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Introduction

+ The Black-Scholes model is an example of continuous
time model for the risky asset prices.

Let us summarize the underlying hypothesis of the
Black-Scholes model on the prices of assets.

« The assets are traded continuously and their prices have
continuous paths.

» The risk-free interest rate » > 0 is constant.

* The logreturns of the risky asset S; are normally
distributed:

log (3;) NN((ﬂ—f) (t—u),(fz(t—u)>.

« Moreover, the logreturns are independent from the past
and are stationary.

- The model has 3 parameters y € R, o > 0and Sg > 0. 3/



Probability basics

 Let Q) be a set with possibly infinite cardinality.

Definition 1
A o-algebra F on Q) is a familly of subsets of Q) satisfying

1. Qe F.
2. If A€ Fthen A°=Q\ Ae F.
3. If {An},5 C F then U,> A€ F.

Definition 2

A pair (Q), F), where Q is a set and F is a c-algebra on (), is
called a measurable space.
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Probability basics

Definition 3

Given G a class of subsets of () we define ¢(G) the o-algebra
generated by G as the smallest o-algebra containing G,
which coincides with the intersection of all c-algebras
containing G.

* In R, we can consider the Borel o-algebra B (R), the
o-algebra generated by the open sets.

Definition 4

A probability measure on a measurable space (Q), F) is a set
function P : F — [0, 1] satisfying P(Q)) = 1 and, if

{An},~1 € F are pairwise disjoint then

P (U A”) =) P(An). 5/45
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Probability basics

Definition 5
Atriple (Q), F,P) where F is a o-algebraon Q and Pis a
probability measure on (Q), F) is called a probability space.

Definition 6

Let (E1,&1) and (E, &) two measurable spaces. A function
X : E; — E, is said to be (&, &)-measurable if X1 (A) € &
forall A € &,.

Definition 7

Let (Q), F, P) be a probability space. A function X : O — R is
a random variable if it is (F, B (R))-measurable (usually one
only write F-measurable).
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Probability basics

Definition 8

The o-algebra generated by a random variable X is the
c-algebra generated by the sets of the form
{X71(A):AeB(R)}.

Definition 9
The law of a random variable X, denoted by £(X), is the
image measure Px on (R, B(RR)), that is,

Px(B) = P(X"'B), B < B(R).
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Probability basics

Definition 10

Let ¢ : R — R be a Borel measurable function. Then the
expectation of g(X) is defined to be

E [¢(X)] :/ngXdP:/]RgdPX.

If Px < A, with 2% = fx then

E [g(X)] :/Rgfxdftz/]Rg(x)fx(x)dx.
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Probability basics

Definition 11

Let X be a random variable on a probability space (Q), F, P)
such that E [|X|] < o0 and G C F be a c-algebra. The
conditional expectation of X given G, denoted by E [X| G] is
the unique random variable Z satisfying:

1. Z is G-measurable.
2. Forall B € G, we have E [X13] = E [Z15].

+ As () does not need to be finite, the structure of the
o-algebras on Q) is not as easy as in the finite case.

+ Hence, computing E [ X| G] is more difficult in general.

+ However, E [ X| G] satisfies the same properties as when
Q) was finite: tower law, total expectation, role of the
independence,etc... 9/45



Stochastic processes

Definition 12

A (real-valued) stochastic process X indexed by [0, T] is a
family of random variables X = {X}c(o 1] defined on the
same probability space (Q), F, P).

« We can think of a stochastic process as a function
X: [0,T]xQ — R
(t,w) = Xp(w)
« For every w € Q) fixed, the process X defines a function
X (w): [0,T] — R
t = Xp(w)
which is called a trajectory or a sample path of the

process.
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Stochastic processes

 Hence, we can look at X as a mapping

X: O — ROT
w = X(w)’

where R[] is the cartesian product of [0, T] copies of R
which is the set of all functions from [0, T] to R. That is,
we can see X as a mapping from Q) to a space of
functions.

