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Problem 1

a (weight 10p)

The price of a zero-coupon bond at time t is given by B (t, T ) = e−r(T−t), where r is the
implied annual (continuous) compounding rate. Moreover, the return of this bond bond
over a period [s, t] ⊂ [0, T ] is given by

R (s, t) =
B (t, T )−B (s, T )

B (s, T )
=
e−r(T−t) − e−r(T−s)

e−r(T−s)
.

Here, we have s = 0, T = 1, B (0, 1) = 0.93 and R (0, t) = 0.04. Hence,

0.93 = B (0, 1) = e−r(1−0) ⇐⇒ r = − log (0.93) ' 0.0726 = 7.26%.

On the other hand,

R (0, t) =
e−r(1−t) −B (0, 1)

B (0, 1)
,

which yields

t = 1 +
log (B (0, 1) (1 +R (0, t)))

r

= 1 +
log (0.93 (1 + 0.04))

0.0726
' 0.5406 ' 197.3190 ' 198 days.

(Continued on page 2.)
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b (weight 10p)

Suppose that
V (t) < (F (t, T )− F (0, T )) e−r(T−t). (1)

Then, at time t:

• Borrow the amount V (t) .

• Pay V (t) to enter a long forward position with forward price F (0, T ).

• Take a short forward position with forward price F (t, T ) (at no cost).

Next, at time T :

• Close the forward positions, getting:

• S (T )− F (0, T ) for the long position,

• F (t, T )− S (T ) for the short position.

• Pay V (t) er(T−t) to settle the loan.

This will yield a risk free profit of

S (T )− F (0, T ) + F (t, T )− S (T )− V (t) er(T−t)

= F (t, T )− F (0, T )− V (t) er(T−t) > 0.

c (weight 10p)

Let 0 < K1 < K2 < K3. In this strategy you buy a call option with strike K1 (for
CE (0,K1)) and a call option with strike K3 (for CE (0,K3)) and sell two call options
with strike K2 (for 2CE (0,K2)). The profit of the strangle as a function of the final
price of the stock S (T ) is given by

P (S (T )) = (S (T )−K1)
+ + (S (T )−K3)

+ − 2 (S (T )−K2)
+ − C,

where C = CE (0,K1) + CE (0,K3) − 2CE (0,K2) is the initial cost of the strategy. In
this case, the table of profits is given by

S (T ) Profit

S (T ) < K1 −C

K1 ≤ S (T ) < K2 S (T )−K1 − C

K2 ≤ S (T ) < K3 2K2 −K1 − S (T )− C

K3 ≤ S (T ) 2K2 −K1 −K3 − C

(Continued on page 3.)
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Problem 2

a (weight 10p)

Let B denote the price process for the bank account. We have that B (0) = 1 and
B(1) = 9

8 . The discounted price processes for the risky assets are given by S∗1 (0) =

S1 (0) /B (0) = 7,S∗2 (0) = S2 (0) /B (0) = 8, S∗1 (1) = S1 (1) /B (1) = (8, 10, 6, 6)T and
S∗2 (1) /B (1) = (12, 6, 6, 10)T . A risk neutral probability measure Q=(Q1, Q2, Q3, Q4)

T

must satisfy the following conditions

EQ [S∗1 (1)] = S∗1 (0) ,

EQ [S∗2 (1)] = S∗2 (0) ,

which are equivalent to the following equations

8Q1 + 10Q2 + 6Q3 + 6Q4 = 7, (2)
6Q1 + 3Q2 + 3Q3 + 5Q4 = 4, (3)

Q1 +Q2 +Q3 +Q4 = 1 (4)

with the following restrictions Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0. From (4) we have that
Q4 = 1−Q1 −Q2 −Q3 and substituting this value in (2) and (3) we obtain

2Q1 + 4Q2 = 1, (5)
Q1 − 2Q2 − 2Q3 = −1. (6)

From (5) we get that Q2 =1−2Q1

4 . Substituting this value in (6) we get

Q1 − 2

(
1− 2Q1

4

)
− 2Q3 = −1⇐⇒ Q3 =

1 + 4Q1

4
,

and

Q4 = 1−Q1 −
1− 2Q1

4
− 1 + 4Q1

4
=

1− 3Q1

2
.

