9. The Black-Scholes Model

S. Ortiz-Latorre

STK-MAT 3700/4700 An Introduction to Mathematical Finance November 18, 2021

Department of Mathematics
University of Oslo

Outline

Introduction

Brownian motion and related processes

The Black-Scholes model

The Black-Scholes pricing formula

Convergence of the Cox-Ross-Rubinstein pricing formula to the Black-Scholes pricing formula

Introduction

Introduction

- The Black-Scholes model is an example of continuous time model for the risky asset prices.

Let us summarize the underlying hypothesis of the Black-Scholes model on the prices of assets.

- The assets are traded continuously and their prices have continuous paths.
- The risk-free interest rate $r \geq 0$ is constant.
- The logreturns of the risky asset S_{t} are normally distributed:

$$
\log \left(\frac{S_{t}}{S_{u}}\right) \sim \mathcal{N}\left(\left(\mu-\frac{\sigma^{2}}{2}\right)(t-u), \sigma^{2}(t-u)\right)
$$

- Moreover, the logreturns are independent from the past and are stationary.
- The model has 3 parameters $\mu \in \mathbb{R}, \sigma>0$ and $S_{0}>0$.

Probability basics

- Let Ω be a set with possibly infinite cardinality.

Definition 1

A σ-algebra \mathcal{F} on Ω is a familly of subsets of Ω satisfying

1. $\Omega \in \mathcal{F}$.
2. If $A \in \mathcal{F}$ then $A^{c}=\Omega \backslash A \in \mathcal{F}$.
3. If $\left\{A_{n}\right\}_{n \geq 1} \subseteq \mathcal{F}$ then $\bigcup_{n \geq 1} A_{n} \in \mathcal{F}$.

Definition 2

A pair (Ω, \mathcal{F}), where Ω is a set and \mathcal{F} is a σ-algebra on Ω, is called a measurable space.

Probability basics

Definition 3

Given \mathcal{G} a class of subsets of Ω we define $\sigma(\mathcal{G})$ the σ-algebra generated by \mathcal{G} as the smallest σ-algebra containing \mathcal{G}, which coincides with the intersection of all σ-algebras containing \mathcal{G}.

- In \mathbb{R}, we can consider the Borel σ-algebra $\mathcal{B}(\mathbb{R})$, the σ-algebra generated by the open sets.

Definition 4

A probability measure on a measurable space (Ω, \mathcal{F}) is a set function $P: \mathcal{F} \rightarrow[0,1]$ satisfying $P(\Omega)=1$ and, if $\left\{A_{n}\right\}_{n \geq 1} \subseteq \mathcal{F}$ are pairwise disjoint then

$$
P\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{n \geq 1} P\left(A_{n}\right) .
$$

Probability basics

Definition 5

A triple (Ω, \mathcal{F}, P) where \mathcal{F} is a σ-algebra on Ω and P is a probability measure on (Ω, \mathcal{F}) is called a probability space.

Definition 6

Let $\left(E_{1}, \mathcal{E}_{1}\right)$ and (E_{2}, \mathcal{E}_{2}) two measurable spaces. A function $X: E_{1} \rightarrow E_{2}$ is said to be $\left(\mathcal{E}_{1}, \mathcal{E}_{2}\right)$-measurable if $X^{-1}(A) \in \mathcal{E}_{1}$ for all $A \in \mathcal{E}_{2}$.

Definition 7

Let (Ω, \mathcal{F}, P) be a probability space. A function $X: \Omega \rightarrow \mathbb{R}$ is a random variable if it is $(\mathcal{F}, \mathcal{B}(\mathbb{R}))$-measurable (usually one only write \mathcal{F}-measurable).

Probability basics

Definition 8

The σ-algebra generated by a random variable X is the σ-algebra generated by the sets of the form

$$
\left\{X^{-1}(A): A \in \mathcal{B}(\mathbb{R})\right\}
$$

Definition 9

The law of a random variable X, denoted by $\mathcal{L}(X)$, is the image measure P_{X} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, that is,

$$
P_{X}(B)=P\left(X^{-1} B\right), \quad B \in \mathcal{B}(\mathbb{R})
$$

Probability basics

Definition 10

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a Borel measurable function. Then the expectation of $g(X)$ is defined to be

$$
\mathbb{E}[g(X)]=\int_{\Omega} g \circ X d P=\int_{\mathbb{R}} g d P_{X}
$$

If $P_{X} \ll \lambda$, with $\frac{d P_{X}}{d \lambda}=f_{X}$ then

$$
\mathbb{E}[g(X)]=\int_{\mathbb{R}} g f_{X} d \lambda=\int_{\mathbb{R}} g(x) f_{X}(x) d x
$$

