B(t)=(1+r)^{t}, r \geq 0, S(0)=5, \\
S(1, \omega) & =\left\{\begin{array}{lll}
8 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
4 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}=8 \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+41_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega),\right. \\
S(2, \omega)= & \left\{\begin{array}{ccc}
9 & \text { if } & \omega=\omega_{1} \\
6 & \text { if } & \omega=\omega_{2}, \omega_{3}=91_{\left\{\omega_{1}\right\}}(\omega)+6 \mathbf{1}_{\left\{\omega_{2}, \omega_{3}\right\}}(\omega) \\
3 & \text { if } & \omega=\omega_{4}
\end{array}\right. \\
& +31_{\left\{\omega_{4}\right\}}(\omega) .
\end{aligned}
$$

We have that $\mathcal{F}_{0}=\mathfrak{a}(S(0))=\mathfrak{a}\left(\pi_{S(0)}\right)=\{\emptyset, \Omega\}$,

$$
\begin{aligned}
\mathcal{F}_{1} & =\mathfrak{a}(S(0), S(1))=\mathfrak{a}\left(\pi_{S(0)} \cap \pi_{S(1)}\right)=\mathfrak{a}\left(\pi_{S(1)}\right) \\
& =\mathfrak{a}\left(\left\{\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}\right)=\left\{\emptyset, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}, \\
\mathcal{F}_{2} & =\mathfrak{a}(S(0), S(1), S(2))=\mathfrak{a}\left(\pi_{S(0)} \cap \pi_{S(1)} \cap \pi_{S(2)}\right) \\
& =\mathfrak{a}\left(\pi_{S(1)} \cap \pi_{S(2)}\right)=\mathfrak{a}\left(\left\{\left\{\omega_{1}\right\},\left\{\omega_{2}\right\},\left\{\omega_{3}\right\},\left\{\omega_{4}\right\}\right\}\right)=\mathcal{P}(\Omega) .
\end{aligned}
$$

Model specifications

Example 11

Let $H=\{H(t)\}_{t=1,2}=\left\{\left(H_{0}(t), H_{1}(t)\right)^{T}\right\}_{t=1,2}$ be a trading strategy. Since H is predictable it has the form

$$
\begin{aligned}
& H_{0}(1, \omega)=H_{0}(1), \quad H_{1}(1, \omega)=H_{1}(1), \\
& H_{0}(2, \omega)=H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega), \\
& H_{1}(2, \omega)=H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
V(0) & =H_{0}(1) B(0)+H_{1}(1) S(0)=H_{0}(1)+5 H_{1}(1), \\
V(1, \omega) & =H_{0}(1) B(1)+H_{1}(1) S(1) \\
& =(1+r) H_{0}+H_{1}(1)\left(8 \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+4 \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega)\right) \\
& =\left\{\begin{array}{ll}
(1+r) H_{0}(1)+8 H_{1}(1) & \text { if } \omega=\omega_{1}, \omega_{2} \\
(1+r) H_{0}(1)+4 H_{1}(1) & \text { if } \omega=\omega_{3}, \omega_{4}
\end{array},\right.
\end{aligned}
$$

Model specifications

Example 11

$$
\begin{aligned}
& V(2, \omega) \\
& =H_{0}(2) B(2)+H_{1}(2) S(2) \\
& =\left(H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega)\right)(1+r)^{2} \\
& +\left(H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega)\right) \\
& \times\left(9 \mathbf{1}_{\left\{\omega_{1}\right\}}(\omega)+6 \mathbf{1}_{\left\{\omega_{2}, \omega_{3}\right\}}(\omega)+3 \mathbf{1}_{\left\{\omega_{4}\right\}}(\omega)\right) \\
& =\left\{\begin{array}{lll}
(1+r)^{2} H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right)+9 H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) & \text { if } \omega=\omega_{1} \\
(1+r)^{2} H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right)+6 H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) & \text { if } & \omega=\omega_{2} \\
(1+r)^{2} H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right)+6 H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) & \text { if } & \omega=\omega_{3} \\
(1+r)^{2} H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right)+3 H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) & \text { if } & \omega=\omega_{4}
\end{array}\right.
\end{aligned}
$$

We can also compute

$$
\begin{aligned}
& \Delta B(1)=1+r-1=r \\
& \Delta B(2)=(1+r)^{2}-(1+r)=r(r+1)
\end{aligned}
$$

Model specifications

Example 11

$$
\begin{aligned}
\Delta S(1, \omega)= & 8 \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+4 \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega)-5=\left\{\begin{array}{ccc}
3 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
-1 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array},\right. \\
\Delta S(2, \omega)= & 9 \mathbf{1}_{\left\{\omega_{1}\right\}}(\omega)+6 \mathbf{1}_{\left\{\omega_{2}, \omega_{3}\right\}}(\omega)+3 \mathbf{1}_{\left\{\omega_{4}\right\}}(\omega) \\
& -\left(8 \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}}(\omega)+4 \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}(\omega)\right) \\
= & \left\{\begin{array}{cll}
1 & \text { if } & \omega=\omega_{1} \\
-2 & \text { if } & \omega=\omega_{2} \\
2 & \text { if } & \omega=\omega_{3} \\
-1 & \text { if } & \omega=\omega_{4}
\end{array}\right.
\end{aligned}
$$

Similarly we can compute

$$
\begin{aligned}
G(1, \omega) & =H_{0}(1) \Delta B(1)+H_{1}(1) \Delta S(1, \omega) \\
& =\left\{\begin{array}{ccc}
r H_{0}(1)+3 H_{1}(1) & \text { if } & \omega=\omega_{1}, \omega_{2} \\
r H_{0}(1)-H_{1}(1) & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}\right.
\end{aligned}
$$

Model specifications

Example 11

$$
\begin{aligned}
& G(2, \omega) \\
& =G(1, \omega)+H_{0}(2, \omega) \Delta B(2)+H_{1}(2, \omega) \Delta S(2, \omega) \\
& =\left\{\begin{array}{cll}
r H_{0}(1)+3 H_{1}(1)+r(r+1) H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right)+H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) & \text { if } & \omega=\omega_{1} \\
r H_{0}(1)+3 H_{1}(1)+r(r+1) H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right)-2 H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) & \text { if } & \omega=\omega_{2} \\
r H_{0}(1)-H_{1}(1)+r(r+1) H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right)+2 H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) & \text { if } & \omega=\omega_{3} \\
r H_{0}(1)-H_{1}(1)+r(r+1) H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right)-1 H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) & \text { if } & \omega=\omega_{4}
\end{array}\right.
\end{aligned}
$$