* The canonical construction of a random variable consists
on taking X = Id and (), F,P) = (R, B(R), Px).
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Stochastic processes

- For stochastic processes Y = {Yi},.( 7 this procedure is
far from trivial. One can consider the measurable space
(]R[O/T],B (R) [O'T]) but to find Py one needs to do it
consistently with the family of finite dimensional laws.
(Kolmogorov Extension Theorem)

« Moreover, the space RI*T] is too big. One often wants to
find a realization of the process in a nicer subspace as
Co ([0, T]). (Kolmogorov Continuity Theorem)

Definition 13

Afiltration IF = {F}},c( 1 is a family of nested c-algebras,
thatis, 7, C Fifs < t.

Definition 14

A stochastic process X = {X;},(, 1 is F-adapted if X; is
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Stochastic processes

Definition 15
A stochastic process X = {X;},.(o 7 is a F-martingale if it is
[F-adapted, E [| X;|] < co,t € [0,T] and

Definition 16

A stochastic process X = {X;},.|, 1) has independent
increments if X; — X, is independent of X, — X,,, for all
usr<s<t

Definition 17
A stochastic process X = {X;},.(, 7 has stationary
increments if for all s < t € R, we have that
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Brownian motion and related
processes



Brownian motion

Definition 18
A stochastic process W = {W;},. (o 7) is a (standard)

Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,

2. Wy =0, P-a.s,,

3. W has independent increments,

4. Forall0 <s <t <T,thelaw of W; — W, isa NV (0, (t —s)).
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Brownian motion

Definition 19
A stochastic process W = {W:},( 7 is a F-Brownian motion

if it satisfies
1. W has continuous sample paths P-a.s.,
2. Wy =0, P-a.s,,

3. Forall0 <s <t < T, the random variable W; — W; is
independent of 7.

4 Forall0 <s <t <T,the law of W; — W isa NV (0, (t —s)).
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Lévy processes

Definition 20

A stochastic process L = {Lt}. (o 1y is @ Lévy process if it
satisfies:

1. Lo =0, P-a.s,,
2. L has independent increments,

3. L has stationary increments, i.e., for all 0 < s < t, the law
of L; — L, coincides with the law of L;_s.

4. X is stochastically continuous, i.e.,

« That L is stochastically continuous does not imply that L
has continuous sample paths.
« A Brownian motion is a particular case of Lévy process.

+ Useful for modeling stock prices. 16/



Brownian motion with drift and geometric Brownian motion

Definition 21

A stochastic process Y = {Y;},.(, 7 is @ Brownian motion
with drift x and volatility o if it can be written as

Yt:]/lt+0'wt, tE[O,T],

where W is a standard Brownian motion.

Definition 22

A stochastic process S = {S:},.(y 7 is a geometric Brownian
motion (or exponential Brownian motion) with drift x and
volatility o if it can be written as

Sy =exp (ut+oW;), tel0,T],

where W is a standard Brownian motion. e



Increments of a geometric Brownian motion

+ Note that the paths S are continuous and strictly positive
by construction.

 The increments of S are not independent.

* Its relative increments

St - Stnfl Stnfl - Stn—Z Stl — StU
St s Stn_z [) 0000p Sto 7

n—1

n

where0 <ty <t; <---<t, <T,areindependent and
stationary.
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Increments of a geometric Brownian motion

« Equivalently,

and

Sy, Sy _ S
log (Stt ) ,log (St 1) ). lOg (;) ,
n—1 n—2 0

where0 <ty <t <---<t, <T,arealso independent
and stationary.

+ Moreover, for 0 < s <t < T the law of S; /S is lognormal
with parameters yu(t —s) and o?(t — s), that is, the law of

log (S¢/Ss) ~ N (u(t—s),0(t—s)).
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The Black-Scholes model

« The time horizon will be the interval [0, T].

» The price of the riskless asset, denoted by B = {B:},c (1),
isgivenby B; = ¢*,0 <t < T.

» The price of the risky asset, denoted by S = {S;},c0 1), IS
modeled by a continuous time stochastic process
satisfying the stochastic differential equation (SDE)

dS; = ]/ledt + 0SidW;, t e [0, T] 0
S0 =509 > 0.