Probability basics

Definition 11

Let X be a random variable on a probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}[|X|]<\infty$ and $\mathcal{G} \subset \mathcal{F}$ be a σ-algebra. The conditional expectation of X given \mathcal{G}, denoted by $\mathbb{E}[X \mid \mathcal{G}]$ is the unique random variable Z satisfying:

1. Z is \mathcal{G}-measurable.
2. For all $B \in \mathcal{G}$, we have $\mathbb{E}\left[X \mathbf{1}_{B}\right]=\mathbb{E}\left[Z \mathbf{1}_{B}\right]$.

- As Ω does not need to be finite, the structure of the σ-algebras on Ω is not as easy as in the finite case.
- Hence, computing $\mathbb{E}[X \mid \mathcal{G}]$ is more difficult in general.
- However, $\mathbb{E}[X \mid \mathcal{G}]$ satisfies the same properties as when Ω was finite: tower law, total expectation, role of the independence,etc...

Stochastic processes

Definition 12

A (real-valued) stochastic process X indexed by $[0, T]$ is a family of random variables $X=\left\{X_{t}\right\}_{t \in[0, T]}$ defined on the same probability space (Ω, \mathcal{F}, P).

- We can think of a stochastic process as a function

$$
\begin{aligned}
& X:[0, T] \times \Omega \longrightarrow \mathbb{R} \\
& (t, \omega) \quad \mapsto \quad X_{t}(\omega) .
\end{aligned}
$$

- For every $\omega \in \Omega$ fixed, the process X defines a function

$$
\begin{array}{ccc}
X .(\omega): \quad[0, T] & \longrightarrow & \mathbb{R} \\
t & \mapsto & X_{t}(\omega)^{\prime}
\end{array}
$$

which is called a trajectory or a sample path of the process.

Stochastic processes

- Hence, we can look at X as a mapping

$$
\begin{aligned}
& X: \Omega \longrightarrow \\
& \mathbb{R}^{[0, T]} \\
& \omega \mapsto
\end{aligned} X^{(}(\omega),
$$

where $\mathbb{R}^{[0, T]}$ is the cartesian product of $[0, T]$ copies of \mathbb{R} which is the set of all functions from $[0, T]$ to \mathbb{R}. That is, we can see X as a mapping from Ω to a space of functions.

- The canonical construction of a random variable consists on taking $X=I d$ and $(\Omega, \mathcal{F}, P)=\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$.

Stochastic processes

- For stochastic processes $Y=\left\{Y_{t}\right\}_{t \in[0, T]}$ this procedure is far from trivial. One can consider the measurable space $\left(\mathbb{R}^{[0, T]}, \mathcal{B}(\mathbb{R})^{[0, T]}\right)$ but to find P_{Y} one needs to do it consistently with the family of finite dimensional laws. (Kolmogorov Extension Theorem)
- Moreover, the space $\mathbb{R}^{[0, T]}$ is too big. One often wants to find a realization of the process in a nicer subspace as $C_{0}([0, T])$. (Kolmogorov Continuity Theorem)

Definition 13

A filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$ is a family of nested σ-algebras, that is, $\mathcal{F}_{s} \subseteq \mathcal{F}_{t}$ if $s<t$.

Definition 14

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ is \mathbb{F}-adapted if X_{t} is \mathcal{F}_{t}-measurable.

Stochastic processes

Definition 15

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ is a \mathbb{F}-martingale if it is \mathbb{F}-adapted, $\mathbb{E}\left[\left|X_{t}\right|\right]<\infty, t \in[0, T]$ and

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}, \quad 0 \leq s<t \leq T .
$$

Definition 16

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ has independent increments if $X_{t}-X_{s}$ is independent of $X_{r}-X_{u}$, for all $u \leq r \leq s \leq t$.

Definition 17

A stochastic process $X=\left\{X_{t}\right\}_{t \in[0, T]}$ has stationary increments if for all $s \leq t \in \mathbb{R}_{+}$we have that

$$
\mathcal{L}\left(X_{t}-X_{s}\right)=\mathcal{L}\left(X_{t-s}\right) .
$$

Brownian motion and related

 processes
Brownian motion

Definition 18

A stochastic process $W=\left\{W_{t}\right\}_{t \in[0, T]}$ is a (standard)
Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,
2. $W_{0}=0, P$-a.s.,
3. W has independent increments,
4. For all $0 \leq s<t \leq T$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.

