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Introduction

• The Cox-Ross-Rubinstein (CRR) market model, also known
as the binomial model, is an example of a multi-period
market model.

• At each point in time, the stock price is assumed to either
go ‘up’ by a fixed factor u or go ‘down’ by a fixed factor d .

S(t + 1) = S(t)u

S(t)

S(t + 1) = S(t)d

p

1− p

• Only four parameters are needed to specify the binomial
asset pricing model: u > 1 > d > 0, r > −1 and S (0) > 0.

• The real-world probability of an ‘up’ movement is
assumed to be 0 < p < 1 for each period and is assumed
to be independent of all previous stock price movements.
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Bernoulli process and related
processes



The Bernoulli process

Definition 1
A stochastic process X = {X(t)})t∈{1,...,T} defined on some
probability space (Ω,F , P) is said to be a (truncated)
Bernoulli process with parameter 0 < p < 1 (and time
horizon T) if the random variables X (1) , X (2) , ..., X (T) are
independent and have the following common probability
distribution

P (X (t) = 1) = 1− P (X (t) = 0) = p, t ∈N.

• We can think of a Bernoulli process as the random
experiment of flipping sequentially T coins.

• The sample space Ω is the set of vectors of zero’s and
one’s of length T. Obviously, #Ω = 2T.
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The Bernoulli process

• X (t, ω) takes the value 1 or 0 as ωt, the t-th component
of ω ∈ Ω, is 1 or 0, that is, X (t, ω) = ωt.

• FX
t is the algebra corresponding to the observation of

the first t coin flips.
• FX

t = a (πt) where πt is a partition with 2t elements, one
for each possible sequence of t coin flips.

• The probability measure P is given by

P (ω) = pn (1− p)T−n ,

where ω is any elementary outcome corresponding to n
“heads” and T − n ”tails”.

• Setting this probability measure on Ω is equivalent to say
that the random variables X (1) , ..., X (T) are
independent and identically distributed.
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The Bernoulli process

Example

• Consider T = 3. Let

A0 = {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1)} ,

A1 = {(1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)} ,

A0,0 = {(0, 0, 0) , (0, 0, 1)} , A0,1 = {(0, 1, 0) , (0, 1, 1)} ,

A1,0 = {(1, 0, 0) , (1, 0, 1)} , A1,1 = {(1, 1, 0) , (1, 1, 1)} .

• We have that π0 = {Ω} , π1 = {A0, A1} ,

π2 = {A0,0, A0,1, A1,0, A1,1} ,

π3 = {{ω}}ω∈Ω.
• Ft = a (πt),t = 0, ..., 3. In particular, F3 = P (Ω).
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The Bernoulli counting process

Definition 2
The Bernoulli counting process N = {N(t)} t∈{0,...,T} is
defined in terms of the Bernoulli process X by setting
N (0) = 0 and

N (t, ω) = X (1, ω)+ · · ·+X (t, ω) , t ∈ {1, ..., T} , ω ∈ Ω.

• The Bernoulli counting process is an example of additive
random walk.

• The random variable N (t) should be thought as the
number of heads in the first t coin flips.
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The Bernoulli counting process

• Since E [X (t)] = p, Var [X (t)] = p (1− p) and the random
variables X (t) are independent, we have

E [N (t)] = tp, Var [N (t)] = tp (1− p) .

• Moreover, for all t ∈ {1, ..., T} one has

P (N (t) = n) =

(
t
n

)
pn (1− p)t−n , n = 0, ..., t,

that is, N (t) ∼ Binomial (t, p).
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The Cox-Ross-Rubinstein model



The CRR market model

• The bank account process is given by
B =

{
B (t) = (1 + r)t

}
t=0,...,T

.

• The binomial security price model features 4 parameters:
p, d, u and S (0) , where 0 < p < 1,0 < d < 1 < u and
S (0) > 0.