+ One can check that the process

2
St:SOGXp(<‘M—Z)t+UWt), tE[O,T],

satisfies the previous SDE.
« Therefore, S; is a geometric Brownian motion with drift

o 20/45
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The Black-Scholes model

- Let §* i= {8} = ¢ 'S}, epq 1y

2(72 .
- Note that E [e?Z] = ef+5" if Z ~ N (1, 0?).
« Then, S* satisfies

Sy
E [5; fs]

B I
~Efop ((1-Z -r) -9 +om-m))]
—ew ((1=F =r) (1-9) ) Elew (oWe)

— exp <<y— ‘722 —r> (t—s)+ ‘722 (t_5)> )
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The Black-Scholes model

* Hence, S* is a martingale under P iff y = r.

« Does there exist a probability measure Q such that S* is a
martingale under Q?
« The answer is given by Girsanov’s theorem. Let Q be given

by
aQ u—r 1 y—rz
dP_eXp< o M 2(0) K
then the process
W; = lﬂ;:AKf + W,
o

is a Brownian motion under Q.
« Moreover, S* is a martingale under Q.
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The Black-Scholes model

Theorem 23 (Risk-neutral pricing principle)

Let X be a contingent claim such that E [|X|] < cc. Then its
arbitrage free price at time t is given by

Px(t) =e " T VEQ[X| F], 0<t<T.
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The Black-Scholes pricing formula




Black-Scholes pricing formula

Theorem 24

The prices of European call and a put options are given by

C(t,8) = S;® (d1 (S, T —t)) — Ke 7T (dy (S, T — 1)),
P(t,S) =Ke " T N® (—dy (S, T —t)) — $;® (—dy (S;, T — 1)),

respectively, where

log (x/K) + (r—|— ‘772> T

di (x,7) = T ;
log (x/K) + r—
i) = B >N§ Z)T’

and ®(x) = [*_¢(z dz—foorexp( 7) dz. Note also e
that d, (t T)=dy (t,T) +0y/T.



Black-Scholes pricing formula

Proof of Theorem 24.
We will prove the formula for the call option

X=(S(T)-K)".

By the risk-neutral valuation principle we know that

d

x=S(t)

Px (1) = e "TDEq [ (5 (T) = K)*| ]

)

S*(
* 4
e kz*((f) v 0K)

r (x)|x:5(t) :

:]EQ

[I>
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Black-Scholes pricing formula

Proof of Theorem 24.
Since

o> =
X0 = exp <—2 (T—t)+o (WT - Wt)> ,
and Wr — W; ~ N (0, (T — t)) under Q, we have that

—+o00 o2 (T—t +
T(x)= / ¢ (2) <xe_(’§)+‘”T_tZ - Ke_r(T_t)) dz.

—00

Note that

02 —
yo— TG +oVT—tz _ g —r(T—1) 20=z2—d(x,T—1).
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Black-Scholes pricing formula

Proof of Theorem 24.
Therefore,

+oo o2 (T—t
I (x) _ / ¢ (Z) (xe_ (g ) Lo/ Ttz - Ke—V(T—t)> dz
7d2(x,T7t)

+oo o2(T—t)
= x/ ¢(z)e 2 TOVITEgy
—dz(x,T—t)

o0
_K —r(T—t)/ d
¢ —dy(x,T—t) ¢(z)dz
=1L - D
Using that
o2 (T—
¢(Z)e_ (Fg f)—‘r(T\/T—tZ:qb(Z_O. /T_t>/

anddy (x,T—t) =0T —t+dy(x,T—1t), [ 27145



Black-Scholes pricing formula

Proof of Theorem 24.
we get

—+o0
= d
* /(m/Tterz(x,Tt)) ¢(z)dz
=x(1-®d(—d1(x,T—1t))).
On the other hand,
L=Ke"TD(1-®(—dy(x,T—1))).