Hence, settingQ1 = λ, we getQλ =
(
λ, 1−2λ4 , 1+4λ

4 , 1−3λ2

)T . Finally, using the restrictions
Qi > 0, i = 1, ..., 4, we have the following conditions on the parameter λ

Q1 = λ > 0

Q2 =
1− 2λ

4
> 0⇐⇒ λ <

1

2
,

Q3 =
1 + 4λ

4
> 0⇐⇒ λ > −1

4
,

Q4 =
1− 3λ

2
> 0⇐⇒ λ <

1

3
,

(Continued on page 4.)
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which yield that λ ∈
(
0, 13
)
. Therefore, the set of risk neutral measures M is given by

M =

{
Qλ =

(
λ,

1− 2λ

4
,
1 + 4λ

4
,
1− 3λ

2

)T
, 0 < λ <

1

3

}

By the first fundamental theorem of asset pricing we know that the market is arbitrage
free because the set of risk neutral probability measures is non empty. Alternative
parametrizations of M are

M =

{
Qλ =

(
1− 4λ

2
, λ,

3− 8λ

4
,
12λ− 1

4

)T
,

1

12
< λ <

3

8

}

=

{
Qλ =

(
4λ− 1

4
,
3− 4λ

8
, λ,

7− 12λ

8

)T
,
1

4
< λ <

7

12

}

=

{
Qλ =

(
1− 2λ

3
,
1 + 4λ

12
,
7− 8λ

12
, λ

)T
, 0 < λ <

1

2

}
.

b (weight 10p)

By the second fundamental theorem of asset pricing we can conclude that the market is
not complete because there are infinitely many risk neutral measures in this market.
A contingent claim X = (X1, X2, X3, X4)

T is attainable if there exists a portfolio
H = (H0, H1, H2)

T such that X = H0B (1) +H1S1 (1) +H2S2 (1). This translates to the
following system of equations

X1 =
9

8
H0 + 9H1 +

27

2
H2, (7)

X2 =
9

8
H0 +

45

4
H1 +

27

4
H2, (8)

X3 =
9

8
H0 +

27

4
H1 +

27

4
H2, (9)

X4 =
9

8
H0 +

27

4
H1 +

45

4
H2. (10)

From (7) we get that 9
8H0 = X1 − 9H1 − 27

2 H2. Substituting this expression for 9
8H0 in

(8),(9) and (10) we obtain

X2 = X1 +
9

4
H1 −

27

4
H2, (11)

X3 = X1 −
9

4
H1 −

27

4
H2, (12)

X4 = X1 −
9

4
H1 −

9

4
H2 (13)

(Continued on page 5.)
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Solving (11) and (12) in H1 and H2 we get that

H1 =
2

9
(X2 −X3) ,

H2 =
4X1 − 2X2 − 2X3

27
,

and substituting these values in (13) we get

X4 = X1 −
9

4

2

9
(X2 −X3)−

9

4

4X1 − 2X2 − 2X3

27
⇐⇒ 2X1 −X2 + 2X3 − 3X4 = 0.

Alternatively, since M 6= ∅, we have that X is attainable if and only if EQλ
[X/B (1)]

does not depend on λ. We have that

EQλ
[X/B (1)] =

1

B (1)

{
λ

(
X1 −

X2

2
+X3 −

3

2
X4

)
+
X2 +X3 + 2X4

2

}
,

and the previous expectation does not depend on λ if and only if

X1 −
X2

2
+X3 −

3

2
X4 = 0⇐⇒ 2X1 −X2 + 2X3 − 3X4 = 0.

c (weight 10p)

We have that

X =


max (0, S2 (1, ω1)− S1 (1, ω1)− 9/4)

max (0, S2 (1, ω2)− S1 (1, ω2)− 9/4)

max (0, S2 (1, ω3)− S1 (1, ω3)− 9/4)

max (0, S2 (1, ω4)− S1 (1, ω4)− 9/4)

 =


max

(
0, 272 − 9− 9

4

)
max

(
0, 274 −

45
4 −

9
4

)
max

(
0, 274 −

27
4 −

9
4

)
max

(
0, 454 −

27
4 −

9
4

)

 =


9
4

0

0

9
4

 ,

and, therefore, it is not attainable because

2X1 −X2 + 2X3 − 3X4 = 2× 9

4
− 1× 0 + 2× 0− 3× 9

4
= −9

4
6= 0.

