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1. M is a martingale if and only if M is an F-adapted process satisfying

E [M (t+ s)| Ft] = M (t) , t, s ≥ 0. (1)

Prove that is equivalent to

E [M (t+ 1)| Ft] = M (t) , t = 0, ..., T − 1. (2)

(a) That (1) implies (2) follows from setting s = 1 in (1).

(b) That (2) implies (1) follows by applying several times the tower property of
the conditional expectation, that is, if G1 ⊆ G2 then

E [X| G1] = E [E [X| G2]| G1] = E [E [X| G1]| G2] . (3)

Since F is a filtration wehave that Ft ⊆ Ft+1, t = 0, ..., T−1. Fix t ∈ {0, ..., T}
and s ∈ {0, ..., T − t}, then

E [M (t+ s)| Ft]
(3)
= E [E [M (t+ s)| Ft+s−1]| Ft]
(2)
= E [M (t+ s− 1)| Ft]
(3)
= E [E [M (t+ s− 1)| Ft+s−2]| Ft]
(2)
= E [M (t+ s− 2)| Ft]

...

(3)
= E [E [M (t+ 2)| Ft+1]| Ft]
(2)
= E [M (t+ 1)| Ft]
(2)
= M (t) .
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(c) To prove that a martingale has constant expectation with value E[M (0)] note
that

E[M (0)] = E[E [M (t)| F0]] = E [M (t)] ,

where in the first equality we have used (1) and in the second equality we
have used the law of total expectation (E [E [X| G]] = E [X]). Moreover, note
that if F0 = {∅,Ω} , then M (0) is a constant and E[M (0)] = M (0) .

2. To prove that the process M = {M (t)}t=0,...,T defined by

M (0) = 0,

M (t) =

t∑
u=1

H (u) (S (u)− S (u− 1)) ,

is a martingale first we have to prove that M (t) is F-adapted. First note that if X
and Y are G-measurable with respect to an algebra G on Ω, then XY and X + Y
are G-measurable. The process H is predictable and, in particular, adapted to F.
The process S is adapted to F because it is an F-martingale, moreover S (u− 1)
is also Fu-measurable because Fu−1 ⊆ Fu. Therefore, H (u) (S (u)− S (u− 1)) is
Fu-measurable for u ≤ t . As F is a filtration, Fu ⊆ Ft, and we can conclude
that M (t) is Ft-measurable and, hence, M is F-adapted. To prove the martingale
property, first note that

M (t+ 1) = M (t) +H (t+ 1) (S (t+ 1)− S (t)) . (4)

Then,

E [M (t+ 1)| Ft]
(a)
= E [M (t) +H (t+ 1) (S (t+ 1)− S (t))| Ft]
(b)
= E [M (t)| Ft] + E [H (t+ 1) (S (t+ 1)− S (t))| Ft]
(c)
= M (t) +H (t+ 1)E [ (S (t+ 1)− S (t))| Ft]
(d)
= M (t) ,

where we have used: (a) Equation (4), (b) Linearity of the conditional expectation,
(c) H (t+ 1) is Ft-measurable and it can factor out of E [ ·| Ft], (d) S is a martingale
and, therefore,

E [S (t+ 1)| Ft] = S (t)⇐⇒ E [ (S (t+ 1)− S (t))| Ft] = 0.

3. Let X be a random variable on a finite probability space (Ω,F , P ), F a filtration
on Ω. We have to prove that Y = {Y (t) = E [X| Ft]} is a martingale. That Y is F-
adapted is trivial, because by definition E [X| Ft] is Ft-measurable, which implies
that Y (t) is Ft-measurable. To show the martingale property we can write

E [Y (t+ 1)| Ft]
(a)
= E [E [X| Ft+1]| Ft]

(b)
= E [X| Ft]

(a)
= Y (t) , t = 0, ..., T − 1,
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where we have used: (a) Definition of Y , (b) That Ft ⊆ Ft+1 and the tower law of
conditional expectation.

4. Let X be a random variable on a finite probability space (Ω,F , P ), G an algebra
on Ω and ϕ : R→ R a convex function.