For H to be self-financing we must have

$$
\begin{aligned}
V(1, \omega) & = \begin{cases}(1+r) H_{0}(1)+8 H_{1}(1) & \text { if } \omega=\omega_{1}, \omega_{2} \\
(1+r) H_{0}(1)+4 H_{1}(1) & \text { if } \omega=\omega_{3}, \omega_{4}\end{cases} \\
& =\left\{\begin{array}{lll}
(1+r) H_{0}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right)+8 H_{1}\left(2,\left\{\omega_{1}, \omega_{2}\right\}\right) & \text { if } \omega=\omega_{1}, \omega_{2} \\
(1+r) H_{0}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right)+4 H_{1}\left(2,\left\{\omega_{3}, \omega_{4}\right\}\right) & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}\right.
\end{aligned}
$$

Economic Considerations

Economic considerations

Definition 12

An arbitrage opportunity is a trading strategy H such that

1. H is self-financing.
2. $V(0)=0$.
3. $V(T) \geq 0$.
4. $\mathbb{E}[V(T)]>0$.

Alternative equivalent formulations:

Alternative 1

H is an arbitrage opportunity if

1. H is self-financing.
b) $V^{*}(0)=0$.
c) $V^{*}(T) \geq 0$.
d) $\mathbb{E}\left[V^{*}(T)\right]>0$.

Alternative 2

H is an arbitrage opportunity if

1. H is self-financing.
b) $V^{*}(0)=0$.
c') $G^{*}(T) \geq 0$.
d') $\mathbb{E}\left[G^{*}(T)\right]>0$.

Economic considerations

Definition 13

A risk neutral probability measure (martingale measure) is a probability measure Q such that

1. $Q(\omega)>0, \omega \in \Omega$.
2. $S_{n}^{*}, n=1, \ldots, N$ are martingales under Q, that is,

$$
\begin{equation*}
\mathbb{E}_{Q}\left[S_{n}^{*}(t+s) \mid \mathcal{F}_{t}\right]=S_{n}^{*}(t), \quad t, s \geq 0, n=1, \ldots, N \tag{10}
\end{equation*}
$$

Remark 14

- It suffices to check (10) for $s=1$ and $t=0, \ldots, T-1$, that is,

$$
\mathbb{E}_{Q}\left[S_{n}^{*}(t+1) \mid \mathcal{F}_{t}\right]=S_{n}^{*}(t)
$$

- If $B(t)=(1+r)^{t}$, then (10) is equivalent to

$$
\begin{equation*}
\mathbb{E}_{Q}\left[S_{n}(t+1) \mid \mathcal{F}_{t}\right]=(1+r) S_{n}(t) \tag{11}
\end{equation*}
$$

Economic considerations

Example 15 (Continuation of Example 11)

We will find $Q=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)^{T}$ satisfying (11) for $t=0,1$.

- $t=0$: We have $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ so the conditional expectation given \mathcal{F}_{0} coincides with the ordinary expectation and the martingale measure condition is

$$
S(0)(1+r)=\mathbb{E}_{Q}\left[S(1) \mid \mathcal{F}_{0}\right]=\mathbb{E}_{Q}[S(1)]
$$

that is

$$
5(1+r)=8\left(Q_{1}+Q_{2}\right)+4\left(Q_{3}+Q_{4}\right) .
$$

- $t=1$: We have $\mathcal{F}_{1}=\left\{\emptyset, \Omega,\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}$ so the conditional expectation given \mathcal{F}_{1} is given by

$$
\begin{aligned}
\mathbb{E}_{Q}\left[S(2) \mid \mathcal{F}_{1}\right](\omega) & =\mathbb{E}_{Q}\left[S(2) \mid\left\{\omega_{1}, \omega_{2}\right\}\right] \mathbf{1}_{\left\{\omega_{1}, \omega_{2}\right\}} \\
& +\mathbb{E}_{Q}\left[S(2) \mid\left\{\omega_{3}, \omega_{4}\right\}\right] \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}
\end{aligned}
$$

Economic considerations

Example 15

Using the rules for computing conditional expectation we get

$$
\begin{aligned}
\mathbb{E}_{Q}\left[S(2) \mid\left\{\omega_{1}, \omega_{2}\right\}\right] & =S\left(2, \omega_{1}\right) \frac{Q\left(\omega_{1}\right)}{Q\left(\left\{\omega_{1}, \omega_{2}\right\}\right)}+S\left(2, \omega_{2}\right) \frac{Q\left(\omega_{2}\right)}{Q\left(\left\{\omega_{1}, \omega_{2}\right\}\right)} \\
& =9 \frac{Q_{1}}{Q_{1}+Q_{2}}+6 \frac{Q_{2}}{Q_{1}+Q_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbb{E}_{Q}\left[S(2) \mid\left\{\omega_{3}, \omega_{4}\right\}\right] & =S\left(2, \omega_{3}\right) \frac{Q\left(\omega_{3}\right)}{Q\left(\left\{\omega_{3}, \omega_{4}\right\}\right)}+S\left(2, \omega_{4}\right) \frac{Q\left(\omega_{4}\right)}{Q\left(\left\{\omega_{3}, \omega_{4}\right\}\right)} \\
& =6 \frac{Q_{3}}{Q_{3}+Q_{4}}+3 \frac{Q_{4}}{Q_{3}+Q_{4}}
\end{aligned}
$$

The martingale measure condition is $(1+r) S(1)=\mathbb{E}_{Q}\left[S(2) \mid \mathcal{F}_{1}\right]$, and noting that $S(1, \omega)=81_{\left\{\omega_{1}, \omega_{2}\right\}}+41_{\left\{\omega_{3}, \omega_{4}\right\}}$ we get

$$
\begin{aligned}
& 9 Q_{1}+6 Q_{2}=8(1+r)\left(Q_{1}+Q_{2}\right) \\
& 6 Q_{3}+3 Q_{4}=4(1+r)\left(Q_{3}+Q_{4}\right) .
\end{aligned}
$$

Economic considerations

Example 15

Combining the previous equations with the fact that Q must be a probability we obtain the system

$$
\begin{aligned}
8\left(Q_{1}+Q_{2}\right)+4\left(Q_{3}+Q_{4}\right) & =5(1+r) \\
9 Q_{1}+6 Q_{2} & =8(1+r)\left(Q_{1}+Q_{2}\right) \\
6 Q_{3}+3 Q_{4} & =4(1+r)\left(Q_{3}+Q_{4}\right) \\
1 & =Q_{1}+Q_{2}+Q_{3}+Q_{4}
\end{aligned}
$$

which has the solution

$$
\begin{array}{ll}
Q_{1}=\frac{(1+5 r)}{4} \frac{(2+8 r)}{3}, & Q_{2}=\frac{(1+5 r)}{4} \frac{(1-8 r)}{3} \\
Q_{3}=\frac{(3-5 r)}{4} \frac{(1+4 r)}{3}, & Q_{4}=\frac{(3-5 r)}{4} \frac{(2-4 r)}{3} .
\end{array}
$$

Moreover,

$$
Q>0 \Longleftrightarrow 0 \leq r<1 / 8
$$

Economic considerations

Remark 16

There is an alternative way for finding the martingale measure Q. This consists in decomposing the multiperiod market in a series of single period markets. One then find a risk neutral measure for each of these single period markets. The martingale measure for the multiple period market is contructed by "pasting together" these risk neutral measures. I showed this procedure on the blackboard.