Hence, there is an interval of arbitrage free prices [V− (X) , V+ (X)], where V− (X) is the
lower hedging price of X and V+ (X) is the upper hedging price of X. Moreover, we
know that

V− (X) = inf
Q∈M

{
EQ
[

X

B (1)

]}
= inf

λ∈(0, 13)

{
EQλ

[
X

B (1)

]}
,

and

V+ (X) = sup
Q∈M

{
EQ
[

X

B (1)

]}
= sup

λ∈(0, 13)

{
EQλ

[
X

B (1)

]}
.

(Continued on page 6.)
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We have that

EQλ

[
X

B (1)

]
=

8

9
EQλ

[X]

=
8

9

{
9

4
× λ+ 0× 1− 2λ

4
+ 0× 1 + 4λ

4
+

9

4
× 1− 3λ

2

}
= 2

{
λ+

1− 3λ

2

}
= 1− λ.

The previous computation yields

V− (X) = inf
λ∈(0, 13)

{1− λ} =
2

3
,

V+ (X) = sup
λ∈(0, 13)

{1− λ} = 1.

d (weight 5p)

The algebra of events generated by S1 (1), denoted by a (S1 (1)), is the algebra generated
by the partition

π1 =

{
{S1 (1) = 9} ,

{
S1 (1) =

45

4

}
,

{
S1 (1) =

27

4

}}
= {{ω1} , {ω2} , {ω3, ω4}} .

Moreover, a random variable (contingent claim) is measurable with respect to a (S1 (1))
if it is constant over the elements of π1. In this case, since Y3 = Y (ω3) 6= Y (ω4) = Y4,
Y is not constant over the elments of π1and, hence, it is not measurable with respect to
a (S1 (1)).

However, the algebra of events generated by S2 (1), denoted by a (S2 (1)), is the
algebra generated by the partition

π2 =

{{
S2 (1) =

27

2

}
,

{
S2 (1) =

27

4

}
,

{
S1 (1) =

45

4

}}
= {{ω1} , {ω2, ω3} , {ω4}} ,

and Y is constant over the elements of π2.

Problem 3 (weight 5p)

a (weight 5p)

We first compute the partitions associated to S1 (0) , S1 (1) and S1 (2) . We have

πS1(0) = {S1 (0) = 3} = {Ω} ,
πS1(1) = {{S1 (1) = 2} , {S1 (1) = 4}} = {{ω3, ω4} , {ω1, ω2}} =: {A1,1, A1,2} ,
πS1(2) = {{S1 (2) = 1} , {S1 (2) = 4} , {S1 (2) = 6}} = {{ω2, ω4} , {ω3} , {ω1}} =: {A2,1, A2,2, A2,3} .

(Continued on page 7.)
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The partitions associated to (S1 (0) , S1 (1)) and to (S1 (0) , S1 (1) , S1 (2)) are given by

π(S1(0),S1(1)) = πS1(0) ∩ πS1(1) = {Ω ∩A1,1,Ω ∩A1,1} = {A1,1, A1,2} ,
π(S1(0),S1(1),S1(2)) = πS1(0) ∩ πS1(1) ∩ πS1(2) = πS1(0),S1(1) ∩ πS1(2)

= {A1,1 ∩A2,1, A1,1 ∩A2,2, A1,1 ∩A2,3, A1,2 ∩A2,1, A1,2 ∩A2,2, A1,2 ∩A2,3}
= {{ω4} , {ω3} , ∅, {ω2} , ∅, {ω1}} = {{ω1} , {ω2} , {ω3} , {ω4}} .

The filtrations are given by

F0 = a (S1 (0)) = a ({Ω}) = {∅,Ω} ,
F1 = a (S1 (0) , S1 (1)) = a ({A1,1, A1,2}) = {∅,Ω, A1,1, A1,2} = {∅,Ω, {ω3, ω4} , {ω1, ω2}} ,
F2 = a (S1 (0) , S1 (1) , S1 (2)) = a ({{ω1} , {ω2} , {ω3} , {ω4}}) = P (Ω) ,

where P (Ω) is the set of all subsets of Ω.

b (weight 20p)

Since M = {Q} the market is arbitrage free and complete, due to the first and second
fundamental theorem of asset pricing. Then, we can use the martingale method to solve
the optimal portfolio problem. In this setup, M = {Q}, the martingale method consists
in the following two steps:

1. We first solve the constrained optimization problem

max
W

E [U (W )]

subject to EQ
[
W

B (2)

]
= v,

and obtain the optimal attainable wealth Ŵ .