(a) We have to prove that

ϕ (E [X| G] (ω)) ≤ E [ϕ (X)| G] (ω) , ω ∈ Ω. (5)

Note that if ϕ is convex then for any 0 ≤ αi ≤ 1, i = 1, ..., N such that∑N
i=1 αi = 1 we have

ϕ

(
N∑
i=1

αixi

)
≤

N∑
i=1

αiϕ (xi) . (6)

Let {A1, ..., Am} be the partition on Ω such that G = a ({A1, ..., Am}). Then,

E [X| G] (ω) =
m∑
i=1

E [X|Ai]1Ai (ω) =
m∑
i=1

E [X1Ai ]

P (Ai)
1Ai (ω) , (7)

and

E [ϕ (X)| G] (ω) =

m∑
i=1

E [ϕ (X)|Ai]1Ai (ω) =

m∑
i=1

E [ϕ (X)1Ai ]

P (Ai)
1Ai (ω) . (8)

To check (5) take an arbitrary ω̂∈ Ω and let j be the unique index in {1, ...,m}
such that ω̂ ∈ Aj , then

ϕ (E [X| G] (ω̂))
(a)
= ϕ

(
m∑
i=1

E [X1Ai ]

P (Ai)
1Ai (ω̂)

)
(b)
= ϕ

(
E
[
X1Aj

]
P (Aj)

)

(c)
= ϕ

∑
ω∈Aj

X (ω)
P (ω)

P (Aj)

 (d)
=
∑
ω∈Aj

ϕ (X (ω))
P (ω)

P (Aj)

(e)
=

E
[
ϕ (X)1Aj

]
P (Aj)

(b)
=

m∑
i=1

E [ϕ (X)1Ai ]

P (Ai)
1Ai (ω̂)

(f)
= E [ϕ (X)| G] (ω̂) ,

where we have used: (a) The expression in (7), (b) 1Ai (ω̂) ≡ 0 if i 6=
j and 1Aj (ω̂) ≡ 1, (c) We compute E

[
X1Aj

]
, (d) We apply (6) , taking

into account that 0 < P (ω)
P (Aj)

< 1 and
∑

ω∈Ai
P (ω)
P (Aj)

= 1, (e) We have that∑
ω∈Aj ϕ (X (ω))P (ω) = E

[
ϕ (X)1Aj

]
, (f) The expression in (8).
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(b) We have to prove that if Y = {Y (t)}t=0,...,T is a F-martingale then Z =
{Z (t) = ϕ (Y (t))}t=0,...,T is a F-submartingale. For every t = 0, ..., T,Z (t) is
a (Y (t))-measurable because Z (t) is obtained applying a measurable function
to Y (t) (alternatively, Z (t) is constant on the elements of the partition πY (t)

and, therefore, πZ(t) ⊆ πY (t) and a (Z (t)) ⊆ a (Y (t))). Since Y (t) is Ft-
measurable, a (Z (t)) ⊆ a (Y (t)) ⊆ Ft , Z (t) is Ft-measurable and Z is F-
adapted. To prove the submartingale property, note that

E [Z (t+ 1)| Ft]
(a)
= E [ϕ (Y (t+ 1))| Ft]

(b)

≥ ϕ (E [Y (t+ 1)| Ft])
(c)
= ϕ (Y (t))

(a)
= Z (t) ,

where we have used: (a) Definition of Z, (b) The property of conditional
expectation proved in the previous section, (c) Y is a martingale.

5. Let (Ω,F , P ) be a finite probability space , F a filtration on Ω such that F = FT ,
Q a probability measure on Ω such that Q > 0 and L the stochastic process defined
by

L =

{
L (t) = E

[
Q

P

∣∣∣∣Ft]}
t=0,...,T

(a) We have to show that L > 0 and L (0) = 1. We will first show that if X is a
strictly positive random variable and G is an algebra on Ω, then E [X| G] is
a strictly positive random variable. Let A := {ω ∈ Ω : E [X| G] (ω) = 0} . We
want to show that A = ∅. Suppose that A 6= ∅. Note that A ∈ G, because
E [X| G] is G-measurable and, therefore,

A = E [X| G]−1 (0) ∈ a (E [X| G]) ⊆ G.

