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Information and Measurability



Information and measurability

• Our standing assumption is that #Ω = K < ∞.

Definition 1
Outcomes of an experiment ω1, ...., ωK are called elementary
events or sample points and the finite set Ω = {ω1, ...., ωK}
is called the space of of elementary events or the sample
space.

Definition 2
Events are all subsets A ⊆ Ω for which, under the
conditions of the experiment, one can conclude that either
“the outcome ω ∈ A” or “the outcome ω /∈ A”.
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Information and measurability

Example 3

• The random experiment consists in tossing a coin three
times.

• Then, #Ω = 8 and

Ω = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} .

• Event = ” 2 heads in all “ = {HHT, HTH, THH} ⊂ Ω.

Definition 4
A collection F of subsets of Ω is called an algebra on Ω if

1. Ω ∈ F .

2. A ∈ F ⇒ Ac := Ω \ A ∈ F .

3. A, B ∈ F ⇒ A ∪ B ∈ F . 4/37



Information and measurability

Remark 5

• Note that ∅ = Ωc ∈ F and

A, B ∈ F ⇒ A ∩ B = (Ac ∪ Bc)c ∈ F .

Hence, an algebra F is a family of subsets of Ω which is
closed under complementation and finitely many set
operations (intersection and union).

• If #Ω = ∞, we need the closedness property to hold for
infinitely many set operations.

• In this case, we say that a collection F of subsets of Ω is
a σ-algebra on Ω if 1., 2. and
3′. {An}n≥1 ⊆ F ⇒

⋃
n≥1 An ∈ F .

• For Ω with #Ω < ∞ both concepts coincide.
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Information and measurability

Example 6
Consider the following examples

1. F1 = {∅, Ω} trivial algebra. (contains no information)
2. F2 = P (Ω) collection of all subsets of Ω. (contains all

the information)
3. F3 = {∅, Ω, A, Ac} algebra generated by the event A.

(contains the minimal information needed to decide if A
has occurred or not)
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Information and measurability

Definition 7
Let S be a class of subsets of Ω. Then a (S), the algebra
generated by S, is the smallest algebra on Ω containing S.
That is,

1. S ⊆ a (S) ,

2. If S ⊆ F , where F is an algebra, then S ⊆ a (S) ⊆ F .

Note that

• If S1 ⊆ S2 then a (S1) ⊆ a (S2).
• The intersection of an arbitrary number of algebras is an

algebra.
• a (S) is the intersection of all the algebras on Ω

containing S.
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Information and measurability

Example 8

Let Ω = {ω1, ω2, ω3, ω4}.

1. S1 = {{ω1}} , then

a (S1) = {Ω, ∅, {ω1} , {ω2, ω3, ω4}} .

2. S2 = {{ω1} , {ω2, ω3} , {ω4}}, then

a (S2) = {Ω, ∅, {ω1} , {ω2, ω3} , {ω4} , {ω2, ω3, ω4} ,

{ω1, ω4} , {ω1, ω2, ω3}} .

3. S3 = {{ω1} , {ω1, ω4}}, then

a (S3) = {Ω, ∅, {ω1} , {ω1, ω4} , {ω2, ω3, ω4} , {ω2, ω3} ,

{ω1, ω2, ω3} , {ω4}} . 8/37



Information and measurability

Example 8

• Since S1 ⊆ S2, we have that a (S1) ⊆ a (S2).
• The algebra a (S2) contains the events in a (S1) and more.
• Hence, a (S2) is more informative than a (S1).
• Note that, S2 * S3 and S3 * S2, but a (S2) = a (S3) and,

therefore, a (S2) and a (S3) contain the same information.
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Information and measurability

An interesting class of subsets of Ω are those which form a
partition of Ω.
Definition 9
A class of subsets π = {A1, . . . , Am} of Ω is a partition of Ω
if

1. Ai ∩ Aj = ∅, i 6= j,

2. ∪m
i=1 Ai = Ω.

Definition 10
Given two partitions π1, π2 of Ω, we say that π2 is finer than
(or refines) π1, if for any A ∈π2 there exists B ∈ π1 such that
A ⊆ B and we will denote it by π1 ⊆ π2.
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Information and measurability

Definition 11
Given two partitions π1, π2 of Ω, we may define its
intersection π1 ∩ π2 to be the following partition

π1 ∩ π2 = {A ∩ B : A ∈ π1 and B ∈ π2} .

