UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Exam in:
 STK-MAT3700/4700 - Introduction to Mathematical Finance and Investment Theory

Day of examination: november 2022
Examination hours: $0.00-00.00$
This problem set consists of 3 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1

a (weight 10p)

Consider a loan of $\mathbf{1 0 0 0}$ to be paid back in 5 equal instalments due at yearly intervals. The instalments include both the interest payable each year calculated at 10% of the current outstanding balance and the repayment of a fraction of the loan. What is the amount of interest included in each instalment? How much of the loan is repaid as part of each instalment?
b (weight 10p)
Suppose that at time $t=0$, the market price of the underlying asset will be 1000 NOK, the price of a forward contract with a delivery time of one year will be 1080 NOK, under periodic compounding with $\mathrm{r}=8 \%$, and short-selling requires a 30% security deposit attracting interest at $\mathrm{d}=4 \%$. Is there an arbitrage opportunity? Find the highest rate d for which there is no arbitrage opportunity.

c (weight 10p)

Find the total payout function that depends on the share price of the following securities: 1 call option with a strike price K and 1 put options with a strike price $3 K$ are purchased. Construct a graph of the payout function.

Problem 2

Consider a one-period market, with $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$, interest rate $r=\frac{1}{10}$, and one risky asset $S_{1}=\left\{S_{1}(t)\right\}_{t=0,1}$ with prices given by

$$
S_{1}(0)=\left(\begin{array}{l}
5 \\
5 \\
5
\end{array}\right), \quad S_{1}(1)=\left(\begin{array}{c}
\frac{33}{5} \\
\frac{22}{5} \\
\frac{33}{10}
\end{array}\right) .
$$

a (weight 10p)

Find all risk neutral measures in this market. Is this market arbitrage-free? Justify your answer.

b (weight 10p)

Find all contingent claims $X=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ that are attainable in this market. Is this market complete? Justify your answer.
c (weight 10p)
Compute the arbritrage-free price (or prices) for the contingent claims $X=(1,5,2)^{T}$ and $Y=(6,2,0)^{T}$.

Problem 3

Consider a two-period market, with $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$, probability measure $P=$ $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{T}$, interest rate $r=0$, and one risky asset $S_{1}=\left\{S_{1}(t)\right\}_{t=0,1,2}$ with prices given by

$$
S_{1}(0)=\left(\begin{array}{l}
4 \\
4 \\
4 \\
4
\end{array}\right), \quad S_{1}(1)=\left(\begin{array}{l}
6 \\
3 \\
3 \\
6
\end{array}\right), \quad S_{1}(2)=\left(\begin{array}{l}
8 \\
2 \\
5 \\
5
\end{array}\right) .
$$

a (weight 10p)

Find $\left\{\mathcal{F}_{t}\right\}_{t=0,1,2}$, the filtration generated by the price process $S_{1}=\left\{S_{1}(t)\right\}_{t=0,1,2}$. Discuss carefully the partitions associated to the price process and how they generate the algebras in the filtration. Calculate $\mathbb{E}\left[S_{1}(2, \omega) \mid \mathcal{F}_{1}\right]$
b (weight 10p)
Find risk neutral probability measure $Q=\left(Q\left(\omega_{1}\right), Q\left(\omega_{2}\right), Q\left(\omega_{3}\right), Q\left(\omega_{4}\right)\right)$ for given market.

c (weight 10p)

Consider the following optimal portfolio problem

$$
\begin{gathered}
\max _{H \in \mathbb{H}} \mathbb{E}[U(V(2))] \\
\text { subject to } V(0)=v,
\end{gathered}
$$

where v is a given strictly positive real number, \mathbb{H} is the set of all self-financing and predictable trading strategies and $U(u)=2 u^{1 / 2}$. Compute the optimal attainable wealth, the optimal objective value and the optimal trading strategy.

Problem 4

Let (Ω, \mathcal{F}, P) be a finite probability space.
a (weight 10p)
Suppouse that X, Y, Z are random variables with $X, Y \in \mathcal{F}$. Prove that

$$
\mathbb{E}[X+Y Z \mid \mathcal{F}]=X+Y \mathbb{E}[Z \mid \mathcal{F}] .
$$

You may use, without having to prove it, that the conditional expectation is a linear operator.

b (weight 10p)

Let $\left\{X_{n}, n \geq 1\right\}$ be independent identically distributed random variables such that $\mathbb{E}\left[X_{i}\right]=a, \operatorname{var}\left[X_{i}\right]=\sigma^{2}, i \geq 1$. Set $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$. Find the conditional expectations:

$$
\mathbb{E}\left(X_{1} \cdot X_{2} \cdot \ldots \cdot X_{n} \mid \mathcal{F}_{k}\right) .
$$

c (weight 10p)

Define what is a martingale with respect to a filtration $\mathbb{F}=\left\{\mathcal{F}_{t}\right\}_{t=0, \ldots, T, T}$ under the probability measure P. Let $Z=\{Z(t)\}_{t=0, \ldots, T}$ be a martingale and $H=\{H(t)\}_{t=1, \ldots, T}$ be a predictable process. Prove that the process $G=\{G(t)\}_{t=0, \ldots, T}$ defined by

$$
\begin{gathered}
G(0)=0 \\
G(t)=\sum_{u=1}^{t} H(u)(Z(u)-Z(u-1)), t=1, \ldots, T
\end{gathered}
$$

is also a martingale.