Moreover, E [X| G]1A ≡ 0 and, hence, E [E [X| G]1A] = 0. But, on the other
hand,

E [E [X| G]1A]
(a)
= E [X1A]

(b)
=
∑
ω∈A

X (ω)P (ω)
(c)
> 0,

where we have used: (a) Definition of conditional expectation and A ∈ G, (b)
Definition of expectation, (c) X (ω) > 0 and P (ω) > 0. Hence we have a
contradiction and we can conclude that A = ∅ and E [X| G] (ω) > 0, ω ∈ Ω.
Finally, using the results in Exercise 1, we get

L (0) = E
[
Q

P

∣∣∣∣F0

]
= E

[
Q

P

]
= EQ [1] = 1.

(b) We have to prove the formula

EQ [W | Ft] =
E [WL (T )| Ft]

L (t)
.
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First note that, Q
P is F-measurable and, since F = FT , Q

P is FT -measurable,

L (T ) = Q
P . Then, note that E [WL (T )| Ft]L−1 (t) is Ft-measurable because

it is the quotient of two Ft-measurable random variables and it is well defined
because L (t) > 0. To prove the property defining the conditional expectation,
let A ∈ Ft, then

EQ
[
E [WL (T )| Ft]

L (t)
1A

]
(a)
= E

[
L (T )

E [WL (T )| Ft]
L (t)

1A

]
(b)
= E

[
E
[
L (T )

E [WL (T )| Ft]
L (t)

1A

∣∣∣∣Ft]]
(c)
= E

[
E [L (T )| Ft]

E [WL (T )| Ft]
L (t)

1A

]
(d)
= E [E [WL (T )| Ft]1A]

(e)
= E [WL (T )1A]

(a)
= EQ [W1A] ,

where we have used: (a) Definition of EQ [·] and L (T ) = Q
P , (b) Law of total

expectation, (c) E [WL (T )| Ft]L−1 (t)1A is Ft-measurable and factors out of
E [ ·| Ft], (d) L (t) = E [L (T )| Ft], (e) 1A is Ft-measurable and goes in E [ ·| Ft]
and then the law of total expectation.

(c) First we prove the implication ⇒). We have that Z = XL is F-adapted be-
cause it is the product of two F-adapted processes. Regarding the martingale
condition, we have that

E [X (t+ 1)L (t+ 1)| Ft]
(a)
= E [X (t+ 1)E [L (T )| Ft+1]| Ft]
(b)
= E [E [X (t+ 1)L (T )| Ft+1]| Ft]
(c)
= E [X (t+ 1)L (T )| Ft]
(d)
=

E [X (t+ 1)L (T )| Ft]
L (t)

L (t)

(e)
= EQ [X (t+ 1)| Ft]L (t)

(f)
= X (t)L (t) ,

where we have used: (a) Definition of the process L, (b) X (t+ 1) is Ft+1-
measurable and goes in E [ ·| Ft+1], (c) Tower law, (d) Divide and multiply
by L (t) , (e) Formula for the conditional expectation under Q, (f) X is a
martingale under Q.
Next we prove the implication⇐). We have that X = Z/L is F-adapted
because it is the quotient of two F-adapted processes with strictly positive
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denominator. Regarding the martingale condition, we have that

EQ [X (t+ 1)| Ft]
(a)
=

E [X (t+ 1)L (T )| Ft]
L (t)

(b)
=

E [X (t+ 1)E [L (T )| Ft+1]| Ft]
L (t)

(c)
=

E [X (t+ 1)L (t+ 1)| Ft]
L (t)

(d)
=
X (t)L (t)

L (t)
= X (t) ,

where we have used: (a) Formula for the conditional expectation under Q,
(b) Tower law and X (t+ 1) is Ft+1-measurable and goes out E [ ·| Ft+1], (c)
Definition of the process L, (d)XL is a martingale under P .

6. We have a multiperiod market with T = 2,K = 5, r = 0, N = 1, S (0) = 6, S (1) =
(5, 5, 5, 7, 7)T and S (2) = (3, 4, 8, 6, 8)T . We first compute the partitions associated
to S (0) , S (1) and S (2) . We have

πS(0) = {S (0) = 6} = {Ω} ,
πS(1) = {{S (1) = 5} , {S (1) = 7}} = {{ω1, ω2, ω3} , {ω4, ω5}} =: {A1,1, A1,2} ,
πS(2) = {{S (2) = 3} , {S (2) = 4} , {S (2) = 6} , {S (2) = 8}} = {{ω1} , {ω2} , {ω5} , {ω3, ω4}}

=: {A2,1, A2,2, A2,3, A2,4} .

