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Linear Programming



Linear programming

• Linear programming (LP) is about solving optimization
problems where the objective function and the
constraints are linear.

• The optimization problem can be finding a maximum or a
minimum and the constraints can be given by equalities
and/or inequalities.

• In what follows most inequalities will be vector
inequalities, that is, the inequalities hold componentwise.
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Linear programming

• All LP problems can be written in the following standard
form

Primal Problem (P)

max J (x) = max cTx

subject to Ax ≤ b,

x ≥ 0,

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n and b ∈ Rm.
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Linear programming

We will use the following notation:

• Objective function: It is the function J to be optimized. In
this case the linear function J (x) = cTx.

• Feasible set/solution: x ∈ Rn is a feasible solution if
satisfies the constraints, i.e., Ax ≤ b, x ≥ 0. The feasible
set FP is the convex set defined by all feasible solutions,
i.e,

FP := {x ∈ Rn : Ax ≤ b, x ≥ 0} .

• Optimal solution: x̂ ∈ FP such that

J (x̂) = cT x̂ = max
{

cTx : Ax ≤ b, x ≥ 0
}

.

• Optimal value: It is the value (finite) of the objective
function at an optimal solution , i.e., J (x̂).
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Linear programming

There are three di�erent cases regarding the problem P:

1. There exists an optimal solution (or many) and only one
optimal value.

2. FP = ∅, then the optimal value is set to −∞. We say that
the problem is not feasible.

3. The problem is unbounded. There exists a sequence
{xk}k≥1 ⊆ FP such that J (xk)→k→∞ ∞.
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Reduction to the standard form

We have the following rules:

• “min”−→”max”: min J (x) = −max J (−x) .

• “≥”−→”≤”: Multiply the equation by −1.
• “=”−→”≤”: Write as two inequalities using ”≤” and ”≥”.

Then apply the previous point to the inequality with ”≥”.
• “Free variables”−→”Restricted variables”: Write

x = x+ − x−, where x+ = max (0, x) ≥ 0 and
x− = −min (0, x) ≥ 0 and rewrite the other constraints
and the objective function in terms of x+ and x−.
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Reduction to the standard form

• A general (iterative) method to solve LP problems is the
simplex method (Dantzig, 1947).

• In the simplex method the constraints must be in equality
form.

• We can go from “≤” to “=” by introducing the so called
slack variables w := b− Ax, then the problem P can be
written as

max J (x)

subject to w = b− Ax,

w ≥ 0,

x ≥ 0.
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Reduction to the standard form

Example 1

• Consider the LP problem

max J (x) = 3x1 + 2x2

subject to − x1 + 3x2 ≤ 12,

x1 + x2 ≤ 10,

2x1 − x2 ≤ 10

x1 ≥ 0, x2 ≥ 0

• This example is discussed on the smartboard.
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Dual problem

• The previous example justifies the introduction of the
dual problem of a LP.

Definition 2
Given the LP problem P we define its dual D as

Dual Problem (D)

min J (y) = min bTy

subject to ATy ≥ c,

y ≥ 0,

where y ∈ Rm, b ∈ Rm, AT ∈ Rn×m and c ∈ Rn.
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Dual problem

Remark 3
We have that

• The dual problem of a LP problem is also a LP problem.
• The dual problem provides upper bounds for the optimal

value of the primal problem.
• D is sometimes easier to solve than P.

• Good implementations of the simplex algorithm solve
simultaneously P and D.
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Dual problem

Lemma 4
The dual of D is P.

Proof.
We can write

min
{

bTy : ATy ≥ c, y ≥ 0
}

= −max
{
(−b)T y : −ATy ≤ −c, y ≥ 0

}
.

The problem on the right hand side of the previous equation
is in standard form, so we can take its dual to get

−min
{
(−c)T x : −

(
AT
)T

x ≥ −b, x ≥ 0
}

,

which in standard form is max
{

cTx : Ax ≤ b, x ≥ 0
}
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Dual problem

• Sometimes it is convenient to find the dual of a LP
problem without finding first its standard form.

• We assume that we have a LP problem in the form of a
generalised primal problem Pg

• This means that we have a primal problem with some
constraints that are equalities and only R variables are
restricted.
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Dual problem

• That is,

Generalized Primal Problem (Pg)

max J (x) = max cTx

subject to
n

∑
j=1

aijxj ≤ bi, i ∈ I,

n

∑
j=1

aijxj = bi, i ∈ E,

xj ≥ 0, j ∈ R

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, R ⊆
{1, . . . , n} ,I, E ⊆ {1, . . . , m}, I ∩ E = ∅, and I ∪
E = {1, . . . , m} .
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Dual problem

• Using the following primal-dual correspondence

(Pg) (Dg)

I Inequality constraints Restricted variables R
E Equality constraints Free variables F
R Restricted variables Inequality constraints I
F Free variables Equality constraints E

we can find its associated generalised dual problem (Dg)
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Dual problem

• That is a dual problem with some equality constraints
and only some variables which are restricted

Generalized Dual Problem (Dg)

min J (y) = min bTy

subject to
m

∑
i=1

aijyi ≥ cj, j ∈ R,

m

∑
i=1

aijyi = cj, i ∈ F,

yi ≥ 0, i ∈ I

where y ∈ Rm, c ∈ Rn, A ∈ Rm×n , b ∈ Rm,R,F ⊆
{1, . . . , n},R ∩ F = ∅, R ∪ F = {1, . . . , n}.
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Dual problem

Theorem 5 (Duality)
Let A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

1. (Weak duality) If x is feasible for (P) and y is feasible for
(D), then

cTx = xTc ≤ xT
(

ATy
)
= (Ax)T y ≤ bTy.