Proposition 17

If Q is a martingale measure and H is a self-financing trading strategy, then $V^{*}=\left\{V^{*}(t)\right\}_{t=0, \ldots, T}$ is a martingale under Q.

Proof.

Blackboard.

Theorem 18 (First Fundamental Theorem of Asset Pricing)

There do not exist arbitrage opportunities if and only if there exist a martingale measure.

Proof.

Blackboard

Economic considerations

- All the concepts we saw for single period markets also extend to multiple period markets.

Definition 19

A linear pricing measure is a non-negative vector $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)^{T}$ such that for every self-financing trading strategy H you have

$$
V^{*}(0)=\sum_{k=1}^{K} \pi_{k} V_{T}^{*}\left(\omega_{k}\right)
$$

- Clearly, if Q is martingale measure then it is also a linear pricing measure.
- One can see that any strictly positive linear pricing measure π must be a martingale measure.

Theorem 20

A vector π is a linear pricing measure if an only if π is a probability measure on Ω under which all the discounted price processes are martingales.

Economic considerations

Definition 21

H is a dominant self-financing trading strategy if there exists another self-financing trading strategy \widehat{H} such that $V(0)=\widehat{V}(0)$ and $V(T, \omega)>\widehat{V}(T, \omega)$ for all $\omega \in \Omega$.

Theorem 22

There exists a linear pricing measure if and only if there are no dominant trading strategies.

Definition 23

We say the the law of one price holds for a multiperiod model if there do not exist two self-financing trading strategies, say \widehat{H} and \widetilde{H}, such that $\widehat{V}(T, \omega)=\widetilde{V}(T, \omega)$ for all $\omega \in \Omega$ but $\widehat{V}(0) \neq \widetilde{V}(0)$.

- The existence of a linear pricing measure implies that the law of one price hold.

Economic considerations

- Denote

$$
\begin{aligned}
W & =\left\{X \in \mathbb{R}^{K}: X=G^{*}, \text { for some self-financing trading strategy } H\right\} \\
W^{\perp} & =\left\{Y \in \mathbb{R}^{K}: X^{T} Y=0, \text { for all } X \in W\right\} \\
A & =\left\{X \in \mathbb{R}^{K}: X \geq 0, X \neq 0\right\} \\
P & =\left\{X \in \mathbb{R}^{K}: X_{1}+\ldots+X_{K}=1, X \geq 0\right\} \\
P^{+} & =\left\{X \in P: X_{1}>0, \ldots, X_{K}>0\right\} .
\end{aligned}
$$

- As with single period markets:
- We will denote by M the set of all martingale measures.
- The set of all linear pricing measures is $P \cap W^{\perp}$.
- $M=P^{+} \cap W^{\perp}$.
- $W \cap A=\emptyset$ if and only if $M \neq \emptyset$.
- M is convex set whose closure is $P \cap W^{\perp}$, the set of all linear pricing measures.

Risk Neutral Pricing

Risk neutral pricing

Definition 24

A contingent claim is a random variable X representing the payoff at time T of a financial contract which depends on the values of the risky assets in the market.

Example 25

Consider the market with $T=2, K=4, S(0)=5$,

$$
S(1, \omega)=\left\{\begin{array}{ccc}
8 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
4 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}, \quad S(2, \omega)=\left\{\begin{array}{ccc}
9 & \text { if } & \omega=\omega_{1} \\
6 & \text { if } & \omega=\omega_{2}, \omega_{3} \\
3 & \text { if } & \omega=\omega_{4}
\end{array} .\right.\right.
$$

- $X=(S(2)-5)^{+}$. European call option with strike 5 .

$$
\begin{aligned}
X & =(\max (0,9-5), \max (0,6-5), \max (0,6-5), \max (0,3-5))^{T} \\
& =(4,1,1,0)^{T}
\end{aligned}
$$

Risk neutral pricing

Example 25

- $Y=\left(\frac{1}{3} \sum_{i=0}^{2} S(t)-5\right)^{+}$. Asian call option with strike 5.

$$
\begin{aligned}
& Y_{1}=\left(\frac{1}{3} \sum_{i=0}^{2} S\left(t, \omega_{1}\right)-5\right)^{+}=\max \left(0, \frac{1}{3}(5+8+9)-5\right)=7 / 3 \\
& Y_{2}=\left(\frac{1}{3} \sum_{i=0}^{2} S\left(t, \omega_{2}\right)-5\right)^{+}=\max \left(0, \frac{1}{3}(5+8+6)-5\right)=4 / 3 \\
& Y_{3}=\left(\frac{1}{3} \sum_{i=0}^{2} S\left(t, \omega_{3}\right)-5\right)^{+}=\max \left(0, \frac{1}{3}(5+4+6)-5\right)=0 \\
& Y_{4}=\left(\frac{1}{3} \sum_{i=0}^{2} S\left(t, \omega_{3}\right)-5\right)^{+}=\max \left(0, \frac{1}{3}(5+4+3)-5\right)=0
\end{aligned}
$$

which yields $Y=(7 / 3,4 / 3,0,0)^{T}$.

Risk neutral pricing

Assumption 26

The financial market model is arbitrage free, that is, there exist a martingale measure Q.

Definition 27

A contingent claim X is attainable (or marketable) if there exists H a self-financing trading strategy sucht that $V(T, \omega)=X(\omega), \omega \in \Omega$. Such strategy is said to replicate or generate or hedge X.

Theorem 28 (Risk Neutral Pricing)

The time t value of an attainable contingent claim X, denoted by $P_{X}(t)$, is equal to $V(t)$, the time t value of a portfolio generating X. Moreover,

$$
V(t)=\mathbb{E}_{Q}\left[\left.\frac{B(t)}{B(T)} X \right\rvert\, \mathcal{F}_{t}\right], \quad, t=0, \ldots, T
$$

for all martingale measures Q.

Proof.

Blackboard.

