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Linear Programming



Linear programming

« Linear programming (LP) is about solving optimization
problems where the objective function and the
constraints are linear.

« The optimization problem can be finding a maximum or a
minimum and the constraints can be given by equalities
and/or inequalities.

« In what follows most inequalities will be vector
inequalities, that is, the inequalities hold componentwise.

3/29



Linear programming

« ALl LP problems can be written in the following standard
form

Primal Problem (P)

max J (x) = maxclx

subjectto Ax < b,
x>0,

where x €¢ R",c ¢ R", A € R"™ " and b € R™.
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Linear programming

We will use the following notation:

- Objective function: It is the function ] to be optimized. In
this case the linear function J (x) = c'x.

- Feasible set/solution: x € R" is a feasible solution if
satisfies the constraints, i.e., Ax < b,x > 0. The feasible
set Fp is the convex set defined by all feasible solutions,
i.e,

Fp:={xeR": Ax <b,x >0}.
- Optimal solution: £ € Fp such that
J(%) = s :max{ch cAx < b,x > O}.

- Optimal value: It is the value (finite) of the objective
function at an optimal solution , i.e., J (%).

5/29



Linear programming

There are three different cases regarding the problem P:

1. There exists an optimal solution (or many) and only one
optimal value.

2. Fp = @, then the optimal value is set to —co. We say that
the problem is not feasible.

3. The problem is unbounded. There exists a sequence
{Xk}r>1 € Fpsuch that J (xx) —ke0 .
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Reduction to the standard form

We have the following rules:

* “min”"—"max": min ] (x) = —max ] (—x).
o “>"—"<": Multiply the equation by —1.
o “="—"<": Write as two inequalities using "<"” and ">".
Then apply the previous point to the inequality with ">".
* “Free variables”—"Restricted variables”: Write
x =x" —x~, where x* = max (0,x) > 0 and
x~ = —min (0,x) > 0 and rewrite the other constraints
and the objective function in terms of x™ and x .
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Reduction to the standard form

« A general (iterative) method to solve LP problems is the
simplex method (Dantzig, 1947).

« In the simplex method the constraints must be in equality

form.

« We can go from “<” to “=" by introducing the so called
slack variables w := b — Ax, then the problem P can be
written as

max J (x)
subjecttow = b — Ax,

w >0,

x > 0.

8/29



Reduction to the standard form

Example 1

+ Consider the LP problem

max J (x) = 3x1 + 2x;
subjectto — x; +3x, <12,
X1+ x2 <10,
2x1 —xp < 10
x12>20, x>0

« This example is discussed on the smartboard.
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Dual problem

+ The previous example justifies the introduction of the
dual problem of a LP.

Definition 2
Given the LP problem P we define its dual D as

Dual Problem (D)

min ] (y) = minb’y
subjectto ATy >,
y=0,

where y € R",b € R", AT € R and ¢ € R".
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Dual problem

Remark 3
We have that

 The dual problem of a LP problem is also a LP problem.

« The dual problem provides upper bounds for the optimal
value of the primal problem.

« D is sometimes easier to solve than P.

« Good implementations of the simplex algorithm solve
simultaneously P and D.
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Dual problem

Lemma 4
The dual of D is P.

Proof.
We can write

min {bTy : ATy >y > O}
= —max{(—b)Ty ATy < —c,y > O}.

The problem on the right hand side of the previous equation
is in standard form, so we can take its dual to get

—min{(—c)Tx : — (AT>Tx > —b,x > 0},

which in standard form is max {c¢"x : Ax <b,x > 0}. | .



Dual problem

« Sometimes it is convenient to find the dual of a LP
problem without finding first its standard form.

« We assume that we have a LP problem in the form of a
generalised primal problem P,

+ This means that we have a primal problem with some
constraints that are equalities and only R variables are
restricted.
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Dual problem

« That is,

Generalized Primal Problem (P,)

max J (x) = maxclx

n
subject to Zai]-x]- < b, iel,
j=1

x]-20, jGR

where x € R",c € R",A € R™", b € R", R C
{1,...,n},LE C {1,...,m},INE = @, and [ U
E={1,...,m}.
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Dual problem

« Using the following primal-dual correspondence

| (Pg) (Dy) [ |
I | Inequality constraints | Restricted variables | R
E | Equality constraints Free variables F
R | Restricted variables | Inequality constraints | I
IE Free variables Equality constraints | E

we can find its associated generalised dual problem (D)
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Dual problem

« That is a dual problem with some equality constraints
and only some variables which are restricted

Generalized Dual Problem (D,)
min | (y) = minb’y

m
subjectto Y _ajjyi > ¢j, jER,
=

Zai]-yi =Cj, i €F,
inO, iel

wherey € R",c € R", A € R"™" ,b € R",R,F C
{1,...,n},RNF=@,RUF={1,...,n}.
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Dual problem

Theorem 5 (Duality)
Let A € R™" b e R™ and c € R".