Note that, in general, neither π1 ⊆ π2 nor π2 ⊆ π1, but
π1 ⊆ π1 ∩ π2 and π2 ⊆ π1 ∩ π2.
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Information and measurability

Example 12

• A1 A2

A3 A4
⊆ B1 B2 B3

B4 B5

π1 π2

• C1

C2
neither ⊆ nor ⊇ D1 D2

π3 π4

But π3 ∩ π4 = π1 and π3 ⊆ π1, π4 ⊆ π1.
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Information and measurability

Remark 13
Why are partitions interesting?

• For any algebra F on Ω, there exists a partition π such
that F = a (π) (bijection).

• The elements of a (π) are all possible unions of the
elements in π. (easy structure)

• Let X : Ω→ {x1, . . . , xM}, where M ≤ K = #Ω, represent
a measurament in a random experiment. Then, the
following class of subsets of Ω is a partition

πX =
{

X−1 (xi) = {ω ∈ Ω : X (ω) = xi} , i = 1, ..., M
}

.

(easy to interpret)
13/37



Information and measurability

Definition 14
Let F be an algebra on Ω. We say that function
X : Ω→ {x1, . . . , xM} is F-measurable (measurable with
respect to F ) if

X−1 (xi) = {ω ∈ Ω : X (ω) = xi} ∈ F , i = 1, ..., M.

X is a random variables if and only if X is P (Ω)-measurable.

Definition 15
The algebra generated by a finite number of r.v.
X1, X2, . . . , Xn , denoted by a (X1, X2, . . . , Xn), is defined as
a (
⋂n

i=1 πXi).
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Information and measurability

Remark 16

• a (X) = a (πX) is the smallest algebra F such that X is
F-measurable.

• Let F = a (π) where π is a partition of Ω. Then, X is
F-measurable if and only if X is constant on each
element of the partition π.

• Usually, P (Ω) is strictly finer than a (X), that is, by
observing X we cannot get all the information available
in the sample space Ω.

• a (X) = P (Ω) if and only if X takes K = #Ω di�erent
values.
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Information and measurability

Example 17

• Let Ω = {ω1, ω2, ω3, ω4}.
• Consider the random variables

X (ω) =

{
2 if ω = ω1, ω2

4 if ω = ω3, ω4

Y (ω) =


1 if ω = ω1

2 if ω = ω2

3 if ω = ω3

4 if ω = ω4

.

• Then,

πX = {{ω1, ω2} , {ω3, ω4}} ,

a (X) = {∅, Ω, {ω1, ω2} , {ω3, ω4}} ,
16/37



Information and measurability

Example 17

πY = {{ω1} , {ω2} , {ω3} , {ω4}} ,

a (Y) = a (πY) = P (Ω) .

• Let Z be the “random variable” Z ≡ 1.
• Then, πZ = {Ω} and a (Z) = a (πZ) = {∅, Ω}.
• Note that Z (in fact any constant random variable) is

measurable with respect to any algebra on Ω.
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Information and measurability

Definition 18
A filtration F = {Ft}t=0,...,T on Ω is a sequence of algebras
on Ω such that Ft ⊆ Ft+1, t = 0, . . . , T.

• We will always assume that F0 = {∅, Ω} and usually
FT = P (Ω).

• A filtration models the evolution of the information at our
disposal through time.

• At time t = 0 we have no information and at time T, if
FT = P (Ω), we have full information.
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Information and measurability

Two graphical ways to represent the flow of information:

• Partitions
ω1 ω5

ω2 ω6

ω3 ω7

ω4 ω8

ω1 ω5

ω2 ω6

ω3 ω7

ω4 ω8

ω1 ω5

ω2 ω6

ω3 ω7

ω4 ω8

ω1 ω5

ω2 ω6

ω3 ω7

ω4 ω8

• Trees
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Information and measurability

Definition 19
A stochastic process X = {X (t)}t=0,...,T is a collection of
random variables indexed by t = 0, . . . , T. You can see it as a
function X : Ω× {0, . . . , T} → R or as random variable
X : Ω→ R{0,...,T}, where R{0,...,T} denotes the set of all
real-valued functions with domain of definition {0, . . . , T}.

