4. Review of Linear Programming

S. Ortiz-Latorre

STK-MAT 3700/4700 An Introduction to Mathematical Finance September 13, 2021

Department of Mathematics
University of Oslo

Outline

Linear Programming

Reduction to the Standard Form

Duality

Convex Analysis

Linear Algebra

Linear Programming

Linear programming

- Linear programming (LP) is about solving optimization problems where the objective function and the constraints are linear.
- The optimization problem can be finding a maximum or a minimum and the constraints can be given by equalities and/or inequalities.
- In what follows most inequalities will be vector inequalities, that is, the inequalities hold componentwise.

Linear programming

- All LP problems can be written in the following standard form

Primal Problem (P)

$$
\begin{aligned}
\max J(x) & =\max c^{T} x \\
\text { subject to } A x & \leq b \\
x & \geq 0
\end{aligned}
$$

where $x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.

Linear programming

We will use the following notation:

- Objective function: It is the function J to be optimized. In this case the linear function $J(x)=c^{T} x$.
- Feasible set/solution: $x \in \mathbb{R}^{n}$ is a feasible solution if satisfies the constraints, i.e., $A x \leq b, x \geq 0$. The feasible set F_{p} is the convex set defined by all feasible solutions, i.e,

$$
F_{P}:=\left\{x \in \mathbb{R}^{n}: A x \leq b, x \geq 0\right\} .
$$

- Optimal solution: $\hat{x} \in F_{P}$ such that

$$
J(\hat{x})=c^{T} \hat{x}=\max \left\{c^{T} x: A x \leq b, x \geq 0\right\} .
$$

- Optimal value: It is the value (finite) of the objective function at an optimal solution, i.e., $J(\hat{x})$.

Linear programming

There are three different cases regarding the problem P:

1. There exists an optimal solution (or many) and only one optimal value.
2. $F_{P}=\varnothing$, then the optimal value is set to $-\infty$. We say that the problem is not feasible.
3. The problem is unbounded. There exists a sequence $\left\{x_{k}\right\}_{k \geq 1} \subseteq F_{P}$ such that $J\left(x_{k}\right) \rightarrow_{k \rightarrow \infty} \infty$.

Reduction to the Standard Form

Reduction to the standard form

We have the following rules:

- "min" $\longrightarrow " m a x ": \min J(x)=-\max J(-x)$.
- " \geq " $\longrightarrow " \leq$ ": Multiply the equation by -1 .
- "=" $\longrightarrow " \leq$ ": Write as two inequalities using " \leq " and " \geq ". Then apply the previous point to the inequality with " \geq ".
- "Free variables" \longrightarrow "Restricted variables": Write $x=x^{+}-x^{-}$, where $x^{+}=\max (0, x) \geq 0$ and $x^{-}=-\min (0, x) \geq 0$ and rewrite the other constraints and the objective function in terms of x^{+}and x^{-}.

Reduction to the standard form

- A general (iterative) method to solve LP problems is the simplex method (Dantzig, 1947).
- In the simplex method the constraints must be in equality form.
- We can go from " \leq " to "=" by introducing the so called slack variables $w:=b-A x$, then the problem \mathbf{P} can be written as

$$
\begin{aligned}
& \max J(x) \\
& \text { subject to } w=b-A x \\
& w \geq 0 \\
& x \geq 0
\end{aligned}
$$

Reduction to the standard form

Example 1

- Consider the LP problem

$$
\begin{aligned}
\max J(x) & =3 x_{1}+2 x_{2} \\
\text { subject to }-x_{1}+3 x_{2} & \leq 12 \\
x_{1}+x_{2} & \leq 10 \\
2 x_{1}-x_{2} & \leq 10 \\
x_{1} \geq 0, \quad x_{2} & \geq 0
\end{aligned}
$$

- This example is discussed on the smartboard.

Duality

Dual problem

- The previous example justifies the introduction of the dual problem of a LP.