Risk neutral pricing

- In order to sell a contingent claim X the seller must find the trading strategy that replicates/hedges X.
- We will see three methods for finding a hedging strategy.

First method

- We must know the value process $V=\{V(t)\}_{t=0, \ldots, T}$.
- We solve

$$
V(t)=H_{0}(t)+\sum_{n=1}^{N} H_{n}(t) S_{n}(t), \quad t=1, \ldots, T,
$$

taking into account that H must be predictable.

Risk neutral pricing

Second method

- All we know is X.
- In this method, we work backwards in time and find $V(t)$ and $H(t)$ simultaneously.
- Since $V(T)=X$, we first find $H(T)$ by taking into account that H is predictable and solving

$$
X=H_{0}(T) B(T)+\sum_{n=1}^{N} H_{n}(T) S_{n}(T) .
$$

- Using that H is must be self-financing, we find $V(T-1)$ by computing

$$
V(T-1)=H_{0}(T) B(T-1)+\sum_{n=1}^{N} H_{n}(T) S_{n}(T-1) .
$$

- Next, taking into account that H is predictable, we find $H(T-1)$ by solving

$$
V(T-1)=H_{0}(T-1) B(T-1)+\sum_{n=1}^{N} H_{n}(T-1) S_{n}(T-1) .
$$

- We repeat this procedure until computing $V(0)$.

Risk neutral pricing

Third method

- It relies on the fact that the self-financing condition

$$
V^{*}(0)+G^{*}(t)=V^{*}(t)
$$

is equivalent to

$$
V^{*}(t-1)+\sum_{n=1}^{N} H_{n}(t) \Delta S_{n}^{*}(t)=V^{*}(t)
$$

- We can use this system of equations, together with the predictability condition on $H(t)=\left(H_{1}(t), \ldots, H_{N}(t)\right)^{T}$, to find $V^{*}(t-1)$ and $H(t)$.
- Then, we can find

$$
\begin{aligned}
H_{0}(t) & =V^{*}(t)-\sum_{n=1}^{N} H_{n}(t) S_{n}^{*}(t), \\
V(t-1) & =B(t-1) V^{*}(t-1)
\end{aligned}
$$

- We begin with $V^{*}(T)=X / B(T)$ and work backwards in time.

Risk neutral pricing

Example 29 (Continuation Example 25)

Suppose $r=0$. We know that $Q=(1 / 6,1 / 12,1 / 4,1 / 2)^{T}$ is the unique martingale measure in this market.

- European call option $X=(4,1,1,0)^{T}$. We have, by Theorem 28 and taking into account that $r=0$, that

$$
\begin{aligned}
& V(0)=\mathbb{E}_{Q}\left[\left.\frac{B(0)}{B(2)} x \right\rvert\, \mathcal{F}_{0}\right]=\mathbb{E}_{Q}[X], \\
& V(1)=\mathbb{E}_{Q}\left[\left.\frac{B(1)}{B(2)} x \right\rvert\, \mathcal{F}_{1}\right]=\mathbb{E}_{Q}\left[X \mid \mathcal{F}_{1}\right], \\
& V(2)=\mathbb{E}_{Q}\left[\left.\frac{B(2)}{B(2)} X \right\rvert\, \mathcal{F}_{2}\right]=X .
\end{aligned}
$$

Hence, computing

$$
\mathbb{E}_{Q}[X]=4 \frac{1}{6}+1 \frac{1}{12}+1 \frac{1}{4}+0 \frac{1}{2}=1
$$

Risk neutral pricing

Example 29

and

$$
\begin{aligned}
\mathbb{E}_{Q}\left[X \mid\left\{\omega_{1}, \omega_{2}\right\}\right] & =\frac{\mathbb{E}_{Q}\left[X 1_{\left\{\omega_{1}, \omega_{2}\right\}}\right]}{Q\left(\left\{\omega_{1}, \omega_{2}\right\}\right)}=\frac{4 \frac{1}{6}+1 \frac{1}{12}+0 \frac{1}{4}+0 \frac{1}{2}}{\frac{1}{6}+\frac{1}{12}}=3 \\
\mathbb{E}_{Q}\left[X \mid\left\{\omega_{3}, \omega_{4}\right\}\right] & =\frac{\mathbb{E}_{Q}\left[X \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}\right]}{Q\left(\left\{\omega_{3}, \omega_{4}\right\}\right)}=\frac{0 \frac{1}{6}+0 \frac{1}{12}+1 \frac{1}{4}+0 \frac{1}{2}}{\frac{1}{4}+\frac{1}{2}}=\frac{1}{3} \\
\mathbb{E}_{Q}\left[X \mid \mathcal{F}_{1}\right] & =31_{\left\{\omega_{1}, \omega_{2}\right\}}+\frac{1}{3} \mathbf{1}_{\left\{\omega_{3}, \omega_{4}\right\}}
\end{aligned}
$$

note that $\mathcal{F}_{1}=\mathfrak{a}\left\{\left\{\omega_{1}, \omega_{2}\right\},\left\{\omega_{3}, \omega_{4}\right\}\right\}$, we obtain the values of the value process V.

We can compute H using the first method.
For $t=2$ we have $V(2)=H_{0}(2) B(2)+H_{1}(2) S(2)$, which gives

$$
\begin{aligned}
& V\left(2, \omega_{1}\right)=4=H_{0}\left(2, \omega_{1}\right) 1+H_{1}\left(2, \omega_{1}\right) 9, \\
& V\left(2, \omega_{2}\right)=1=H_{0}\left(2, \omega_{2}\right) 1+H_{1}\left(2, \omega_{2}\right) 6, \\
& V\left(2, \omega_{3}\right)=1=H_{0}\left(2, \omega_{3}\right) 1+H_{1}\left(2, \omega_{3}\right) 6, \\
& V\left(2, \omega_{4}\right)=0=H_{0}\left(2, \omega_{4}\right) 1+H_{1}\left(2, \omega_{4}\right) 3,
\end{aligned}
$$

Risk neutral pricing

Example 29

and the predictability constraint yields the following additional equations

$$
\begin{array}{ll}
H_{0}\left(2, \omega_{1}\right)=H_{0}\left(2, \omega_{2}\right), & H_{0}\left(2, \omega_{3}\right)=H_{0}\left(2, \omega_{4}\right), \\
H_{1}\left(2, \omega_{1}\right)=H_{1}\left(2, \omega_{2}\right), & H_{1}\left(2, \omega_{3}\right)=H_{1}\left(2, \omega_{4}\right) .
\end{array}
$$

