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Introduction

+ The Cox-Ross-Rubinstein (CRR) market model, also known
as the binomial model, is an example of a multi-period
market model.

« At each point in time, the stock price is assumed to either
go ‘up’ by a fixed factor u or go ‘down’ by a fixed factord .

S(t+1) = S(t)u

*

1=P st 41) = s(1)d

S(t)

+ Only four parameters are needed to specify the binomial
asset pricing model: u >1>d >0, > —1and S (0) > 0.

* The real-world probability of an ‘up’ movement is
assumed to be 0 < p < 1 for each period and is assumed
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to be independent of all previous stock price movements.



Bernoulli process and related
processes



The Bernoulli process

Definition 1

probability space (Q, F, P) is said to be a (truncated)
Bernoulli process with parameter 0 < p < 1 (and time
horizon T) if the random variables X (1), X (2),..., X (T) are
independent and have the following common probability
distribution

P(X(H)=1)=1-P(X(t)=0)=p, teN.

« We can think of a Bernoulli process as the random
experiment of flipping sequentially T coins.
« The sample space Q) is the set of vectors of zero’s and

one’s of length T. Obviously, #Q = 27T. .



The Bernoulli process

* X (t,w) takes the value 1 or 0 as wy, the t-th component
of we O,is1or0,thatis, X (t,w) = wy.

- FXis the algebra corresponding to the observation of
the first t coin flips.

« FX = a(m) where 7; is a partition with 2 elements, one
for each possible sequence of t coin flips.

« The probability measure P is given by

P(w)=p"(1-p)'",
where w is any elementary outcome corresponding to n
“heads” and T — n "tails”.
« Setting this probability measure on Q) is equivalent to say
that the random variables X (1),..., X (T) are

independent and identically distributed.
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The Bernoulli process

Example

« Consider T = 3. Let

Ao ={(0,0,0),(0,0,1),(0,1,0),(0,1,1)},

A1 =1{(1,00),(1,0,1),(1,1,0),(1,1,1)},
Aoo ={(0,0,0),(0,0,1)}, Ap1=1{(0,1,0),(0,1,1)},
A9 ={(1,0,0),(1,0,1)}, Aix={(L10),(1,1,1)}.

« We have that 7o = {Q}, 1y = {Ao, A1},
= {Aop, Ao1, Ar0, A11},

13 = {{w}} e
« Fr=a(m),t =0,...,3. In particular, 73 = P (Q).
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The Bernoulli counting process

Definition 2

The Bernoulli counting process N = {N ()} ;c(o...1} IS
defined in terms of the Bernoulli process X by setting
N (0) =0and

N(tw)=X(1l,w)+ - +X(t,w), te{1,..,T}, weQ.

« The Bernoulli counting process is an example of additive
random walk.

+ The random variable N (t) should be thought as the
number of heads in the first ¢ coin flips.
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The Bernoulli counting process

+ Since E[X (t)] = p, Var[X (t)] = p (1 — p) and the random
variables X (¢) are independent, we have

E[N ()] =tp,  Var[N()]=tp(1-p).

*+ Moreover, forallt € {1,.., T} one has

P(N(f) =n) = ( ; ) P (1—p)™, n=0,.t

thatis, N (t) ~ Binomial (t, p).
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The Cox-Ross-Rubinstein model



The CRR market model

« The bank account process is given by
o . t
B={B(t)=(1+r) }t:
 The binomial security price model features 4 parameters:
p,d,uand S (0), where0 < p<10<d<1<uand
S(0) > 0.

 The time t price of the security is given by
S(t) =S O)uNOg=NO =1, T

« The underlying Bernoulli process X governs the up and
down movements of the stock. The stock price moves up
attime ¢ if X(t,w) = 1 and moves down if X(t,w) = 0.
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The CRR market model

+ The Bernoulli counting process N counts the up
movements. Before and including time ¢, the stock price
moves up N(t) times and down ¢ — N (¢) times.

+ The dynamics of the stock price can be seen as an
example of a multiplicative or geometric random walk.