2. Given Ŵ , we find the optimal trading strategy Ĥ such that its associated value
process V̂ replicates Ŵ , that is, V̂ (2) = Ŵ .

The previous constrained problem can be solved using the Lagrange multipliers method.
The optimal attainable wealth Ŵ is given by

Ŵ = I

(
λ̂L

B (2)

)
,

where I is the inverse of U ′ (u), L is the state-price density vector L = Q
P , B (2) is the

price of the risk-less asset at time 2 and λ̂ is the optimal Lagrange multiplier associated
to the constraint EQ

[
W
B(2)

]
= v. Taking into account that r = 0,U (u) = 2u1/2,

(Continued on page 8.)
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P =
(
1
4 ,

1
4 ,

1
4 ,

1
4

)T and Q =
(

3
10 ,

1
5 ,

1
6 ,

1
3

)T
,we have that

i = U ′ (u) = u−1/2 ⇐⇒ I (i) = u = i−2,

L =

(
3
10
1
4

,
1
5
1
4

,
1
6
1
4

,
1
3
1
4

)T
=

(
6

5
,
4

5
,
2

3
,
4

3

)T
,

B (2) = 1,

which yield Ŵ =
(
λ̂L
)−2

. The optimal Lagrange multiplier λ̂ satisfies the equation

v = EQ

[
Ŵ

B (2)

]
= EQ

I
(

λ̂L
B(2)

)
B (2)

 = EQ
[(
λ̂L
)−2]

=
(
λ̂
)−2

EQ
[
L−2

]
.

Therefore, we get

λ̂ =

(
EQ
[
L−2

]
v

)1/2

, Ŵ = v
L−2

EQ [L−2]
,

and the optimal objective value is given by

E
[
U
(
Ŵ
)]

= E

[
2

(
v

L−2

EQ [L−2]

)1/2
]

= 2v1/2
E
[
L−1

]
EQ [L−2]1/2

= 2v1/2EQ
[
L−2

]1/2
,

where we have used that E
[
L−1

]
= E

[
LL−2

]
= EQ

[
L−2

]
. Moreover,

EQ
[
L−2

]
= E

[
L−1

]
=

1

4

{(
6

5

)−1
+

(
4

5

)−1
+

(
2

3

)−1
+

(
4

3

)−1}

=
1

4

{
5

6
+

5

4
+

3

2
+

3

4

}
=

13

12
,

and

L−2 =

((
6

5

)−2
,

(
4

5

)−2
,

(
2

3

)−2
,

(
4

3

)−2)T
=

(
25

36
,
25

16
,
9

4
,

9

16

)T
.

Hence, we obtain E
[
U
(
Ŵ
)]

= 2v1/2
(
13
12

)1/2 and

Ŵ =
v
13
12

(
25

36
,
25

16
,
9

4
,

9

16

)T
=

(
25

39
v,

75

52
v,

27

13
v,

27

52
v

)T
.

Finally, we have to compute the optimal trading strategy Ĥ =

{(
Ĥ0 (t) , Ĥ1 (t)

)T}
t=1,2

,

that is, a self-financing and predictable process such that its asociated value process V̂

(Continued on page 9.)
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satisfies V̂ (2) = Ŵ . We first compute, taking into account that r = 0, the discounted
increments of the risky asset

∆S∗1 (2) = ∆S1 (2) = (2,−3, 2,−1)T ,

∆S∗1 (1) = ∆S1 (1) = (1, 1,−1,−1)T .

• For t = 2, using that Ĥ must be self-financing we have that Ŵ = Ŵ
B(2) =

V̂ ∗ (1) + Ĥ1 (2) ∆S∗1 (2).