Solving these equations we get
$H_{0}(2, \omega)=\left\{\begin{array}{lll}-5 & \text { if } & \omega=\omega_{1}, \omega_{2} \\ -1 & \text { if } & \omega=\omega_{3}, \omega_{4}\end{array}, \quad H_{1}(2, \omega)=\left\{\begin{array}{cll}1 & \text { if } & \omega=\omega_{1}, \omega_{2} \\ 1 / 3 & \text { if } & \omega=\omega_{3}, \omega_{4}\end{array}\right.\right.$
For $t=1$ we can write $V(1)=H_{0}(1) B(1)+H_{1}(1) S(1)$, which gives

$$
\begin{array}{ll}
V(1, \omega)=3=H_{0}(1, \omega) 1+H_{1}(1, \omega) 8 & \text { if } \quad \omega=\omega_{1}, \omega_{2} \\
V(1, \omega)=\frac{1}{3}=H_{0}(1, \omega) 1+H_{1}(1, \omega) 4 & \text { if } \quad \omega=\omega_{3}, \omega_{4}
\end{array}
$$

and the predicability constraint yields the following additional equations

$$
\begin{aligned}
& H_{0}\left(1, \omega_{1}\right)=H_{0}\left(1, \omega_{2}\right)=H_{0}\left(1, \omega_{3}\right)=H_{0}\left(1, \omega_{4}\right) \\
& H_{1}\left(1, \omega_{1}\right)=H_{1}\left(1, \omega_{2}\right)=H_{1}\left(1, \omega_{3}\right)=H_{1}\left(1, \omega_{4}\right)
\end{aligned}
$$

Solving these equations we get $H_{0}(1, \omega)=-\frac{7}{3}$ and $H_{1}(1, \omega)=\frac{2}{3}, \omega \in \Omega$.

Risk neutral pricing

Example 29

- Asian call option $Y=(7 / 3,4 / 3,0,0)^{T}$. We will use the third method to simultaneously find V and H. Recall that $\Delta S^{*}(2)=(1,-2,2,-1)^{\top}$ and $\Delta S^{*}(1)=(3,3,-1,-1)^{T}$.
For $t=2$ we know that $\frac{Y}{B(2)}=V^{*}(2)=V^{*}(1)+H_{1}(2) \Delta S^{*}(2)$ wich gives

$$
\begin{aligned}
V^{*}\left(2, \omega_{1}\right) & =\frac{7}{3}=V^{*}\left(1, \omega_{1}\right)+H_{1}\left(2, \omega_{1}\right) 1 \\
V^{*}\left(2, \omega_{2}\right) & =\frac{4}{3}=V^{*}\left(1, \omega_{2}\right)+H_{1}\left(2, \omega_{2}\right) \times(-2) \\
V^{*}\left(2, \omega_{3}\right) & =0=V^{*}\left(1, \omega_{3}\right)+H_{1}\left(2, \omega_{3}\right) 2 \\
V^{*}\left(2, \omega_{4}\right) & =0=V^{*}\left(1, \omega_{4}\right)+H_{1}\left(2, \omega_{4}\right) \times(-1)
\end{aligned}
$$

and the predictability constraint for H together with the adaptability of V yield the additional equations

$$
\begin{array}{ll}
H_{1}\left(2, \omega_{1}\right)=H_{1}\left(2, \omega_{2}\right), & H_{1}\left(2, \omega_{3}\right)=H_{1}\left(2, \omega_{4}\right), \\
V^{*}\left(1, \omega_{1}\right)=V^{*}\left(1, \omega_{2}\right), & V^{*}\left(1, \omega_{3}\right)=V^{*}\left(1, \omega_{4}\right) .
\end{array}
$$

Risk neutral pricing

Example 29

Solving these equations we get

$$
H_{1}(2, \omega)=\left\{\begin{array}{ccc}
\frac{1}{3} & \text { if } & \omega=\omega_{1}, \omega_{2} \\
0 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}, \quad V^{*}(1, \omega)=\left\{\begin{array}{lll}
2 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
0 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array} .\right.\right.
$$

Note that

$$
V(1, \omega)=V^{*}(1, \omega) B(1, \omega)= \begin{cases}2 \times 1=2 \quad \text { if } \quad \omega=\omega_{1}, \omega_{2} \\ 0 \times 1=0 \quad \text { if } \quad \omega=\omega_{3}, \omega_{4}\end{cases}
$$

For $t=1$ we know that $V^{*}(1)=V^{*}(0)+H_{1}(1) \Delta S^{*}(1)$ wich gives

$$
\begin{array}{ll}
V^{*}(1, \omega)=2=V^{*}(0, \omega)+H_{1}(1, \omega) 3 & \text { if } \quad \omega=\omega_{1}, \omega_{2} \\
V^{*}(1, \omega)=0=V^{*}(0, \omega)+H_{1}(1, \omega) \times(-1) & \text { if } \quad \omega=\omega_{3}, \omega_{4}
\end{array}
$$

and the predictability constraint for H together with the adaptability of V yield the additional equations

$$
\begin{aligned}
H_{1}\left(1, \omega_{1}\right) & =H_{1}\left(1, \omega_{2}\right)=H_{1}\left(1, \omega_{3}\right)=H_{1}\left(1, \omega_{4}\right) \\
V^{*}\left(0, \omega_{1}\right) & =V^{*}\left(0, \omega_{2}\right)=V^{*}\left(0, \omega_{3}\right)=V^{*}\left(0, \omega_{4}\right)
\end{aligned}
$$

Risk neutral pricing

Example 29

Solving these equations we obtain

$$
V^{*}(0, \omega)=\frac{1}{2}, \quad H_{1}(1, \omega)=\frac{1}{2}, \quad \omega \in \Omega
$$

Note that $V(0)=B(0) V^{*}(1)=\frac{1}{2}$.
Finally, to compute H_{0}, we use

$$
\begin{aligned}
& H_{0}(1)=V^{*}(0)-H_{1}(1) S(0)=\frac{1}{2}-\frac{1}{2} 5=-2, \\
& H_{0}(2)=V^{*}(1)-H_{1}(2) S(1)=\left\{\begin{array}{cll}
2-\frac{1}{3} \times 8=-\frac{2}{3} & \text { if } & \omega=\omega_{1}, \omega_{2} \\
0-0 \times 4=0 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array} .\right.
\end{aligned}
$$

Note that $V(0)=\frac{1}{2}$ is the same value using the risk neutral approach

$$
V(0)=\mathbb{E}_{Q}\left[\left.\frac{B(0)}{B(2)} X \right\rvert\, \mathcal{F}_{0}\right]=\mathbb{E}_{Q}[X]
$$

Complete and Incomplete Markets

Complete and incomplete markets

Definition 30

A market is complete if every contingent claim X is attainable. Otherwise, it is called incomplete.