« The price process has the following probability
distribution

n

P(S(t)=S(0)u"d"") = < ! ) p"(1-p)'™", n=0,.,t
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The CRR market model

+ Lattice representation

r.
p S(2) = S(0)
/
, S()=s0u ' P5(3) = s(0yud
/
5(0) — 1;Ps(z) = 5(0)ud
1T — 15
Ps(1) = 5(0)d P 5(3) = S(0)ud?
e



The CRR market model

- The event {S (t) = S (0) u"d"~"} occurs if and only if
exactly n out of the first t moves are up. The order of
these t moves does not matter.

« At time t, there are 2! possible sample paths of length ¢.

« At time t, the price process S (t) can only take one of t + 1
possible values.

« This reduction, from exponential to linear in time, in the
number of relevant nodes in the lattice is crucial in
numerical implementations.
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The CRR market model

Example
Consider T = 2. Let

Q= {(d,d), (d,u), (u,d), (uu)}
Ag=1{(dd), (dw)}, A= {(wd),wu)}.

We have that my = {Q},m1 = {Ay, Au} 0 =

{{dd)} {(du)}, {(wd)}, {(wu)}}, and

Fi=a(m),t =0,..,3. Note that
{5(2) =5 (0)ud} = {(d,u), (u,d)} ¢ ma.

Hence, the lattice representation is NOT the information tree
of the model.
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Arbitrage and completeness in the CRR model

Theorem 3

There exists a unique martingale measure in the CRR market
model if and only if d < 1+ r < u, and is given by

Qw)=q"(1-q)"",

where w is any elementary outcome corresponding to n up
movements and T — n down movement of the stock and

_1+r—d
 ou—d

Corollary 4

Ifd <1+ r < u, then the CRR model is arbitrage free and
complete. 14/33



Arbitrage and completeness in the CRR model

Lemmas

Let Z be a r.v. defined on some prob. space (Q), F, P), with
P(Z=a)+P(Z=0)=1forabeR. LetG C F bean algebra on Q. If
E [Z| G] is constant then Z is independent of G. (Note that the constant
must be equal to E [Z]).

Proof of Lemma 5.
Let A= {Z =a} and A° = {Z = b}. Thenforany B € G

E[Z15) = E [(al4 + b14) 15] = aP (AN B) + bP (A° N B),
and
E [E[Z]15] = E [(aP (A) + bP (B)) 15] = aP (A) P (B) + bP (A°) P (B).
By the definition of cond. expect. we have that E [Z15] = E [E [Z] 15].
Using that P (A¢) = 1 — P (A) and P (A°N B) = P (B) — P (AN B), we get

that P(ANB) =P (A)P(B)and P (A°NB) = P(A°) P (B), which yields
that a (Z) is independent of G. ] 15/33



Arbitrage and completeness in the CRR model

Proof of Theorem 3.
Note that $* (t) = S (t) (1+r) 't =0,...T. Moreover
S (t + 1) S (0> yN(#+1) gt4+1=N(t+1)

S(t)  S(0)uNW®gt-N()
N(t+1)=N(t) g1—(N(t+1)=N(t))

=u
— X1 g1=X (1) t=0,..,T—1.

Let Q be another probability measure on Q.

We impose the martingale condition under Q

Eo[S* (t+1)| F] = S* (t) < Eq [uX<t+1>d1—X<t+1>( Fl=1+r.
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
This gives
(1+7) =Eq [MX(t—H)dl—X(t—i-l)’ ]_-t}
=uQ (X (t+1) =1 F) +dQ(X(t+1) =0| F).

In addition,

1=Q(X(t+1)=1|F)+Q(X(t+1) =0| F).

Solving the previous equations we get the unique solution

1+r—d
Q(X(t+1):1\]:t):ﬁ:q,
mzl_q

QX (t+1) = 0| Ft) = =—— . .



Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

Note that the rv. uX(t+1)g1-X(t+1) satisfies the hypothesis of
Lemma 5 and, therefore, 4 X(t+1)41-X(t+1) js independent
(under Q) of F,.