– Assuming that ω ∈ A1,1 = {ω3, ω4} and the predictability of Ĥ we get the
equations

27

13
v = Ŵ3 = V̂ ∗ (1, ω3) + Ĥ1 (2, ω3)× 2,

27

52
v = Ŵ4 = V̂ ∗ (1, ω4) + Ĥ1 (2, ω4)× (−1) ,

V̂ ∗ (1, ω3) = V̂ ∗ (1, ω4) ,

Ĥ1 (2, ω3) = Ĥ1 (2, ω4) ,

which, using that r = 0, yield

V̂ ∗ (1, ω3) = V̂ ∗ (1, ω4) = V̂ (1, ω3) = V̂ (1, ω4) =
27

26
v,

Ĥ1 (2, ω3) = Ĥ1 (2, ω4) =
27

52
v.

– Assuming that ω ∈ A1,2 = {ω1, ω2} and the predictability of Ĥ we get the
equations

25

39
v = Ŵ1 = V̂ ∗ (1, ω1) + Ĥ1 (2, ω1)× 2,

75

52
v = Ŵ2 = V̂ ∗ (1, ω2) + Ĥ1 (2, ω2)× (−3) ,

V̂ ∗ (1, ω1) = V̂ ∗ (1, ω2) ,

Ĥ1 (2, ω1) = Ĥ1 (2, ω2) ,

which, using that r = 0, yield

V̂ ∗ (1, ω1) = V̂ ∗ (1, ω2) = V̂ (1, ω1) = V̂ (1, ω2) =
25

26
v,

Ĥ1 (2, ω1) = Ĥ1 (2, ω2) = − 25

156
v.

• For t = 1, the predictability assumption yields that Ĥ1 (1) is constant. Moreover,
using that Ĥ must be self-financing we have that V̂ ∗ (1) = V̂ ∗ (0) + Ĥ1 (1) ∆S∗1 (1)

(Continued on page 10.)



Exam in STK-MAT3700/4700, Thursday 26. November 2020 Page 10

and we get the following two equations

27

26
v = V̂ ∗ (1, ω) = V̂ ∗ (0) + Ĥ1 (1)× (−1) , (for ω ∈ A1,1)

25

26
v = V̂ ∗ (1, ω) = V̂ ∗ (0) + Ĥ1 (1)× (1) , (for ω ∈ A1,2)

which, using that r = 0, yield

V̂ ∗ (0) = V̂ (0) = v, Ĥ1 (1) = − 1

26
v.

• Finally we compute H0 (1) and H0 (2) from the definition of value process. We
have

Ĥ0 (1) = V̂ ∗ (0)− Ĥ1 (1)S∗1 (0) = v +
1

26
v × 3 =

29

26
v,

and

Ĥ0 (2, ω) = V̂ ∗ (1, ω)− Ĥ1 (2, ω)S∗1 (1, ω)

=

 27
26v −

27
52v × 2 = 0 if ω ∈ A1,1

25
26v + 25

156v × 4 = 125
78 v if ω ∈ A1,2

Problem 4

a (weight 10p)

The conditional expectation of X given G is the unique random variable E [X| G]
satisfying:

1. E [X| G] is G- measurable.

2. E [X1B] = E [E [X| G]1B] , B ∈ G.

1⇒ 2) That Z is G-measurable follows from the G-measurability of E [X| G]. Moreover,
we can reason as follows

E [(X − Z)Y ]
(a)
= E [(X − E [X| G])Y ]

(b)
= E [E [ (X − E [X| G])Y | G]] ,

(c)
= E [E [ (X − E [X| G])| G]Y ]

(d)
= E [E [ (E [X| G]− E [X| G])| G]Y ] = 0,

where we have used that: (a)By assumption, (b)Law of total expectation, (c) what is
G-measurable goes out, (d)Linearity of conditional expectation and what is G-measurable
goes out again.

2 ⇒ 1) Property 1. of conditional expectation follows by assumption. Property 2.
follows by taking Y = 1B, B ∈ G. Then,

0 = E [(X − Z)Y ] = E [(X − Z)1B]⇐⇒ E [X1B] = E [Z1B] .

Since B is an arbitrary set in G, the previous equality shows that Z satisfies property 2.
of the conditional expectation.

(Continued on page 11.)
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b (weight 10p)

A process M is an F-martingale if M is F-adapted and satisfies

E [M (t+ 1)| Ft] = M (t) , t = 0, ..., T − 1.