Brownian motion

Definition 19

A stochastic process $W=\left\{W_{t}\right\}_{t \in[0, T]}$ is a \mathbb{F}-Brownian motion if it satisfies

1. W has continuous sample paths P-a.s.,
2. $W_{0}=0, P-a . s$. ,
3. For all $0 \leq s<t \leq T$, the random variable $W_{t}-W_{s}$ is independent of \mathcal{F}_{s}.
4. For all $0 \leq s<t \leq T$, the law of $W_{t}-W_{s}$ is a $\mathcal{N}(0,(t-s))$.

Lévy processes

Definition 20

A stochastic process $L=\left\{L_{t}\right\}_{t \in[0, T]}$ is a Lévy process if it satisfies:

1. $L_{0}=0, P-$ a.s.,
2. L has independent increments,
3. L has stationary increments, i.e., for all $0 \leq s<t$, the law of $L_{t}-L_{s}$ coincides with the law of L_{t-s}.
4. X is stochastically continuous, i.e., $\lim _{s \rightarrow t} P\left(\left|L_{t}-L_{s}\right|>\varepsilon\right)=0, \forall \varepsilon>0, t \in[0, T]$.

- That L is stochastically continuous does not imply that L has continuous sample paths.
- A Brownian motion is a particular case of Lévy process.
- Useful for modeling stock prices.

Brownian motion with drift and geometric Brownian motion

Definition 21

A stochastic process $Y=\left\{Y_{t}\right\}_{t \in[0, T]}$ is a Brownian motion with drift μ and volatility σ if it can be written as

$$
Y_{t}=\mu t+\sigma W_{t}, \quad t \in[0, T],
$$

where W is a standard Brownian motion.

Definition 22

A stochastic process $S=\left\{S_{t}\right\}_{t \in[0, T]}$ is a geometric Brownian motion (or exponential Brownian motion) with drift μ and volatility σ if it can be written as

$$
S_{t}=\exp \left(\mu t+\sigma W_{t}\right), \quad t \in[0, T],
$$

where W is a standard Brownian motion.

Increments of a geometric Brownian motion

- Note that the paths S are continuous and strictly positive by construction.
- The increments of S are not independent.
- Its relative increments

$$
\frac{S_{t_{n}}-S_{t_{n-1}}}{S_{t_{n-1}}}, \frac{S_{t_{n-1}}-S_{t_{n-2}}}{S_{t_{n-2}}}, \ldots ., \frac{S_{t_{1}}-S_{t_{0}}}{S_{t_{0}}},
$$

where $0 \leq t_{0}<t_{1}<\cdots<t_{n} \leq T$, are independent and stationary.

Increments of a geometric Brownian motion

- Equivalently,

$$
\frac{S_{t_{n}}}{S_{t_{n-1}}}, \frac{S_{t_{n-1}}}{S_{t_{n-2}}}, \ldots, \frac{S_{t_{1}}}{S_{t_{0}}}
$$

and

$$
\log \left(\frac{S_{t_{n}}}{S_{t_{n-1}}}\right), \log \left(\frac{S_{t_{n-1}}}{S_{t_{n-2}}}\right), \ldots ., \log \left(\frac{S_{t_{1}}}{S_{t_{0}}}\right)
$$

where $0 \leq t_{0}<t_{1}<\cdots<t_{n} \leq T$, are also independent and stationary.

- Moreover, for $0 \leq s<t \leq T$ the law of S_{t} / S_{s} is lognormal with parameters $\mu(t-s)$ and $\sigma^{2}(t-s)$, that is, the law of

$$
\log \left(S_{t} / S_{s}\right) \sim \mathcal{N}\left(\mu(t-s), \sigma^{2}(t-s)\right)
$$

The Black-Scholes model

The Black-Scholes model

- The time horizon will be the interval $[0, T]$.
- The price of the riskless asset, denoted by $B=\left\{B_{t}\right\}_{t \in[0, T]}$, is given by $B_{t}=e^{r t}, 0 \leq t \leq T$.
- The price of the risky asset, denoted by $S=\left\{S_{t}\right\}_{t \in 0, T]}$, is modeled by a continuous time stochastic process satisfying the stochastic differential equation (SDE)

$$
\begin{aligned}
d S_{t} & =\mu S_{t} d t+\sigma S_{t} d W_{t}, \quad t \in[0, T], \\
S_{0} & =S_{0}>0 .
\end{aligned}
$$

- One can check that the process

$$
S_{t}=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}\right), \quad t \in[0, T],
$$

satisfies the previous SDE.