This means that
(1+7) =Eq [uX(tJrl)dle(tJrl)’ }—t}
= Eq uX(t—i—l)dl—X(t—i—l)}
=uQ(X(t+1)=1)4+dQ(X(t+1)=0),
and we get that

QX(t+1)=1)=Q(X(t+1)=1|F),
QX(t+1)=0)=Q(X(t+1)=0|F). 18/33



Arbitrage free and completeness of the CRR model

Proof of Theorem 3.

As the previous unconditional probabilities does not depend on t we
obtain that the random variables X (1),...X (T) are identically distributed
under Q, i.e. X (i) = Bernoulli (7) . Moreover, for a € {0,1}" we have that

T T
Q (ﬂ {X@) = at}) =Eg tHll{xm:m}
=il Li=

T-1
=Eq H Lix(h=a}EQ [1{X<T>:aT} le]]

=[Eg Hl{x —a}Q( ()aT|}—T—1)}

— ]EQ H 1{X )=a:}

=Q (ﬂ {x(t) —ﬂt}> Q(X(T)=ar).
t=1
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Arbitrage free and completeness of the CRR model

Proof of Theorem 3.
Iterating this procedure we get that

T T
Q (ﬂ {X () =ﬂt}> =HQ(X(f) =a),
t=1 =

and we can conclude that X (1),...X (T) are also independent
under Q.

Therefore, under Q, we obtain the same probabilistic model as
under P but with p = g, that is,

T
QW) =g"1-",  n=Lau
=

The conditions for g are equivalent to Q (w) > 0, which yields that
Q is the unique martingale measure. O
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Pricing European options in the CRR
model




Pricing European options in the CRR model

+ By the general theory developed for multiperiod markets
we have the following result.

Proposition 6 (Risk Neutral Pricing Principle)

The arbitrage free price process of a European contingent
claim X in the CRR model is given by

Py (t [ 5|7

=(1+r)" t]EQ[X|.7-"t] t=0,..,T,

where Q is the unique martingale measure characterized by
1+r d
qg= .
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Pricing European options in the CRR model

+ Given g, a non-negative function, define
4 t n f=i{] ngt—n
o (Bm) =) L] P (1—p) "g (xud").

Proposition 7

Consider a European contingent claim of the form
X =g (S(T)). Then, the arbitrage free price process Px (t) is
given by
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Pricing European options in the CRR model

Proof of Proposition 7.
Recall that

S () = 5 (0) uNgi=NC Hu g%, t=1,.,T
By Proposition 6 we have that

1+n T Py (1) = Bg[g(S(T))| Fi] = E

T
g (s ® T1 uxfdle>}}}
j=t+1
.
j=t+1

where in the last equality we have used that S (¢) is F;-measurable and X;1, ..., X7
are independent of F;.

=Fe(T—1,5(t),
s=5(t)

Note that if X is G-measurable and Y is independent of G then

E[f(X,Y)|G] = E[f (x,Y)][,_x - 23/33



Pricing European options in the CRR model

Corollary 8

Consider a European call option with expiry time T and strike
price K writen on the stock S. The arbitrage free price Pc (t)
of the call option is given by

T—t .
Pc<t>=5<t>2 ( ! t)q 1—g)" "

T—+t
T—t—n
(1 == 7’ n; ( ) (1 ; q) '

where
= inf{n eN:n > log (K/(s (t) d”)) /1og(u/d)},

and § = 1+r €(0,1). 24/33



Pricing European options in the CRR model

Proof of Corollary 8.
First note that

S(Hu"dTH" —K >0 <> n > log (K/(s (t) d”)) /log (u/d).

Letg(x) = (x—K)".If i > T—tthen Fy o (T—+,S(t)) =0.1faA < T —t,
then the formula in Proposition 7 yields
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Pricing European options in the CRR model

Proof of Corollary 8.

The result follows by defining § = 1’% and noting that

o 14+ r—qu  qu+(1—q)d—qu (1—¢q)d
1—g= = =
1+7r 147 147

7

where we have used qu + (1 — q)d = Eq [uX(HD41=X(4D | =147 O26/33



Hedging European options in the
CRR model




Hedging European options in the CRR model

» Let X be a contingent claim and Px = {Px (t)},_, 1 be
its price process (assumed to be computed/known).

