UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in: \quad STK-MAT3700/4700 - An Introduction to Mathematical Finance
Day of examination: Thursday 26. November 2020
Examination hours: 15.00-19.00
This problem set consists of 4 pages.
Appendices: All
Permitted aids: All

Please make sure that your copy of the problem set is

 complete before you attempt to answer anything.
Problem 1

a (weight 10p)
After how many days will a zero-coupon bond purchased at time zero for $B(0,1)=0.93$ produce a 4% return? Assume there are 365 days in a year.
b (weight 10p)
Let $F(t, T), t \in[0, T]$ denote the forward price in a forward contract (on a non-paying dividends stock) starting at time t and with delivery date T. Let $V(t)$ be the time t value of a forward contract initiated at time zero. Show that if

$$
V(t)<(F(t, T)-F(0, T)) e^{-r(T-t)},
$$

then you can make a risk free profit.

c (weight 10p)

Explain how to construct a butterfly spread. Write a table showing the profits given by this strategy in terms of the price of the stock at expiry time. You may assume that the interest rate is zero.

Problem 2

Consider a one-period market, with $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$ and prices given by $B(0)=$ $1, S_{1}(0)=7, S_{2}(0)=8$ and

$$
B(1)=\left(\begin{array}{c}
\frac{9}{8} \\
\frac{9}{8} \\
\frac{9}{8} \\
\frac{9}{8}
\end{array}\right), \quad S_{1}(1)=\left(\begin{array}{c}
9 \\
\frac{45}{4} \\
\frac{27}{4} \\
\frac{27}{4}
\end{array}\right) \quad S_{2}(1)=\left(\begin{array}{c}
\frac{27}{2} \\
\frac{27}{4} \\
\frac{27}{4} \\
\frac{45}{4}
\end{array}\right) .
$$

a (weight 10p)

Find all risk neutral measures in this market. Is this market arbitrage-free? Justify your answer.
b (weight 10p)
Find all contingent claims $X=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{T}$ that are attainable in this market. Is this market complete? Justify your answer.
c (weight 10p)
Compute the arbritrage-free price (or prices) for $X=\max \left(0, S_{2}(1)-S_{1}(1)-9 / 4\right)$.
d (weight 5p)
Are the contingent claims of the form $Y=\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right)^{T}$, for non-negative numbers $Y_{1}=Y_{2}=Y_{3} \neq Y_{4}$, measurable with respecto to $\mathfrak{a}\left(S_{1}(1)\right)$? And with respect to $\mathfrak{a}\left(S_{2}(1)\right)$?

Problem 3

Consider a two-period market, with $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, probability measure $P=$ $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{T}$, interest rate $r=0$, and one risky asset $S_{1}=\left\{S_{1}(t)\right\}_{t=0,1,2}$ with prices given by

$$
S_{1}(0)=\left(\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right), \quad S_{1}(1)=\left(\begin{array}{l}
4 \\
4 \\
2 \\
2
\end{array}\right), \quad S_{1}(2)=\left(\begin{array}{l}
6 \\
1 \\
4 \\
1
\end{array}\right) .
$$

a (weight 5p)

Find the filtration generated by the price process $S_{1}=\left\{S_{1}(t)\right\}_{t=0,1,2}$. Discuss carefully the partitions associated to the price process and how they generate the algebras in the filtration.
b (weight 20 p)
Let $Q=\left(\frac{3}{10}, \frac{1}{5}, \frac{1}{6}, \frac{1}{3}\right)^{T}$ be the unique martingale measure on this market (you do not have to prove this). Consider the following optimal portfolio problem

$$
\begin{aligned}
& \max _{H \in \mathbb{H}} \mathbb{E}[U(V(2))] \\
& \text { subject to } V(0)=v,
\end{aligned}
$$

where v is a given non-negative real number, \mathbb{H} is the set of all self-financing and predictable trading strategies and $U(u)=2 u^{1 / 2}$. Compute the optimal attainable wealth, the optimal expected utility and the optimal trading strategy.

Problem 4

Let (Ω, \mathcal{F}, P) be a finite probability space.

a (weight 10p)

Let \mathcal{G} be an algebra and X be a random variable on Ω.
Give the abstract definition of conditional expectation of X given \mathcal{G}.
Prove that the following two statements are equivalent:

1. The random variable Z is the conditional expectation of X given \mathcal{G}.
2. The random variable Z is \mathcal{G}-measurable and satisfies $\mathbb{E}[(X-Z) Y]=0$, for all random variables Y that are \mathcal{G}-measurable.

b (weight 10p)

Define what is a martingale with respect to a filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0, \ldots ., T}$ under the probability measure P.

Let $\mathbb{G}=\left\{\mathcal{G}_{t}\right\}_{t=0, \ldots, T}$ be another filtration such that $\mathcal{G}_{t} \subseteq \mathcal{F}_{t}$. Prove that if M is an \mathbb{F}-martingale and M is \mathbb{G}-adapted, then M is also a \mathbb{G}-martingale.
c (weight 10p)
Consider the market model of Problem 3. Compute the variables of the stochastic process $A=\{A(t)\}_{t=0,1,2}$, such that

- $A(0)=0$;
(Continued on page 4.)
- A is predictable with respect to \mathbb{F}, the filtration generated by the price process;
- $M=\left\{M(t):=S_{1}^{2}(t)-A(t)\right\}_{t=0,1,2}$ is a martingale with respect to \mathbb{F}.