- Therefore, S_{t} is a geometric Brownian motion with drift $\mu-\frac{\sigma^{2}}{2}$ and volatility σ.

The Black-Scholes model

- Let $S^{*}:=\left\{S_{t}^{*}=e^{-r t} S_{t}\right\}_{t \in[0, T]}$.
- Note that $\mathbb{E}\left[e^{\theta Z}\right]=e^{\theta \mu+\frac{\theta^{2} \sigma^{2}}{2}}$ if $Z \sim N\left(\mu, \sigma^{2}\right)$.
- Then, S^{*} satisfies

$$
\begin{aligned}
& \mathbb{E}\left[\left.\frac{S_{t}^{*}}{S_{s}^{*}} \right\rvert\, \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\left.\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)+\sigma\left(W_{t}-W_{s}\right)\right) \right\rvert\, \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)+\sigma\left(W_{t}-W_{s}\right)\right)\right] \\
& =\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)\right) \mathbb{E}\left[\exp \left(\sigma W_{t-s}\right)\right] \\
& =\exp \left(\left(\mu-\frac{\sigma^{2}}{2}-r\right)(t-s)+\frac{\sigma^{2}}{2}(t-s)\right)=e^{(\mu-r)(t-s)}
\end{aligned}
$$

The Black-Scholes model

- Hence, S^{*} is a martingale under P iff $\mu=r$.
- Does there exist a probability measure Q such that S^{*} is a martingale under Q ?
- The answer is given by Girsanov's theorem. Let Q be given by

$$
\frac{d Q}{d P}=\exp \left(-\frac{\mu-r}{\sigma} W_{T}-\frac{1}{2}\left(\frac{\mu-r}{\sigma}\right)^{2} T\right)
$$

then the process

$$
\widetilde{W}_{t}=\frac{\mu-r}{\sigma} t+W_{t},
$$

is a Brownian motion under Q.

- Moreover, S^{*} is a martingale under Q.

The Black-Scholes model

Theorem 23 (Risk-neutral pricing principle)

Let X be a contingent claim such that $\mathbb{E}_{Q}[|X|]<\infty$. Then its arbitrage free price at time t is given by

$$
P_{X}(t)=e^{-r(T-t)} \mathbb{E}_{Q}\left[X \mid \mathcal{F}_{t}\right], \quad 0 \leq t \leq T .
$$

The Black-Scholes pricing formula

Black-Scholes pricing formula

Theorem 24

The prices of European call and a put options are given by

$$
\begin{aligned}
& C\left(t, S_{t}\right)=S_{t} \Phi\left(d_{1}\left(S_{t}, T-t\right)\right)-K e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right), \\
& P\left(t, S_{t}\right)=K e^{-r(T-t)} \Phi\left(-d_{2}\left(S_{t}, T-t\right)\right)-S_{t} \Phi\left(-d_{1}\left(S_{t}, T-t\right)\right),
\end{aligned}
$$

respectively, where

$$
\begin{aligned}
& d_{1}(x, \tau)=\frac{\log (x / K)+\left(r+\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}}, \\
& d_{2}(x, \tau)=\frac{\log (x / K)+\left(r-\frac{\sigma^{2}}{2}\right) \tau}{\sigma \sqrt{\tau}},
\end{aligned}
$$

and $\Phi(x)=\int_{-\infty}^{x} \phi(z) d z=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) d z$. Note also that $d_{1}(t, \tau)=d_{2}(t, \tau)+\sigma \sqrt{\tau}$.

Black-Scholes pricing formula

Proof of Theorem 24.

We will prove the formula for the call option

$$
X=(S(T)-K)^{+} .
$$

By the risk-neutral valuation principle we know that

$$
\begin{aligned}
P_{X}(t) & =e^{-r(T-t)} \mathbb{E}_{Q}\left[(S(T)-K)^{+} \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}_{Q}\left[\left.\left(\frac{S^{*}(T)}{S^{*}(t)} S(t)-e^{-r(T-t)} K\right)^{+} \right\rvert\, \mathcal{F}_{t}\right] \\
& =\left.\mathbb{E}_{Q}\left[\left(\frac{S^{*}(T)}{S^{*}(t)} x-e^{-r(T-t)} K\right)^{+}\right]\right|_{x=S(t)} \\
& \left.\triangleq \Gamma(x)\right|_{x=S(t)} .
\end{aligned}
$$

Black-Scholes pricing formula

Proof of Theorem 24.