• The time t price of the security is given by

S (t) = S (0) uN(t)dt−N(t), t = 1, ..., T.

• The underlying Bernoulli process X governs the up and
down movements of the stock. The stock price moves up
at time t if X(t, ω) = 1 and moves down if X(t, ω) = 0.
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The CRR market model

• The Bernoulli counting process N counts the up
movements. Before and including time t, the stock price
moves up N(t) times and down t− N (t) times.

• The dynamics of the stock price can be seen as an
example of a multiplicative or geometric random walk.

• The price process has the following probability
distribution

P
(
S (t) = S (0) undt−n) = ( t

n

)
pn (1− p)t−n , n = 0, ..., t.
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The CRR market model

• Lattice representation

S(3) = S(0)u3

S(2) = S(0)u2

S(1) = S(0)u S(3) = S(0)u2d

S(0) S(2) = S(0)ud

S(1) = S(0)d S(3) = S(0)ud2

S(2) = S(0)d2

S(3) = S(0)d3

p

1− p

p

1− p
p

1− p

p

1− p
p

1− p
p

1− p
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The CRR market model

• The event
{

S (t) = S (0) undt−n} occurs if and only if
exactly n out of the first t moves are up. The order of
these t moves does not matter.

• At time t, there are 2t possible sample paths of length t.
• At time t, the price process S (t) can only take one of t + 1

possible values.
• This reduction, from exponential to linear in time, in the

number of relevant nodes in the lattice is crucial in
numerical implementations.
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The CRR market model

Example
Consider T = 2. Let

Ω = {(d, d) , (d, u) , (u, d) , (u, u)}
Ad = {(d, d) , (d, u)} , Au = {(u, d) , (u, u)} .

We have that π0 = {Ω} ,π1 = {Ad, Au} ,π2 =

{{(d, d)} , {(d, u)} , {(u, d)} , {(u, u)}} , and
Ft = a (πt),t = 0, ..., 3. Note that

{S (2) = S (0) ud} = {(d, u) , (u, d)} /∈ π2.

Hence, the lattice representation is NOT the information tree
of the model.
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Arbitrage and completeness in the CRR model

Theorem 3

There exists a unique martingale measure in the CRR market
model if and only if d < 1 + r < u, and is given by

Q (ω) = qn (1− q)T−n ,

where ω is any elementary outcome corresponding to n up
movements and T − n down movement of the stock and

q =
1 + r− d

u− d
.

Corollary 4
If d < 1 + r < u, then the CRR model is arbitrage free and
complete. 14/33



Arbitrage and completeness in the CRR model

Lemma 5

Let Z be a r.v. defined on some prob. space (Ω,F , P), with
P (Z = a) + P (Z = b) = 1 for a, b ∈ R. Let G ⊂ F be an algebra on Ω. If
E [Z| G] is constant then Z is independent of G . (Note that the constant
must be equal to E [Z]).

Proof of Lemma 5.
Let A = {Z = a} and Ac = {Z = b}. Then for any B ∈ G

E [Z1B] = E [(a1A + b1Ac ) 1B] = aP (A ∩ B) + bP (Ac ∩ B) ,

and

E [E [Z] 1B] = E [(aP (A) + bP (B)) 1B] = aP (A) P (B) + bP (Ac) P (B) .

By the definition of cond. expect. we have that E [Z1B] = E [E [Z] 1B].
Using that P (Ac) = 1− P (A) and P (Ac ∩ B) = P (B)− P (A ∩ B), we get
that P (A ∩ B) = P (A) P (B) and P (Ac ∩ B) = P (Ac) P (B) , which yields
that a (Z) is independent of G . 15/33



Arbitrage and completeness in the CRR model

Proof of Theorem 3.

