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Introduction

• The Black-Scholes model is an example of continuous
time model for the risky asset prices.

Let us summarize the underlying hypothesis of the
Black-Scholes model on the prices of assets.

• The assets are traded continuously and their prices have
continuous paths.

• The risk-free interest rate r ≥ 0 is constant.
• The logreturns of the risky asset St are normally

distributed:

log
(

St

Su

)
∼ N

((
µ− σ2

2

)
(t− u) , σ2 (t− u)

)
.

• Moreover, the logreturns are independent from the past
and are stationary.

• The model has 3 parameters µ ∈ R, σ > 0 and S0 > 0. 3/45



Probability basics

• Let Ω be a set with possibly infinite cardinality.

Definition 1
A σ-algebra F on Ω is a familly of subsets of Ω satisfying

1. Ω ∈ F .
2. If A ∈ F then Ac = Ω \ A∈ F .
3. If {An}n≥1 ⊆ F then ⋃n≥1 An∈ F .

Definition 2
A pair (Ω,F ), where Ω is a set and F is a σ-algebra on Ω, is
called a measurable space.
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Probability basics

Definition 3
Given G a class of subsets of Ω we define σ(G) the σ-algebra
generated by G as the smallest σ-algebra containing G,
which coincides with the intersection of all σ-algebras
containing G.

• In R, we can consider the Borel σ-algebra B (R), the
σ-algebra generated by the open sets.

Definition 4
A probability measure on a measurable space (Ω,F ) is a set
function P : F → [0, 1] satisfying P(Ω) = 1 and, if
{An}n≥1 ⊆ F are pairwise disjoint then

P

(⋃
n≥1

An

)
= ∑

n≥1
P (An) . 5/45



Probability basics

Definition 5
A triple (Ω,F , P) where F is a σ-algebra on Ω and P is a
probability measure on (Ω,F ) is called a probability space.

Definition 6
Let (E1, E1) and (E2, E2) two measurable spaces. A function
X : E1 → E2 is said to be (E1, E2)-measurable if X−1 (A) ∈ E1

for all A ∈ E2.

Definition 7
Let (Ω,F , P) be a probability space. A function X : Ω→ R is
a random variable if it is (F ,B (R))-measurable (usually one
only write F-measurable).
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Probability basics

Definition 8
The σ-algebra generated by a random variable X is the
σ-algebra generated by the sets of the form{

X−1 (A) : A ∈ B (R)
}

.

Definition 9
The law of a random variable X, denoted by L(X), is the
image measure PX on (R,B(R)), that is,

PX(B) = P(X−1B), B ∈ B(R).
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Probability basics

Definition 10
Let g : R→ R be a Borel measurable function. Then the
expectation of g(X) is defined to be

E [g(X)] =
∫

Ω
g ◦ XdP =

∫
R

gdPX.

If PX � λ, with dPX
dλ = fX then

E [g(X)] =
∫

R
g fXdλ =

∫
R

g(x) fX(x)dx.
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Probability basics

Definition 11
Let X be a random variable on a probability space (Ω,F , P)
such that E [|X|] < ∞ and G ⊂ F be a σ-algebra. The
conditional expectation of X given G , denoted by E [X| G] is
the unique random variable Z satisfying:

1. Z is G-measurable.
2. For all B ∈ G, we have E [X1B] = E [Z1B] .

• As Ω does not need to be finite, the structure of the
σ-algebras on Ω is not as easy as in the finite case.

• Hence, computing E [X| G] is more di�cult in general.
• However, E [X| G] satisfies the same properties as when

Ω was finite: tower law, total expectation, role of the
independence,etc... 9/45



Stochastic processes

Definition 12
A (real-valued) stochastic process X indexed by [0, T] is a
family of random variables X = {Xt}t∈[0,T] defined on the
same probability space (Ω,F , P) .

• We can think of a stochastic process as a function
X : [0, T]×Ω −→ R

(t, ω) 7→ Xt(ω)
.