Proposition 31

A multiperiod market is complete if and only if every underlying single period market is complete.

Proof.

Blackboard.

Remark 32

- The backward procedures explained in the last section work if and only every underlying single period market is complete.
- The criterion given in Proposition 31, in general, is not a practical characterization of market completeness.

Complete and incomplete markets

Theorem 33 (Second Fundamental Theorem of Asset Pricing)

Suppose that $M \neq \emptyset$. A multiperiod market is complete if and only if $M=\{Q\}$.

Proof.
 Blackboard.

Proposition 34

Suppose that $M \neq \emptyset$. A contingent claim X is attainable if and only if $\mathbb{E}_{Q}[X / B(T)]$ takes the same value for every $Q \in M$.

Proof.

Blackboard.

Complete and incomplete markets

Example 35

Consider the market with $K=5, T=2, r=0, S(0)=5$,

$$
S(1, \omega)=\left\{\begin{array}{ccc}
8 & \text { if } & \omega=\omega_{1}, \omega_{2}, \omega_{3} \\
4 & \text { if } & \omega=\omega_{4}, \omega_{5}
\end{array}, \quad S(2, \omega)=\left\{\begin{array}{ccc}
9 & \text { if } & \omega=\omega_{1} \\
7 & \text { if } & \omega=\omega_{2} \\
6 & \text { if } & \omega=\omega_{3}, \omega_{4} \\
5 & \text { if } & \omega=\omega_{5}
\end{array}\right.\right.
$$

One can check (exercise) that

$$
M=\left\{Q_{\lambda}=\left(\frac{\lambda}{4}, \frac{(2-3 \lambda)}{4}, \frac{(2 \lambda-1)}{4}, \frac{1}{4}, \frac{1}{2}\right)^{T}, \frac{1}{2}<\lambda<\frac{2}{3}\right\}
$$

A contingent claim $X=\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)^{T}$ is attainable if and only if

$$
\begin{aligned}
\mathbb{E}_{Q}\left[\frac{X}{B(2)}\right] & =\mathbb{E}_{Q}[X]=X_{1} \frac{\lambda}{4}+X_{2} \frac{(2-3 \lambda)}{4}+X_{3} \frac{(2 \lambda-1)}{4}+X_{4} \frac{1}{4}+X_{5} \frac{1}{2} \\
& =\frac{\lambda}{4}\left(X_{1}-3 X_{2}+2 X_{3}\right)+\frac{1}{4}\left(2 X_{2}-X_{3}+X_{4}+2 X_{5}\right),
\end{aligned}
$$

does not depend on λ, i.e., if and only if $X_{1}-3 X_{2}+2 X_{3}=0$.

Optimal Portfolio Problem

Optimal portfolio problem

- Let U be an utility function as in section 5.1.
- We are interested in the following optimization problem:

where $v \in \mathbb{R}$ and $\mathcal{H}:=\{$ set of all self-financing trading strategies $\}$.
- Recall that $V(T)=V^{*}(T) B(T), V^{*}(T)=V^{*}(0)+G^{*}(T)$.

Therefore, (12) is equivalent to

$$
\left.\begin{array}{cc}
\max & \mathbb{E}\left[U\left(B(T)\left\{v+G^{*}(T)\right\}\right)\right] \\
\text { bject to } & H=\left(H_{1}, \ldots, H_{N}\right)^{T} \in \mathcal{H}_{P} \tag{13}
\end{array}\right\}
$$

where $v \in \mathbb{R}$ and
$\mathcal{H}_{P}:=\left\{\right.$ set of all predictable processes taking values in $\left.\mathbb{R}^{N}\right\}$.

- If $\left(\widehat{H}_{1}, \ldots, \widehat{H}_{N}\right)^{T}$ is a solution of (13), then one can find \widehat{H}_{0} such that $\widehat{H}=\left(\widehat{H}_{0}, \widehat{H}_{1}, \ldots, \widehat{H}_{N}\right)^{T}$ is self-financing and $V(0)=v$, giving a solution to (12).

Optimal portfolio problem

Proposition 36

If H is a solution of (12) and V is its associated porfolio value process then

$$
Q(\omega)=\frac{B(T, \omega) U^{\prime}(V(T, \omega), \omega)}{\mathbb{E}\left[B(T) U^{\prime}(V(T))\right]} P(\omega), \quad \omega \in \Omega
$$

is a martingale measure.

Proof.

Blackboard.

Optimal portfolio problem

- There are several methods to solve the optimal portfolio problem:
- Direct approach (classical optimization problem taking into account predictability)
- Dynamic programming.
- Martingale method.
- We will only consider the martingale method in these lectures.
- This method is analogous to the risk neutral computational approach in single period financial markets.
- We will assume that:
- The market is arbitrage free and complete: $M=\{Q\}$.
- U does not depend on ω.
- The martingale method can be split in 3 steps.

Step 1

- Identify the set W_{v} of attainable wealths:

$$
W_{v}=\left\{W \in \mathbb{R}^{K}: W=V(T) \text { for some } H \in \mathcal{H} \text { with } V(0)=v\right\}
$$

- If the model is complete

$$
W_{v}=\left\{W \in \mathbb{R}^{K}: \mathbb{E}_{Q}[W / B(T)]=v\right\}
$$

Optimal portfolio problem

Step 2

- We need to solve the problem

$$
\left.\begin{array}{cl}
\max & \mathbb{E}[U(W)] \tag{14}\\
\text { subject to } & W \in W_{v},
\end{array}\right\}
$$

- To solve (14) we will use the method of Lagrange multipliers.
- Consider the Lagrange function

$$
\begin{aligned}
\mathcal{L}(W ; \lambda) & =\mathbb{E}[U(W)]-\lambda\left(\mathbb{E}_{Q}[W / B(T)]-v\right) \\
& =\mathbb{E}[U(W)]-\lambda(\mathbb{E}[L W / B(T)]-v) \\
& =\mathbb{E}\left[U(W)-\lambda L\left(\frac{W}{B(T)}-v\right)\right]
\end{aligned}
$$

- The first optimality condition gives

$$
\begin{aligned}
& 0=\frac{\partial \mathcal{L}}{\partial \lambda}(W ; \lambda)=\mathbb{E}_{Q}[W / B(T)]-v \\
& 0=\frac{\partial \mathcal{L}}{\partial W_{k}}(W ; \lambda)=P\left(\omega_{k}\right)\left\{U^{\prime}\left(W\left(\omega_{k}\right)\right)-\lambda \frac{L\left(\omega_{k}\right)}{B\left(T, \omega_{k}\right)}\right\} \quad k=1, \ldots, K .
\end{aligned}
$$

Optimal portfolio problem

Step 2

- Then the optimum $(\widehat{\lambda}, \widehat{W})$ satisfies

$$
\mathbb{E}_{Q}[\widehat{W} / B(T)]=v, \quad U^{\prime}(\widehat{W})=\widehat{\lambda} \frac{L}{B(T)}
$$

- To solve these equations, we consider $I(y):=\left(U^{\prime}\right)^{-1}(y)$ and compute $\widehat{W}=I\left(\widehat{\lambda} \frac{L}{B(T)}\right)$, then $\widehat{\lambda}$ is chosen so that

$$
\mathbb{E}_{Q}\left[I\left(\widehat{\lambda} L B^{-1}(T)\right) B^{-1}(T)\right]=v,
$$

holds.