« As the CRR model is complete we can find a self-financing
trading strategy

H={H O}y, = {(Ho (), Hi (1)}

Px(t)=V () =Ho(t) 1+7r) +H (t)S(t), t=1,..,T,
(1)

such that
T

Px (0) =V (0) = Ho (1) + H; (1) 5(0).
+ Givent =1,..., T we can use the information up to (and
including) t — 1 to ensure that H is predictable.
* Hence, at time ¢, we know S (t — 1) but we only know that
S(t) =S (t—1)uXBgt=x),
27133



Hedging European options in the CRR model

« Using that uX()d'=X() ¢ {u,d} we can solve equation (1)
uniquely for Hy (t) and Hj ().

+ Making the dependence of Px explicit on S we have the
equations

Px (t,S(t—1)u) = Ho () (1 +7) +Hy (1) S (t—1) u,
Px (t,S(t—1)d) = Hy(t) (1 +7)' + Hy (£)S(t—1)d.
« The solution for these equations is
uPx (t,S(t—1)d) —dPx (t,S(t — 1) u)
(1+7) (u—d)

Px (t,S (t—1)u) — Px (£, S (t — 1) d)
S(t—1)(u—d) '

Hy (t) =

4

Hy (t) =
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Hedging European options in the CRR model

+ The previous formulas only make use of the lattice
representation of the model and not the information tree.

Proposition 9

Consider a European contingent claim X = g (S (T)). Then,
the replicating trading strategy

H:{HﬁﬂﬁlT:{GﬁULHﬂﬂfhﬂwTwanm

.....

UFye (T — 1,5 (t —1)d) —dFyq (T — 1,5 (t — 1) u)
(1+1)" (u—d)

A4+ {F o (T—tS(t—1)u) —FEe(T—t,S(t—1)d)}

S(t—1)(u—d) '

7

Ho (t) =

Hy (t) =
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Hedging European options in the CRR model

* Let
C(t,x) = i ( Z ) q"(1—q)" " (eu"d™" —K)".

n=0

* Then,
Pe(t)=1+r)"TDC(T-t5().

« In the following theorem we combine the previous
formula and Proposition 9 to find the hedging strategy for
a European call option.
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Hedging European options in the CRR model

Proposition 10
The replicating trading strategy

H={H®}y, = {(H ) H®)}_  fora

.....

European call option with strike K and exp:ry t:me T is given
by

Hy (1) = uC(T—t,S(t—1)d)T—dC(T—t,S(t—1)u),'

(1+7) (u—d)
(1+n)"H{C(T—t,S(t—1)u)—C(T—tS(t—1)d)}
S(t—1) (u—d) '

Hy (t) =

+ As C (7, x) is increasing in x we have that H; (t) > 0, that
is, the replicating strategy does not involve short-selling.
« This property extends to any European contingent claim /33

~ with increasing payoffe.



Hedging European options in the CRR model

« We can also use the value of the contingent claim X and
backward induction to find its price process Px and its
replicating strategy H simultaneously.

+ We have to choose a replicating strategy H (T) based on
the information available at time T — 1.

- This gives raise to two equations
Px (T,S(T—1)u) = Hy(T) 1+7)T + Hy (T)S(T— 1) u,
(2)
Px (T,S(T—1)d) = Ho (T) (1 +7)T + H; (T)S (T —1)d.
3)
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Hedging European options in the CRR model

» The solution is
uPx (T,S (T —1)d) — dPx (T,S (T —1) u)
(1+7)" (u—d)
Px (T,S (T —1)u) — Px (T,S (T —1)d)
S(T—1)(u—4d) '

Hy (T) =

7

Hy (T) =

 Next, using that H is self-financing, we can compute
Px(T—1,S(T—1)) = Hy(T) 1+ )" '+ H (T)S(T - 1),
and repeat the procedure (changing Tto T — 1 in

equations (2) and (3) ) to compute H (T —1).
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