• For every ω ∈ Ω fixed, the process X defines a function
X· (ω) : [0, T] −→ R

t 7→ Xt(ω)
,

which is called a trajectory or a sample path of the
process.
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Stochastic processes

• Hence, we can look at X as a mapping

X : Ω −→ R[0,T]

ω 7→ X·(ω)
,

where R[0,T] is the cartesian product of [0, T] copies of R

which is the set of all functions from [0, T] to R. That is,
we can see X as a mapping from Ω to a space of
functions.

• The canonical construction of a random variable consists
on taking X = Id and (Ω,F , P) = (R,B (R) , PX).
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Stochastic processes

• For stochastic processes Y = {Yt}t∈[0,T] this procedure is
far from trivial. One can consider the measurable space(

R[0,T],B (R)[0,T]
)

but to find PY one needs to do it
consistently with the family of finite dimensional laws.
(Kolmogorov Extension Theorem)

• Moreover, the space R[0,T] is too big. One often wants to
find a realization of the process in a nicer subspace as
C0 ([0, T]). (Kolmogorov Continuity Theorem)

Definition 13
A filtration F = {Ft}t∈[0,T] is a family of nested σ-algebras,
that is, Fs ⊆ Ft if s < t.

Definition 14
A stochastic process X = {Xt}t∈[0,T] is F-adapted if Xt is
Ft-measurable.
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Stochastic processes

Definition 15
A stochastic process X = {Xt}t∈[0,T] is a F-martingale if it is
F-adapted, E [|Xt|] < ∞,t ∈ [0, T] and

E [Xt| Fs] = Xs, 0 ≤ s < t ≤ T.

Definition 16
A stochastic process X = {Xt}t∈[0,T] has independent
increments if Xt − Xs is independent of Xr − Xu, for all
u ≤ r ≤ s ≤ t.

Definition 17
A stochastic process X = {Xt}t∈[0,T] has stationary
increments if for all s ≤ t ∈ R+ we have that

L (Xt − Xs) = L(Xt−s).
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Brownian motion and related
processes



Brownian motion

Definition 18
A stochastic process W = {Wt}t∈[0,T] is a (standard)
Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,
2. W0 = 0, P-a.s.,
3. W has independent increments,
4. For all 0 ≤ s < t ≤ T, the law of Wt −Ws is a N (0, (t− s)).
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Brownian motion

Definition 19
A stochastic process W = {Wt}t∈[0,T] is a F-Brownian motion
if it satisfies

1. W has continuous sample paths P-a.s.,
2. W0 = 0, P-a.s.,
3. For all 0 ≤ s < t ≤ T, the random variable Wt −Ws is

independent of Fs.

4. For all 0 ≤ s < t ≤ T, the law of Wt −Ws is a N (0, (t− s)).
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Lévy processes

Definition 20
A stochastic process L = {Lt}t∈[0,T] is a Lévy process if it
satisfies:

1. L0 = 0, P-a.s.,
2. L has independent increments,
3. L has stationary increments, i.e., for all 0 ≤ s < t, the law

of Lt − Ls coincides with the law of Lt−s.

4. X is stochastically continuous, i.e.,
lims→t P(|Lt − Ls| > ε) = 0, ∀ε > 0, t ∈ [0, T] .

• That L is stochastically continuous does not imply that L
has continuous sample paths.

• A Brownian motion is a particular case of Lévy process.
• Useful for modeling stock prices. 16/45



Brownian motion with drift and geometric Brownian motion

Definition 21
A stochastic process Y = {Yt}t∈[0,T] is a Brownian motion
with drift µ and volatility σ if it can be written as

Yt = µt + σWt, t ∈ [0, T] ,

where W is a standard Brownian motion.

Definition 22
A stochastic process S = {St}t∈[0,T] is a geometric Brownian
motion (or exponential Brownian motion) with drift µ and
volatility σ if it can be written as

St = exp (µt + σWt) , t ∈ [0, T] ,

where W is a standard Brownian motion.
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Increments of a geometric Brownian motion

• Note that the paths S are continuous and strictly positive
by construction.