The result follows from the following property of ®

P(z)=1-d(—2), zeR. o/



The Greeks or sensitivity parameters

+ Note that the price of a call option C(t, S;) actually
depends on other variables/parameters

C(t, St) = C(t, St; 7@y K)

« The derivatives with respect to these parameters are
known as the Greeks and are relevant for
risk-management purposes.

* Here, there is a list of the most important:

« Delta:
A= 35(1,5) =@ ( (5, T-1)).
+ Gamma:
p_ PC_ @@ (5,T—1) _ ¢(di(S,T—1)
95?2 oSiV/T —t oSiV/T —t
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The Greeks or sensitivity parameters

 Theta:
- aC - 7S d’ (dq (S¢, T — t)) —r(T—t) B
®_§_— T rKe D (dy (S, T —t))
_ 5@ ST =) g rT-0g (4, (5, T — 1))
2T —t
* Rho:
aC
p= o = K(T — i’)e_r(T_t)CD (dz (St, T — f)) .
+ Vega:
aC
P SVT —t®' (dq (St, T —t)) = StVT — t (dy (St, T — t)).
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Convergence of the
Cox-Ross-Rubinstein pricing formula
to the Black-Scholes pricing formula




Convergence of the CRR formula to the Black-Scholes formula

« We will consider a family of CRR market models indexed
by n € IN.

+ Partition the interval [0, T) into [(j — 1) £ ,] D, j=1..,n

* S, (j) will denote the stock price at time jL in the nth
binomial model.

- Similarly B, (j) represents the bank account at time j, in
the nth binomial model.

e Letr, = r— be the interest rate, where r > 0 is the
interest rate with continuous compounding, i.e.,

lim (147,)" =¢'T.

n—oo

s Leta, = a\/;, where ¢ is interpreted as the
instantaneous volatility.
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Convergence of the CRR formula to the Black-Scholes formula

« Set up the up and down factors by

Uy = e (1 +7’n),
iy = e (1 + T’n) o

« For n sufficiently large d, < 1.

« Moreover, note that u, > 1+r, and thatd, <1 +r, for
all n.

* Hence, there exists a unique martingale measure Q, in th
nth binomial model for all n.
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Convergence of the CRR formula to the Black-Scholes formula

+ The parameter g, in the unique martingale measure in
the nth binomial model is
l+r—d,  1—e™ _ ay—3a5+o0(a3)
A Uy —dy et —e~  2a, + 143 + 0 (a3)
1

1
:E_Ean+0(a">'

where o (§) with § > 0 means hm(;_m o) _ o,

* Let {X, (j)};—y,. . be the Bernoullli rv. underlying the nth
market model Note that Q, (X, (j) = 1) = g, and

S (j) = 8 (0) iy D rCa ) gy
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Convergence of the CRR formula to the Black-Scholes formula

« The value at time zero of a put option with strike K in the
nth binomial market is given by

Pt (0) = (1412) " Eg, [(K =S4 (n))"]

(s —s0) |

n Xn(])dl Xn(j)
2 Yl’l Z log Trn) .

]:] :

= Eq,

where
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Convergence of the CRR formula to the Black-Scholes formula

« For n fixed the random variable Y, (1), ..., Y, (n) are i.i.d.
with

Eq, [Yn ()]—qn10g< = >+(1_‘7")1°g<1inrn>
= (; — ian—l—o(an)) ay

+ (; + %an +o0 (an)) (—an)

1
= —Ea% +o (a%) ,

Eq, [Ya ()] = an+o(a),
Eq, [Ya ()|"] =0 (az)  m=3.
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Convergence of the CRR formula to the Black-Scholes formula

Definition 25
A sequence {X,},-, of random variables, possibly defined
on different probaBility spaces (Qy,, Fy, P,), converges in
distribution (or weakly) to X, defined on a probability space
(Q, F,P),if

Ep, [8 (Xn)] — Ep[g(X)], (1)

when n — +oo0, for all g€ C, (R) (space of continuous and
bounded functions).
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Convergence of the CRR formula to the Black-Scholes formula

Theorem 26 (Lévy’s continuity theorem)