The partitions associated to (S (0) , S (1)) and to (S (0) , S (1) , S (2)) are given by

π(S(0),S(1)) = πS(0) ∩ πS(1) = {Ω ∩A1,1,Ω ∩A1,1} = {A1,1, A1,2} ,
π(S(0),S(1),S(2)) = πS(0) ∩ πS(1) ∩ πS(2) = πS(0),S(1) ∩ πS(2)

= {A1,1 ∩A2,1, A1,1 ∩A2,2, A1,1 ∩A2,3, A1,1 ∩A2,4

, A1,2 ∩A2,1, A1,2 ∩A2,2, A1,2 ∩A2,3, A1,2 ∩A2,4}
= {{ω1} , {ω2} , ∅, {ω3} , ∅, ∅, {ω5} , {ω4}}
= {{ω1} , {ω2} , {ω3} , {ω4} , {ω5}} .

The filtrations are given by

F0 = a (S1 (0)) = a ({Ω}) = {∅,Ω} ,
F1 = a (S1 (0) , S1 (1)) = a ({A1,1, A1,2}) = {∅,Ω, A1,1, A1,2} = {∅,Ω, {ω1, ω2, ω3} , {ω4, ω5}} ,
F2 = a (S1 (0) , S1 (1) , S1 (2)) = a ({{ω1} , {ω2} , {ω3} , {ω4} , {ω5}}) = P (Ω) ,

where P (Ω) is the set of all subsets of Ω. Since r = 0, we have that S∗ (t) =
S (t) , t = 0, 1, 2. We have to find the set of probability measures Q such that
S∗ = {S∗ (t)}t=0,1,2 is a martingale under Q.
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• For t = 1, we have that

S (0) = S∗ (0) = EQ [S∗ (1)| F0] = EQ [S∗ (1)] = EQ [S (1)] ,

if and only if
6 = 5 (Q1 +Q2 +Q3) + 7 (Q4 +Q5) .

• For t = 2, we have that

51A1,1 + 71A1,2 = S (1) = S∗ (1) = EQ [S∗ (2)| F1] = EQ [S (2)| F1]

= EQ [S (2)|A1,1]1A1,1 + EQ [S (2)|A1,2]1A1,2 ,

where

EQ [S (2)|A1,1] =
EQ
[
S (2)1A1,1

]
EQ
[
1A1,1

] =
3Q1 + 4Q2 + 8Q3

Q1 +Q2 +Q3
,

and

EQ [S (2)|A1,2] =
EQ
[
S (2)1A1,2

]
EQ
[
1A1,2

] =
6Q4 + 8Q5

Q4 +Q5
.

Then we get the equations

5 =
3Q1 + 4Q2 + 8Q3

Q1 +Q2 +Q3
,

7 =
6Q4 + 8Q5

Q4 +Q5
.

Combining the previous equations with the fact that Q must be a probability
measure we obtain the following set of equations

6 = 5 (Q1 +Q2 +Q3) + 7 (Q4 +Q5) , (9)

0 = 2Q1 +Q2 − 3Q3, (10)

0 = Q4 −Q5, (11)

1 = Q1 +Q2 +Q3 +Q4 +Q5. (12)

From (11) we get Q4 = Q5. Combining (11) and (12) we obtain

Q4 +Q5 = 1−Q1 −Q2 −Q3, (13)

and pluggin the previous expression for Q4 +Q5 to (9) we get

1 = 2Q1 + 2Q2 + 2Q3. (14)

From (10) we have that Q2 = −2Q1 + 3Q3 and plugging this expression in (14)
gives

1 = −2Q1 + 8Q3 ⇔ Q3 =
1 + 2Q1

8
.
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Hence,

Q2 = −2Q1 + 3

(
1 + 2Q1

8

)
=

3− 10Q1

8

and using (13) and we get

Q4 +Q5 = 1−Q1 −
3− 10Q1

8
− 1 + 2Q1

8

=
8− 3− 1−Q1 (8− 10 + 2)

8
=

1

2
,

which combined with Q4 = Q5 yields Q4 = Q5 = 1
4 . Finally, imposing that Q1 >

0, Q2 > 0 we get

Q2 > 0⇐⇒ Q1 <
3

10
,

and the set of all martingale measures M is given by

M =

{
Q =

(
Q1,

3− 10Q1

8
,
1 + 2Q1

8
,
1

4
,
1

4

)
, 0 < Q1 <

3

10

}
λ=2Q1

=

{
Qλ =

(
λ

2
,
3− 5λ

8
,
1 + λ

8
,
1

4
,
1

4

)
, 0 < λ <

3

5

}
.