• The increments of S are not independent.
• Its relative increments

Stn − Stn−1

Stn−1

,
Stn−1 − Stn−2

Stn−2

, ....,
St1 − St0

St0

,

where 0 ≤ t0 < t1 < · · · < tn ≤ T, are independent and
stationary.
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Increments of a geometric Brownian motion

• Equivalently,
Stn

Stn−1

,
Stn−1

Stn−2

, ....,
St1

St0

,

and
log
(

Stn

Stn−1

)
, log

(
Stn−1

Stn−2

)
, ...., log

(
St1

St0

)
,

where 0 ≤ t0 < t1 < · · · < tn ≤ T, are also independent
and stationary.

• Moreover, for 0 ≤ s < t ≤ T the law of St/Ss is lognormal
with parameters µ(t− s) and σ2(t− s), that is, the law of

log (St/Ss) ∼ N
(
µ(t− s), σ2(t− s)

)
.
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The Black-Scholes model

• The time horizon will be the interval [0, T].
• The price of the riskless asset, denoted by B = {Bt}t∈[0,T],

is given by Bt = ert, 0 ≤ t ≤ T.
• The price of the risky asset, denoted by S = {St}t∈0,T], is

modeled by a continuous time stochastic process
satisfying the stochastic di�erential equation (SDE)

dSt = µStdt + σStdWt, t ∈ [0, T] ,

S0 = S0 > 0.

• One can check that the process

St = S0 exp
((

µ− σ2

2

)
t + σWt

)
, t ∈ [0, T] ,

satisfies the previous SDE.
• Therefore, St is a geometric Brownian motion with drift

µ− σ2

2 and volatility σ.
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The Black-Scholes model

• Let S∗ :=
{

S∗t = e−rtSt
}

t∈[0,T].

• Note that E
[
eθZ] = eθµ+ θ2σ2

2 if Z ∼ N
(
µ, σ2).

• Then, S∗ satisfies

E

[
S∗t
S∗s

∣∣∣∣Fs

]
= E

[
exp

((
µ− σ2

2
− r
)
(t− s) + σ (Wt −Ws)

)∣∣∣∣Fs

]
= E

[
exp

((
µ− σ2

2
− r
)
(t− s) + σ (Wt −Ws)

)]
= exp

((
µ− σ2

2
− r
)
(t− s)

)
E [exp (σWt−s)]

= exp
((

µ− σ2

2
− r
)
(t− s) +

σ2

2
(t− s)

)
= e(µ−r)(t−s).
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The Black-Scholes model

• Hence, S∗ is a martingale under P i� µ = r.
• Does there exist a probability measure Q such that S∗ is a

martingale under Q?
• The answer is given by Girsanov’s theorem. Let Q be given

by
dQ
dP

= exp

(
−µ− r

σ
WT −

1
2

(
µ− r

σ

)2

T

)
,

then the process

W̃t =
µ− r

σ
t + Wt,

is a Brownian motion under Q.
• Moreover, S∗ is a martingale under Q.
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The Black-Scholes model

Theorem 23 (Risk-neutral pricing principle)
Let X be a contingent claim such that EQ [|X|] < ∞. Then its
arbitrage free price at time t is given by

PX (t) = e−r(T−t)EQ [X| Ft] , 0 ≤ t ≤ T.
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The Black-Scholes pricing formula



Black-Scholes pricing formula

Theorem 24

The prices of European call and a put options are given by

C (t, St) = StΦ (d1 (St, T − t))− Ke−r(T−t)Φ (d2 (St, T − t)) ,

P (t, St) = Ke−r(T−t)Φ (−d2 (St, T − t))− StΦ (−d1 (St, T − t)) ,

respectively, where

d1 (x, τ) =
log (x/K) +

(
r + σ2

2

)
τ

σ
√

τ
,

d2 (x, τ) =
log (x/K) +

(
r− σ2

2

)
τ

σ
√

τ
,

and Φ(x) =
∫ x
−∞ φ(z)dz =

∫ x
−∞

1√
2π

exp
(
− z2

2

)
dz. Note also

that d1 (t, τ) = d2 (t, τ) + σ
√

τ.
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Black-Scholes pricing formula

Proof of Theorem 24.
We will prove the formula for the call option

X = (S (T)− K)+ .