Note that S∗ (t) = S (t) (1 + r)−t ,t = 0, ...T. Moreover

S (t + 1)
S (t)

=
S (0) uN(t+1)dt+1−N(t+1)

S (0) uN(t)dt−N(t)

= uN(t+1)−N(t)d1−(N(t+1)−N(t))

= uX(t+1)d1−X(t+1), t = 0, ..., T − 1.

Let Q be another probability measure on Ω.

We impose the martingale condition under Q

EQ [S∗ (t + 1)| Ft] = S∗ (t)⇔ EQ

[
uX(t+1)d1−X(t+1)

∣∣∣Ft

]
= 1 + r.
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
This gives

(1 + r) = EQ

[
uX(t+1)d1−X(t+1)

∣∣∣Ft

]
= uQ (X (t + 1) = 1| Ft) + dQ (X (t + 1) = 0| Ft) .

In addition,

1 = Q (X (t + 1) = 1| Ft) + Q (X (t + 1) = 0| Ft) .

Solving the previous equations we get the unique solution

Q (X (t + 1) = 1| Ft) =
1 + r− d

u− d
= q,

Q (X (t + 1) = 0| Ft) =
u− (1 + r)

u− d
= 1− q.
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

Note that the r.v. uX(t+1)d1−X(t+1) satisfies the hypothesis of
Lemma 5 and, therefore, uX(t+1)d1−X(t+1) is independent
(under Q) of Ft.

This means that

(1 + r) = EQ

[
uX(t+1)d1−X(t+1)

∣∣∣Ft

]
= EQ

[
uX(t+1)d1−X(t+1)

]
= uQ (X (t + 1) = 1) + dQ (X (t + 1) = 0) ,

and we get that

Q (X (t + 1) = 1) = Q (X (t + 1) = 1| Ft) ,

Q (X (t + 1) = 0) = Q (X (t + 1) = 0| Ft) . 18/33



Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
As the previous unconditional probabilities does not depend on t we
obtain that the random variables X (1) , ...X (T) are identically distributed
under Q, i.e. X (i) = Bernoulli (q) . Moreover, for a ∈ {0, 1}T we have that

Q

(
T⋂

t=1
{X (t) = at}

)
= EQ

[
T

∏
t=1

1{X(t)=at}

]

= EQ

[
T−1

∏
t=1

1{X(t)=at}EQ

[
1{X(T)=aT}

∣∣∣FT−1

]]

= EQ

[
T−1

∏
t=1

1{X(t)=at}Q (X (T) = aT | FT−1)

]

= EQ

[
T−1

∏
t=1

1{X(t)=at}

]
Q (X (T) = aT)

= Q

(
T−1⋂
t=1
{X (t) = at}

)
Q (X (T) = aT) .
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
Iterating this procedure we get that

Q

(
T⋂

t=1
{X (t) = at}

)
=

T

∏
t=1

Q (X (t) = at) ,

and we can conclude that X (1) , ...X (T) are also independent
under Q.
Therefore, under Q, we obtain the same probabilistic model as
under P but with p = q, that is,

Q (ω) = qn (1− q)T−n , n =
T

∑
t=1

ωt.

The conditions for q are equivalent to Q (ω) > 0, which yields that
Q is the unique martingale measure.
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Pricing European options in the CRR
model



Pricing European options in the CRR model

• By the general theory developed for multiperiod markets
we have the following result.

Proposition 6 (Risk Neutral Pricing Principle)

The arbitrage free price process of a European contingent
claim X in the CRR model is given by

PX (t) = B (t)EQ

[
X

B (T)

∣∣∣∣Ft

]
= (1 + r)−(T−t)

EQ [X| Ft] , t = 0, ..., T,

where Q is the unique martingale measure characterized by
q = 1+r−d

u−d .
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Pricing European options in the CRR model

• Given g, a non-negative function, define

Fp,g (t, x) :=
t

∑
n=0

(
t
n

)
pn (1− p)t−n g

(
xundt−n) .

