STK-MAT3700

O.A. TYMOSHENKO

Problems

(1) Specify V, V^{*}, G and G^{*} in the following models
(a) $K=3, N=1, r=1 / 9, S_{1}(0)=5, S_{1}(1)=(20 / 3,40 / 9,30 / 9)^{T}$.
(b) $K=3, N=2, B(0)=1, S_{1}(0)=5, S_{2}(0)=10$,

$$
S(1, \Omega)=\left(\begin{array}{ccc}
10 / 9 & 60 / 9 & 40 / 3 \\
10 / 9 & 60 / 9 & 80 / 9 \\
10 / 9 & 40 / 9 & 80 / 9
\end{array}\right)
$$

(c) $K=4, N=2, B(0)=1, S_{1}(0)=5, S_{2}(0)=10$,

$$
S(1, \Omega)=\left(\begin{array}{ccc}
10 / 9 & 60 / 9 & 40 / 3 \\
10 / 9 & 60 / 9 & 80 / 9 \\
10 / 9 & 40 / 9 & 80 / 9 \\
10 / 9 & 20 / 9 & 120 / 9
\end{array}\right)
$$

(2) Let $K=2, N=1, r=0$ and $S(0)=10, S\left(1, \omega_{1}\right)=12$, $S\left(1, \omega_{2}\right)=10$. Show that there exist the arbitrage opportunities, but the dominant trading stratagy doesn't exist.
(3) Suppose $K=2 ; N=1$ and the interest rate is $r \geq 0$. Also, suppose $S_{1}(0)=1, S_{1}\left(1, \omega_{1}\right)=u, S_{1}\left(1, \omega_{2}\right)=d$, where $u>d>0$. For what values of r, u and d there exist a risk neutral probability measure? Give this measure. For the complementary values of these parameters, describe all the arbitrage opportunities.
(4) Let $r=\frac{1}{9}$. Find RNPM, AO.

$S^{*}(0)$	$S^{*}(1)$		
	ω_{1}	ω_{2}	ω_{3}
7	8	2	5

(5) Let $r=\frac{1}{9}$. Check whether there exist a risk neutral probability measure. What can you say about the arbitrage opportunities?

n	$S_{n}(0)$	$S_{n}(1)$	
		ω_{1}	ω_{2}
1	7	$12 / 5$	$18 / 5$
2	8	$24 / 5$	$12 / 5$

(6) Suppose the model has next Characteristics: $K=2, N=1, r=$ $1 / 9, S_{1}(0)=5, S(1)=(20 / 3,40 / 9)^{T}$. Using the direct approach, solve the optimal portfolio problem for the initial wealth $v \geq 0$ and the probability $P\left(\omega_{1}\right)=p$ under the utility functions
(a) $U(u)=-\exp (-u)$,
(b) $U(u)=\gamma^{-1} u^{\gamma}$, where $-\infty<\gamma<1, \gamma \neq 0$.
(7) Suppose $U(u)=\log (u)$. Show that the inverse function $I(i)=$ i^{-1}, the optimal Lagrange multiplier $\hat{\lambda}=v^{-1}$, the optimal attainable wealth is $\hat{W}=v L^{-1} B(1)$, and the optimal objective value is $\mathbb{E}[U(\hat{W})]=\log (v)-\mathbb{E}\left[\log \left(L B^{-1}(1)\right)\right]$. Compute these expressions and solve for the optimal trading strategy in the model in exercise 14 with $p=3 / 5$.
(8) Suppose $U(u)=\gamma^{-1} u^{\gamma}$, where $-\infty<\gamma<1, \gamma \neq 0$. Show that the inverse function $I(i)=i^{-\frac{1}{1-\gamma}}$, the optimal Lagrange multiplier

$$
\hat{\lambda}=v^{-(1-\gamma)}\left(\mathbb{E}\left[\left(L B^{-1}(1)\right)^{-\frac{\gamma}{1-\gamma}}\right]\right)^{1-\gamma},
$$

the optimal attainable wealth

$$
\hat{W}=\frac{v\left(L B^{-1}(1)\right)^{-\frac{1}{1-\gamma}}}{\mathbb{E}\left[\left(L B^{-1}(1)\right)^{-\frac{\gamma}{1-\gamma}}\right]}
$$

and the optimal objective value $\mathbb{E}[U(\hat{W})]=\lambda v / \gamma$. Compute these expressions and solve for the optimal trading strategy in the model in exercise 1 with $p=3 / 5$.
(9) Let $Q=\left(\frac{1}{8}, \frac{1}{2}, \frac{3}{8}\right)^{T}$ be the unique martingale measure on this market (you do not have to prove this). Consider the following optimal portfolio problem

$$
\begin{aligned}
& \max _{H \in H} E(U(V(1))) \\
& \text { subject to } V(0)=v,
\end{aligned}
$$

where v is a given non-negative real number, and $U(u)=2 u^{1 / 2}$. Compute the optimal attainable wealth, the optimal objective value and the optimal trading strategy

References

[1] M. Capi'nski and T. Zastawniak. Mathematics for Finance. An Introduction to Financial Engineering. (2003)
[2] S. R. Pliska. Introduction to Mathematical Finance. Discrete Time Models. Blackwell Publishing. (1997)