By the risk-neutral valuation principle we know that

PX (t) = e−r(T−t)EQ

[
(S (T)− K)+

∣∣∣Ft

]
= EQ

[(
S∗ (T)
S∗ (t)

S (t)− e−r(T−t)K
)+
∣∣∣∣∣Ft

]

= EQ

[(
S∗ (T)
S∗ (t)

x− e−r(T−t)K
)+
]∣∣∣∣∣

x=S(t)

, Γ (x)|x=S(t) .
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Black-Scholes pricing formula

Proof of Theorem 24.
Since

S∗ (T)
S∗ (t)

= exp
(
−σ2

2
(T − t) + σ

(
W̃T − W̃t

))
,

and W̃T − W̃t ∼ N (0, (T − t)) under Q, we have that

Γ (x) =
∫ +∞

−∞
φ (z)

(
xe−

σ2(T−t)
2 +σ

√
T−tz − Ke−r(T−t)

)+

dz.

Note that

xe−
σ2(T−t)

2 +σ
√

T−tz − Ke−r(T−t) ≥ 0⇐⇒ z ≥ −d2 (x, T − t) .
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Black-Scholes pricing formula

Proof of Theorem 24.
Therefore,

Γ (x) =
∫ +∞

−d2(x,T−t)
φ (z)

(
xe−

σ2(T−t)
2 +σ

√
T−tz − Ke−r(T−t)

)
dz

= x
∫ +∞

−d2(x,T−t)
φ (z) e−

σ2(T−t)
2 +σ

√
T−tzdz

− Ke−r(T−t)
∫ +∞

−d2(x,T−t)
φ (z) dz

= I1 − I2.

Using that

φ (z) e−
σ2(T−t)

2 +σ
√

T−tz = φ
(

z− σ
√

T − t
)

,

and d1 (x, T − t) = σ
√

T − t + d2 (x, T − t) , 27/45



Black-Scholes pricing formula

Proof of Theorem 24.
we get

I1 = x
∫ +∞

−d2(x,T−t)
φ
(

z− σ
√

T − t
)

dz

= x
∫ +∞

−(σ
√

T−t+d2(x,T−t))
φ (z) dz

= x (1−Φ (−d1 (x, T − t))) .

On the other hand,

I2 = Ke−r(T−t) (1−Φ (−d2 (x, T − t))) .

The result follows from the following property of Φ

Φ (z) = 1−Φ (−z) , z ∈ R.
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The Greeks or sensitivity parameters

• Note that the price of a call option C(t, St) actually
depends on other variables/parameters

C(t, St) = C(t, St; r, σ, K).

• The derivatives with respect to these parameters are
known as the Greeks and are relevant for
risk-management purposes.

• Here, there is a list of the most important:
• Delta:

∆ =
∂C
∂S

(t, St) = Φ (d1 (St, T − t)) .

• Gamma:

Γ =
∂2C
∂S2 =

Φ′ (d1 (St, T − t))
σSt
√

T − t
=

φ (d1 (St, T − t))
σSt
√

T − t
.
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The Greeks or sensitivity parameters

• Theta:

Θ =
∂C
∂t

= −σStΦ′ (d1 (St, T − t))
2
√

T − t
− rKe−r(T−t)Φ (d2 (St, T − t))

= −σStφ (d1 (St, T − t))
2
√

T − t
− rKe−r(T−t)Φ (d2 (St, T − t)) .

• Rho:

ρ =
∂C
∂r

= K(T − t)e−r(T−t)Φ (d2 (St, T − t)) .

• Vega:

∂C
∂σ

= St
√

T − tΦ′ (d1 (St, T − t)) = St
√

T − tφ (d1 (St, T − t)) .
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Convergence of the
Cox-Ross-Rubinstein pricing formula
to the Black-Scholes pricing formula



Convergence of the CRR formula to the Black-Scholes formula

• We will consider a family of CRR market models indexed
by n ∈N.

• Partition the interval [0, T) into [(j− 1) T
n , j T

n ), j = 1...., n.
• Sn (j) will denote the stock price at time j T

n in the nth
binomial model.

• Similarly Bn (j) represents the bank account at time j T
n , in

the nth binomial model.
• Let rn = r T

n be the interest rate, where r > 0 is the
interest rate with continuous compounding, i.e.,

lim
n→∞

(1 + rn)
n = erT.

