4. Review of Linear Programming

S. Ortiz-Latorre STK-MAT 3700/4700 An Introduction to Mathematical Finance September 13, 2021

Department of Mathematics University of Oslo

Linear Programming

Reduction to the Standard Form

Duality

Convex Analysis

Linear Algebra

Linear Programming

- Linear programming (LP) is about solving optimization problems where the objective function and the constraints are linear.
- The optimization problem can be finding a maximum or a minimum and the constraints can be given by equalities and/or inequalities.
- In what follows most inequalities will be vector inequalities, that is, the inequalities hold componentwise.

• All LP problems can be written in the following standard form

Primal Problem (P) $\max J(x) = \max c^{T}x$ subject to $Ax \le b$, $x \ge 0$, where $x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$. We will use the following notation:

- **Objective function**: It is the function *J* to be optimized. In this case the linear function $J(x) = c^T x$.
- **Feasible set/solution**: $x \in \mathbb{R}^n$ is a feasible solution if satisfies the constraints, i.e., $Ax \le b, x \ge 0$. The feasible set F_P is the convex set defined by all feasible solutions, i.e,

$$F_P := \left\{ x \in \mathbb{R}^n : Ax \le b, x \ge 0 \right\}.$$

• **Optimal solution**: $\hat{x} \in F_P$ such that

$$J(\hat{x}) = c^T \hat{x} = \max\left\{c^T x : Ax \le b, x \ge 0\right\}.$$

• **Optimal value**: It is the value (finite) of the objective function at an optimal solution , i.e., $J(\hat{x})$.

There are three different cases regarding the problem P:

- 1. There exists an optimal solution (or many) and only one optimal value.
- 2. $F_P = \emptyset$, then the optimal value is set to $-\infty$. We say that the problem is **not feasible**.
- 3. The problem is *unbounded*. There exists a sequence $\{x_k\}_{k\geq 1} \subseteq F_P$ such that $J(x_k) \rightarrow_{k\to\infty} \infty$.

Reduction to the Standard Form

We have the following rules:

- "min" \longrightarrow "max": min $J(x) = -\max J(-x)$.
- " \geq " \longrightarrow " \leq ": Multiply the equation by -1.
- "=" \longrightarrow " \leq ": Write as two inequalities using " \leq " and " \geq ". Then apply the previous point to the inequality with " \geq ".
- "Free variables" \longrightarrow "Restricted variables": Write $x = x^+ x^-$, where $x^+ = \max(0, x) \ge 0$ and $x^- = -\min(0, x) \ge 0$ and rewrite the other constraints and the objective function in terms of x^+ and x^- .

Reduction to the standard form

- A general (iterative) method to solve LP problems is the simplex method (Dantzig, 1947).
- In the simplex method the constraints must be in equality form.
- We can go from "≤" to "=" by introducing the so called slack variables w := b − Ax, then the problem P can be written as

 $\max J(x)$
subject to w = b - Ax,
 $w \ge 0$,
 $x \ge 0$.

Reduction to the standard form

Example 1

• Consider the LP problem

$$\max J(x) = 3x_1 + 2x_2$$

subject to $-x_1 + 3x_2 \le 12$,
 $x_1 + x_2 \le 10$,
 $2x_1 - x_2 \le 10$
 $x_1 \ge 0$, $x_2 \ge 0$

• This example is discussed on the smartboard.

Duality

Dual problem

• The previous example justifies the introduction of the *dual problem* of a LP.

Definition 2

Given the LP problem P we define its dual D as

Dual Problem (D)

 $\min J(y) = \min b^T y$ subject to $A^T y \ge c$, $y \ge 0$,

where $y \in \mathbb{R}^m$, $b \in \mathbb{R}^m$, $A^T \in \mathbb{R}^{n \times m}$ and $c \in \mathbb{R}^n$.

Remark 3

We have that

- The dual problem of a LP problem is also a LP problem.
- The dual problem provides upper bounds for the optimal value of the primal problem.
- D is sometimes easier to solve than P.
- Good implementations of the simplex algorithm solve simultaneously P and D.

Dual problem

Lemma 4

The dual of **D** is **P**.

Proof.

We can write

$$\min\left\{b^T y: A^T y \ge c, y \ge 0\right\}$$
$$= -\max\left\{(-b)^T y: -A^T y \le -c, y \ge 0\right\}.$$

The problem on the right hand side of the previous equation is in standard form, so we can take its dual to get

$$-\min\left\{\left(-c\right)^{T}x:-\left(A^{T}\right)^{T}x\geq-b,x\geq0\right\},$$

which in standard form is $\max \{c^T x : Ax \le b, x \ge 0\}$. $\Box_{\frac{12}{29}}$

- Sometimes it is convenient to find the dual of a LP problem without finding first its standard form.
- We assume that we have a LP problem in the form of a *generalised primal problem* P_g
- This means that we have a primal problem with some constraints that are equalities and only *R* variables are restricted.

