Chapter 1

The conditional expectation

Definition 1.1

Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration. A process $M(t), t \geq 0$ is called an \mathcal{F}_t -martingale if the following two conditions are satisfied:

1) for any $t \ge 0$, $\mathbb{E}|M(t)| < \infty$,

2) for any $t \ge s \ge 0$:

$$\mathbb{E}(M(t)|\mathcal{F}_s) = M(s)$$
 a.s.

The definition of the martingale in the case when the flow and the family of random variables is indexed by a discrete parameter is given similarly.

Let us recall some properties of the conditional expectation (we assume below that all expectations are finite).

1) If η is \mathcal{G} -measurable random variable, then $\mathbb{E}(\eta|\mathcal{G}) = \eta$ a.s.

2) If η is independent of σ -algebra \mathcal{G} , then $\mathbb{E}(\eta|\mathcal{G}) = \mathbb{E}\eta$ a.s.

3) If η is measurable with respect to \mathcal{G} , then $\mathbb{E}(\eta \tau | \mathcal{G}) = \eta \mathbb{E}(\tau | \mathcal{G})$ a.s.

4) If $\mathcal{G}_1 \subset \mathcal{G}_2$, then $\mathbb{E}(\mathbb{E}(\eta | \mathcal{G}_2) | \mathcal{G}_1) = \mathbb{E}(\eta | \mathcal{G}_1)$ a. s.

5)
$$\mathbb{E}(\mathbb{E}(\eta|\mathcal{G})) = \mathbb{E}\eta$$
.

6) Suppose that $\mathbb{E}\xi^2 < \infty$. Then

$$\mathbb{E} \left(\mathbb{E}(\xi|\mathcal{G}) \right)^2 \le \mathbb{E}\xi^2, \text{ i.e., } \|\mathbb{E}(\xi|\mathcal{G})\|_{L_2} \le \|\xi\|_{L_2}$$
$$\min_{\eta \in L_2(\Omega, \mathcal{G}, \mathbb{P})} \mathbb{E}(\xi - \eta)^2 = \mathbb{E}(\xi - \mathbb{E}(\xi|\mathcal{G}))^2.$$

7) Let ξ be a $\mathcal G\text{-measurable random variable, and the random variable <math display="inline">\eta$ independent of $\mathcal G.$ Then

$$\mathbb{E}\left(f(\xi,\eta)|\mathcal{G}\right) = m(\xi),$$

where $m(x) = \mathbb{E}(f(x,\eta))$. The corresponding expression will be denoted by $\mathbb{E}(f(x,\eta))|_{x=\xi}$.

Problem

- 1. Let $\{\xi_n, n \geq 1\}$ be independent identically distributed random variables such that $\mathbb{E}[\xi_i] = a, var[\xi_i] = \sigma^2, i \geq 1$. Define σ -algebra $\mathcal{F}_n = \sigma(\xi_1, \xi_2, ..., \xi_n)$. Calculate
 - (a) $\mathbb{E}(\xi_1 + \xi_2 + ... + \xi_n | \mathcal{F}_k);$
 - (b) $\mathbb{E}(\xi_1 \cdot \xi_2 \cdot \ldots \cdot \xi_n | \mathcal{F}_k);$

- (c) $\mathbb{E}((\xi_1)^2 \cdot (\xi_2)^2 \cdot \ldots \cdot (\xi_n)^2 | \mathcal{F}_k);$
- (d) $\mathbb{E}((\xi_1 + \xi_2 + ... + \xi_n)^2 | \mathcal{F}_k).$

Definition 1.2

Stochastic process $\xi(t), t \ge 0$ is Gaussian if for any $n \ge 1$ and any $0 \le t_1 \le \cdots \le t_n$ the random vector $(\xi(t_1), \ldots, \xi(t_n))$ has the Gaussian distribution.

Definition 1.3

A Gaussian process $W(t), t \ge 0$ is called a standard Wiener process (Brownian motion) if

1. $\mathbb{E}(W(t)) = 0, t \ge 0;$

2. $Cov(W(t), W(s)) = \mathbb{E}(W(t)W(s)) - \mathbb{E}(W(t))\mathbb{E}(W(s)) = min\{s; t\}, s, t \ge 0.$ (The covariance is the length of the overlapping time period between W(t) and W(s).)

Example 1. Let $\{W(t) : t \ge 0\}$ be a standard Wiener process. Find

a) $\mathbb{E}(2+3W(4))^2$;

b) $\mathbb{E}(W(4) - 3W(2))^2$.

Solution. a) Using the properties of expectation we get

$$\mathbb{E}(2+3W(4))^2 = \mathbb{E}(4+6W(4)+9W(4)^2) = \mathbb{E}(4+\mathbb{E}(6W(4))) + \mathbb{E}(9W(4)^2)$$

As $\mathbb{E}(W(t)) = 0$ and $\mathbb{E}(W(t))^2 = t$, then

$$\mathbb{E}(2+3W(4))^2 = 4 + 6\mathbb{E}(W(4)) + 9\mathbb{E}(W(4)^2) = 4 + 0 + 36 = 40.$$

b) As $\mathbb{E}(W(t)) = 0$, $\mathbb{E}(W(t))^2 = t$, and $\mathbb{E}(W(t)W(s)) = Cov(W(t)W(s)) = min\{s, t\}, t\}$ then

$$\mathbb{E}(W(4) - 3W(2))^2 = \mathbb{E}(W^2(4) - 6W(4)W(2) + 9W^2(2)) =$$
$$= \mathbb{E}(W^2(4)) - 6\mathbb{E}(W(4)W(2)) + 9\mathbb{E}(W^2(2)) =$$
$$= 4 - 6 \cdot \min\{4, 2\} + 18 = 22 - 12 = 10.$$

Wiener process $W(t), t \ge 0$ is a process with homogeneous increments: random variables $W(v_1) - W(v_2)$ and $W(u_1) - W(u_2)$ have the same distributions for any $v_1, v_2, u_1, u_2 \ge 0$ such that $v_1 - v_2 = u_1 - u_2$.

Example 2. Assume that W(t) is a Wiener process.

Find

$$\mathbb{E}(W(1)\cdot W(2)\cdot W(3)|\mathcal{F}_2).$$

Solution.

$$\mathbb{E}(W(1) \cdot W(2) \cdot W(3) | \mathcal{F}_2) = W(1) \cdot W(2) \cdot \mathbb{E}(W(3) | \mathcal{F}_2) =$$

= W(1) \cdot W(2) \cdot \mathbb{E}(W(3) - W(2) + W(2) | \mathcal{F}_2) =
= W(1) \cdot W(2) \cdot (\mathbb{E}(W(3) - W(2) | \mathcal{F}_2) + \mathbb{E}(W(2) | \mathcal{F}_2)) =
= W(1) W^2(2).

Problem

Let W(t) be an \mathcal{F}_t -Winner process.

Find the conditional expectations: 1) $\mathbb{E}(W(1) \cdot W(2) \cdot W(3) | \mathcal{F}_1);$ 2) $\mathbb{E}(W(1) \cdot W(2) \cdot W^2(4) | \mathcal{F}_2);$

3) $\mathbb{E}(W(1) \cdot W(2) + W(4)|\mathcal{F}_2).$