Since

$$
\frac{S^{*}(T)}{S^{*}(t)}=\exp \left(-\frac{\sigma^{2}}{2}(T-t)+\sigma\left(\widetilde{W}_{T}-\widetilde{W}_{t}\right)\right)
$$

and $\widetilde{W}_{T}-\widetilde{W}_{t} \sim \mathcal{N}(0,(T-t))$ under Q, we have that

$$
\Gamma(x)=\int_{-\infty}^{+\infty} \phi(z)\left(x e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}}-K e^{-r(T-t)}\right)^{+} d z
$$

Note that

$$
x e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}}-K e^{-r(T-t)} \geq 0 \Longleftrightarrow z \geq-d_{2}(x, T-t) .
$$

Black-Scholes pricing formula

Proof of Theorem 24.

Therefore,

$$
\begin{aligned}
\Gamma(x)= & \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z)\left(x e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}}-K e^{-r(T-t)}\right) d z \\
= & x \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z) e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t z}} d z \\
& -K e^{-r(T-t)} \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z) d z \\
= & I_{1}-I_{2} .
\end{aligned}
$$

Using that

$$
\phi(z) e^{-\frac{\sigma^{2}(T-t)}{2}+\sigma \sqrt{T-t} z}=\phi(z-\sigma \sqrt{T-t})
$$

and $d_{1}(x, T-t)=\sigma \sqrt{T-t}+d_{2}(x, T-t)$,

Black-Scholes pricing formula

Proof of Theorem 24.

we get

$$
\begin{aligned}
I_{1} & =x \int_{-d_{2}(x, T-t)}^{+\infty} \phi(z-\sigma \sqrt{T-t}) d z \\
& =x \int_{-\left(\sigma \sqrt{T-t}+d_{2}(x, T-t)\right)}^{+\infty} \phi(z) d z \\
& =x\left(1-\Phi\left(-d_{1}(x, T-t)\right)\right) .
\end{aligned}
$$

On the other hand,

$$
I_{2}=K e^{-r(T-t)}\left(1-\Phi\left(-d_{2}(x, T-t)\right)\right) .
$$

The result follows from the following property of Φ

$$
\Phi(z)=1-\Phi(-z), \quad z \in \mathbb{R}
$$

The Greeks or sensitivity parameters

- Note that the price of a call option $C\left(t, S_{t}\right)$ actually depends on other variables/parameters

$$
C\left(t, S_{t}\right)=C\left(t, S_{t} ; r, \sigma, K\right) .
$$

- The derivatives with respect to these parameters are known as the Greeks and are relevant for risk-management purposes.
- Here, there is a list of the most important:
- Delta:

$$
\Delta=\frac{\partial C}{\partial S}\left(t, S_{t}\right)=\Phi\left(d_{1}\left(S_{t}, T-t\right)\right)
$$

- Gamma:

$$
\Gamma=\frac{\partial^{2} C}{\partial S^{2}}=\frac{\Phi^{\prime}\left(d_{1}\left(S_{t}, T-t\right)\right)}{\sigma S_{t} \sqrt{T-t}}=\frac{\phi\left(d_{1}\left(S_{t}, T-t\right)\right)}{\sigma S_{t} \sqrt{T-t}} .
$$

The Greeks or sensitivity parameters

- Theta:

$$
\begin{aligned}
\Theta & =\frac{\partial C}{\partial t}=-\frac{\sigma S_{t} \Phi^{\prime}\left(d_{1}\left(S_{t}, T-t\right)\right)}{2 \sqrt{T-t}}-r K e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right) \\
& =-\frac{\sigma S_{t} \phi\left(d_{1}\left(S_{t}, T-t\right)\right)}{2 \sqrt{T-t}}-r K e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right) .
\end{aligned}
$$

- Rho:

$$
\rho=\frac{\partial C}{\partial r}=K(T-t) e^{-r(T-t)} \Phi\left(d_{2}\left(S_{t}, T-t\right)\right) .
$$

- Vega:

$$
\frac{\partial C}{\partial \sigma}=S_{t} \sqrt{T-t} \Phi^{\prime}\left(d_{1}\left(S_{t}, T-t\right)\right)=S_{t} \sqrt{T-t} \phi\left(d_{1}\left(S_{t}, T-t\right)\right) .
$$