Let M be a G-adapted process that is an F-martingale, with Gt ⊆ Ft. To prove that
M is also a G-martingale we only need to prove the martingale property because by
assumption is G-adapted. Then,

E [M (t+ 1)| Gt]
(a)
= E [E [M (t+ 1)| Ft]| Gt]

(b)
= E [M (t)| Gt]

(c)
= M (t) , t = 0, ..., T − 1,

where we have used that: (a)The tower property of conditional expectation and Gt ⊆ Ft,
(b)M is an F-martingale, (c) M is G-adapted (M (t) is Gt-measurable ) and the property
that if Z is a G-measurable random variable then Z = E [Z| G] .

c (weight 10p)

Note that

F0 = {∅,Ω} , F1 = {∅,Ω, {ω3, ω4} , {ω1, ω2}} , F2 = P (Ω) .

where P (Ω) is the set of all subsets of Ω. Therefore, the predictability constraint on
the process A implies that A (1) = a1,1 (a constant) and A (2, ω) = a2,11{ω1,ω2} (ω) +
a2,21{ω3,ω4} (ω). The square of the price process is given by

S2
1 (0) = 9

S2
1 (1, ω) = 161{ω1,ω2} (ω) + 41{ω3,ω4} (ω) ,

S2
1 (2, ω) = 361{ω1} (ω) + 161{ω3} (ω) + 11{ω2,ω4} (ω) .

The process A is F-adapted because it is F-predictable. This yields that Mt is Ft-
measurable because it is a function of the two Ft-measurable random variables St and
At. Hence, M is F-adapted. Now we only need to prove the martingale property, which
boils down to check

M (0) = E [M (1)| F0] = E [M (1)] (14)

and
M (1) = E [M (2)| F1] . (15)

Since A (0) = 0, we have that M (0) = S2
1 (0)−A (0) = S2

1 (0) = 9 and

E [M (1)] = E
[
S2
1 (1)

]
−A (1) = 16 (P1 + P2) + 4 (P3 + P4)− a1,1.

Hence, using equation (14), we get

A (1) = a1,1 = 16 (P1 + P2) + 4 (P3 + P4)− 9.

(Continued on page 12.)
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On the other hand,

M (1) = S2
1 (1)−A (1)

= (16− a1,1)1{ω1,ω2} (ω) + (4− a1,1)1{ω3,ω4} (ω) ,

M (2) = S2
1 (2)−A (2)

= (36− a2,1)1{ω1} (ω) + (1− a2,1)1{ω2} (ω)

+ (16− a2,2)1{ω3} (ω) + (1− a2,2)1{ω4} (ω)

and

E [M (2)| F1] = E [M (2)| {ω1, ω2}]1{ω1,ω2} (ω) + E [M (2)| {ω3, ω4}]1{ω3,ω4} (ω) .

Moreover,

E [M (2)| {ω1, ω2}] = E [M (2)| {ω1, ω2}] =
(36− a2,1)P1 + (1− a2,1)P2

P1 + P2

=
36P1 + P2

P1 + P2
− a2,1,

E [M (2)| {ω3, ω4}] = E [M (2)| {ω3, ω4}] =
(16− a2,2)P3 + (1− a2,2)P4

P3 + P4

=
16P3 + P4

P3 + P4
− a2,2,

and, therefore,

E [M (2)| F1] =

(
36P1 + P2

P1 + P2
− a2,1

)
1{ω1,ω2} (ω) +

(
16P3 + P4

P3 + P4
− a2,2

)
1{ω3,ω4} (ω) .

Finally, using equation (15), we get

a2,1 =
36P1 + P2

P1 + P2
− 16 + a1,1,

a2,2 =
16P3 + P4

P3 + P4
− 4 + a1,1.

If we take P =
(
1
4 ,

1
4 ,

1
4 ,

1
4

)T we get

a1,1 = 16× 1

2
+ 4× 1

2
− 9 = 1,

a2,1 =
36× 1

4 + 1
4

1
2

− 16 + 1 =
37

2
− 15 =

7

2
,

a2,2 =
16× 1

4 + 1
4

1
2

− 4 + 1 =
17

2
− 3 =

11

2
.