Definition 20
We say that a stochastic process X is adapted to the
filtration F or F-adapted if Xt is Ft-measurable, t = 0, . . . , T.
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Information and measurability

Definition 21
The natural filtration generated by a stochastic process X,
denoted by FX, is defined by

FX =
{
FX

t = a (X (0) , X (1) , . . . , X (t))
}

t=0,...,T
.

• FX is the minimal filtration to which X is adapted to. It
contains the information that you can get by observing
the process X.

Definition 22
We say that a process X = {X (t)}t=1,...,T is predictable with
respect to a filtration F or F-predictable if Xt is
Ft−1-measurable, t = 1, . . . , T.

21/37



Information and measurability

Example 23

• Let Ω = {ω1, ω2, ω3, ω4} and X = {X (t)}t=0,1,2 with
X (0) = 3,

X (1, ω) =

{
5 if ω = ω1, ω2

2 if ω = ω3, ω4
,

X (2, ω) =


6 if ω = ω1, ω2

3 if ω = ω3

2 if ω = ω4

.

• Then,

FX
0 = a (X (0)) = a

(
πX(0)

)
= {∅, Ω} ,
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Information and measurability

Example 23

FX
1 = a (X (0) , X (1)) = a

(
πX(0) ∩ πX(1)

)
= a

(
πX(1)

)
= a ({{ω1, ω2} , {ω3, ω4}}) = {∅, Ω, {ω1, ω2} , {ω3, ω4}} ,

FX
2 = a (X (0) , X (1) , X (2)) = a

(
πX(0) ∩ πX(1) ∩ πX(2)

)
= a

(
πX(2)

)
= a ({{ω1, ω2} , {ω3} , {ω4}})

= {∅, Ω, {ω1, ω2} , {ω3} , {ω4} , {ω1, ω2, ω3} , {ω1, ω2, ω4} ,

{ω3, ω4}} .

• In this case FX
2 6= P (Ω).

• Check what happens if X (2, ω2) = 3. 23/37



Information and measurability

Remark 24

• The systematic way to compute a (S) , where S ⊆ P (Ω), is
to identify the finest partition of Ω that you can obtain by
basic set operations on all elements of S, denoted by πS.

• Then, the elements of a (S) will be all possible unions of
elements in πS.
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Conditional Expectation



Conditional expectation

• Recall that a probability measure P on a finite sample
space Ω = {ω1, . . . , ωK} is a function P : Ω→ [0, 1] such
that ∑K

i=1 P (ωi) = 1.
• The triple (Ω,P (Ω) , P) is a probability space.
• In addition, we will assume that P (ωi) > 0, i = 1, . . . , K.

This assumption is not essential but implies that all sets
in P (Ω) have strictly positive probability, which
simplifies the statements about conditional probabilities
and conditional expectations.

• Given an event A ∈ P (Ω) the probability of A happening
is given by

P (A) = ∑
ω∈A

P (ω) .
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Condtional expectation

• We say that two events A, B ∈ P (Ω) are independent if

P (A ∩ B) = P (A) P (B) .

• Given two events A, B ∈ P (Ω), the probability of A given
B, denoted by

P (A| B) = P (A ∩ B) /P (B) .

Remark 25

In general, we would need to assume that P(B) > 0 for this
probability to be well defined. However, thanks to the
assumption on the strict positivity of P, this probability is
always well defined in our setup.
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Conditional expectation

Definition 26
Given two algebras F1,F2 on Ω we say that they are
independent if for all A ∈ F1 and B ∈ F2 we have that A
and B are independent.

Definition 27
Given a random variable X we define its expectation by

E [X] = ∑
ω∈Ω

X (ω) P (ω) .
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Conditional expectation

Definition 28

Given an algebra F and a random variable X we define the
conditional expectation of X given F as the unique random
variable Z, denoted by E [X| F ], satisfying

1. Z is F-measurable.
2. E [1AX] = E [1AZ], A ∈ F .

• Note that since E [X| F ] is F-measurable, it is constant
on the partition that generates F .