Definition 2

Given the LP problem \mathbf{P} we define its dual \mathbf{D} as

Dual Problem (D)

$$
\begin{aligned}
\min J(y) & =\min b^{T} y \\
\text { subject to } A^{T} y & \geq c, \\
y & \geq 0,
\end{aligned}
$$

where $y \in \mathbb{R}^{m}, b \in \mathbb{R}^{m}, A^{T} \in \mathbb{R}^{n \times m}$ and $c \in \mathbb{R}^{n}$.

Dual problem

Remark 3

We have that

- The dual problem of a LP problem is also a LP problem.
- The dual problem provides upper bounds for the optimal value of the primal problem.
- \mathbf{D} is sometimes easier to solve than \mathbf{P}.
- Good implementations of the simplex algorithm solve simultaneously \mathbf{P} and \mathbf{D}.

Dual problem

Lemma 4

The dual of \mathbf{D} is \mathbf{P}.

Proof.

We can write

$$
\begin{aligned}
& \min \left\{b^{T} y: A^{T} y \geq c, y \geq 0\right\} \\
& =-\max \left\{(-b)^{T} y:-A^{T} y \leq-c, y \geq 0\right\}
\end{aligned}
$$

The problem on the right hand side of the previous equation is in standard form, so we can take its dual to get

$$
-\min \left\{(-c)^{T} x:-\left(A^{T}\right)^{T} x \geq-b, x \geq 0\right\}
$$

which in standard form is $\max \left\{c^{T} x: A x \leq b, x \geq 0\right\}$.

Dual problem

- Sometimes it is convenient to find the dual of a LP problem without finding first its standard form.
- We assume that we have a LP problem in the form of a generalised primal problem P_{g}
- This means that we have a primal problem with some constraints that are equalities and only R variables are restricted.

Dual problem

- That is,

Generalized Primal Problem $\left(\mathbf{P}_{\mathbf{g}}\right)$

$$
\begin{aligned}
& \max J(x)=\max c^{T} x \\
& \text { subject to } \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i \in I, \\
& \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i \in E, \\
& x_{j} \geq 0, \quad j \in R
\end{aligned}
$$

where $x \in \mathbb{R}^{n}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, R \subseteq$ $\{1, \ldots, n\}, I, E \subseteq\{1, \ldots, m\}, I \cap E=\varnothing$, and $I \cup$ $E=\{1, \ldots, m\}$.

Dual problem

- Using the following primal-dual correspondence

	$\left(\mathbf{P}_{\mathbf{g}}\right)$	$\left(\mathbf{D}_{\mathbf{g}}\right)$	
I	Inequality constraints	Restricted variables	R
E	Equality constraints	Free variables	F
R	Restricted variables	Inequality constraints	I
F	Free variables	Equality constraints	E

we can find its associated generalised dual problem $\left(\mathbf{D}_{\mathbf{g}}\right)$

Dual problem

- That is a dual problem with some equality constraints and only some variables which are restricted

Generalized Dual Problem ($\mathbf{D g}_{\mathbf{g}}$)

$$
\begin{aligned}
\min J(y) & =\min b^{T} y \\
\text { subject to } \sum_{i=1}^{m} a_{i j} y_{i} & \geq c_{j}, \quad j \in R, \\
\sum_{i=1}^{m} a_{i j} y_{i} & =c_{j}, \\
y_{i} & \geq 0, \quad i \in F, \\
& i \in I
\end{aligned}
$$

where $y \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, R, F \subseteq$ $\{1, \ldots, n\}, R \cap F=\varnothing, R \cup F=\{1, \ldots, n\}$.