Moreover:
1.1 If (P) is unbounded =⇒ (D) is not feasible.
1.2 If (D) is unbounded =⇒ (P) is not feasible.
1.3 If cT x̂ = bT ŷ with x̂ feasible for (P) and ŷ feasible for (D),

then x̂ must solve (P) and ŷ must solve (D).

2. (Strong duality) If either (P) or (D) has a finite optimal
value, then so does the other, the optimal values coincide,
and optimal solutions for both (P) and (D) exist. 17/29
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Convex analysis

Definition 6
A set A ⊂ Rn is convex if one has that λx + (1− λ) y ∈ A,
for all x, y ∈ A and λ ∈ (0, 1).

Definition 7
An hyperplane with normal vector a 6= 0 ∈ Rn and level
α ∈ R is the set

Ha,α =
{

x ∈ Rn : aTx = α
}

.

Every hyperplane Ha,α is the intersection of the halfspaces

H−a,α =
{

x ∈ Rn : aTx ≤ α
}

,

H+
a,α =

{
x ∈ Rn : aTx ≥ α

}
.
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Convex analysis

Definition 8
Let S and T be two sets in Rn. We say that Ha,α strongly
separates S and T if there exists ε > 0 such that S ⊆ H−a,α−ε

and T ⊆ H+
a,α+ε or viceversa.

Theorem 9 (Strong Separating Hyperplane Theorem)
Let S and T be two disjoint, non-empty, closed, convex sets
in Rn and one of them is compact. Then, there exists an
hyperplane Ha,α that strongly separates S and T.
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Convex analysis

Corollary 10
Let S be a non-empty, closed, convex set in Rn and such that
0 /∈ S. Then, there exist a ∈ Rn and α ∈ R++ such that

aTx ≥ α > 0, x ∈ S.

Proof.
Smartboard.
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Convex analysis

Corollary 11
Let V be a linear subspace of Rn and let K be a non-empty,
compact, convex set in Rn, such that K ∩V = ∅. Then, there
exists a ∈ Rn and α ∈ R++ such that

aTx = 0, x ∈ V,

aTy ≥ α > 0, y ∈ K.

Proof.
Smartboard.
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Linear algebra

Definition 12
Given A ∈ Rm×n, we can consider the following fundamental
linear subspaces:

• col (A): The column space of A, it contains all linear
combinations of the columns of A.

• null (A): The null space of A, it contains all solutions to
the system Ax = 0.

• col
(

AT): The row space of A, it contains all linear
combinations of the rows of A, (or columns of AT).

• null
(

AT): The left null space of A, it contains all
solutions to the system ATy = 0.
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Linear algebra

Definition 13
The rank of A, denoted rank (A) , is the dimension of col (A)

or col
(

AT).
Definition 14
Let S ⊆ Rn. We define S⊥, the orthogonal complement of S,
as the set of vectors in Rn which are orthogonal to S, that is,

S⊥ :=
{

x ∈ Rn : xTy = 0, y ∈ S
}

.

• It is easy to check that S⊥ is a linear subspace, regardless
of S being a subspace or not.

• If S is a linear subspace, then S ∩ S⊥ = {0} .
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Linear algebra

Proposition 15 (Orthogonal projection)

Let v ∈ Rn and let S ⊆ Rn be a linear subspace. Then there
exist unique x ∈ S and y ∈ S⊥ such that

v = x + y.

We write Rn = S⊕ S⊥, and we say that Rn is the direct sum
of S and S⊥.
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Linear algebra

Theorem 16 (Fundamental theorem of linear algebra)
Let A ∈ Rm×n. Then col (A) is orthogonal to null

(
AT), and

Rm = col (A)⊕ null
(

AT
)

.

Moreover, col
(

AT) is orthogonal to null (A) and

Rn = col
(

AT
)
⊕ null (A) .
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Linear algebra

Proof.
Follows from Proposition 15 and the following equalities

col (A)⊥ =
{

y ∈ Rm : yT Ax = 0, x ∈ Rn
}

=
{

y ∈ Rm : xT
(

ATy
)
= 0, x ∈ Rn

}
=
{

y ∈ Rm : ATy = 0
}

= null
(

AT
)

.
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Linear algebra

Proposition 17 (Fredholm’s alternative)
For every matrix A ∈ Rm×n and vector b ∈ Rm, exactly one of
the following statements is true:

1. Ax = b has a solution x ∈ Rn.
2. There exists 0 6= y ∈ Rm such that ATy = 0 and yTb 6= 0.
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Linear algebra

Proof.

• Suppose Ax = b has a solution.
• This is equivalent to b ∈ col (A).
• Let y = yc + yn ∈ Rm, yc ∈ col (A),yn ∈ null

(
AT).

• Note that
ATy = ATyc + ATyn = ATyc

and
yTb = yT

c b + yT
n b = yT

c b.

• But then, if ATy = 0 we have that

ATyc = 0⇔ yc = 0⇔ yT
c = 0 =⇒ yT

c b = 0,

which also implies that yTb = 0.
• Therefore, 2. does not hold true.
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Linear algebra

Proof.

• Suppose that Ax = b does not have a solution.
• Note that, in this case, b 6= 0 ∈ Rm, because for b = 0 we

always have the solution x = 0.
• Moreover, this is equivalent to b /∈ col (A) (i.e.,

b ∈ null
(

AT)).
• Then, ATb = 0 and bTb = ‖b‖2 6= 0.
• Hence, we can take y = b and we have that 2. holds true.
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