Time value of money

1. $r \simeq 0.0133=1.33 \%$ and $R(0,61 / 365) \simeq 0.0022=0.22 \%$.
2. $t \simeq 0.4167$ years or $t \simeq 152.096$ days. $R(0, t) \simeq 0.0375=3.75 \%$.
3. $P \simeq 98,044.5$ NOK.
4. $t \simeq 11.5534$ years or roughly 11 years and 202 days.
5. a) $V(2)=121,000$ NOK and b) $V(2)=121,551$ NOK.
6. a) $V(0) \simeq 674.025$ NOK and b) $V(0)=760.449$ NOK.
7. $R(0,1)=\left(1+\frac{r}{m}\right)^{m}>1+r$, when $r>0$ and $m \geq 2, m \in \mathbb{N}$. It can be proved by expanding $R(0,1)$ using the binomial formula.
8. In general, let assume N years, interest rate r and amount borrowed P. Then the formula for each instalment is

$$
C=\frac{r P}{1-(1+r)^{-N}} .
$$

The outstanding balance remaining after $n-1$ instalments is

$$
P \frac{(1+r)^{N}-(1+r)^{n-1}}{(1+r)^{N}-1}
$$

The interest included in the nth instalment is

$$
P \frac{(1+r)^{N}-(1+r)^{n-1}}{(1+r)^{N}-1} r .
$$

The capital repaid as part of the nth instalment is

$$
P \frac{r(1+r)^{n-1}}{(1+r)^{N}-1} .
$$

9. $V(0) \simeq 449,409$ NOK.
10. $V(40) \simeq 1.4496 \times 10^{6} \mathrm{NOK}$.
11. The present value of n such payments is given by $C \frac{1-\left(\frac{1+g}{1+r}\right)^{n}}{r-g}$ and the present value of an infinite stream of such payments is given by $C \frac{1}{r-g}$, provided $g<r$.
12. Setting 1626 as $t=0$, a) $V(392) \simeq 7.80518 \times 10^{9}$ and b) $V(392) \simeq 4.85754 \times 10^{9}$.
13. $r \simeq 0.102587 \simeq 10.26 \%$.
14. $r=0.18=1.8 \%$.
15. $r \simeq 0.1194=11.94 \%$.
16. $V(0)=C \frac{1-\left(1+r_{e}\right)^{-n}}{\left(1+r_{e}\right)^{1 / 12}-1}$.
17. The implied annual compounding rate is $r_{1} \simeq 0.118605 \simeq 11.86 \%$, the implied semi-annual compounding rate is $r_{2} \simeq 0.115283 \simeq 11.53 \%$ and the implied continuous compounding implied rate is $r_{c} \simeq 0.112083 \simeq 11.20 \%$.
18. $R(0,75 / 365) \simeq 0.0242 \simeq 2.42 \%$.
19. $r \simeq 0.1353=13.53 \%$.
20. $t=0.5851$ years or 213.6 days.