Dual problem

Theorem 5 (Duality)

$$
\text { Let } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \text { and } c \in \mathbb{R}^{n} \text {. }
$$

1. (Weak duality) If x is feasible for (\mathbf{P}) and y is feasible for (D), then

$$
c^{T} x=x^{T} c \leq x^{T}\left(A^{T} y\right)=(A x)^{T} y \leq b^{T} y .
$$

Moreover:
1.1 If (\mathbf{P}) is unbounded $\Longrightarrow(\mathbf{D})$ is not feasible.
1.2 If (\mathbf{D}) is unbounded $\Longrightarrow(\mathbf{P})$ is not feasible.
1.3 If $c^{T} \hat{x}=b^{T} \hat{y}$ with \hat{x} feasible for (\mathbf{P}) and \hat{y} feasible for (D), then \hat{x} must solve (\mathbf{P}) and \hat{y} must solve (\mathbf{D}).
2. (Strong duality) If either (P) or (D) has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions for both (P) and (D) exist.

Convex Analysis

Convex analysis

Definition 6

A set $A \subset \mathbb{R}^{n}$ is convex if one has that $\lambda x+(1-\lambda) y \in A$, for all $x, y \in A$ and $\lambda \in(0,1)$.

Definition 7

An hyperplane with normal vector $a \neq 0 \in \mathbb{R}^{n}$ and level $\alpha \in \mathbb{R}$ is the set

$$
H_{a, \alpha}=\left\{x \in \mathbb{R}^{n}: a^{T} x=\alpha\right\} .
$$

Every hyperplane $H_{a, \alpha}$ is the intersection of the halfspaces

$$
\begin{aligned}
& H_{a, \alpha}^{-}=\left\{x \in \mathbb{R}^{n}: a^{T} x \leq \alpha\right\}, \\
& H_{a, \alpha}^{+}=\left\{x \in \mathbb{R}^{n}: a^{T} x \geq \alpha\right\} .
\end{aligned}
$$

Convex analysis

Definition 8

Let S and T be two sets in \mathbb{R}^{n}. We say that $H_{a, \alpha}$ strongly separates S and T if there exists $\varepsilon>0$ such that $S \subseteq H_{a, \alpha-\varepsilon}^{-}$ and $T \subseteq H_{a, \alpha+\varepsilon}^{+}$or viceversa.

Theorem 9 (Strong Separating Hyperplane Theorem)

Let S and T be two disjoint, non-empty, closed, convex sets in \mathbb{R}^{n} and one of them is compact. Then, there exists an hyperplane $H_{a, \alpha}$ that strongly separates S and T.

Convex analysis

Corollary 10

Let S be a non-empty, closed, convex set in \mathbb{R}^{n} and such that $0 \notin S$. Then, there exist $a \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}_{++}$such that

$$
a^{T} x \geq \alpha>0, \quad x \in S
$$

Proof.

Smartboard.

Convex analysis

Corollary 11

Let V be a linear subspace of \mathbb{R}^{n} and let K be a non-empty, compact, convex set in \mathbb{R}^{n}, such that $K \cap V=\varnothing$. Then, there exists $a \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}_{++}$such that

$$
\begin{aligned}
& a^{T} x=0, \quad x \in V \\
& a^{T} y \geq \alpha>0, \quad y \in K
\end{aligned}
$$

Proof.

Smartboard.

Linear Algebra

Linear algebra

Definition 12

Given $A \in \mathbb{R}^{m \times n}$, we can consider the following fundamental linear subspaces:

- $\operatorname{col}(A)$: The column space of A, it contains all linear combinations of the columns of A.
- null (A) : The null space of A, it contains all solutions to the system $A x=0$.
- $\operatorname{col}\left(A^{T}\right)$: The row space of A, it contains all linear combinations of the rows of A, (or columns of A^{T}).
- null $\left(A^{T}\right)$: The left null space of A, it contains all solutions to the system $A^{T} y=0$.

Linear algebra

Definition 13

The rank of A, denoted $\operatorname{rank}(A)$, is the dimension of $\operatorname{col}(A)$ or $\operatorname{col}\left(A^{T}\right)$.