Dual problem

• That is,

Generalized Primal Problem (P_g) $\max I(x) = \max c^T x$ subject to $\sum_{i=1}^{n} a_{ij} x_j \leq b_i$, $i \in I$, $\sum_{i=1}^n a_{ij} x_j = b_i, \qquad i \in E,$ $x_i \ge 0, \qquad j \in R$ where $x \in \mathbb{R}^n, c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $R \subseteq$ $\{1,\ldots,n\}, I, E \subseteq \{1,\ldots,m\}, I \cap E = \emptyset, \text{ and } I \cup E = \{1,\ldots,m\}.$

14/29

• Using the following primal-dual correspondence

	$(\mathbf{P_g})$	(D_g)	
Ι	Inequality constraints	Restricted variables	R
Ε	Equality constraints	Free variables	F
R	Restricted variables	Inequality constraints	Ι
F	Free variables	Equality constraints	Ε

we can find its associated $\textit{generalised dual problem}\left(\mathbf{D}_{g}\right)$

Dual problem

• That is a dual problem with some equality constraints and only some variables which are restricted

Generalized Dual Problem (D_g) $\min I(y) = \min b^T y$ subject to $\sum_{i=1}^{m} a_{ij} y_i \ge c_j, \qquad j \in R$, $\sum_{i=1}^m a_{ij} y_i = c_j, \qquad i \in F,$ $y_i \ge 0, \qquad i \in I$ where $y \in \mathbb{R}^m, c \in \mathbb{R}^n, A \in \mathbb{R}^{m imes n}$, $b \in \mathbb{R}^m, R, F \subseteq$ $\{1,\ldots,n\}, R\cap F = \emptyset, R\cup F = \{1,\ldots,n\}.$

Dual problem

Theorem 5 (Duality)

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$.

 (Weak duality) If x is feasible for (P) and y is feasible for (D), then

$$c^T x = x^T c \le x^T \left(A^T y \right) = (Ax)^T y \le b^T y.$$

Moreover:

- 1.1 If (\mathbf{P}) is unbounded $\Longrightarrow (\mathbf{D})$ is not feasible.
- 1.2 If (\mathbf{D}) is unbounded $\Longrightarrow (\mathbf{P})$ is not feasible.
- **1.3** If $c^T \hat{x} = b^T \hat{y}$ with \hat{x} feasible for (**P**) and \hat{y} feasible for (**D**), then \hat{x} must solve (**P**) and \hat{y} must solve (**D**).
- (Strong duality) If either (P) or (D) has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions for both (P) and (D) exist.

Convex Analysis

Convex analysis

Definition 6

A set $A \subset \mathbb{R}^n$ is **convex** if one has that $\lambda x + (1 - \lambda) y \in A$, for all $x, y \in A$ and $\lambda \in (0, 1)$.

Definition 7

An **hyperplane** with normal vector $a \neq 0 \in \mathbb{R}^n$ and level $\alpha \in \mathbb{R}$ is the set

$$H_{a,\alpha} = \left\{ x \in \mathbb{R}^n : a^T x = \alpha \right\}.$$

Every hyperplane $H_{a,\alpha}$ is the intersection of the *halfspaces*

$$H_{a,\alpha}^{-} = \left\{ x \in \mathbb{R}^{n} : a^{T}x \leq \alpha \right\},\$$
$$H_{a,\alpha}^{+} = \left\{ x \in \mathbb{R}^{n} : a^{T}x \geq \alpha \right\}.$$

Definition 8

Let *S* and *T* be two sets in \mathbb{R}^n . We say that $H_{a,\alpha}$ **strongly separates** *S* and *T* if there exists $\varepsilon > 0$ such that $S \subseteq H_{a,\alpha-\varepsilon}^$ and $T \subseteq H_{a,\alpha+\varepsilon}^+$ or viceversa.

Theorem 9 (Strong Separating Hyperplane Theorem)

Let *S* and *T* be two disjoint, non-empty, closed, convex sets in \mathbb{R}^n and one of them is compact. Then, there exists an hyperplane $H_{a,\alpha}$ that strongly separates *S* and *T*.

Corollary 10

Let *S* be a non-empty, closed, convex set in \mathbb{R}^n and such that $0 \notin S$. Then, there exist $a \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}_{++}$ such that

$$a^T x \ge \alpha > 0, \qquad x \in S.$$

Proof.