1. (Weak duality) If x is feasible for (P) and y is feasible for
(D), then

il = odle < o (ATy> = (Ax)Ty <bTy.

Moreover:

11 If (P) is unbounded = (D) is not feasible.

1.2 If (D) is unbounded = (P) is not feasible.

1.3 If T2 = bTy with £ feasible for (P) and ¥ feasible for (D),

then % must solve (P) and §j must solve (D).
2. (Strong duality) If either (P) or (D) has a finite optimal

value, then so does the other, the optimal values coincide,
and optimal solutions for both (P) and (D) exist. 17/29
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Definition 6
Aset A C R" is convex if one hasthat Ax + (1 — A)y € A,
forallx,y € Aand A € (0,1).

Definition 7
An hyperplane with normal vector a # 0 € R” and level
a € Ris the set

18l = {xe]R”:aTx:zx}.
Every hyperplane H, , is the intersection of the halfspaces

H;a:{xel[{”:aTxgtx},
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Definition 8
Let S and T be two sets in R". We say that H,, strongly
separates S and T if there exists ¢ > 0 suchthat S C H_,

a,x—¢e
and T C H,, . or viceversa.

Theorem 9 (Strong Separating Hyperplane Theorem)

Let S and T be two disjoint, non-empty, closed, convex sets
in R" and one of them is compact. Then, there exists an
hyperplane H, , that strongly separates S and T.
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Corollary 10

Let S be a non-empty, closed, convex set in R" and such that
0 ¢ S. Then, there exist a € R" and « € R, ; such that

alx >a >0, x € S.

Proof.
Smartboard. O
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Corollary 11

Let V be a linear subspace of R" and let K be a non-empty,
compact, convex set in R", such that KNV = @. Then, there

exists a € R" and « € R, such that
alx =0, xevV,

aly >a >0, y €K

Proof.
Smartboard. O
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Definition 12
Given A € R™*" we can consider the following fundamental
linear subspaces:

+ col (A): The column space of A, it contains all linear
combinations of the columns of A.

* null (A): The null space of A, it contains all solutions to
the system Ax = 0.

- col (AT): The row space of A, it contains all linear
combinations of the rows of A, (or columns of AT).

- null (AT): The left null space of A, it contains all
solutions to the system ATy = 0.
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Definition 13

The rank of A, denoted rank (A), is the dimension of col (A)
or col (AT).

Definition 14

Let S C R". We define S*, the orthogonal complement of S,
as the set of vectors in IR” which are orthogonal to S, that is,

Sl::{xelR”:xTy:O, yES}.

« Itis easy to check that S+ is a linear subspace, regardless
of S being a subspace or not.
- If Sis a linear subspace, then SN S+ = {0} .
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Proposition 15 (Orthogonal projection)

Letv € R" and let S C R" be a linear subspace. Then there
exist unique x € S and y € S* such that

v=Xx+Yy.

We write R" = S @ S+, and we say that R" is the direct sum
of Sand S*.
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Theorem 16 (Fundamental theorem of linear algebra)
Let A € R"™*". Then col (A) is orthogonal to null (AT), and

R™ = col (A) @& null <AT) .
Moreover, col (AT) is orthogonal to null (A) and

R" = col (AT) @null (A).
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Proof.
Follows from Proposition 15 and the following equalities

col(A)L:{yEJRm:yTAx:O, xe]R"}
= {yeRr":x"(aTy) =0, xeRr"}
= {yer": ATy =0}
:nuu(AT).
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Proposition 17 (Fredholm’s alternative)

For every matrix A € R™*" and vector b € R™, exactly one of
the following statements is true:

1. Ax = b has a solution x € R".
2. There exists 0 # y € R™ such that ATy = 0 and y™b # 0.
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Proof.

« Suppose Ax = b has a solution.

« This is equivalentto b € col (A).
* Lety =yc+yn € R™, y. € col (A),yn € null (AT).
* Note that

Aly = ATy + ATy, = ATy,

and
Yo =ylb+y,b=yb.
- But then, if ATy = 0 we have that
Aly =0y =0yl =0=ylb=0,

which also implies that y'b = 0.
 Therefore, 2. does not hold true.
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Proof.

« Suppose that Ax = b does not have a solution.
« Note that, in this case, b # 0 € R™, because for b = 0 we
always have the solution x = 0.
« Moreover, this is equivalent to b ¢ col (A) (i.e.,
b € null (AT)).
- Then, ATh = 0 and b”b = ||b||* # 0.
+ Hence, we can take y = b and we have that 2. holds true.

O]
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