Step 3

- Given the optimal wealth \widehat{W}, find a self-financing trading strategy \widehat{H} that generates \widehat{W}.
- We use the second method for findind a replicating strategy.

Optimal portfolio problem

Example 37

Consider the market with $T=2, K=4, S(0)=5$,

$$
S(1, \omega)=\left\{\begin{array}{ccc}
8 & \text { if } & \omega=\omega_{1}, \omega_{2} \\
4 & \text { if } & \omega=\omega_{3}, \omega_{4}
\end{array}, \quad S(2, \omega)=\left\{\begin{array}{ccc}
9 & \text { if } & \omega=\omega_{1} \\
6 & \text { if } & \omega=\omega_{2}, \omega_{3} \\
3 & \text { if } & \omega=\omega_{4}
\end{array}\right.\right.
$$

$$
0 \leq r<1 / 8 \text { and } P=(1 / 4,1 / 4,1 / 4,1 / 4)^{T}
$$

We know that the unique martingale measure is

$$
\begin{aligned}
Q= & \left(\frac{(1+5 r)(2+8 r)}{12}, \frac{(1+5 r)(1-8 r)}{12},\right. \\
& \left.\frac{(3-5 r)(1+4 r)}{12}, \frac{(3-5 r)(2-4 r)}{12}\right)^{\top}
\end{aligned}
$$

We want to solve the optimal portfolio problem with $U(u)=\log (u)$. Hence,

$$
U^{\prime}(u)=\frac{1}{u} \Longrightarrow I(y)=\left(U^{\prime}\right)^{-1}(y)=\frac{1}{y}
$$

Optimal portfolio problem

Example 37

We compute

$$
\begin{aligned}
L=\frac{Q}{P}= & \left(\frac{(1+5 r)(2+8 r)}{3}, \frac{(1+5 r)(1-8 r)}{3}\right. \\
& \left.\frac{(3-5 r)(1+4 r)}{3}, \frac{(3-5 r)(2-4 r)}{3}\right)^{T}
\end{aligned}
$$

Next, we find the optimal wealth

$$
\widehat{W}=I\left(\widehat{\lambda} \frac{L}{B(2)}\right)=\frac{B(2)}{\widehat{\lambda} L}
$$

and the optimal multiplier $\hat{\lambda}$

$$
\mathbb{E}_{Q}\left[\frac{\widehat{W}}{B(2)}\right]=v \Longleftrightarrow \mathbb{E}_{Q}\left[\frac{B(2)}{\widehat{\lambda} L B(2)}\right]=v \Longleftrightarrow \widehat{\lambda}=\frac{\mathbb{E}_{Q}\left[L^{-1}\right]}{v}=v^{-1}
$$

where we have used that

$$
\mathbb{E}_{Q}\left[L^{-1}\right]=\mathbb{E}_{P}\left[L L^{-1}\right]=1
$$

Optimal portfolio problem

Example 37

Hence,

$$
\widehat{\lambda}=v^{-1}, \quad \widehat{W}=v B(2) L^{-1}
$$

and the optimal expected utility is given by

$$
\mathbb{E}[U(\widehat{W})]=\mathbb{E}[\log (\widehat{W})]=\log (v)+\mathbb{E}\left[\log \left(B(2) L^{-1}\right)\right]
$$

Since $B(2)=(1+r)^{2}$ is deterministic we have

$$
\begin{aligned}
\mathbb{E}[U(\widehat{W})] & =\log (v)+\log (B(2))+\mathbb{E}\left[\log \left(L^{-1}\right)\right] \\
& =\log \left(v(1+r)^{2}\right)-\mathbb{E}[\log (L)] \\
& =\log \left(v(1+r)^{2}\right)-\frac{1}{4} \sum_{i=1}^{4} \log \left(L_{i}\right)
\end{aligned}
$$

The last step is to compute the optimal strategy \hat{H} that replicates the optimal wealth \hat{W}.

Optimal portfolio problem

Example 37

- Recall that

$$
\begin{aligned}
\widehat{W}= & v B(2) L^{-1}=(
\end{aligned} \frac{3 v(1+r)^{2}}{(1+5 r)(2+8 r)}, \frac{3 v(1+r)^{2}}{(1+5 r)(1-8 r)}, \quad\left(\begin{array}{l}
\left.\frac{3 v(1+r)^{2}}{(3-5 r)(1+4 r)}, \frac{3 v(1+r)^{2}}{(3-5 r)(2-4 r)}\right)^{T}
\end{array}\right.
$$

- For $t=2$, using that \widehat{H} must be predictable, i.e., $\widehat{H}(2) \in \mathcal{F}_{1}$-measurable, we have that

$$
\begin{aligned}
\frac{3 v(1+r)^{2}}{(1+5 r)(2+8 r)} & =\widehat{W}_{1}=\widehat{H}_{0}\left(2, \omega_{1}\right)(1+r)^{2}+\widehat{H}_{1}\left(2, \omega_{1}\right) S\left(2, \omega_{1}\right) \\
& =(1+r)^{2} \widehat{H}_{0}\left(2, \omega_{1}\right)+9 \widehat{H}_{1}\left(2, \omega_{1}\right) \\
\frac{3 v(1+r)^{2}}{(1+5 r)(1-8 r)} & =\widehat{W}_{2}=\widehat{H}_{0}\left(2, \omega_{2}\right)(1+r)^{2}+\widehat{H}_{1}\left(2, \omega_{2}\right) S\left(2, \omega_{2}\right) \\
& =(1+r)^{2} \widehat{H}_{0}\left(2, \omega_{2}\right)(1+r)^{2}+6 \widehat{H}_{1}\left(2, \omega_{2}\right) \\
\widehat{H}_{0}\left(2, \omega_{1}\right) & =\widehat{H}_{0}\left(2, \omega_{2}\right) \\
\widehat{H}_{1}\left(2, \omega_{1}\right) & =\widehat{H}_{1}\left(2, \omega_{2}\right)
\end{aligned}
$$