Let X be an arbitrary contingent claim. Since M 6= ∅, we know that X is attainable
if and only if EQ [X/B (2)] is constant with respect to Q ∈M . Then,

EQ [X/B (2)] = EQ [X] = X1
λ

2
+X2

3− 5λ

8
+X3

1 + λ

8
+X4

1

4
+X5

1

4

= λ

(
X1

2
− 5X2

8
+
X3

8

)
+

3X2

8
+
X3

8
+

1

4
(X4 +X5) .

The previous expression does not depend on λ if and only if

X1

2
− 5X2

8
+
X3

8
= 0⇐⇒ 4X1 − 5X2 +X3 = 0.

The claim X = (2, 1, 1, 2, 3)T is not attainable because

4X1 − 5X2 +X3 = 4× 2− 5× 1 + 1 = 4 6= 0.

Hence, there is an interval of arbitrage free prices [V− (X) , V+ (X)], where V− (X)
is the lower hedging price of X and V+ (X) is the upper hedging price of X.
Moreover, we know that

V− (X) = inf
Q∈M

{
EQ
[

X

B (2)

]}
= inf

λ∈(0, 35)

{
EQλ

[
X

B (2)

]}
,
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and

V+ (X) = sup
Q∈M

{
EQ
[

X

B (2)

]}
= sup

λ∈(0, 35)

{
EQλ

[
X

B (2)

]}
.

We have that

EQλ

[
X

B (2)

]
= EQλ [X] = λ

(
2

2
− 5

8
+

1

8

)
+

3

8
+

1

8
+

1

4
(2 + 3)

=
λ

2
+

7

4
.

The previous computation yields

V− (X) = inf
λ∈(0, 35)

{
λ

2
+

7

4

}
=

0

2
+

7

4
=

7

4
,

V+ (X) = sup
λ∈(0, 35)

{
λ

2
+

7

4

}
=

1

2

3

5
+

7

4
=

41

20
.

7. Consider a 2-period market with Ω = {ω1, ..., ω4} ,P = (1/4, 1/4, 1/4, 1/4)T , r = 0,
and one risky security with S (0) = 5,

S (1) = (8, 8, 4, 4)T , S (2) = (9, 6, 6, 3)T .

We have to compute the optimal attainable wealth, the optimal objective value,
and the optimal trading strategy under the utility function U (u) = −u−1. We first
compute the partitions associated to S (0) , S (1) and S (2) . We have

πS(0) = {S (0) = 5} = {Ω} ,
πS(1) = {{S (1) = 4} , {S (1) = 8}} = {{ω3, ω4} , {ω1, ω2}} =: {A1,1, A1,2} ,
πS(2) = {{S (2) = 3} , {S (2) = 6} , {S (2) = 9}} = {{ω4} , {ω2, ω3} , {ω1}} =: {A2,1, A2,2, A2,3} .

The partitions associated to (S (0) , S (1)) and to (S (0) , S (1) , S (2)) are given by

π(S(0),S(1)) = πS(0) ∩ πS(1) = {Ω ∩A1,1,Ω ∩A1,1} = {A1,1, A1,2} ,
π(S(0),S(1),S(2)) = πS(0) ∩ πS(1) ∩ πS(2) = πS(0),S(1) ∩ πS(2)

= {A1,1 ∩A2,1, A1,1 ∩A2,2, A1,1 ∩A2,3, A1,2 ∩A2,1, A1,2 ∩A2,2, A1,2 ∩A2,3}
= {{ω4} , {ω3} , ∅, ∅, {ω2} , {ω1}} = {{ω1} , {ω2} , {ω3} , {ω4}} .

The filtrations are given by

F0 = a (S (0)) = a ({Ω}) = {∅,Ω} ,
F1 = a (S (0) , S (1)) = a ({A1,1, A1,2}) = {∅,Ω, A1,1, A1,2} ,
F2 = a (S (0) , S (1) , S (2)) = a ({{ω1} , {ω2} , {ω3} , {ω4}}) = P (Ω) ,

where P (Ω) is the set of all subsets of Ω.
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This market is the same as Example 7.12 seen in class. Hence, we know that, given r,
there exist a unique martingale measure Q given by

Q =

(
(1 + 5r) (2 + 8r)

12
,
(1 + 5r) (1− 8r)

12
,
(3− 5r) (1 + 4r)

12
,
(3− 5r) (2− 4r)

12

)T
.