• Let an = σ
√

T
n , where σ is interpreted as the

instantaneous volatility.
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Convergence of the CRR formula to the Black-Scholes formula

• Set up the up and down factors by

un = ean (1 + rn) ,

dn = e−an (1 + rn) .

• For n su�ciently large dn < 1.
• Moreover, note that un > 1 + rn and that dn < 1 + rn for

all n.
• Hence, there exists a unique martingale measure Qn in th

nth binomial model for all n.
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Convergence of the CRR formula to the Black-Scholes formula

• The parameter qn in the unique martingale measure in
the nth binomial model is

qn =
1 + rn − dn

un − dn
=

1− e−an

ean − e−an
=

an − 1
2 a2

n + o
(
a2

n
)

2an +
1
3 a3

n + o (a3
n)

=
1
2
− 1

4
an + o (an) ,

where o (δ) with δ > 0 means limδ→0
o(δ)

δ = 0.
• Let {Xn (j)}j=1,...,n be the Bernoullli r.v. underlying the nth

market model. Note that Qn (Xn (j) = 1) = qn and

Sn (j) = S (0) uXn(1)+···+Xn(j)
n dj−(Xn(1)+···+Xn(j))

n , j = 1, ..., n.
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Convergence of the CRR formula to the Black-Scholes formula

• The value at time zero of a put option with strike K in the
nth binomial market is given by

Pn
Put (0) = (1 + rn)

−n
EQn

[
(K− Sn (n))

+
]

= EQn

[(
K

(1 + rn)
n − S (0) eYn

)+
]

,

where

Yn =
n

∑
j=1

Yn (j) =
n

∑
j=1

log

(
uXn(j)

n d1−Xn(j)
n

(1 + rn)

)
.
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Convergence of the CRR formula to the Black-Scholes formula

• For n fixed the random variable Yn (1) , ..., Yn (n) are i.i.d.
with

EQn [Yn (j)] = qn log
(

un

1 + rn

)
+ (1− qn) log

(
dn

1 + rn

)
=

(
1
2
− 1

4
an + o (an)

)
an

+

(
1
2
+

1
4

an + o (an)

)
(−an)

= −1
2

a2
n + o

(
a2

n
)

,

EQn

[
Y2

n (j)
]
= a2

n + o
(
a2

n
)

,

EQn

[
|Yn (j)|m

]
= o

(
a2

n
)

m ≥ 3.
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Convergence of the CRR formula to the Black-Scholes formula

Definition 25
A sequence {Xn}n≥1 of random variables, possibly defined
on di�erent probability spaces (Ωn,Fn, Pn), converges in
distribution (or weakly) to X, defined on a probability space
(Ω,F , P), if

EPn [g (Xn)] −→ EP [g (X)] , (1)

when n→ +∞, for all g∈ Cb (R) (space of continuous and
bounded functions).
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Convergence of the CRR formula to the Black-Scholes formula

Theorem 26 (Lévy’s continuity theorem)
A sequence {Xn}n≥1 of random variables, possibly defined
on di�erent probability spaces (Ωn,Fn, Pn), converges in
distribution (or weakly) to X, defined on a probability space
(Ω,F , P), if and only if the sequence of corresponding
characteristic functions

{
ϕXn (θ) = EPn

[
eiθXn

]}
n≥1 converges

pointwise to the characteristic function ϕX (θ) = EP
[
eiθX] of

X.
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Convergence of the CRR formula to the Black-Scholes formula

• Let Y be a random variable defined on some probability
space (Ω,F , Q) with law N

(
− σ2T

2 , σ2T
)

.
• Its characteristic function is

ϕY (θ) = exp
(
−iθ

σ2T
2
− θ2 σ2T

2

)
.