Smartboard.

Corollary 11

Let V be a linear subspace of \mathbb{R}^n and let K be a non-empty, compact, convex set in \mathbb{R}^n , such that $K \cap V = \emptyset$. Then, there exists $a \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}_{++}$ such that

$$a^T x = 0, \quad x \in V,$$

 $a^T y \ge \alpha > 0, \quad y \in K.$

Proof.

Smartboard.

Linear Algebra

Definition 12

Given $A \in \mathbb{R}^{m \times n}$, we can consider the following fundamental linear subspaces:

- col (A): The *column space* of A, it contains all linear combinations of the columns of A.
- null (A): The **null space** of A, it contains all solutions to the system Ax = 0.
- col (A^T): The *row space* of A, it contains all linear combinations of the rows of A, (or columns of A^T).
- null (A^T) : The **left null space** of A, it contains all solutions to the system $A^T y = 0$.

Linear algebra

Definition 13

The *rank* of *A*, denoted rank (A), is the dimension of col (A) or col (A^T) .

Definition 14

Let $S \subseteq \mathbb{R}^n$. We define S^{\perp} , the **orthogonal complement** of *S*, as the set of vectors in \mathbb{R}^n which are orthogonal to *S*, that is,

$$S^{\perp} := \left\{ x \in \mathbb{R}^n : x^T y = 0, \quad y \in S \right\}.$$

- It is easy to check that S^{\perp} is a linear subspace, regardless of S being a subspace or not.
- If S is a linear subspace, then $S \cap S^{\perp} = \{0\}$.

Proposition 15 (Orthogonal projection)

Let $v \in \mathbb{R}^n$ and let $S \subseteq \mathbb{R}^n$ be a linear subspace. Then there exist unique $x \in S$ and $y \in S^{\perp}$ such that

v = x + y.

We write $\mathbb{R}^n = S \oplus S^{\perp}$, and we say that \mathbb{R}^n is the direct sum of S and S^{\perp} .

Theorem 16 (Fundamental theorem of linear algebra) Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{col}(A)$ is orthogonal to $\operatorname{null}(A^T)$, and $\mathbb{R}^m = \operatorname{col}(A) \oplus \operatorname{null}(A^T)$. Moreover, $\operatorname{col}(A^T)$ is orthogonal to $\operatorname{null}(A)$ and $\mathbb{R}^n = \operatorname{col}(A^T) \oplus \operatorname{null}(A)$.

Proof.

Follows from Proposition 15 and the following equalities

$$\operatorname{col}(A)^{\perp} = \left\{ y \in \mathbb{R}^{m} : y^{T} A x = 0, \quad x \in \mathbb{R}^{n} \right\}$$
$$= \left\{ y \in \mathbb{R}^{m} : x^{T} \left(A^{T} y \right) = 0, \quad x \in \mathbb{R}^{n} \right\}$$
$$= \left\{ y \in \mathbb{R}^{m} : A^{T} y = 0 \right\}$$
$$= \operatorname{null}\left(A^{T} \right).$$

Proposition 17 (Fredholm's alternative)

For every matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$, **exactly one** of the following statements is true:

1. Ax = b has a solution $x \in \mathbb{R}^n$.

2. There exists $0 \neq y \in \mathbb{R}^m$ such that $A^T y = 0$ and $y^T b \neq 0$.

Linear algebra

Proof.

- Suppose Ax = b has a solution.
 - This is equivalent to $b \in \operatorname{col}(A)$.
 - Let $y = y_c + y_n \in \mathbb{R}^m$, $y_c \in \operatorname{col}(A)$, $y_n \in \operatorname{null}(A^T)$.
 - Note that

$$A^T y = A^T y_c + A^T y_n = A^T y_c$$

and

$$y^T b = y_c^T b + y_n^T b = y_c^T b.$$

• But then, if $A^T y = 0$ we have that

$$A^T y_c = 0 \Leftrightarrow y_c = 0 \Leftrightarrow y_c^T = 0 \Longrightarrow y_c^T b = 0,$$

which also implies that $y^T b = 0$.

• Therefore, 2. does not hold true.

Proof.

- Suppose that Ax = b does not have a solution.
 - Note that, in this case, $b \neq 0 \in \mathbb{R}^m$, because for b = 0 we always have the solution x = 0.
 - Moreover, this is equivalent to $b \notin \operatorname{col}(A)$ (i.e., $b \in \operatorname{null}(A^T)$).
 - Then, $A^T b = 0$ and $b^T b = ||b||^2 \neq 0$.
 - Hence, we can take y = b and we have that 2. holds true.