Proposition 7

Consider a European contingent claim of the form
X = g (S (T)). Then, the arbitrage free price process PX (t) is
given by

PX (t) = (1 + r)−(T−t) Fq,g (T − t, S (t)) , t = 0, ..., T,

where q = 1+r−d
u−d .
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Pricing European options in the CRR model

Proof of Proposition 7.
Recall that

S (t) = S (0) uN(t)dt−N(t) = S (0)
t

∏
j=1

uXj d1−Xj , t = 1, ..., T.

By Proposition 6 we have that

(1 + r)(T−t) PX (t) = EQ [ g (S (T))| Ft] = EQ

[
g

(
S (t)

T

∏
j=t+1

uXj d1−Xj

)∣∣∣∣∣Ft

]

= EQ

[
g

(
s

T

∏
j=t+1

uXj d1−Xj

)]∣∣∣∣∣
s=S(t)

= Fq,g (T − t, S (t)) ,

where in the last equality we have used that S (t) is Ft-measurable and Xt+1, ..., XT

are independent of Ft.

Note that if X is G-measurable and Y is independent of G then

E [ f (X, Y)| G] = E [ f (x, Y)]|x=X .
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Pricing European options in the CRR model

Corollary 8

Consider a European call option with expiry time T and strike
price K writen on the stock S. The arbitrage free price PC (t)
of the call option is given by

PC (t) = S (t)
T−t

∑
n=n̂

(
T − t

n

)
q̂n (1− q̂)T−t−n

− K

(1 + r)T−t

T−t

∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n ,

where

n̂ = inf
{

n ∈N : n > log
(

K/(S (t) dT−t)
)

/ log (u/d)
}

,

and q̂ = qu
1+r ∈ (0, 1) .

• The previous formula only involves two sums of
T − t− n̂ + 1 binomial probabilities.

• Using the put-call parity relationship one can get a
similar formula for European puts.
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Pricing European options in the CRR model

Proof of Corollary 8.
First note that

S (t) undT−t−n − K > 0⇐⇒ n > log
(

K/(S (t) dT−t)
)

/ log (u/d) .

Let g (x) = (x− K)+. If n̂ > T − t then Fq,g (T − t, S (t)) = 0. If n̂ ≤ T − t,
then the formula in Proposition 7 yields

(1 + r)T−t PC (t)

= Fq,g (T − t, S (t))

=
T−t

∑
n=0

(
T − t

n

)
qn (1− q)T−t−n

(
S (t) undT−t−n − K

)+
=

n̂

∑
n=0

(
T − t

n

)
qn (1− q)T−t−n 0

+
T−t

∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n

(
S (t) undT−t−n − K

)
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Pricing European options in the CRR model

Proof of Corollary 8.

=
T−t

∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n S (t) undT−t−n

−
T−t

∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n K

= S (t)
T−t

∑
n=n̂

(
T − t

n

)
(qu)n ((1− q) d)T−t−n

− K
T−t

∑
n=n̂

(
T − t

n

)
qn (1− q)T−t−n .

The result follows by defining q̂ =
qu

1+r and noting that

1− q̂ =
1 + r− qu

1 + r
=

qu + (1− q)d− qu
1 + r

=
(1− q)d

1 + r
,

where we have used qu + (1− q)d = EQ

[
uX(t+1)d1−X(t+1)

]
= 1 + r. 26/33



Hedging European options in the
CRR model



Hedging European options in the CRR model

• Let X be a contingent claim and PX = {PX (t)}t=0,...,T be
its price process (assumed to be computed/known).

• As the CRR model is complete we can find a self-financing
trading strategy
H = {H (t)}t=1,...,T =

{
(H0 (t) , H1 (t))

T
}

t=1,...,T
such that

PX (t) = V (t) = H0 (t) (1 + r)t + H1 (t) S (t) , t = 1, ..., T,
(1)

PX (0) = V (0) = H0 (1) + H1 (1) S (0) .