A sequence {X,},~, of random variables, possibly defined
on different probaBility spaces (Qy,, Fu, P,), converges in
distribution (or weakly) to X, defined on a probability space
(Q, F, P), if and only if the sequence of corresponding
characteristic functions {¢x, () = Ep, [¢®*]} _, converges
pointwise to the characteristic function ¢x (6) = Ep [¢*X] of
X.
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Convergence of the CRR formula to the Black-Scholes formula

 Let Y be a random variable defined on some probability
space (Q, F, Q) with law N (—‘i—T,UZT)

« Its characteristic function is
2
@y (0) = exp < Z@TT - 9202T> .

* Since Yy, (j), ..., Yu (n) are i.i.d. we have that

or0) = Eq. "] = TTEq,[#10] = kg, [0
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Convergence of the CRR formula to the Black-Scholes formula

+ Expanding the exponential we get

02 !
v, 0 = (1+i0Eq, 1% )] - S Eo, [¥2 )] +0 () )

— <1— <Z:972LGZ> aﬁ+o(a§)>n n
:@_<w;y>#:+uum>,

which converges to ¢y (0) as n tends to infinity.

« We can conclude that Y;, converges in distribution to a
i)
N(—UT,U' T> .
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Convergence of the CRR formula to the Black-Scholes formula

» Therefore, since we know that {Y,,},., converge in law to
Y, by applying (1) with g (x) = (Ke™'T — 5 (0)¢*) ", we

have
—rT Y, -
Jim Bo, | (ke —s0)¢%) |
2
o o= % 2 N
/ ¢ ( e —5(0 )exp<—”+0ﬁz>) dz
o 21 2
:PPut(O)/

where we have used that Y ~ N/ (—?,a@) if and only
ifY = —2L + 0/TZ with Z ~ N (0,1).
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Convergence of the CRR formula to the Black-Scholes formula

« Recall that

e One can check that

7

Phu(0) ~Eo, | (ke =5 @) %) || < k[ @ n) =

and, therefore, Pj , (0) and Eq, [(Ke—fT —5(0) eYn)T

converge to the same limit as n tends to infinity.
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Convergence of the CRR formula to the Black-Scholes formula

« Then, we can conclude that

- It is easy to check that
Prut (0) = Ke "7 ® (=d2 (S (0),T)) = § (0) @ (—d1 (5 (0), T)),

where ® is the cumulative normal distribution and d; and
d, are the same functions defined in Theorem 24.
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Convergence of the CRR formula to the Black-Scholes formula

« By using the put-call parity relationship (on the binomial
market and on the Black-Scholes market) one gets that
lim P2y (0) = lim (Phy (0)+5(0) = (1+7)"K)
= Pput (0) + S (0) —e"TK
= Pcan (0),
where

Pear (0) = (1+14) " Eq, [(S (n) = K)]
K +
<S (0) eY” — W) ] s
and

Pean (0) = S(0)® (d1 (S (0),T)) —Ke T (d (S(0),T)). /
43/45
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Convergence of the CRR formula to the Black-Scholes formula

+ One can modify the previous arguments to provide the
formulas for P,y () and Ppy ().

Theorem 27

Let g € C,(R) and let X = g (S (T)) be a contingent claim in
the Black-Scholes model. Then the price process of X is
given by

where P% (t),n > 1 are the price processes of X in the
corresponding CRR models.
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Convergence of the CRR formula to the Black-Scholes formula

« There exist similar proofs of the previous results using
the normal approximation to the binomial law, based on
the central limit theorem.

« However, note that here we have a triangular array of
random variables {Y (j)},_; ,n = 1. Hence, the result
does not follow from the basic version of the central limit
theorem.

« Moreover, the asymptotic distribution of Y;, need not be
Gaussian if we choose suitably the parameters of the CRR
model.

« For instance, if we set u, = u and d, = ¢“*/" ¢ < r we have
that Y}, converges in law to a Poisson random variable.

« This lead to consider the exponential of more general

Lévy process as underlying price process for the stock. }
45145
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