Convergence of the
Cox-Ross-Rubinstein pricing formula to the Black-Scholes pricing formula

Convergence of the CRR formula to the Black-Scholes formula

- We will consider a family of CRR market models indexed by $n \in \mathbb{N}$.
- Partition the interval $[0, T)$ into $\left[(j-1) \frac{T}{n}, j \frac{T}{n}\right), j=1 \ldots ., n$.
- $S_{n}(j)$ will denote the stock price at time $j \frac{T}{n}$ in the nth binomial model.
- Similarly $B_{n}(j)$ represents the bank account at time $j \frac{T}{n}$, in the nth binomial model.
- Let $r_{n}=r \frac{T}{n}$ be the interest rate, where $r>0$ is the interest rate with continuous compounding, i.e.,

$$
\lim _{n \rightarrow \infty}\left(1+r_{n}\right)^{n}=e^{r T} .
$$

- Let $a_{n}=\sigma \sqrt{\frac{T}{n}}$, where σ is interpreted as the instantaneous volatility.

Convergence of the CRR formula to the Black-Scholes formula

- Set up the up and down factors by

$$
\begin{aligned}
& u_{n}=e^{a_{n}}\left(1+r_{n}\right) \\
& d_{n}=e^{-a_{n}}\left(1+r_{n}\right) .
\end{aligned}
$$

- For n sufficiently large $d_{n}<1$.
- Moreover, note that $u_{n}>1+r_{n}$ and that $d_{n}<1+r_{n}$ for all n.
- Hence, there exists a unique martingale measure Q_{n} in th nth binomial model for all n.

Convergence of the CRR formula to the Black-Scholes formula

- The parameter q_{n} in the unique martingale measure in the nth binomial model is

$$
\begin{aligned}
q_{n} & =\frac{1+r_{n}-d_{n}}{u_{n}-d_{n}}=\frac{1-e^{-a_{n}}}{e^{a_{n}}-e^{-a_{n}}}=\frac{a_{n}-\frac{1}{2} a_{n}^{2}+o\left(a_{n}^{2}\right)}{2 a_{n}+\frac{1}{3} a_{n}^{3}+o\left(a_{n}^{3}\right)} \\
& =\frac{1}{2}-\frac{1}{4} a_{n}+o\left(a_{n}\right),
\end{aligned}
$$

where $o(\delta)$ with $\delta>0$ means $\lim _{\delta \rightarrow 0} \frac{o(\delta)}{\delta}=0$.

- Let $\left\{X_{n}(j)\right\}_{j=1, \ldots, n}$ be the Bernoullli r.v. underlying the nth market model. Note that $Q_{n}\left(X_{n}(j)=1\right)=q_{n}$ and

$$
S_{n}(j)=S(0) u_{n}^{X_{n}(1)+\cdots+X_{n}(j)} d_{n}^{j-\left(X_{n}(1)+\cdots+X_{n}(j)\right)}, \quad j=1, \ldots, n .
$$

Convergence of the CRR formula to the Black-Scholes formula

- The value at time zero of a put option with strike K in the nth binomial market is given by

$$
\begin{aligned}
P_{\text {Put }}^{n}(0) & =\left(1+r_{n}\right)^{-n} \mathbb{E}_{Q_{n}}\left[\left(K-S_{n}(n)\right)^{+}\right] \\
& =\mathbb{E}_{Q_{n}}\left[\left(\frac{K}{\left(1+r_{n}\right)^{n}}-S(0) e^{\gamma_{n}}\right)^{+}\right],
\end{aligned}
$$

where

$$
Y_{n}=\sum_{j=1}^{n} Y_{n}(j)=\sum_{j=1}^{n} \log \left(\frac{u_{n}^{X_{n}(j)} d_{n}^{1-X_{n}(j)}}{\left(1+r_{n}\right)}\right) .
$$