• How we compute E [X| F ]?
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Conditional expectation

Definition 29
Let A ∈ P (Ω) and X be a random variable. Then, the
conditional expectation of X given A is the quantity

E [X| A] = ∑
x

xP (X = x| A) ,

where x are the values taken by X and

P (X = x| A) =
P ({ω : X (ω) = x} ∩ A)

P (A)
.

• A remark analogous to Remark 25 applies to the previous
definition.
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Conditional expectation

Proposition 30
Let F be an algebra on Ω, X be a random variable and let
π = {A1, . . . , Am} be the partition of Ω such that F = a (π).
Then,

E [X| F ] (ω) =
m

∑
i=1

E [X| Ai] 1Ai (ω) .

Proof.
Smartboard.

30/37



Conditional expectation

Remark 31

• Usually we are given (or we guess) a candidate Z to be
E [X| F ], then we need to check conditions 1) and 2) in
Definition 28.

• When F = σ (π) , π a partition it su�ces to check that
the candidate Z is constant over the elements of π

(F-measurable) and check condition 2) in Definition 28
only for Ai ∈ π.
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Conditional expectation

Example 32

• Let Ω = {ω1, . . . , ω4} and P (ωi) = 1/4, i = 1, ..., 4.
• Consider the algebra F = {∅, Ω, {ω1, ω2} , {ω3, ω4}} and

the random variable X given by

X (ω) =


9 if ω = ω1

6 if ω = ω2, ω3

3 if ω = ω4

= 91{ω1} (ω) + 61{ω2,ω3} (ω) + 31{ω4} (ω) .

• We will compute E [X| F ] on the smartboard.

32/37



Conditional expectation

Theorem 33
Suppose X and Y are random variables on (Ω,P (Ω) , P) , G
is an algebra on Ω, a, b ∈ R. Then,

1. Linearity: E [ aX + bY| G] = aE [X| G] + bE [Y| G].
2. Law of total expectation: E [E [X| G]] = E [X].
3. Independence: If X is independent of G then

E [X| G] = E [X].
4. Measurability: If Y is G-measurable then

E [XY| G] = YE [X| G].
5. Tower property: If H is an algebra on Ω such that H ⊆ G ,

then E [E [X| H]| G] = E [E [X| G]| H] = E [X| H] .

Proof.
Smartboard. 33/37



Conditional expectation

Theorem 34
Let X be a random variable on (Ω,P (Ω) , P) and G an
algebra on Ω. Then,

E [X| G] = arg min
{

E
[
(X−Y)2

]
: Y being G-measurable

}
.

Proof.
Smartboard.

Remark 35
The conditional expectation is the best prediction of X
based on the information contained in G , in the sense of
minimizing the L2 error (variance).
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Conditional expectation

Definition 36
Let F = {Ft}t=0,...,T be a filtration on (Ω,P (Ω) , P) . A
stochastic process X = {X (t)}t=0,...,T is a (F-) martingale if

1. X is F-adapted.
2. For t ∈ {0, . . . , T} ,s ≥ 0,t + s ∈ {0, . . . , T} we have

E [X (t + s)| Ft] = X (t) .

• Intuitively, the best forecast of the process at some future
time t + s given today’s information Ft is the value of the
process today.
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Conditional expectation

Remark 37

• An F-adapted process X is called a (sub) supermartingale
if

E [X (t + s)| Ft] (≥) ≤ X (t) .

• If #Ω = +∞ then we need to impose that E [|X (t)|] < ∞
for all t = 0, . . . , T.

• In the previous definitions we can change X (t + s) by
X (t + 1).
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Conditional expectation

Proposition 38 (Martingale transform or stochastic integral)
Let F = {Ft}t=0,...,T be a filtration on (Ω,P(Ω), P). Let H be
an F-predictable process and M an F-martingale. Then, the
process Y defined by Y0 = c (a constant) and

Y (t) =
t

∑
s=1

H (s) (M (s)−M (s− 1))

=
t

∑
s=1

H (s)∆M (s) , t = 1, ..., T,

is an F-martingale with E [Y (t)] = c.

Proof.
Smartboard.
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