Exercises 1

Professor: S. Ortiz-Latorre

Time value of money

- 1. $r \simeq 0.0133 = 1.33\%$ and $R(0, 61/365) \simeq 0.0022 = 0.22\%$.
- 2. $t \simeq 0.4167$ years or $t \simeq 152.096$ days. $R(0,t) \simeq 0.0375 = 3.75\%$.
- 3. $P \simeq 98,044.5 \text{ NOK}.$
- 4. $t \simeq 11.5534$ years or roughly 11 years and 202 days.
- 5. a) V(2) = 121,000 NOK and b) V(2) = 121,551 NOK.
- 6. a) $V(0) \simeq 674.025$ NOK and b) V(0) = 760.449 NOK.
- 7. $R(0,1)=\left(1+\frac{r}{m}\right)^m>1+r$, when r>0 and $m\geq 2, m\in\mathbb{N}$. It can be proved by expanding R(0,1) using the binomial formula.
- 8. In general, let assume N years, interest rate r and amount borrowed P. Then the formula for each instalment is

$$C = \frac{rP}{1 - (1 + r)^{-N}}.$$

The outstanding balance remaining after n-1 instalments is

$$P\frac{(1+r)^N - (1+r)^{n-1}}{(1+r)^N - 1}.$$

The interest included in the nth instalment is

$$P\frac{(1+r)^N - (1+r)^{n-1}}{(1+r)^N - 1}r.$$

The capital repaid as part of the nth instalment is

$$P\frac{r(1+r)^{n-1}}{(1+r)^N - 1}.$$

- 9. $V(0) \simeq 449,409 \text{ NOK}.$
- 10. $V(40) \simeq 1.4496 \times 10^6$ NOK.
- 11. The present value of n such payments is given by $C \frac{1 \left(\frac{1+g}{1+r}\right)^n}{r-g}$ and the present value of an infinite stream of such payments is given by $C \frac{1}{r-g}$, provided g < r.
- 12. Setting 1626 as t = 0, a) $V(392) \simeq 7.80518 \times 10^9$ and b) $V(392) \simeq 4.85754 \times 10^9$.
- 13. $r \simeq 0.102587 \simeq 10.26\%$.
- 14. r = 0.18 = 1.8%.
- 15. $r \simeq 0.1194 = 11.94\%$.
- 16. $V(0) = C \frac{1 (1 + r_e)^{-n}}{(1 + r_e)^{1/12} 1}$.
- 17. The implied annual compounding rate is $r_1 \simeq 0.118605 \simeq 11.86\%$, the implied semi-annual compounding rate is $r_2 \simeq 0.115283 \simeq 11.53\%$ and the implied continuous compounding implied rate is $r_c \simeq 0.112083 \simeq 11.20\%$.
- 18. $R(0.75/365) \simeq 0.0242 \simeq 2.42\%$.
- 19. $r \simeq 0.1353 = 13.53\%$.
- 20. t = 0.5851 years or 213.6 days.