Convergence of the CRR formula to the Black-Scholes formula

- For n fixed the random variable $Y_{n}(1), \ldots, Y_{n}(n)$ are i.i.d. with

$$
\begin{aligned}
\mathbb{E}_{Q_{n}}\left[Y_{n}(j)\right] & =q_{n} \log \left(\frac{u_{n}}{1+r_{n}}\right)+\left(1-q_{n}\right) \log \left(\frac{d_{n}}{1+r_{n}}\right) \\
& =\left(\frac{1}{2}-\frac{1}{4} a_{n}+o\left(a_{n}\right)\right) a_{n} \\
& +\left(\frac{1}{2}+\frac{1}{4} a_{n}+o\left(a_{n}\right)\right)\left(-a_{n}\right) \\
& =-\frac{1}{2} a_{n}^{2}+o\left(a_{n}^{2}\right), \\
\mathbb{E}_{Q_{n}}\left[Y_{n}^{2}(j)\right] & =a_{n}^{2}+o\left(a_{n}^{2}\right), \\
\mathbb{E}_{Q_{n}}\left[\left|Y_{n}(j)\right|^{m}\right] & =o\left(a_{n}^{2}\right) \quad m \geq 3 .
\end{aligned}
$$

Convergence of the CRR formula to the Black-Scholes formula

Definition 25

A sequence $\left\{X_{n}\right\}_{n \geq 1}$ of random variables, possibly defined on different probability spaces $\left(\Omega_{n}, \mathcal{F}_{n}, P_{n}\right)$, converges in distribution (or weakly) to X, defined on a probability space (Ω, \mathcal{F}, P), if

$$
\begin{equation*}
\mathbb{E}_{P_{n}}\left[g\left(X_{n}\right)\right] \longrightarrow \mathbb{E}_{P}[g(X)] \tag{1}
\end{equation*}
$$

when $n \rightarrow+\infty$, for all $g \in C_{b}(\mathbb{R})$ (space of continuous and bounded functions).

Convergence of the CRR formula to the Black-Scholes formula

Theorem 26 (Lévy's continuity theorem)

A sequence $\left\{X_{n}\right\}_{n \geq 1}$ of random variables, possibly defined on different probability spaces $\left(\Omega_{n}, \mathcal{F}_{n}, P_{n}\right)$, converges in distribution (or weakly) to X, defined on a probability space (Ω, \mathcal{F}, P), if and only if the sequence of corresponding characteristic functions $\left\{\varphi_{X_{n}}(\theta)=\mathbb{E}_{P_{n}}\left[e^{i \theta X_{n}}\right]\right\}_{n \geq 1}$ converges pointwise to the characteristic function $\varphi_{X}(\theta)=\mathbb{E}_{P}\left[e^{i \theta X}\right]$ of X.

Convergence of the CRR formula to the Black-Scholes formula

- Let Y be a random variable defined on some probability space (Ω, \mathcal{F}, Q) with law $\mathcal{N}\left(-\frac{\sigma^{2} T}{2}, \sigma^{2} T\right)$.
- Its characteristic function is

$$
\varphi_{Y}(\theta)=\exp \left(-i \theta \frac{\sigma^{2} T}{2}-\theta^{2} \frac{\sigma^{2} T}{2}\right)
$$

- Since $Y_{n}(j), \ldots, Y_{n}(n)$ are i.i.d. we have that

$$
\varphi_{Y_{n}}(\theta)=\mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}}\right]=\prod_{j=1}^{n} \mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}(j)}\right]=\mathbb{E}_{Q_{n}}\left[e^{i \theta Y_{n}(1)}\right]^{n}
$$

Convergence of the CRR formula to the Black-Scholes formula

- Expanding the exponential we get

$$
\begin{aligned}
\varphi_{Y_{n}}(\theta) & =\left(1+i \theta \mathbb{E}_{Q_{n}}\left[Y_{n}(j)\right]-\frac{\theta^{2}}{2} \mathbb{E}_{Q_{n}}\left[Y_{n}^{2}(j)\right]+o\left(a_{n}^{2}\right)\right)^{n} \\
& =\left(1-\left(\frac{i \theta+\theta^{2}}{2}\right) a_{n}^{2}+o\left(a_{n}^{2}\right)\right)^{n} \\
& =\left(1-\left(\frac{i \theta+\theta^{2}}{2}\right) \sigma^{2} \frac{T}{n}+o(1 / n)\right)^{n}
\end{aligned}
$$

which converges to $\varphi_{Y}(\theta)$ as n tends to infinity.

- We can conclude that Y_{n} converges in distribution to a $\mathcal{N}\left(-\frac{\sigma^{2} T}{2}, \sigma^{2} T\right)$.