• Since Yn (j) , ..., Yn (n) are i.i.d. we have that

ϕYn (θ) = EQn

[
eiθYn

]
=

n

∏
j=1

EQn

[
eiθYn(j)

]
= EQn

[
eiθYn(1)

]n
.
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Convergence of the CRR formula to the Black-Scholes formula

• Expanding the exponential we get

ϕYn (θ) =

(
1 + iθEQn [Yn (j)]− θ2

2
EQn

[
Y2

n (j)
]
+ o

(
a2

n
))n

=

(
1−

(
iθ + θ2

2

)
a2

n + o
(
a2

n
))n

=

(
1−

(
iθ + θ2

2

)
σ2 T

n
+ o (1/n)

)n

,

which converges to ϕY (θ) as n tends to infinity.
• We can conclude that Yn converges in distribution to a
N
(
− σ2T

2 , σ2T
)

.
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Convergence of the CRR formula to the Black-Scholes formula

• Therefore, since we know that {Yn}n≥1 converge in law to
Y, by applying (1) with g (x) =

(
Ke−rT − S (0) ex)+, we

have

lim
n→+∞

EQn

[(
Ke−rT − S (0) eYn

)+]
=
∫ +∞

−∞

e−
z2
2

√
2π

(
Ke−rT − S (0) exp

(
−σ2T

2
+ σ
√

Tz
))+

dz

= PPut (0) ,

where we have used that Y ∼ N
(
− σ2T

2 , σ2T
)

if and only
if Y = − σ2T

2 + σ
√

TZ with Z ∼ N (0, 1).
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Convergence of the CRR formula to the Black-Scholes formula

• Recall that

Pn
Put (0) = EQn

[(
K

(1 + rn)
n − S (0) eYn

)+
]

.

• One can check that∣∣∣∣Pn
Put (0)−EQn

[(
Ke−rT − S (0) eYn

)+]∣∣∣∣ ≤ K
∣∣∣(1 + rn)

−n − e−rT
∣∣∣ ,

and, therefore, Pn
Put (0) and EQn

[(
Ke−rT − S (0) eYn

)+]
converge to the same limit as n tends to infinity.
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Convergence of the CRR formula to the Black-Scholes formula

• Then, we can conclude that

lim
n→+∞

Pn
Put (0) = lim

n→+∞
EQn

[(
Ke−rT − S (0) eYn

)+]
= PPut (0) .

• It is easy to check that

PPut (0) = Ke−rTΦ (−d2 (S (0) , T))−S (0)Φ (−d1 (S (0) , T)) ,

where Φ is the cumulative normal distribution and d1 and
d2 are the same functions defined in Theorem 24.
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Convergence of the CRR formula to the Black-Scholes formula

• By using the put-call parity relationship (on the binomial
market and on the Black-Scholes market) one gets that

lim
n→+∞

Pn
Call (0) = lim

n→+∞

(
Pn

Put (0) + S (0)− (1 + rn)
−n K

)
= PPut (0) + S (0)− e−rTK

= PCall (0) ,

where

Pn
Call (0) = (1 + rn)

−n
EQn

[
(S (n)− K)+

]
= EQn

[(
S (0) eYn − K

(1 + rn)
n

)+
]

,

and

PCall (0) = S (0)Φ (d1 (S (0) , T))− Ke−rTΦ (d2 (S (0) , T)) .
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Convergence of the CRR formula to the Black-Scholes formula

• One can modify the previous arguments to provide the
formulas for PCall (t) and PPut (t).

Theorem 27
Let g ∈ Cb (R) and let X = g (S (T)) be a contingent claim in
the Black-Scholes model. Then the price process of X is
given by

PX (t) = lim
t→+∞

Pn
X (t) , 0 ≤ t ≤ T,

where Pn
X (t),n ≥ 1 are the price processes of X in the

corresponding CRR models.
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Convergence of the CRR formula to the Black-Scholes formula

• There exist similar proofs of the previous results using
the normal approximation to the binomial law, based on
the central limit theorem.

• However, note that here we have a triangular array of
random variables {Yn (j)}j=1,...,n ,n ≥ 1. Hence, the result
does not follow from the basic version of the central limit
theorem.

• Moreover, the asymptotic distribution of Yn need not be
Gaussian if we choose suitably the parameters of the CRR
model.

• For instance, if we set un = u and dn = ect/n,c < r we have
that Yn converges in law to a Poisson random variable.

• This lead to consider the exponential of more general
Lévy process as underlying price process for the stock.
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