Optimal portfolio problem

Example 37

Hence, for $\omega \in\left\{\omega_{1}, \omega_{2}\right\}$ we get

$$
\begin{aligned}
& \widehat{H}_{0}(2, \omega)=\frac{12(1+10 r) v}{(1+5 r)(1-8 r)(2+8 r)} \\
& \widehat{H}_{1}(2, \omega)=-\frac{(1+r)^{2}(1+16 r) v}{(1+5 r)(1-8 r)(2+8 r)}
\end{aligned}
$$

Moreover, since \widehat{H} is self-financing, for $\omega \in\left\{\omega_{1}, \omega_{2}\right\}$

$$
\begin{aligned}
\widehat{V}(1, \omega) & =\widehat{H}_{0}(2, \omega) B(1)+\widehat{H}_{1}(2, \omega) S(1, \omega) \\
& =\frac{12(1+10 r) v}{(1+5 r)(1-8 r)(2+8 r)}(1+r) \\
& -\frac{(1+r)^{2}(1+16 r) v}{(1+5 r)(1-8 r)(2+8 r)} 8 \\
& =\frac{2 v(1+r)}{1+5 r}
\end{aligned}
$$

Optimal portfolio problem

Example 37

We also have

$$
\begin{aligned}
\frac{3 v(1+r)^{2}}{(3-5 r)(1+4 r)} & =\widehat{W}_{3}=\widehat{H}_{0}\left(2, \omega_{3}\right)(1+r)^{2}+\widehat{H}_{1}\left(2, \omega_{3}\right) S\left(2, \omega_{3}\right) \\
& =(1+r)^{2} \widehat{H}_{0}\left(2, \omega_{3}\right)+6 \widehat{H}_{1}\left(2, \omega_{3}\right) \\
\frac{3 v(1+r)^{2}}{(3-5 r)(2-4 r)} & =\widehat{W}_{4}=\widehat{H}_{0}\left(2, \omega_{4}\right)(1+r)^{2}+\widehat{H}_{1}\left(2, \omega_{4}\right) S\left(2, \omega_{4}\right) \\
& =(1+r)^{2} \widehat{H}_{0}\left(2, \omega_{4}\right)+3 \widehat{H}_{1}\left(2, \omega_{4}\right), \\
\widehat{H}_{0}\left(2, \omega_{3}\right) & =\widehat{H}_{0}\left(2, \omega_{3}\right) \\
\widehat{H}_{1}\left(2, \omega_{4}\right) & =\widehat{H}_{1}\left(2, \omega_{4}\right)
\end{aligned}
$$

Hence, for $\omega \in\left\{\omega_{3}, \omega_{4}\right\}$ we get

$$
\begin{aligned}
\widehat{H}_{0}(2, \omega) & =\frac{36 r v}{(3-5 r)(2-4 r)(1+4 r)} \\
\widehat{H}_{1}(2, \omega) & =\frac{(1+r)^{2}(1-8 r) v}{2(3-5 r)(2-4 r)(1+4 r)}
\end{aligned}
$$

Optimal portfolio problem

Example 37

Moreover, since \widehat{H} is self-financing, for $\omega \in\left\{\omega_{3}, \omega_{4}\right\}$

$$
\begin{aligned}
\widehat{V}(1, \omega) & =\widehat{H}_{0}(2, \omega) B(1)+\widehat{H}_{1}(2, \omega) S(1, \omega) \\
& =\frac{36 r v}{(3-5 r)(2-4 r)(1+4 r)}(1+r) \\
& +\frac{(1+r)^{2}(1-8 r) v}{2(3-5 r)(2-4 r)(1+4 r)} 8 \\
& =\frac{2 v(1+r)}{3-5 r} .
\end{aligned}
$$

Optimal portfolio problem

Example 37

- For $t=1$, using that \widehat{H} must be predictable, i.e., $\widehat{H}(1) \in \mathcal{F}_{0}$-measurable, we have that

$$
\begin{aligned}
\frac{2 v(1+r)}{(1+5 r)} & =\widehat{V}\left(1, \omega_{1}\right)=\widehat{H}_{0}\left(1, \omega_{1}\right)(1+r)+\widehat{H}_{1}\left(1, \omega_{1}\right) S\left(1, \omega_{3}\right) \\
& =(1+r) \widehat{H}_{0}\left(2, \omega_{1}\right)+8 \widehat{H}_{1}\left(2, \omega_{1}\right), \\
\frac{2 v(1+r)}{3-5 r} & =\widehat{V}\left(1, \omega_{3}\right)=\widehat{H}_{0}\left(2, \omega_{3}\right)(1+r)+\widehat{H}_{1}\left(2, \omega_{3}\right) S\left(2, \omega_{3}\right) \\
& =(1+r)^{2} \widehat{H}_{0}\left(2, \omega_{3}\right)+4 \widehat{H}_{1}\left(2, \omega_{3}\right), \\
\widehat{H}_{0}\left(1, \omega_{1}\right) & =\widehat{H}_{0}\left(1, \omega_{2}\right)=\widehat{H}_{0}\left(1, \omega_{3}\right)=\widehat{H}_{0}\left(1, \omega_{4}\right), \\
\widehat{H}_{1}\left(1, \omega_{1}\right) & =\widehat{H}_{1}\left(1, \omega_{2}\right)=\widehat{H}_{1}\left(1, \omega_{3}\right)=\widehat{H}_{1}\left(1, \omega_{4}\right) .
\end{aligned}
$$

Hence, for $\omega \in\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$

$$
\widehat{H}_{0}(1, \omega)=\frac{(30 r-2) v}{(1+5 r)(3-5 r)}, \quad \widehat{H}_{1}(1, \omega)=\frac{(1+r)(1-5 r) v}{(1+5 r)(3-5 r)} .
$$

Optimal portfolio problem

Example 37

To double check

$$
\begin{aligned}
\widehat{v}(0) & =\widehat{H}_{0}(1) B(0)+\widehat{H}_{1}(1) S(0) \\
& =\frac{(30 r-2) v}{(1+5 r)(3-5 r)}+\frac{(1+r)(1-5 r) v}{(1+5 r)(3-5 r)} 5 \\
& =v \frac{30 r-2+(1+r)(1-5 r) 5}{(1+5 r)(3-5 r)} \\
& =v \frac{30 r-2+5-25 r+5 r-25 r^{2}}{3-5 r+15 r-25 r^{2}} \\
& =v \frac{3+10 r-25 r^{2}}{3+10 r-25 r^{2}}=v .
\end{aligned}
$$