As in this exercise r = 0, we get that

Q =

(
1

6
,

1

12
,
1

4
,
1

2

)T
.

Since M = {Q} the market is arbitrage free and complete, due to the first and second
fundamental theorem of asset pricing. Then, we can use the martingale method to solve
the optimal portfolio problem. In this setup, M = {Q}, the martingale method consists
in the following two steps:

1. We first solve the constrained optimization problem

max
W

E [U (W )]

subject to EQ
[
W

B (2)

]
= v,

and obtain the optimal attainable wealth Ŵ .

2. Given Ŵ , we find the optimal trading strategy Ĥ such that its associated value
process V̂ replicates Ŵ , that is, V̂ (2) = Ŵ .

The previous constrained problem can be solved using the Lagrange multipliers method.
The optimal attainable wealth Ŵ is given by

Ŵ = I

(
λ̂L

B (2)

)
,

where I is the inverse of U ′ (u), L is the state-price density vector L = Q
P , B (2) is the

price of the risk-less asset at time 2 and λ̂ is the optimal Lagrange multiplier associated

to the constraint EQ
[
W
B(2)

]
= v. Taking into account that r = 0,U (u) = −u−1, P =(

1
4 ,

1
4 ,

1
4 ,

1
4

)T
and Q =

(
1
6 ,

1
12 ,

1
4 ,

1
2

)T
,we have that

i = U ′ (u) = u−2 ⇐⇒ I (i) = u = i−1/2,

L =

(
1
6
1
4

,
1
12
1
4

,
1
4
1
4

,
1
2
1
4

)T
=

(
2

3
,
1

3
, 1, 2

)T
,

B (2) = 1,
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which yield Ŵ =
(
λ̂L
)−1/2

. The optimal Lagrange multiplier λ̂ satisfies the equation

v = EQ

[
Ŵ

B (2)

]
= EQ

I
(

λ̂L
B(2)

)
B (2)

 = EQ
[(
λ̂L
)−1/2]

=
(
λ̂
)−1/2

EQ
[
L−1/2

]
.

Therefore, we get

λ̂ =

(
EQ
[
L−1/2

]
v

)2

, Ŵ = v
L−1/2

EQ
[
L−1/2

] ,
and the optimal expected utility is given by

E
[
U
(
Ŵ
)]

= E

−(v L−1/2

EQ
[
L−1/2

])−1
 = −v−1

E
[
L1/2

]
EQ
[
L−1/2

]−1 = −v−1
(
EQ
[
L−1/2

])2
,

where we have used that E
[
L1/2

]
= E

[
LL−1/2

]
= EQ

[
L−1/2

]
. Next we need to compute

L−1/2 and EQ
[
L−1/2

]
. We have that

L−1/2 =

((
2

3

)−1/2
,

(
1

3

)−1/2
, (1)−1/2 , (2)−1/2

)T

=

(√
3

2
,
√

3, 1,

√
1

2

)T
,

and

EQ
[
L−1/2

]
=

√
3

2

1

6
+
√

3
1

12
+ 1

1

4
+

√
1

2

1

2
=

1

12

(
1 +
√

2
)(

3 +
√

3
)
,

which yield

E
[
U
(
Ŵ
)]

= −v−1
(

1

12

(
1 +
√

2
)(

3 +
√

3
))2

= − 1

24v

(
3 + 2

√
2
)(

2 +
√

3
)
.

and

Ŵ =



12v

(1+
√
2)(3+

√
3)

√
3
2

12v

(1+
√
2)(3+

√
3)

√
3

12v

(1+
√
2)(3+

√
3)

1

12v

(1+
√
2)(3+

√
3)

√
1
2

 =


v3
(
2−
√

2
) (√

3− 1
)

v6
(√

2− 1
) (√

3− 1
)

v2
(√

2− 1
) (

3−
√

3
)

v6
(
2−
√

2
) (

3 +
√

3
)−1

 .
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Finally, we have to compute the optimal trading strategy Ĥ =

{(
Ĥ0 (t) , Ĥ1 (t)

)T}
t=1,2

,

that is, a self-financing and predictable process such that its asociated value process V̂
satisfies V̂ (2) = Ŵ . We first compute the discounted increments of the risky asset

∆S∗ (2) = ∆S (2) = (1,−2, 2,−1)T ,

∆S∗ (1) = ∆S (1) = (3, 3,−1,−1)T .