• Given t = 1, ..., T we can use the information up to (and
including) t− 1 to ensure that H is predictable.

• Hence, at time t, we know S (t− 1) but we only know that

S (t) = S (t− 1) uX(t)d1−X(t).
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Hedging European options in the CRR model

• Using that uX(t)d1−X(t) ∈ {u, d} we can solve equation (1)
uniquely for H0 (t) and H1 (t).

• Making the dependence of PX explicit on S we have the
equations

PX (t, S (t− 1) u) = H0 (t) (1 + r)t + H1 (t) S (t− 1) u,

PX (t, S (t− 1) d) = H0 (t) (1 + r)t + H1 (t) S (t− 1) d.

• The solution for these equations is

H0 (t) =
uPX (t, S (t− 1) d)− dPX (t, S (t− 1) u)

(1 + r)t (u− d)
,

H1 (t) =
PX (t, S (t− 1) u)− PX (t, S (t− 1) d)

S (t− 1) (u− d)
.
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Hedging European options in the CRR model

• The previous formulas only make use of the lattice
representation of the model and not the information tree.

Proposition 9

Consider a European contingent claim X = g (S (T)). Then,
the replicating trading strategy
H = {H (t)}t=1,...,T =

{
(H0 (t) , H1 (t))

T
}

t=1,...,T
is given by

H0 (t) =
uFq,g (T − t, S (t− 1) d)− dFq,g (T − t, S (t− 1) u)

(1 + r)T (u− d)
,

H1 (t) =
(1 + r)T−t {Fq,g (T − t, S (t− 1) u)− Fq,g (T − t, S (t− 1) d)

}
S (t− 1) (u− d)

.
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Hedging European options in the CRR model

• Let

C (τ, x) =
τ

∑
n=0

(
τ

n

)
qn (1− q)τ−n (xundτ−n − K

)+ .

• Then,
PC (t) = (1 + r)−(T−t) C (T − t, S (t)) .

• In the following theorem we combine the previous
formula and Proposition 9 to find the hedging strategy for
a European call option.
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Hedging European options in the CRR model

Proposition 10
The replicating trading strategy
H = {H (t)}t=1,...,T =

{
(H0 (t) , H1 (t))

T
}

t=1,...,T
for a

European call option with strike K and expiry time T is given
by

H0 (t) =
uC (T − t, S (t− 1) d)− dC (T − t, S (t− 1) u)

(1 + r)T (u− d)
, .

H1 (t) =
(1 + r)T−t {C (T − t, S (t− 1) u)− C (T − t, S (t− 1) d)}

S (t− 1) (u− d)
.

• As C (τ, x) is increasing in x we have that H1 (t) ≥ 0, that
is, the replicating strategy does not involve short-selling.

• This property extends to any European contingent claim
with increasing payo� g.
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Hedging European options in the CRR model

• We can also use the value of the contingent claim X and
backward induction to find its price process PX and its
replicating strategy H simultaneously.

• We have to choose a replicating strategy H (T) based on
the information available at time T − 1.

• This gives raise to two equations

PX (T, S (T − 1) u) = H0 (T) (1 + r)T + H1 (T) S (T − 1) u,
(2)

PX (T, S (T − 1) d) = H0 (T) (1 + r)T + H1 (T) S (T − 1) d.
(3)
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Hedging European options in the CRR model

• The solution is

H0 (T) =
uPX (T, S (T − 1) d)− dPX (T, S (T − 1) u)

(1 + r)T (u− d)
,

H1 (T) =
PX (T, S (T − 1) u)− PX (T, S (T − 1) d)

S (T − 1) (u− d)
.

• Next, using that H is self-financing, we can compute

PX (T − 1, S (T − 1)) = H0 (T) (1 + r)T−1 + H1 (T) S (T − 1) ,

and repeat the procedure (changing T to T − 1 in
equations (2) and (3) ) to compute H (T − 1) .
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