Definition 14

Let $S \subseteq \mathbb{R}^{n}$. We define S^{\perp}, the orthogonal complement of S, as the set of vectors in \mathbb{R}^{n} which are orthogonal to S, that is,

$$
S^{\perp}:=\left\{x \in \mathbb{R}^{n}: x^{T} y=0, \quad y \in S\right\} .
$$

- It is easy to check that S^{\perp} is a linear subspace, regardless of S being a subspace or not.
- If S is a linear subspace, then $S \cap S^{\perp}=\{0\}$.

Linear algebra

Proposition 15 (Orthogonal projection)

Let $v \in \mathbb{R}^{n}$ and let $S \subseteq \mathbb{R}^{n}$ be a linear subspace. Then there exist unique $x \in S$ and $y \in S^{\perp}$ such that

$$
v=x+y .
$$

We write $\mathbb{R}^{n}=S \oplus S^{\perp}$, and we say that \mathbb{R}^{n} is the direct sum of S and S^{\perp}.

Linear algebra

Theorem 16 (Fundamental theorem of linear algebra)

Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{col}(A)$ is orthogonal to null $\left(A^{T}\right)$, and

$$
\mathbb{R}^{m}=\operatorname{col}(A) \oplus \operatorname{null}\left(A^{T}\right) .
$$

Moreover, $\operatorname{col}\left(A^{T}\right)$ is orthogonal to null (A) and

$$
\mathbb{R}^{n}=\operatorname{col}\left(A^{T}\right) \oplus \operatorname{null}(A) .
$$

Linear algebra

Proof.

Follows from Proposition 15 and the following equalities

$$
\begin{aligned}
\operatorname{col}(A)^{\perp} & =\left\{y \in \mathbb{R}^{m}: y^{T} A x=0, \quad x \in \mathbb{R}^{n}\right\} \\
& =\left\{y \in \mathbb{R}^{m}: x^{T}\left(A^{T} y\right)=0, \quad x \in \mathbb{R}^{n}\right\} \\
& =\left\{y \in \mathbb{R}^{m}: A^{T} y=0\right\} \\
& =\operatorname{null}\left(A^{T}\right) .
\end{aligned}
$$

Linear algebra

Proposition 17 (Fredholm's alternative)

For every matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^{m}$, exactly one of the following statements is true:

1. $A x=b$ has a solution $x \in \mathbb{R}^{n}$.
2. There exists $0 \neq y \in \mathbb{R}^{m}$ such that $A^{T} y=0$ and $y^{T} b \neq 0$.

Linear algebra

Proof.

- Suppose $A x=b$ has a solution.
- This is equivalent to $b \in \operatorname{col}(A)$.
- Let $y=y_{c}+y_{n} \in \mathbb{R}^{m}, y_{c} \in \operatorname{col}(A), y_{n} \in \operatorname{null}\left(A^{T}\right)$.
- Note that

$$
A^{T} y=A^{T} y_{c}+A^{T} y_{n}=A^{T} y_{c}
$$

and

$$
y^{T} b=y_{c}^{T} b+y_{n}^{T} b=y_{c}^{T} b .
$$

- But then, if $A^{T} y=0$ we have that

$$
A^{T} y_{c}=0 \Leftrightarrow y_{c}=0 \Leftrightarrow y_{c}^{T}=0 \Longrightarrow y_{c}^{T} b=0,
$$

which also implies that $y^{T} b=0$.

- Therefore, 2. does not hold true.

Linear algebra

Proof.

- Suppose that $A x=b$ does not have a solution.
- Note that, in this case, $b \neq 0 \in \mathbb{R}^{m}$, because for $b=0$ we always have the solution $x=0$.
- Moreover, this is equivalent to $b \notin \operatorname{col}(A)$ (i.e., $b \in \operatorname{null}\left(A^{T}\right)$).
- Then, $A^{T} b=0$ and $b^{T} b=\|b\|^{2} \neq 0$.
- Hence, we can take $y=b$ and we have that 2. holds true.