Convergence of the CRR formula to the Black-Scholes formula

- Therefore, since we know that $\left\{Y_{n}\right\}_{n \geq 1}$ converge in law to Y, by applying (1) with $g(x)=\left(K e^{-r T}-S(0) e^{x}\right)^{+}$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right] \\
& =\int_{-\infty}^{+\infty} \frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}}\left(K e^{-r T}-S(0) \exp \left(-\frac{\sigma^{2} T}{2}+\sigma \sqrt{T} z\right)\right)^{+} d z \\
& =P_{\text {Put }}(0)
\end{aligned}
$$

where we have used that $Y \sim \mathcal{N}\left(-\frac{\sigma^{2} T}{2}, \sigma^{2} T\right)$ if and only if $Y=-\frac{\sigma^{2} T}{2}+\sigma \sqrt{T} Z$ with $Z \sim \mathcal{N}(0,1)$.

Convergence of the CRR formula to the Black-Scholes formula

- Recall that

$$
P_{\text {Put }}^{n}(0)=\mathbb{E}_{Q_{n}}\left[\left(\frac{K}{\left(1+r_{n}\right)^{n}}-S(0) e^{Y_{n}}\right)^{+}\right]
$$

- One can check that

$$
\left|P_{\text {Put }}^{n}(0)-\mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right]\right| \leq K\left|\left(1+r_{n}\right)^{-n}-e^{-r T}\right|
$$

and, therefore, $P_{\text {Put }}^{n}(0)$ and $\mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right]$
converge to the same limit as n tends to infinity.

Convergence of the CRR formula to the Black-Scholes formula

- Then, we can conclude that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} P_{\text {Put }}^{n}(0) & =\lim _{n \rightarrow+\infty} \mathbb{E}_{Q_{n}}\left[\left(K e^{-r T}-S(0) e^{Y_{n}}\right)^{+}\right] \\
& =P_{\text {Put }}(0)
\end{aligned}
$$

- It is easy to check that

$$
P_{\text {Put }}(0)=K e^{-r T} \Phi\left(-d_{2}(S(0), T)\right)-S(0) \Phi\left(-d_{1}(S(0), T)\right),
$$

where Φ is the cumulative normal distribution and d_{1} and d_{2} are the same functions defined in Theorem 24.

Convergence of the CRR formula to the Black-Scholes formula

- By using the put-call parity relationship (on the binomial market and on the Black-Scholes market) one gets that

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} P_{\text {Call }}^{n}(0) & =\lim _{n \rightarrow+\infty}\left(P_{\text {Put }}^{n}(0)+S(0)-\left(1+r_{n}\right)^{-n} K\right) \\
& =P_{\text {Put }}(0)+S(0)-e^{-r T} K \\
& =P_{\text {Call }}(0)
\end{aligned}
$$

where

$$
\begin{aligned}
P_{\text {Call }}^{n}(0) & =\left(1+r_{n}\right)^{-n} \mathbb{E}_{Q_{n}}\left[(S(n)-K)^{+}\right] \\
& =\mathbb{E}_{Q_{n}}\left[\left(S(0) e^{Y_{n}}-\frac{K}{\left(1+r_{n}\right)^{n}}\right)^{+}\right]
\end{aligned}
$$

and

$$
P_{\text {Call }}(0)=S(0) \Phi\left(d_{1}(S(0), T)\right)-K e^{-r T} \Phi\left(d_{2}(S(0), T)\right)
$$

Convergence of the CRR formula to the Black-Scholes formula

- One can modify the previous arguments to provide the formulas for $P_{\text {Call }}(t)$ and $P_{\text {Put }}(t)$.

Theorem 27

Let $g \in C_{b}(\mathbb{R})$ and let $X=g(S(T))$ be a contingent claim in the Black-Scholes model. Then the price process of X is given by

$$
P_{X}(t)=\lim _{t \rightarrow+\infty} P_{X}^{n}(t), \quad 0 \leq t \leq T
$$

where $P_{X}^{n}(t), n \geq 1$ are the price processes of X in the corresponding CRR models.

Convergence of the CRR formula to the Black-Scholes formula

- There exist similar proofs of the previous results using the normal approximation to the binomial law, based on the central limit theorem.
- However, note that here we have a triangular array of random variables $\left\{Y_{n}(j)\right\}_{j=1, \ldots, n}, n \geq 1$. Hence, the result does not follow from the basic version of the central limit theorem.
- Moreover, the asymptotic distribution of Y_{n} need not be Gaussian if we choose suitably the parameters of the CRR model.
- For instance, if we set $u_{n}=u$ and $d_{n}=e^{c t / n}, c<r$ we have that Y_{n} converges in law to a Poisson random variable.
- This lead to consider the exponential of more general Lévy process as underlying price process for the stock.