• For t = 2, using that Ĥ must be self-financing we have that Ŵ = Ŵ
B(2) = Ŵ ∗ =

V̂ ∗ (1) + Ĥ1 (2) ∆S∗ (2).

– Assuming that ω ∈ A1,1 = {ω3, ω4} and the predictability of Ĥ we get the
equations

v2
(√

2− 1
)(

3−
√

3
)

= Ŵ3 = V̂ ∗ (1, ω3) + Ĥ1 (2, ω3)× 2,

v6
(

2−
√

2
)(

3 +
√

3
)−1

= Ŵ4 = V̂ ∗ (1, ω4) + Ĥ1 (2, ω4)× (−1) ,

V̂ ∗ (1, ω3) = V̂ ∗ (1, ω4) ,

Ĥ1 (2, ω3) = Ĥ1 (2, ω4) ,

which, using that r = 0, yield

V̂ ∗ (1, ω3) = V̂ ∗ (1, ω4) = V̂ (1, ω3) = V̂ (1, ω4) = 4
(

3 +
√

3
)−1

v,

Ĥ1 (2, ω3) = Ĥ1 (2, ω4) =
(

6
√

2− 8
)(

3 +
√

3
)−1

v.

– Assuming that ω ∈ A1,2 = {ω1, ω2} and the predictability of Ĥ we get the
equations

v3
(

2−
√

2
)(√

3− 1
)

= Ŵ1 = V̂ ∗ (1, ω1) + Ĥ1 (2, ω1)× 1,

v6
(√

2− 1
)(√

3− 1
)

= Ŵ2 = V̂ ∗ (1, ω2) + Ĥ1 (2, ω2)× (−2) ,

V̂ ∗ (1, ω1) = V̂ ∗ (1, ω2) ,

Ĥ1 (2, ω1) = Ĥ1 (2, ω2) ,

which, using that r = 0, yield

V̂ ∗ (1, ω1) = V̂ ∗ (1, ω2) = V̂ (1, ω1) = V̂ (1, ω2) = 2
(√

3− 1
)
v,

Ĥ1 (2, ω1) = Ĥ1 (2, ω2) =
(

4− 3
√

2
)(√

3− 1
)
v.
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• For t = 1, the predictability assumption implies that Ĥ1 (1) is constant. Moreover,
using that Ĥ must be self-financing we have that V̂ ∗ (1) = V̂ ∗ (0) + Ĥ1 (1) ∆S∗ (1)
and we get the following two equations

4
(

3 +
√

3
)−1

v = V̂ ∗ (1, ω) = V̂ ∗ (0) + Ĥ1 (1)× (−1) , (for ω ∈ A1,1)

2
(√

3− 1
)
v = V̂ ∗ (1, ω) = V̂ ∗ (0) + Ĥ1 (1)× (3) , (for ω ∈ A1,2)

which, using that r = 0, yield

V̂ ∗ (0) = V̂ (0) = v, Ĥ1 (1) =
2−
√

3√
3

v.

• Finally we compute Ĥ0 (1) and Ĥ0 (2) from the definition of value process. We
have

Ĥ0 (1) = V̂ ∗ (0)− Ĥ1 (1)S∗ (0) = v −
(
2−
√

3
)

√
3

v × 5,

=
6
√

3− 10√
3

v

and

Ĥ0 (2, ω) = V̂ ∗ (1, ω)− Ĥ1 (2, ω)S∗ (1, ω)

=

{
4
(
3 +
√

3
)−1

v −
(
6
√

2− 8
) (

3 +
√

3
)−1

v × 4 if ω ∈ A1,1

2
(√

3− 1
)
v −

(
4− 3

√
2
) (√

3− 1
)
v × 8 if ω ∈ A1,2

=

{
(36− 24

√
2)
(
3 +
√

3
)−1

v if ω ∈ A1,1

6
(√

3− 1
) (

4
√

2− 5
)
v if ω ∈ A1,2
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